1
|
Sun H, Li Y, Xing Y, Bodington D, Huang X, Ding C, Ge T, Di H, Xu J, Gubry-Rangin C, Li Y. Organic fertilizer significantly mitigates N 2O emissions while increase contributed of comammox Nitrospira in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176578. [PMID: 39343392 DOI: 10.1016/j.scitotenv.2024.176578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Nitrification is the dominant process for nitrous oxide (N2O) production under aerobic conditions, but the relative contribution of the autotrophic nitrifiers (the ammonia-oxidising archaea (AOA), the ammonia-oxidising bacteria (AOB) and the comammox) to this process is still unclear in some soil types. This is particularly the case in paddy soils under different fertilization regimes. We investigated active nitrifiers and their contribution to nitrification and N2O production in a range of unfertilized and fertilized paddy soils, using 13CO2-DNA based stable isotope probing (SIP) technique combined with a series of specific nitrification inhibitors, including acetylene (C2H2), 3, 4-dimethylpyrazole phosphate (DMPP) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). The soils had a long-term history of fertilizer application, including chemical fertilizer only, a mixture of chemical fertilizers (70 %) and chicken manure (30 %) or a mixture of rice straw and chemical fertilizers. 13CO2-DNA-SIP and Illumina MiSeq sequencing demonstrated that comammox clades A.1 and B were active nitrifiers in all fertilized paddy soils. Inhibitor experiment showed that AOB largely contributed to nitrification activity and N2O emission in all paddy soils, while comammox contribution was more significant than AOA. Fertilization considerably altered nitrifiers' relative contribution to nitrification activity and N2O emissions. Applying organic fertilizers significantly decreased the N2O emissions but increased the contribution of comammox to the process. These findings expand the functional ecological niche of comammox, revealing their nitrification role and N2O production in other ecosystems than oligotrophic habitats.
Collapse
Affiliation(s)
- Han Sun
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youfa Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yating Xing
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dylan Bodington
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenxiao Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Steinberger Y, Doniger T, Applebaum I, Sherman C. Are Changes Occurring in Bacterial Taxa Community and Diversity with the Utilization of Different Substrates within SIR Measurements? Microorganisms 2024; 12:2034. [PMID: 39458343 PMCID: PMC11510085 DOI: 10.3390/microorganisms12102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This research explores how the availability of substrates affects the regulation of soil microbial communities and the taxonomical composition of bacteria. The goal is to understand the impact of organic matter and substrate availability and quality on the diversity of soil bacteria. The study observed gradual changes in bacterial diversity in response to the addition of different substrate-induced respiration (SIR) substrates. Understanding the structure, dynamics, and functions of soil microbial communities is essential for assessing soil quality in sustainable agriculture. The preference for carbon sources among bacterial phyla is largely influenced by their life history and trophic strategies. Bacterial phyla like Proteobacteria, Bacteroidetes, and Actinobacteria, which thrive in nutrient-rich environments, preferentially utilize glucose. On the other hand, oligotrophic bacterial phyla such as Acidobacteria or Chloroflexi, which are found in lower numbers, have a lower ability to utilize labile C. The main difference between the two lies in their substrate utilization strategies. Understanding these distinct strategies is crucial for uncovering the bacterial functional traits involved in soil organic carbon turnover. Additionally, adding organic matter can promote the growth of copiotrophic bacteria, thus enhancing soil fertility.
Collapse
Affiliation(s)
- Yosef Steinberger
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (T.D.); (I.A.); (C.S.)
| | | | | | | |
Collapse
|
3
|
Nweze JE, Gupta S, Salcher MM, Šustr V, Horváthová T, Angel R. Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition. Commun Biol 2024; 7:1204. [PMID: 39342029 PMCID: PMC11438867 DOI: 10.1038/s42003-024-06821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Shruti Gupta
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Terézia Horváthová
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.
