1
|
Di Guardo G. Central Nervous System Disorders of Marine Mammals: Models for Human Disease? Pathogens 2024; 13:684. [PMID: 39204284 PMCID: PMC11357396 DOI: 10.3390/pathogens13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
This article deals with Central Nervous System (CNS) disorders of marine mammals as putative neuropathology and neuropathogenesis models for their human and, to some extent, their animal "counterparts" in a dual "One Health" and "Translational Medicine" perspective. Within this challenging context, special emphasis is placed upon Alzheimer's disease (AD), provided that AD-like pathological changes have been reported in the brain tissue of stranded cetacean specimens belonging to different Odontocete species. Further examples of potential comparative pathology interest are represented by viral infections and, in particular, by "Subacute Sclerosing Panencephalitis" (SSPE), a rare neurologic sequela in patients infected with Measles virus (MeV). Indeed, Cetacean morbillivirus (CeMV)-infected striped dolphins (Stenella coeruleoalba) may also develop a "brain-only" form of CeMV infection, sharing neuropathological similarities with SSPE. Within this framework, the global threat of the A(H5N1) avian influenza virus is another major concern issue, with a severe meningoencephalitis occurring in affected pinnipeds and cetaceans, similarly to what is seen in human beings. Finally, the role of Brucella ceti-infected, neurobrucellosis-affected cetaceans as putative neuropathology and neuropathogenesis models for their human disease counterparts is also analyzed and discussed. Notwithstanding the above, much more work is needed before drawing the conclusion marine mammal CNS disorders mirror their human "analogues".
Collapse
Affiliation(s)
- Giovanni Di Guardo
- Former Professor of General Pathology and Veterinary Pathophysiology, Veterinary Medical Faculty, University of Teramo, Località Piano d'Accio, 64100 Teramo, Italy
| |
Collapse
|
2
|
Vargas-Castro I, Peletto S, Mattioda V, Goria M, Serracca L, Varello K, Sánchez-Vizcaíno JM, Puleio R, Nocera FD, Lucifora G, Acutis P, Casalone C, Grattarola C, Giorda F. Epidemiological and genetic analysis of Cetacean Morbillivirus circulating on the Italian coast between 2018 and 2021. Front Vet Sci 2023; 10:1216838. [PMID: 37583469 PMCID: PMC10424449 DOI: 10.3389/fvets.2023.1216838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/04/2023] [Indexed: 08/17/2023] Open
Abstract
Cetacean morbillivirus (CeMV) has caused several outbreaks, unusual mortality events, and interepidemic single-lethal disease episodes in the Mediterranean Sea. Since 2012, a new strain with a northeast (NE) Atlantic origin has been circulating among Mediterranean cetaceans, causing numerous deaths. The objective of this study was to determine the prevalence of CeMV in cetaceans stranded in Italy between 2018 and 2021 and characterize the strain of CeMV circulating. Out of the 354 stranded cetaceans along the Italian coastlines, 113 were CeMV-positive. This prevalence (31.9%) is one of the highest reported without an associated outbreak. All marine sectors along the Italian coastlines, except for the northern Adriatic coast, reported a positive molecular diagnosis of CeMV. In one-third of the CeMV-positive cetaceans submitted to a histological evaluation, a chronic form of the infection (detectable viral antigen, the absence of associated lesions, and concomitant coinfections) was suspected. Tissues from 24 animals were used to characterize the strain, obtaining 57 sequences from phosphoprotein, nucleocapsid, and fusion protein genes, which were submitted to GenBank. Our sequences showed the highest identity with NE-Atlantic strain sequences, and in the phylogenetic study, they clustered together with them. Regarding age and species, most of these individuals were adults (17/24, 70.83%) and striped dolphins (19/24, 79.16%). This study improves our understanding on the NE-Atlantic CeMV strain in the Italian waters, supporting the hypothesis of an endemic circulation of the virus in this area; however, additional studies are necessary to deeply comprehend the epidemiology of this strain in the Mediterranean Sea.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Virginia Mattioda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | | | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Pierluigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta - WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| |
Collapse
|
3
|
Costa-Silva S, Sacristán C, Soares RM, Carvalho VL, Castilho PV, Cremer MJ, Ewbank AC, Duarte-Benvenuto A, Faita T, Navas-Suárez PE, Vieira JV, Pereira LG, Alves CF, Souza GC, Lemos GG, Silvestre-Perez N, Catão-Dias JL, Keid LB. Short-Finned Pilot Whale Strandings Associated with Pilot Whale Morbillivirus, Brazil. Emerg Infect Dis 2023; 29:214-217. [PMID: 36573734 PMCID: PMC9796215 DOI: 10.3201/eid2901.221549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cetacean morbillivirus (CeMV) causes illness and death in cetaceans worldwide; the CeMV strains circulating in the Southern Hemisphere are poorly known. We detected a pilot whale CeMV strain in 3 short-finned pilot whales (Globicephala macrorhynchus) stranded in Brazil during July-October 2020. Our results confirm this virus circulates in this species.