| |
Collapse
|
4
|
Nieto EE, Jurburg SD, Steinbach N, Festa S, Morelli IS, Coppotelli BM, Chatzinotas A. DNA stable isotope probing reveals the impact of trophic interactions on bioaugmentation of soils with different pollution histories. MICROBIOME 2024; 12:146. [PMID: 39113100 PMCID: PMC11305082 DOI: 10.1186/s40168-024-01865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bioaugmentation is considered a sustainable and cost-effective methodology to recover contaminated environments, but its outcome is highly variable. Predation is a key top-down control mechanism affecting inoculum establishment, however, its effects on this process have received little attention. This study focused on the impact of trophic interactions on bioaugmentation success in two soils with different pollution exposure histories. We inoculated a 13C-labelled pollutant-degrading consortium in these soils and tracked the fate of the labelled biomass through stable isotope probing (SIP) of DNA. We identified active bacterial and eukaryotic inoculum-biomass consumers through amplicon sequencing of 16S rRNA and 18S rRNA genes coupled to a novel enrichment factor calculation. RESULTS Inoculation effectively increased PAH removal in the short-term, but not in the long-term polluted soil. A decrease in the relative abundance of the inoculated genera was observed already on day 15 in the long-term polluted soil, while growth of these genera was observed in the short-term polluted soil, indicating establishment of the inoculum. In both soils, eukaryotic genera dominated as early incorporators of 13C-labelled biomass, while bacteria incorporated the labelled biomass at the end of the incubation period, probably through cross-feeding. We also found different successional patterns between the two soils. In the short-term polluted soil, Cercozoa and Fungi genera predominated as early incorporators, whereas Ciliophora, Ochrophyta and Amoebozoa were the predominant genera in the long-term polluted soil. CONCLUSION Our results showed differences in the inoculum establishment and predator community responses, affecting bioaugmentation efficiency. This highlights the need to further study predation effects on inoculum survival to increase the applicability of inoculation-based technologies. Video Abstract.
Collapse
Affiliation(s)
- Esteban E Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina.
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Stephanie D Jurburg
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nicole Steinbach
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Antonis Chatzinotas
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
5
|
Wang J, Yao H, Zhang X. The effect of the 13C abundance of soil microbial DNA on identifying labelled fractions after ultracentrifugation. Appl Microbiol Biotechnol 2024; 108:318. [PMID: 38700733 PMCID: PMC11068677 DOI: 10.1007/s00253-024-13151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
DNA-based stable isotope probing (DNA-SIP) technology has been widely employed to trace microbes assimilating target substrates. However, the fractions with labelled universal genes are sometimes difficult to distinguish when detected by quantitative real-time PCR. In this experiment, three paddy soils (AQ, CZ, and NB) were amended with 0.1% glucose containing 13C at six levels, and DNA was then extracted after a 7-day incubation and subjected to isopycnic gradient centrifugation. The results showed that the amount of labelled DNA was notably related to the 13C-glucose percentage, while the separation spans of 18S rRNA and 16S rRNA genes between labelled and unlabelled treatments became notably clearer when the δ13C values of the total DNA were 90.9, 61.6, and 38.9‰ and 256.2, 104.5 and 126.1‰ in the AQ, CZ, and NB soils, respectively. Moreover, fractionated DNA was also labelled by determining the δ13C values while adding only 5 atom% 13C-glucose to the soil. The results suggest that the optimal labelling fractions were not always those fractions with the maximal gene abundance, and detecting the δ13C values of the total and fractionated DNA was beneficial in estimating the results of DNA-SIP. KEY POINTS: • Appropriate 13C-DNA amount was needed for DNA-SIP. • Detecting the 13C ratio of fractionated DNA directly was an assistant method for identifying the labelled fractions. • Fractions with the maximal 18S or 16S rRNA gene abundance always were not labelled.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
6
|
Sun D, Huang Y, Wang Z, Tang X, Ye W, Cao H, Shen H. Soil microbial community structure, function and network along a mangrove forest restoration chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169704. [PMID: 38163592 DOI: 10.1016/j.scitotenv.2023.169704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Mangrove forests have high ecological, social and economic values, but due to environmental changes and human activities, natural mangrove forests have experienced serious degradations and reductions in distribution area worldwide. In the coastal zones of southern China, an introduced mangrove species, Sonneratia apetala, has been extensively used for mangrove restoration because of its rapid growth and strong environmental adaptability. However, little is known about how soil microorganisms vary with the restoration stages of the afforested mangrove forests. Here, we examined the changes in soil physicochemical properties and microbial biomass, community structure and function, and network in three afforested S. apetala forests with restoration time of 7, 12, and 18 years and compared them with a bare flat and a 60-year-old natural Kandelia obovata forest in a mangrove nature reserve. Our results showed that the contents of soil salinity, organic carbon, total nitrogen, ammonium nitrogen, and microbial biomass increased, while soil pH and bacterial alpha diversity decreased with afforestation age. Soil microbial community structure was significantly affected by soil salinity, organic carbon, pH, total nitrogen, ammonium nitrogen, available phosphorus, and available kalium, and susceptibility to environmental factors was more pronounced in bacterial than fungal community structure. The relative abundances of aerobic chemoheterotrophy were significantly higher in 12- and 18-year-old S. apetala than in K. obovata forest, while that of sulfate-reducing bacteria showed a decreasing trend with afforestation age. The abundance of dung saprotroph was significantly higher in 12- and 18-year-old S. apetala forests than in the natural forest. With the increasing afforestation age, the modularity of microbial networks increased, while stability and robustness decreased. Our results suggest that planting S. apetala contributes to improving soil fertility and microbial biomass but may make soil microbial networks more vulnerable.