Collapse
|
4
|
Giorda F, Crociara P, Iulini B, Gazzuola P, Favole A, Goria M, Serracca L, Dondo A, Crescio MI, Audino T, Peletto S, Di Francesco CE, Caramelli M, Sierra E, Di Nocera F, Lucifora G, Petrella A, Puleio R, Mazzariol S, Di Guardo G, Casalone C, Grattarola C. Neuropathological Characterization of Dolphin Morbillivirus Infection in Cetaceans Stranded in Italy. Animals (Basel) 2022; 12:ani12040452. [PMID: 35203160 PMCID: PMC8868427 DOI: 10.3390/ani12040452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary There is abundant literature reporting demyelination in dogs and pinnipeds affected by morbillivirus infection, but myelinopathy is poorly investigated in stranded cetaceans affected with the virus. Also, the neuropathogenesis of cetacean morbillivirus infection has not been fully clarified, leaving questions on cell tropism unanswered. A novel dolphin morbillivirus lineage of Atlantic origin circulating in Italian waters replaced the previous Mediterranean strain in late 2015; however, differences in virulence and pathogenesis between the two strains have not yet been documented. The aims of the present study were to: describe histopathological changes and immunohistochemical findings in the central nervous system of 31 cetaceans which tested positive on molecular investigations for the two dolphin morbillivirus strains; characterize by double indirect immunofluorescence staining the areas of myelin damage. The most frequently observed morbillivirus-associated lesions were astro-microgliosis, neuronal necrosis, spongiosis, malacia, and non-suppurative meningoencephalitis. Demyelination was detected by means of a specific myelin biomarker. Inside and around the demyelinated areas there were morbillivirus antigen-bearing cells of mainly neuronal and microglial origin, associated with marked astro and microglia reactivity. Molecular and immunohistochemical analysis suggested a higher neurotropic affinity of the novel circulating strain. Abstract Cetacean morbillivirus (CeMV) is responsible for epidemic and endemic fatalities in free-ranging cetaceans. Neuro-inflammation sustained by CeMV is a leading cause of death in stranded cetaceans. A novel dolphin morbillivirus (DMV) strain of Atlantic origin circulating in Italian waters since early 2016 has caused acute/subacute lesions associated with positive immunolabelling of the virus. To date, myelin damage has not been fully documented and investigated in cetaceans. This study describes neuropathological findings in the brain tissue of 31 cetaceans found stranded along the Italian coastline and positive for DMV infection on molecular testing. Cell changes in the areas of myelinopathy were revealed by double indirect immunofluorescence. The most frequent DMV-associated lesions were astro-microgliosis, neuronal necrosis, spongiosis, malacia, and non-suppurative meningoencephalitis. Myelin reduction and areas of demyelination were revealed by means of a specific myelin biomarker. Morbilliviral antigen immunolabelling was mainly observed in neurons and microglial cells, in association with a marked activation of microglia and astrocytes. These findings extend our knowledge of DMV-associated brain lesions and shed light on their pathogenesis.
Collapse
Affiliation(s)
- Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
- Institute for Animal Health and Food Safety (IUSA), Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35416 Canary Islands, Spain;
- Correspondence:
| | - Paola Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
- Department of Prevention, Local Veterinary Services (ASLTO4), SS Sanità Animale, Piazza Gino Viano Bellandi, Cuorgnè, 10082 Torino, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Paola Gazzuola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Alessandra Favole
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Tania Audino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | | | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Eva Sierra
- Institute for Animal Health and Food Safety (IUSA), Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35416 Canary Islands, Spain;
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute, 2, Portici, 80055 Napoli, Italy; (F.D.N.); (G.L.)
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute, 2, Portici, 80055 Napoli, Italy; (F.D.N.); (G.L.)
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy;
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi, 3, 90129 Palermo, Italy;
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy;
| | - Giovanni Di Guardo
- Retired Professor of General Pathology and Veterinary Pathophysiology, Veterinary Medical Faculty, University of Teramo, Localita’ Piano d’Accio, 64100 Teramo, Italy;
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| |
Collapse
|
5
|
Zinzula L, Mazzariol S, Di Guardo G. Molecular signatures in cetacean morbillivirus and host species proteomes: Unveiling the evolutionary dynamics of an enigmatic pathogen? Microbiol Immunol 2021; 66:52-58. [PMID: 34779039 DOI: 10.1111/1348-0421.12949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/01/2023]
Abstract
Cetacean morbillivirus (CeMV) infects marine mammals often causing a fatal respiratory and neurological disease. Recently, CeMV has expanded its geographic and host species range, with cases being reported worldwide among dolphins, whales, seals, and other aquatic mammalian species, and therefore has emerged as the most threatening nonanthropogenic factor affecting marine mammal's health and conservation. Extensive research efforts have aimed to understand CeMV epidemiology and ecology, however, the molecular mechanisms underlying its transmission and pathogenesis are still poorly understood. In particular, the field suffers from a knowledge gap on the structural and functional properties of CeMV proteins and their host interactors. Nevertheless, the body of scientific literature produced in recent years has inaugurated new investigational trends, driving future directions in CeMV molecular research. In this mini-review, the most recent literature has been summarized in the context of such research trends, and categorized into four priority research topics, such as (1) the interaction between CeMV glycoprotein and its host cell receptors across several species; (2) the CeMV molecular determinants responsible for different disease phenotype; (3) the host molecular determinants responsible for differential susceptibility to CeMV infection; (4) the CeMV molecular determinants responsible for difference virulence among circulating CeMV strains. Arguably, these are the most urgent topics that need to be investigated and that most promisingly will help to shed light on the details of CeMV evolutionary dynamics in the immediate future.
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (Padova), Italy
| | | |
Collapse
|
6
|
West KL, Silva-Krott I, Landrau-Giovannetti N, Rotstein D, Saliki J, Raverty S, Nielsen O, Popov VL, Davis N, Walker WA, Subramaniam K, Waltzek TB. Novel cetacean morbillivirus in a rare Fraser's dolphin (Lagenodelphis hosei) stranding from Maui, Hawai'i. Sci Rep 2021; 11:15986. [PMID: 34373473 PMCID: PMC8352961 DOI: 10.1038/s41598-021-94460-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
Cetacean morbillivirus (CeMV) is a global threat to cetaceans. We report a novel morbillivirus from a Fraser’s dolphin (Lagenodelphis hosei) that stranded in Maui, Hawaii in 2018 that is dissimilar to the beaked whale morbillivirus previously identified from Hawaii and to other CeMV strains. Histopathological findings included intranuclear inclusions in bile duct epithelium, lymphoid depletion, rare syncytial cells and non-suppurative meningitis. Cerebellum and lung tissue homogenates were inoculated onto Vero.DogSLAMtag cells for virus isolation and cytopathic effects were observed, resulting in the formation of multinucleated giant cells (i.e., syncytia). Transmission electron microscopy of infected cell cultures also revealed syncytial cells with intracytoplasmic and intranuclear inclusions of viral nucleocapsids, consistent with the ultrastructure of a morbillivirus. Samples of the cerebellum, lung, liver, spleen and lymph nodes were positive for morbillivirus using a reverse transcription-polymerase chain reaction. The resulting 559 bp L gene sequence had the highest nucleotide identity (77.3%) to porpoise morbillivirus from Northern Ireland and the Netherlands. The resulting 248 bp P gene had the highest nucleotide identity to porpoise morbillivirus in Northern Ireland and the Netherlands and to a stranded Guiana dolphin (Sotalia guianensis) in Brazil (66.9%). As Fraser’s dolphins are a pelagic species that infrequently strand, a novel strain of CeMV may be circulating in the central Pacific that could have additional population impacts through transmission to other small island-associated cetacean species.
Collapse
Affiliation(s)
- Kristi L West
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, HI, USA. .,Human Nutrition Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI, USA.
| | - Ilse Silva-Krott
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, HI, USA
| | - Nelmarie Landrau-Giovannetti
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | - Jeremiah Saliki
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Raverty
- Animal Health Center, British Columbia Ministry of Agriculture, Abbotsford, BC, Canada
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Vsevolod L Popov
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole Davis
- Pacific Islands Regional Office, National Marine Fisheries Service, Honolulu, HI, USA
| | - William A Walker
- Marine Mammal Laboratory, National Marine Fisheries Service, Seattle, WA, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Zinzula L, Beck F, Klumpe S, Bohn S, Pfeifer G, Bollschweiler D, Nagy I, Plitzko JM, Baumeister W. Cryo-EM structure of the cetacean morbillivirus nucleoprotein-RNA complex. J Struct Biol 2021; 213:107750. [PMID: 34089875 DOI: 10.1016/j.jsb.2021.107750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Cetacean morbillivirus (CeMV) is an emerging and highly infectious paramyxovirus that causes outbreaks in cetaceans and occasionally in pinnipeds, representing a major threat to biodiversity and conservation of endangered marine mammal populations in both hemispheres. As for all non-segmented, negative-sense, single-stranded RNA (ssRNA) viruses, the morbilliviral genome is enwrapped by thousands of nucleoprotein (N) protomers. Each bound to six ribonucleotides, N protomers assemble to form a helical ribonucleoprotein (RNP) complex that serves as scaffold for nucleocapsid formation and as template for viral replication and transcription. While the molecular details on RNP complexes elucidated in human measles virus (MeV) served as paradigm model for these processes in all members of the Morbillivirus genus, no structural information has been obtained from other morbilliviruses, nor has any CeMV structure been solved so far. We report the structure of the CeMV RNP complex, reconstituted in vitro upon binding of recombinant CeMV N to poly-adenine ssRNA hexamers and solved to 4.0 Å resolution by cryo-electron microscopy. In spite of the amino acid sequence similarity and consequently similar folding of the N protomer, the CeMV RNP complex exhibits different helical parameters as compared to previously reported MeV orthologs. The CeMV structure reveals exclusive interactions leading to more extensive protomer-RNA and protomer-protomer interfaces. We identified twelve residues, among those varying between CeMV strains, as putatively important for the stabilization of the RNP complex, which highlights the need to study the potential of CeMV N mutations that modulate nucleocapsid assembly to also affect viral phenotype and host adaptation.