Collapse
Affiliation(s)
- Dangge Sun
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyi Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangming Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuli Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Yang W, Cui H, Liu Q, Wang F, Liao H, Lu P, Qin S. Effect of nitrogen reduction by chemical fertilization with green manure (Vicia sativa L.) on soil microbial community, nitrogen metabolism and and yield of Uncaria rhynchophylla by metagenomics. Arch Microbiol 2024; 206:106. [PMID: 38363349 DOI: 10.1007/s00203-024-03839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024]
Abstract
Uncaria rhynchophylla is an important herbal medicine, and the predominant issues affecting its cultivation include a single method of fertilizer application and inappropriate chemical fertilizer application. To reduce the use of inorganic nitrogen fertilization and increase the yield of Uncaria rhynchophylla, field experiments in 2020-2021 were conducted. The experimental treatments included the following categories: S1, no fertilization; S2, application of chemical NPK fertilizer; and S3-S6, application of chemical fertilizers and green manures, featuring nitrogen fertilizers reductions of 0%, 15%, 30%, and 45%, respectively. The results showed that a moderate application of nitrogen fertilizer when combined with green manure, can help alleviate soil acidification and increase urease activity. Specifically, the treatment with green manure provided in a 14.71-66.67% increase in urease activity compared to S2. Metagenomics sequencing results showed a decrease in diversity in S3, S4, S5, and S6 compared to S2, but the application of chemical fertilizer with green manure promoted an increase in the relative abundance of Acidobacteria and Chloroflexi. In addition, the nitrification pathway displayed a progressive augmentation in tandem with the reduction in nitrogen fertilizer and application of green manure, reaching its zenith at S5. Conversely, other nitrogen metabolism pathways showed a decline in correlation with diminishing nitrogen fertilizer dosages. The rest of the treatments showed an increase in yield in comparison to S1, S5 showing significant differences (p < 0.05). In summary, although S2 demonstrate the ability to enhance soil microbial diversity, it is important to consider the long-term ecological impacts, and S5 may be a better choice.
Collapse
Affiliation(s)
- Wansheng Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - HongHao Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- Institute of Soil Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Fang Wang
- Guizhou Industry Polytechnic College, Guiyang, 550008, China
| | - Heng Liao
- Institute of Soil Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Song Qin
- Institute of Soil Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| |
Collapse
|
8
|
Simpson A, Wood-Charlson EM, Smith M, Koch BJ, Beilsmith K, Kimbrel JA, Kellom M, Hunter CI, Walls RL, Schriml LM, Wilhelm RC. MISIP: a data standard for the reuse and reproducibility of any stable isotope probing-derived nucleic acid sequence and experiment. Gigascience 2024; 13:giae071. [PMID: 39399973 PMCID: PMC11471955 DOI: 10.1093/gigascience/giae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
DNA/RNA-stable isotope probing (SIP) is a powerful tool to link in situ microbial activity to sequencing data. Every SIP dataset captures distinct information about microbial community metabolism, process rates, and population dynamics, offering valuable insights for a wide range of research questions. Data reuse maximizes the information derived from the labor and resource-intensive SIP approaches. Yet, a review of publicly available SIP sequencing metadata showed that critical information necessary for reproducibility and reuse was often missing. Here, we outline the Minimum Information for any Stable Isotope Probing Sequence (MISIP) according to the Minimum Information for any (x) Sequence (MIxS) framework and include examples of MISIP reporting for common SIP experiments. Our objectives are to expand the capacity of MIxS to accommodate SIP-specific metadata and guide SIP users in metadata collection when planning and reporting an experiment. The MISIP standard requires 5 metadata fields-isotope, isotopolog, isotopolog label, labeling approach, and gradient position-and recommends several fields that represent best practices in acquiring and reporting SIP sequencing data (e.g., gradient density and nucleic acid amount). The standard is intended to be used in concert with other MIxS checklists to comprehensively describe the origin of sequence data, such as for marker genes (MISIP-MIMARKS) or metagenomes (MISIP-MIMS), in combination with metadata required by an environmental extension (e.g., soil). The adoption of the proposed data standard will improve the reuse of any sequence derived from a SIP experiment and, by extension, deepen understanding of in situ biogeochemical processes and microbial ecology.
Collapse
Affiliation(s)
- Abigayle Simpson
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Montana Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kathleen Beilsmith
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Ramona L Walls
- Data Collaboration Center, Critical Path Institute, Tucson, AZ 85718, USA
| | - Lynn M Schriml
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD 21201, USA
| | - Roland C Wilhelm
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Verrone V, Gupta A, Laloo AE, Dubey RK, Hamid NAA, Swarup S. Organic matter stability and lability in terrestrial and aquatic ecosystems: A chemical and microbial perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167757. [PMID: 37852479 DOI: 10.1016/j.scitotenv.2023.167757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Terrestrial and aquatic ecosystems have specific carbon fingerprints and sequestration potential, due to the intrinsic properties of the organic matter (OM), mineral content, environmental conditions, and microbial community composition and functions. A small variation in the OM pool can imbalance the carbon dynamics that ultimately affect the climate and functionality of each ecosystem, at regional and global scales. Here, we review the factors that continuously contribute to carbon stability and lability, with particular attention to the OM formation and nature, as well as the microbial activities that drive OM aggregation, degradation and eventually greenhouse gas emissions. We identified that in both aquatic and terrestrial ecosystems, microbial attributes (i.e., carbon metabolism, carbon use efficiency, necromass, enzymatic activities) play a pivotal role in transforming the carbon stock and yet they are far from being completely characterised and not often included in carbon estimations. Therefore, future research must focus on the integration of microbial components into carbon mapping and models, as well as on translating molecular-scaled studies into practical approaches. These strategies will improve carbon management and restoration across ecosystems and contribute to overcome current climate challenges.
Collapse
Affiliation(s)
- Valeria Verrone
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore
| | - Abhishek Gupta
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore.
| | - Andrew Elohim Laloo
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Rama Kant Dubey
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Nur Ashikin Abdul Hamid
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore
| | - Sanjay Swarup
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
10
|
Wattenburger CJ, Buckley DH. Land use alters bacterial growth dynamics in soil. Environ Microbiol 2023; 25:3239-3254. [PMID: 37783513 DOI: 10.1111/1462-2920.16514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Microbial growth and mortality are major determinants of soil carbon cycling. We measured in situ growth dynamics of individual bacterial taxa in cropped and successional soils in response to a resource pulse. We hypothesized that land use imposes selection pressures on growth characteristics. We estimated growth and death for 453 and 73 taxa, respectively. The average generation time was 5.04 ± 6.28 (SD; range 0.7-63.5) days. Lag times were shorter in cultivated than successional soils and resource amendment decreased lag times. Taxa exhibiting the greatest growth response also exhibited the greatest mortality, indicative of boom-and-bust dynamics. We observed a bimodal growth rate distribution, representing fast- and slow-growing clusters. Both clusters grew more rapidly in successional soils, which had more organic matter, than cultivated soils. Resource amendment increased the growth rate of the slower growing but not the faster-growing cluster via a mixture of increased growth rates and species turnover, indicating that competitive dynamics constrain growth rates in situ. These two clusters show that copiotrophic bacteria in soils may be subdivided into different life history groups and that these subgroups respond independently to land use and resource availability.
Collapse
Affiliation(s)
- Cassandra J Wattenburger
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Sieradzki ET, Nuccio EE, Pett-Ridge J, Firestone MK. Rhizosphere and detritusphere habitats modulate expression of soil N-cycling genes during plant development. mSystems 2023; 8:e0031523. [PMID: 37754554 PMCID: PMC10654102 DOI: 10.1128/msystems.00315-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Plant roots modulate microbial nitrogen (N) cycling by regulating the supply of root-derived carbon and nitrogen uptake. These differences in resource availability cause distinct micro-habitats to develop: soil near living roots, decaying roots, near both, or outside the direct influence of roots. While many environmental factors and genes control the microbial processes involved in the nitrogen cycle, most research has focused on single genes and pathways, neglecting the interactive effects these pathways have on each other. The processes controlled by these pathways determine consumption and production of N by soil microorganisms. We followed the expression of N-cycling genes in four soil microhabitats over a period of active root growth for an annual grass. We found that the presence of root litter and living roots significantly altered gene expression involved in multiple nitrogen pathways, as well as tradeoffs between pathways, which ultimately regulate N availability to plants.
Collapse
Affiliation(s)
- Ella T. Sieradzki
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, UC Merced, Merced, California, USA
- Innovative Genomics Institute, UC Berkeley, Berkeley, California, USA
| | - Mary K. Firestone
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
12
|
Hartmann M, Herzog C, Brunner I, Stierli B, Meyer F, Buchmann N, Frey B. Long-term mitigation of drought changes the functional potential and life-strategies of the forest soil microbiome involved in organic matter decomposition. Front Microbiol 2023; 14:1267270. [PMID: 37840720 PMCID: PMC10570739 DOI: 10.3389/fmicb.2023.1267270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Climate change can alter the flow of nutrients and energy through terrestrial ecosystems. Using an inverse climate change field experiment in the central European Alps, we explored how long-term irrigation of a naturally drought-stressed pine forest altered the metabolic potential of the soil microbiome and its ability to decompose lignocellulolytic compounds as a critical ecosystem function. Drought mitigation by a decade of irrigation stimulated profound changes in the functional capacity encoded in the soil microbiome, revealing alterations in carbon and nitrogen metabolism as well as regulatory processes protecting microorganisms from starvation and desiccation. Despite the structural and functional shifts from oligotrophic to copiotrophic microbial lifestyles under irrigation and the observation that different microbial taxa were involved in the degradation of cellulose and lignin as determined by a time-series stable-isotope probing incubation experiment with 13C-labeled substrates, degradation rates of these compounds were not affected by different water availabilities. These findings provide new insights into the impact of precipitation changes on the soil microbiome and associated ecosystem functioning in a drought-prone pine forest and will help to improve our understanding of alterations in biogeochemical cycling under a changing climate.