Collapse
Affiliation(s)
- Luca Zinzula
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Florian Beck
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sven Klumpe
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stefan Bohn
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Günter Pfeifer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Daniel Bollschweiler
- Max-Planck Institute of Biochemistry, Cryo-EM Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jürgen M Plitzko
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
8
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Wessels ME, Deaville R, Perkins MW, Jepson PD, Penrose R, Rocchi MS, Maley M, Ballingall KT, Dagleish MP. Novel Presentation of DMV-Associated Encephalitis in a Long-Finned Pilot Whale (Globicephala melas). J Comp Pathol 2021; 183:51-56. [PMID: 33714432 DOI: 10.1016/j.jcpa.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Cetacean morbillivirus (CeMV) is an important global cause of morbidity and mortality in cetacean populations, with four pathological presentations including non-suppurative encephalitis. We describe an unusual case of dolphin morbillivirus (DMV)-associated non-suppurative encephalitis in a long-finned pilot whale (Globicephala melas), in which the lesions were orientated on the periventricular white matter and comprised prominent multifocal syncytia formation in the absence of systemic lesions. DMV RNA was detected in brain tissue by qRT-PCR and immunohistochemistry for morbillivirus antigen yielded intense labelling of syncytia in periventricular sites, with sparse involvement of the deeper neuroparenchyma. The pattern of lesions raises the possibility of viral dissemination through the cerebrospinal fluid, as described for canine distemper virus, suggesting that similar pathogenic mechanisms may be implicated in lesion development. Further investigation is required to establish the pathogenesis of CeMV encephalitis and the behaviour of the virus within the central nervous system of cetaceans.
Collapse
Affiliation(s)
| | - Robert Deaville
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Matthew W Perkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Paul D Jepson
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Rod Penrose
- Marine Environmental Monitoring, Llechryd, Cardigan, Ceredigion, UK
| | - Mara S Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK
| | - Madeleine Maley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK
| | - Keith T Ballingall
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK
| |
Collapse
|
10
|
Groch KR, Díaz-Delgado J, Santos-Neto EB, Ikeda JMP, Carvalho RR, Oliveira RB, Guari EB, Flach L, Sierra E, Godinho AI, Fernández A, Keid LB, Soares RM, Kanamura CT, Favero C, Ferreira-Machado E, Sacristán C, Porter BF, Bisi TL, Azevedo AF, Lailson-Brito J, Catão-Dias JL. The Pathology of Cetacean Morbillivirus Infection and Comorbidities in Guiana Dolphins During an Unusual Mortality Event (Brazil, 2017-2018). Vet Pathol 2020; 57:845-857. [PMID: 32964811 DOI: 10.1177/0300985820954550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cetacean morbillivirus (CeMV; Paramyxoviridae) is the most significant pathogen of cetaceans worldwide. The novel "multi-host" Guiana dolphin (Sotalia guianensis; GD)-CeMV strain is reported in South American waters and infects Guiana dolphins and southern right whales (Eubalaena australis). This study aimed to describe the pathologic findings, GD-CeMV viral antigen distribution and detection by RT-PCR (reverse transcriptase polymerase chain reaction), and infectious comorbidities in 29 Guiana dolphins that succumbed during an unusual mass-mortality event in Rio de Janeiro state, Brazil, between November 2017 and March 2018. The main gross findings were lack of ingesta, pulmonary edema, ascites, icterus, hepatic lipidosis, multicentric lymphadenomegaly, as well as pneumonia, polyserositis, and multiorgan vasculitis caused by Halocercus brasiliensis. Microscopically, the primary lesions were bronchointerstitial pneumonia and multicentric lymphoid depletion. The severity and extent of the lesions paralleled the distribution and intensity of morbilliviral antigen. For the first time in cetaceans, morbilliviral antigen was detected in salivary gland, optic nerve, heart, diaphragm, parietal and visceral epithelium of glomeruli, vulva, and thyroid gland. Viral antigen within circulating leukocytes suggested this as a mechanism of dissemination within the host. Comorbidities included disseminated toxoplasmosis, mycosis, ciliated protozoosis, and bacterial disease including brucellosis. These results provide strong evidence for GD-CeMV as the main cause of this unusual mass-mortality event.