Collapse
Affiliation(s)
- Martin Hartmann
- Department of Environmental Systems Science, Sustainable Agroecosystems, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Claude Herzog
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Grassland Sciences, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Folker Meyer
- Data Science, Institute for AI in Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Argonne National Laboratory, Argonne, IL, United States
- Computation Institute, University of Chicago, Chicago, IL, United States
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Nina Buchmann
- Department of Environmental Systems Science, Grassland Sciences, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
13
|
Nobarinezhad MH, Wallace LE. Fine-scale genetic structure in rhizosphere microbial communities associated with Chamaecrista fasciculata (Fabaceae). Ecol Evol 2023; 13:e10570. [PMID: 37753306 PMCID: PMC10518841 DOI: 10.1002/ece3.10570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Soil microbiota of the rhizosphere are an important extension of the plant phenotype because they impact the health and fitness of host plants. The composition of these communities is expected to differ among host plants due to influence by host genotype. Given that many plant populations exhibit fine-scale genetic structure (SGS), associated microbial communities may also exhibit SGS. In this study, we tested this hypothesis using Chamaecrista fasciculata, a legume species that has previously been determined to have significant SGS. We collected genetic data from prokaryotic and fungal rhizosphere communities in association with 70 plants in an area of ~400 square meters to investigate the presence of SGS in microbial communities. Bacteria of Acidobacteria, Protobacteria, and Bacteroidetes and fungi of Basidiomycota, Ascomycota, and Mortierellomycota were dominant members of the rhizosphere. Although microbial alpha diversity did not differ significantly among plants hosts, we detected significant compositional differences among the microbial communities as well as isolation by distance. The strongest factor associated with microbial distance was genetic distance of the other microbial community, followed by geographic distance, but there was not a significant association with plant genetic distance for either microbial community. This study further demonstrates the strong potential for spatial structuring of soil microbial communities at the smallest spatial scales and provides further insight into the complexity of factors that influence microbial composition in soils and in association with host plants.
Collapse
Affiliation(s)
| | - Lisa E. Wallace
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| |
Collapse
|
14
|
Vyshenska D, Sampara P, Singh K, Tomatsu A, Kauffman WB, Nuccio EE, Blazewicz SJ, Pett-Ridge J, Louie KB, Varghese N, Kellom M, Clum A, Riley R, Roux S, Eloe-Fadrosh EA, Ziels RM, Malmstrom RR. A standardized quantitative analysis strategy for stable isotope probing metagenomics. mSystems 2023; 8:e0128022. [PMID: 37377419 PMCID: PMC10469821 DOI: 10.1128/msystems.01280-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/19/2023] [Indexed: 06/29/2023] Open
Abstract
Stable isotope probing (SIP) facilitates culture-independent identification of active microbial populations within complex ecosystems through isotopic enrichment of nucleic acids. Many DNA-SIP studies rely on 16S rRNA gene sequences to identify active taxa, but connecting these sequences to specific bacterial genomes is often challenging. Here, we describe a standardized laboratory and analysis framework to quantify isotopic enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA gene sequencing. To develop this framework, we explored various sample processing and analysis approaches using a designed microbiome where the identity of labeled genomes and their level of isotopic enrichment were experimentally controlled. With this ground truth dataset, we empirically assessed the accuracy of different analytical models for identifying active taxa and examined how sequencing depth impacts the detection of isotopically labeled genomes. We also demonstrate that using synthetic DNA internal standards to measure absolute genome abundances in SIP density fractions improves estimates of isotopic enrichment. In addition, our study illustrates the utility of internal standards to reveal anomalies in sample handling that could negatively impact SIP metagenomic analyses if left undetected. Finally, we present SIPmg, an R package to facilitate the estimation of absolute abundances and perform statistical analyses for identifying labeled genomes within SIP metagenomic data. This experimentally validated analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for accurately measuring the in situ activity of environmental microbial populations and assessing their genomic potential. IMPORTANCE Answering the questions, "who is eating what?" and "who is active?" within complex microbial communities is paramount for our ability to model, predict, and modulate microbiomes for improved human and planetary health. These questions can be pursued using stable isotope probing to track the incorporation of labeled compounds into cellular DNA during microbial growth. However, with traditional stable isotope methods, it is challenging to establish links between an active microorganism's taxonomic identity and genome composition while providing quantitative estimates of the microorganism's isotope incorporation rate. Here, we report an experimental and analytical workflow that lays the foundation for improved detection of metabolically active microorganisms and better quantitative estimates of genome-resolved isotope incorporation, which can be used to further refine ecosystem-scale models for carbon and nutrient fluxes within microbiomes.