Collapse
Affiliation(s)
| | - Josué Díaz-Delgado
- 28133University of São Paulo, São Paulo, Brazil.,67283Texas A&M University, College Station, TX, USA
| | | | - Joana M P Ikeda
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael R Carvalho
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raissa B Oliveira
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emi B Guari
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Flach
- Instituto Boto Cinza, Mangaratiba, Rio de Janeiro, Brazil
| | - Eva Sierra
- 16750University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ana I Godinho
- 16750University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- 16750University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Lara B Keid
- 28133University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - Tatiana L Bisi
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
11
|
Dou Y, Liang Z, Prajapati M, Zhang R, Li Y, Zhang Z. Expanding Diversity of Susceptible Hosts in Peste Des Petits Ruminants Virus Infection and Its Potential Mechanism Beyond. Front Vet Sci 2020; 7:66. [PMID: 32181263 PMCID: PMC7059747 DOI: 10.3389/fvets.2020.00066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
Peste des petits ruminants (PPR) is a severe respiratory and digestive tract disease of domestic small ruminants caused by PPR virus (PPRV) of the genus Morbillivirus. Although the primary hosts of PPRV are goats and sheep, the host range of PPRV has been continuously expanding and reported to infect various animal hosts over the last decades, which could bring a potential challenge to effectively control and eradicate PPR globally. In this review, we focused on current knowledge about host expansion and interspecies infection of PPRV and discussed the potential mechanisms involved.
Collapse
Affiliation(s)
- Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Zhongxiang Liang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Meera Prajapati
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,Animal Health Research Division, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Rui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yanmin Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
12
|
Di Guardo G, Criscitiello MF, Sierra E, Mazzariol S. Editorial: Comparative Immunology of Marine Mammals. Front Immunol 2019; 10:2300. [PMID: 31632396 PMCID: PMC6779798 DOI: 10.3389/fimmu.2019.02300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/11/2019] [Indexed: 12/05/2022] Open
Affiliation(s)
| | - Michael Frederick Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Eva Sierra
- Faculty of Veterinary Medicine, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
13
|
Marino AMF, Giunta RP, Salvaggio A, Castello A, Alfonzetti T, Barbagallo A, Aparo A, Scalzo F, Reale S, Buffolano W, Percipalle M. Toxoplasma gondii in edible fishes captured in the Mediterranean basin. Zoonoses Public Health 2019; 66:826-834. [PMID: 31278858 PMCID: PMC6852154 DOI: 10.1111/zph.12630] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023]
Abstract
The issue of whether market fish can be involved in the transmission of Toxoplasma gondii in the marine environment is highly debated since toxoplasmosis has been diagnosed frequently in cetaceans stranded along the Mediterranean coastlines in recent times. To support the hypothesis that fishes can harbour and effectively transmit the parasite to top-of-the-food-chain marine organisms and to human consumers of fishery products, a total of 1,293 fishes from 17 species obtained from wholesale and local fish markets were examined for T. gondii DNA. Real-time PCR was performed in samples obtained by separately pooling intestines, gills and skin/muscles collected from each fish species. Thirty-two out of 147 pooled samples from 12 different fish species were found contaminated with T. gondii DNA that was detected in 16 samples of skin/muscle and in 11 samples of both intestine and gills. Quantitative analysis of amplified DNA performed by both real-time PCR and digital PCR (dPCR) confirmed that positive fish samples were contaminated with Toxoplasma genomic DNA to an extent of 6.10 × 10-2 to 2.77 × 104 copies/ml (quantitative PCR) and of 1 to 5.7 × 104 copies/ml (dPCR). Fishes are not considered competent biological hosts for T. gondii; nonetheless, they can be contaminated with T. gondii oocysts flowing via freshwater run-offs (untreated sewage discharges, soil flooding) into the marine environment, thus acting as mechanical carriers. Although the detection of viable and infective T. gondii oocysts was not the objective of this investigation, the results here reported suggest that fish species sold for human consumption can be accidentally involved in the transmission route of the parasite in the marine environment and that the risk of foodborne transmission of toxoplasmosis to fish consumers should be further investigated.
Collapse
Affiliation(s)
- Anna Maria Fausta Marino
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Renato Paolo Giunta
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Antonio Salvaggio
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Annamaria Castello
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Tiziana Alfonzetti
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Antonio Barbagallo
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Alessandra Aparo
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Fabrizio Scalzo
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Stefano Reale
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | | | - Maurizio Percipalle
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| |
Collapse
|
14
|
Ohishi K, Maruyama T, Seki F, Takeda M. Marine Morbilliviruses: Diversity and Interaction with Signaling Lymphocyte Activation Molecules. Viruses 2019; 11:E606. [PMID: 31277275 PMCID: PMC6669707 DOI: 10.3390/v11070606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023] Open
Abstract
Epidemiological reports of phocine distemper virus (PDV) and cetacean morbillivirus (CeMV) have accumulated since their discovery nearly 30 years ago. In this review, we focus on the interaction between these marine morbilliviruses and their major cellular receptor, the signaling lymphocyte activation molecule (SLAM). The three-dimensional crystal structure and homology models of SLAMs have demonstrated that 35 residues are important for binding to the morbillivirus hemagglutinin (H) protein and contribute to viral tropism. These 35 residues are essentially conserved among pinnipeds and highly conserved among the Caniformia, suggesting that PDV can infect these animals, but are less conserved among cetaceans. Because CeMV can infect various cetacean species, including toothed and baleen whales, the CeMV-H protein is postulated to have broader specificity to accommodate more divergent SLAM interfaces and may enable the virus to infect seals. In silico analysis of viral H protein and SLAM indicates that each residue of the H protein interacts with multiple residues of SLAM and vice versa. The integration of epidemiological, virological, structural, and computational studies should provide deeper insight into host specificity and switching of marine morbilliviruses.
Collapse
Affiliation(s)
- Kazue Ohishi
- Faculty of Engineering, Tokyo Polytechnic University, 1583, Iiyama, Atsugi, Kanagawa 243-0297, Japan.
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Fumio Seki
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
15
|
Batley KC, Sandoval‐Castillo J, Kemper CM, Attard CRM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Genome-wide association study of an unusual dolphin mortality event reveals candidate genes for susceptibility and resistance to cetacean morbillivirus. Evol Appl 2019; 12:718-732. [PMID: 30976305 PMCID: PMC6439501 DOI: 10.1111/eva.12747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases are significant demographic and evolutionary drivers of populations, but studies about the genetic basis of disease resistance and susceptibility are scarce in wildlife populations. Cetacean morbillivirus (CeMV) is a highly contagious disease that is increasing in both geographic distribution and incidence, causing unusual mortality events (UME) and killing tens of thousands of individuals across multiple cetacean species worldwide since the late 1980s. The largest CeMV outbreak in the Southern Hemisphere reported to date occurred in Australia in 2013, where it was a major factor in a UME, killing mainly young Indo-Pacific bottlenose dolphins (Tursiops aduncus). Using cases (nonsurvivors) and controls (putative survivors) from the most affected population, we carried out a genome-wide association study to identify candidate genes for resistance and susceptibility to CeMV. The genomic data set consisted of 278,147,988 sequence reads and 35,493 high-quality SNPs genotyped across 38 individuals. Association analyses found highly significant differences in allele and genotype frequencies among cases and controls at 65 SNPs, and Random Forests conservatively identified eight as candidates. Annotation of these SNPs identified five candidate genes (MAPK8, FBXW11, INADL, ANK3 and ACOX3) with functions associated with stress, pain and immune responses. Our findings provide the first insights into the genetic basis of host defence to this highly contagious disease, enabling the development of an applied evolutionary framework to monitor CeMV resistance across cetacean species. Biomarkers could now be established to assess potential risk factors associated with these genes in other CeMV-affected cetacean populations and species. These results could also possibly aid in the advancement of vaccines against morbilliviruses.
Collapse
Affiliation(s)
- Kimberley C. Batley
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Jonathan Sandoval‐Castillo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | | | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ikuko Tomo
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Luciana M. Möller
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
16
|
Díaz-Delgado J, Groch KR, Sierra E, Sacchini S, Zucca D, Quesada-Canales Ó, Arbelo M, Fernández A, Santos E, Ikeda J, Carvalho R, Azevedo AF, Lailson-Brito J, Flach L, Ressio R, Kanamura CT, Sansone M, Favero C, Porter BF, Centelleghe C, Mazzariol S, Di Renzo L, Di Francesco G, Di Guardo G, Catão-Dias JL. Comparative histopathologic and viral immunohistochemical studies on CeMV infection among Western Mediterranean, Northeast-Central, and Southwestern Atlantic cetaceans. PLoS One 2019; 14:e0213363. [PMID: 30893365 PMCID: PMC6426187 DOI: 10.1371/journal.pone.0213363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cetacean morbillivirus (CeMV) is a major natural cause of morbidity and mortality in cetaceans worldwide and results in epidemic and endemic fatalities. The pathogenesis of CeMV has not been fully elucidated, and questions remain regarding tissue tropism and the mechanisms of immunosuppression. We compared the histopathologic and viral immunohistochemical features in molecularly confirmed CeMV-infected Guiana dolphins (Sotalia guianensis) from the Southwestern Atlantic (Brazil) and striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) from the Northeast-Central Atlantic (Canary Islands, Spain) and the Western Mediterranean Sea (Italy). Major emphasis was placed on the central nervous system (CNS), including neuroanatomical distribution of lesions, and the lymphoid system and lung were also examined. Eleven Guiana dolphins, 13 striped dolphins, and 3 bottlenose dolphins were selected by defined criteria. CeMV infections showed a remarkable neurotropism in striped dolphins and bottlenose dolphins, while this was a rare feature in CeMV-infected Guiana dolphins. Neuroanatomical distribution of lesions in dolphins stranded in the Canary Islands revealed a consistent involvement of the cerebrum, thalamus, and cerebellum, followed by caudal brainstem and spinal cord. In most cases, Guiana dolphins had more severe lung lesions. The lymphoid system was involved in all three species, with consistent lymphoid depletion. Multinucleate giant cells/syncytia and characteristic viral inclusion bodies were variably observed in these organs. Overall, there was widespread lymphohistiocytic, epithelial, and neuronal/neuroglial viral antigen immunolabeling with some individual, host species, and CeMV strain differences. Preexisting and opportunistic infections were common, particularly endoparasitism, followed by bacterial, fungal, and viral infections. These results contribute to understanding CeMV infections in susceptible cetacean hosts in relation to factors such as CeMV strains and geographic locations, thereby establishing the basis for future neuro- and immunopathological comparative investigations.