Collapse
Affiliation(s)
- Dariia Vyshenska
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Pranav Sampara
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kanwar Singh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andy Tomatsu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - W. Berkeley Kauffman
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, California, USA
| | - Katherine B. Louie
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Neha Varghese
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alicia Clum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Robert Riley
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Emiley A. Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ryan M. Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rex R. Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
15
|
Kumar R, Choudhary JS, Naik SK, Mondal S, Mishra JS, Poonia SP, Kumar S, Hans H, Kumar S, Das A, Kumar V, Bhatt BP, Chaudhari SK, Malik RK, Craufurd P, McDonald A, Sherpa SR. Influence of conservation agriculture-based production systems on bacterial diversity and soil quality in rice-wheat-greengram cropping system in eastern Indo-Gangetic Plains of India. Front Microbiol 2023; 14:1181317. [PMID: 37485518 PMCID: PMC10356824 DOI: 10.3389/fmicb.2023.1181317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Conservation agriculture (CA) is gaining attention in the South Asia as an environmentally benign and sustainable food production system. The knowledge of the soil bacterial community composition along with other soil properties is essential for evaluating the CA-based management practices for achieving the soil environment sustainability and climate resilience in the rice-wheat-greengram system. The long-term effects of CA-based tillage-cum-crop establishment (TCE) methods on earthworm population, soil parameters as well as microbial diversity have not been well studied. Methods Seven treatments (or scenarios) were laid down with the various tillage (wet, dry, or zero-tillage), establishment method (direct-or drill-seeding or transplantation) and residue management practices (mixed with the soil or kept on the soil surface). The soil samples were collected after 7 years of experimentation and analyzed for the soil quality and bacterial diversity to examine the effect of tillage-cum-crop establishment methods. Results and Discussion Earthworm population (3.6 times), soil organic carbon (11.94%), macro (NPK) (14.50-23.57%) and micronutrients (Mn, and Cu) (13.25 and 29.57%) contents were appreciably higher under CA-based TCE methods than tillage-intensive farming practices. Significantly higher number of OTUs (1,192 ± 50) and Chao1 (1415.65 ± 14.34) values were observed in partial CA-based production system (p ≤ 0.05). Forty-two (42) bacterial phyla were identified across the scenarios, and Proteobacteria, Actinobacteria, and Firmicutes were the most dominant in all the scenarios. The CA-based scenarios harbor a high abundance of Proteobacteria (2-13%), whereas the conventional tillage-based scenarios were dominated by the bacterial phyla Acidobacteria and Chloroflexi and found statistically differed among the scenarios (p ≤ 0.05). Composition of the major phyla, i.e., Proteobacteria, Actinobacteria, and Firmicutes were associated differently with either CA or farmers-based tillage management practices. Overall, the present study indicates the importance of CA-based tillage-cum-crop establishment methods in shaping the bacterial diversity, earthworms population, soil organic carbon, and plant nutrient availability, which are crucial for sustainable agricultural production and resilience in agro-ecosystem.