Collapse
Affiliation(s)
- Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Kátia R. Groch
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Eva Sierra
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Simona Sacchini
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Daniele Zucca
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Óscar Quesada-Canales
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Manuel Arbelo
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Antonio Fernández
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Elitieri Santos
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Joana Ikeda
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Rafael Carvalho
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Alexandre F. Azevedo
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Jose Lailson-Brito
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Leonardo Flach
- Projeto Boto cinza, Mangaratiba, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Ressio
- Adolfo Lutz Institute (IAL)–Pathology Center, Pacaembú, São Paulo, SP, Brazil
| | | | - Marcelo Sansone
- Adolfo Lutz Institute (IAL)–Pathology Center, Pacaembú, São Paulo, SP, Brazil
| | - Cíntia Favero
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Brian F. Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Agripolis, Legnaro, Padova, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Agripolis, Legnaro, Padova, Italy
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, Teramo, Italy
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, Teramo, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, Località Piano d'Accio, University of Teramo, Teramo, Italy
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Pautasso A, Iulini B, Grattarola C, Giorda F, Goria M, Peletto S, Masoero L, Mignone W, Varello K, Petrella A, Carbone A, Pintore A, Denurra D, Scholl F, Cersini A, Puleio R, Purpari G, Lucifora G, Fusco G, Di Guardo G, Mazzariol S, Casalone C. Novel dolphin morbillivirus (DMV) outbreak among Mediterranean striped dolphins Stenella coeruleoalba in Italian waters. DISEASES OF AQUATIC ORGANISMS 2019; 132:215-220. [PMID: 31188137 DOI: 10.3354/dao03323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An unusual mortality event (UME) of striped dolphins Stenella coeruleoalba occurred in the period July to December 2016 along the Italian Ionian coastline. We conducted a complete postmortem examination on 28 specimens and detected dolphin morbillivirus (DMV), by means of biomolecular analyses, in the target tissues of 17 animals. Unlike previous outbreaks occurring in the Mediterranean Sea in 2011 and 2013, we observed typical pathological changes suggestive of morbilliviral infection in an acute/subacute phase and immunohistochemical reactivity. The same findings were observed in 13 other specimens beached along the Italian coastline during 2016 with no temporal and geographical relationship with the ongoing epidemic outbreak. Molecular characterization and phylogenetic analysis showed that DMV sequences detected in Italy in 2016 clustered with those identified in Portugal and Galicia (Spain), representing a novel DMV strain of Atlantic origin which entered the Mediterranean Sea and affected a naïve striped dolphin population. DMV sequences detected in the previous Mediterranean outbreaks exhibited a marked genetic relatedness and diverged from those detected in cetaceans stranded along the Galician and Portuguese coasts since 2007.
Collapse
Affiliation(s)
- Alessandra Pautasso
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, 10154 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Di Guardo G, Centelleghe C, Mazzariol S. Cetacean Host-Pathogen Interaction(s): Critical Knowledge Gaps. Front Immunol 2018; 9:2815. [PMID: 30546370 PMCID: PMC6279917 DOI: 10.3389/fimmu.2018.02815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| |
Collapse
|
19
|
Abstract
This chapter presents the pathology of cetaceans, a diverse group of mammals restricted exclusively to aquatic habitats. The taxa include the largest mammals on earth, the baleen whales, as well as marine and freshwater toothed whales, dolphins, and porpoises. Pathologies of these species include infectious, toxic, and other disease processes, such as ship strike and entanglements in free-ranging animals. In animals under managed care, concerns include nutritional, degenerative and geriatric processes, such as formation of ammonium urate renal calculi. Due to potential population level effects and individual animal health concerns, viral agents of interest include morbilliviruses, pox virus, and herpes viruses. Both free ranging and captive animals have important neoplasms, including a variety of toxin-related tumors in beluga whales from the St. Lawrence Estuary and oral squamous cell carcinomas in bottlenose dolphins in managed care.
Collapse
|
20
|
Stejskalova K, Bayerova Z, Futas J, Hrazdilova K, Klumplerova M, Oppelt J, Splichalova P, Di Guardo G, Mazzariol S, Di Francesco CE, Di Francesco G, Terracciano G, Paiu RM, Ursache TD, Modry D, Horin P. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans. HLA 2017; 90:343-353. [DOI: 10.1111/tan.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/25/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022]
Affiliation(s)
- K. Stejskalova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - Z. Bayerova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - J. Futas
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| | - K. Hrazdilova
- Ceitec VFU, RG Molecular Microbiology; Brno Czech Republic
| | - M. Klumplerova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - J. Oppelt
- Ceitec MU, Masaryk University; Brno Czech Republic
- Faculty of Science, National Centre for Biomolecular Research; Masaryk University; Brno Czech Republic
| | - P. Splichalova
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| | - G. Di Guardo
- Faculty of Veterinary Medicine; University of Teramo; Teramo Italy
| | - S. Mazzariol
- Department of Comparative Biomedicine and Food Science, Viale dell'Università; University of Padua; Padua Italy
| | | | - G. Di Francesco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - G. Terracciano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”; Pisa Italy
| | | | - T. D. Ursache
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca; Cluj-Napoca Romania
| | - D. Modry
- Ceitec VFU, RG Molecular Microbiology; Brno Czech Republic
- Department of Pathology and Parasitology; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Biology Center, Czech Academy of Sciences; České Budějovice Czech Republic
| | - P. Horin
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| |
Collapse
|
21
|
Whilde J, Martindale MQ, Duffy DJ. Precision wildlife medicine: applications of the human-centred precision medicine revolution to species conservation. GLOBAL CHANGE BIOLOGY 2017; 23:1792-1805. [PMID: 27809394 DOI: 10.1111/gcb.13548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The current species extinction crisis is being exacerbated by an increased rate of emergence of epizootic disease. Human-induced factors including habitat degradation, loss of biodiversity and wildlife population reductions resulting in reduced genetic variation are accelerating disease emergence. Novel, efficient and effective approaches are required to combat these epizootic events. Here, we present the case for the application of human precision medicine approaches to wildlife medicine in order to enhance species conservation efforts. We consider how the precision medicine revolution, coupled with the advances made in genomics, may provide a powerful and feasible approach to identifying and treating wildlife diseases in a targeted, effective and streamlined manner. A number of case studies of threatened species are presented which demonstrate the applicability of precision medicine to wildlife conservation, including sea turtles, amphibians and Tasmanian devils. These examples show how species conservation could be improved by using precision medicine techniques to determine novel treatments and management strategies for the specific medical conditions hampering efforts to restore population levels. Additionally, a precision medicine approach to wildlife health has in turn the potential to provide deeper insights into human health and the possibility of stemming and alleviating the impacts of zoonotic diseases. The integration of the currently emerging Precision Medicine Initiative with the concepts of EcoHealth (aiming for sustainable health of people, animals and ecosystems through transdisciplinary action research) and One Health (recognizing the intimate connection of humans, animal and ecosystem health and addressing a wide range of risks at the animal-human-ecosystem interface through a coordinated, collaborative, interdisciplinary approach) has great potential to deliver a deeper and broader interdisciplinary-based understanding of both wildlife and human diseases.
Collapse
Affiliation(s)
- Jenny Whilde
- The Whitney Laboratory for Marine Bioscience & Sea Turtle Hospital, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL, 32080-8610, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience & Sea Turtle Hospital, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL, 32080-8610, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience & Sea Turtle Hospital, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL, 32080-8610, USA
- Systems Biology Ireland, Science Link Building, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Centelleghe C, Beffagna G, Palmisano G, Franzo G, Casalone C, Pautasso A, Giorda F, Di Nocera F, Iaccarino D, Santoro M, Di Guardo G, Mazzariol S. Dolphin Morbillivirus in a Cuvier's Beaked Whale ( Ziphius cavirostris), Italy. Front Microbiol 2017; 8:111. [PMID: 28197145 PMCID: PMC5281547 DOI: 10.3389/fmicb.2017.00111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
Dolphin morbillivirus (DMV) has caused several mortality events in Mediterranean striped (Stenella coeruleoalba) and bottlenose (Tursiops truncatus) dolphins populations since 19; in the last 5 years, the virus was reported to infect new hosts in this basin, such as fin whales (Balaenoptera physalus), sperm whales (Physeter macrocephalus), and even a harbor seal (Phoca vitulina). Very recently, a calf Cuvier's beaked whale (Ziphius cavirostris) calf stranded on the Southern Italian coastline with mild pathological findings suggestive of morbilliviral infection, received the first confirmation of DMV infection in this species by biomolecular evidences on lung tissue. This new cross-species infection report, along with 19% of the cetaceans specimens examined by the Italian Stranding Network being found positive to DMV, support the hypothesis of an endemic circulation of this virus among Mediterranean cetaceans.
Collapse
Affiliation(s)
- Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Giuseppe Palmisano
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua Legnaro, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta Torino, Italy
| | - Alessandra Pautasso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta Torino, Italy
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta Torino, Italy
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno Portici, Italy
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno Portici, Italy
| | - Mario Santoro
- Istituto Zooprofilattico Sperimentale del Mezzogiorno Portici, Italy
| | | | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova Legnaro, Italy
| |
Collapse
|
23
|
Di Guardo G, Giacominelli-Stuffler R, Mazzariol S. Commentary: SLAM- and Nectin-4-Independent Noncytolytic Spread of Canine Distemper Virus in Astrocytes. Front Microbiol 2016; 7:2011. [PMID: 28018332 PMCID: PMC5145896 DOI: 10.3389/fmicb.2016.02011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/30/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
| | | | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Hygiene, University of Padova Padova, Italy
| |
Collapse
|