Collapse
Affiliation(s)
- Rakesh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Jaipal Singh Choudhary
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, Jharkhand, India
| | - Sushanta Kumar Naik
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, Jharkhand, India
| | - Surajit Mondal
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | | | - Shish Pal Poonia
- Cereal Systems Initiative for South Asia (CSISA)-CIMMYT, Patna, India
| | - Saurabh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Hansraj Hans
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Sanjeev Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Anup Das
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Virender Kumar
- International Rice Research Institute, Los Banos, Philippines
| | | | | | - Ram Kanwar Malik
- Cereal Systems Initiative for South Asia (CSISA)-CIMMYT, Patna, India
| | | | - Andrew McDonald
- Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
16
|
Liu J, You C, Xu Z, Liu Y, Zhang L, Li H, Wang L, Liu S, He S, Luo Z, Tan B. Soil arthropods promote litter enzyme activity by regulating microbial carbon limitation and ecoenzymatic stoichiometry in a subalpine forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162789. [PMID: 36914138 DOI: 10.1016/j.scitotenv.2023.162789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Soil arthropods are crucial decomposers of litter at both global and local scales, yet their functional roles in mediating microbial activity during litter decomposition remain poorly understood. Here, we conducted a two-year field experiment using litterbags to assess the effects of soil arthropods on the extracellular enzyme activities (EEAs) in two litter substrates (Abies faxoniana and Betula albosinensis) in a subalpine forest. A biocide (naphthalene) was used to permit (nonnaphthalene) or exclude (naphthalene application) the presence of soil arthropods in litterbags during decomposition. Our results showed that biocide application was effective in reducing the abundance of soil arthropods in litterbags, with the density and species richness of soil arthropods decreasing by 64.18-75.45 % and 39.19-63.30 %, respectively. Litter with soil arthropods had a greater activity of C-degrading (β-glucosidase, cellobiohydrolase, polyphenol oxidase, peroxidase), N-degrading (N-acetyl-β-D-glucosaminidase, leucine arylamidase) and P-degrading (phosphatase) enzymes than litter from which soil arthropods were excluded. The contributions of soil arthropods to C-, N- and P-degrading EEAs in the fir litter were 38.09 %, 15.62 % and 61.69 %, and those for the birch litter were 27.97 %, 29.18 % and 30.40 %, respectively. Furthermore, the stoichiometric analyses of enzyme activity indicated that there was potential C and P colimitation in both the soil arthropod inclusion and exclusion litterbags, and the presence of soil arthropods decreased C limitation in the two litter species. Our structural equation models suggested that soil arthropods indirectly promoted C-, N- and P-degrading EEAs by regulating the litter C content and litter stoichiometry (e.g., N/P, LN/N and C/P) during litter decomposition. These results demonstrate that soil arthropods play an important functional role in modulating EEAs during litter decomposition.
Collapse
Affiliation(s)
- Jingru Liu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Chengming You
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Zhenfeng Xu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Yang Liu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Li Zhang
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Han Li
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Lixia Wang
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Sining Liu
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Shuqin He
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Ziteng Luo
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China
| | - Bo Tan
- Institute of Ecology & Forestry, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Chengdu 611130, China.
| |
Collapse
|
17
|
Mishra A, Singh L, Singh D. Unboxing the black box-one step forward to understand the soil microbiome: A systematic review. MICROBIAL ECOLOGY 2023; 85:669-683. [PMID: 35112151 PMCID: PMC9957845 DOI: 10.1007/s00248-022-01962-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Soil is one of the most important assets of the planet Earth, responsible for maintaining the biodiversity and managing the ecosystem services for both managed and natural ecosystems. It encompasses large proportion of microscopic biodiversity, including prokaryotes and the microscopic eukaryotes. Soil microbiome is critical in managing the soil functions, but their activities have diminutive recognition in few systems like desert land and forest ecosystems. Soil microbiome is highly dependent on abiotic and biotic factors like pH, carbon content, soil structure, texture, and vegetation, but it can notably vary with ecosystems and the respective inhabitants. Thus, unboxing this black box is essential to comprehend the basic components adding to the soil systems and supported ecosystem services. Recent advancements in the field of molecular microbial ecology have delivered commanding tools to examine this genetic trove of soil biodiversity. Objective of this review is to provide a critical evaluation of the work on the soil microbiome, especially since the advent of the NGS techniques. The review also focuses on advances in our understanding of soil communities, their interactions, and functional capabilities along with understanding their role in maneuvering the biogeochemical cycle while underlining and tapping the unprecedented metagenomics data to infer the ecological attributes of yet undiscovered soil microbiome. This review focuses key research directions that could shape the future of basic and applied research into the soil microbiome. This review has led us to understand that it is difficult to generalize that soil microbiome plays a substantiated role in shaping the soil networks and it is indeed a vital resource for sustaining the ecosystem functioning. Exploring soil microbiome will help in unlocking their roles in various soil network. It could be resourceful in exploring and forecasting its impacts on soil systems and for dealing with alleviating problems like rapid climate change.
Collapse
Affiliation(s)
- Apurva Mishra
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, 201002, India
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstrasse 30, 81675, Munich, Bavaria, Germany.
| |
Collapse
|
18
|
Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wollard J, Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. MICROBIOME 2022; 10:199. [PMID: 36434737 PMCID: PMC9700909 DOI: 10.1186/s40168-022-01391-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.
Collapse
Affiliation(s)
- Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Marissa Lafler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Ashley N. Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Anne Kakouridis
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | | | | | | | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | | | - Mary Firestone
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA USA
| |
Collapse
|
19
|
Wilhelm RC, Barnett SE, Swenson TL, Youngblut ND, Koechli CN, Bowen BP, Northen TR, Buckley DH. Tracing Carbon Metabolism with Stable Isotope Metabolomics Reveals the Legacy of Diverse Carbon Sources in Soil. Appl Environ Microbiol 2022; 88:e0083922. [PMID: 36300927 PMCID: PMC9680644 DOI: 10.1128/aem.00839-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
Tracking the metabolic activity of whole soil communities can improve our understanding of the transformation and fate of carbon in soils. We used stable isotope metabolomics to trace 13C from nine labeled carbon sources into the water-soluble metabolite pool of an agricultural soil over time. Soil was amended with a mixture of all nine sources, with one source isotopically labeled in each treatment. We compared changes in the 13C enrichment of metabolites with respect to carbon source and time over a 48-day incubation and contrasted differences between soluble sources (glucose, xylose, amino acids, etc.) and insoluble sources (cellulose and palmitic acid). Whole soil metabolite profiles varied singularly by time, while the composition of 13C-labeled metabolites differed primarily by carbon source (R2 = 0.68) rather than time (R2 = 0.07), with source-specific differences persisting throughout incubations. The 13C labeling of metabolites from insoluble carbon sources occurred slower than that from soluble sources but yielded a higher average atom percent (atom%) 13C in metabolite markers of biomass (amino acids and nucleic acids). The 13C enrichment of metabolite markers of biomass stabilized between 5 and 15 atom% 13C by the end of incubations. Temporal patterns in the 13C enrichment of tricarboxylic acid cycle intermediates, nucleobases (uracil and thymine), and by-products of DNA salvage (allantoin) closely tracked microbial activity. Our results demonstrate that metabolite production in soils is driven by the carbon source supplied to the community and that the fate of carbon in metabolites do not generally converge over time as a result of ongoing microbial processing and recycling. IMPORTANCE Carbon metabolism in soil remains poorly described due to the inherent difficulty of obtaining information on the microbial metabolites produced by complex soil communities. Our study demonstrates the use of stable isotope probing (SIP) to study carbon metabolism in soil by tracking 13C from supplied carbon sources into metabolite pools and biomass. We show that differences in the metabolism of sources influence the fate of carbon in soils. Heterogeneity in 13C-labeled metabolite profiles corresponded with compositional differences in the metabolically active populations, providing a basis for how microbial community composition correlates with the quality of soil carbon. Our study demonstrates the application of SIP-metabolomics in studying soils and identifies several metabolite markers of growth, activity, and other aspects of microbial function.
Collapse
Affiliation(s)
- Roland C. Wilhelm
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Samuel E. Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Tami L. Swenson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas D. Youngblut
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chantal N. Koechli
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Benjamin P. Bowen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Joint BioEnergy Institute, Emeryville, California, USA
| | - Daniel H. Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
20
|
Song A, Zhang J, Xu D, Wang E, Bi J, Asante-Badu B, Njyenawe MC, Sun M, Xue P, Wang S, Fan F. Keystone microbial taxa drive the accelerated decompositions of cellulose and lignin by long-term resource enrichments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156814. [PMID: 35732237 DOI: 10.1016/j.scitotenv.2022.156814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Lignin and cellulose are the most important component of crop straw entering arable soil. The decomposition of lignin and cellulose are related to carbon sequestration and soil fertility. The keystone microbes decomposing lignin and cellulose in cropland and their impact on agricultural management, however, remains largely unclear. In this study, we traced the carbon (C) from highly enriched 13C-labeled (atom% 13C = 99 %) lignin and cellulose to functional keystone microbes in soils of a 26-year fertilization field experiment with stable isotope probing (SIP). 13C-cellulose and 13C-lignin decomposition were significantly accelerated with the long-term application of fertilization, especially with the combination of organic and chemical fertilization (NPKM). The 13C was mainly assimilated by bacteria Acidobacteria (i.e. GP1, GP3, GP6), Proteobacteria (i.e. unidentified gamaproteobactiera, Bradyrhizobium), and fungi Ascomycota (i.e. Talaromyces and Fusarium, etc.). The keystone bacteria taxa decomposing cellulose and lignin were large overlapped, but substantially shaped by fertilization. For instance, GP3 was the dominant bacterium that decomposed both cellulose and lignin in no fertilizer control (CK), while GP1 and GP6 were the ones in chemical fertilization (NPK) and NPKM, respectively. The decomposition rates of cellulose in different fertilizations were majorly predicted by soil total phosphorus (TP), functional fungi abundance, total nitrogen (TN), whereas functional bacterial and fungal abundance, TP, and community structure of functional fungi manipulated the decomposing rate of lignin. Together, we demonstrate that keystone functional microbes decomposing cellulose and lignin were largely concurring and significantly altered by long-term resources enrichment, which drives the similar patterns of decomposition rates of these two substrates along the resource enrichment gradient.
Collapse
Affiliation(s)
- Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Duanyang Xu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Enzhao Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bismark Asante-Badu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Marie Claire Njyenawe
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaomiao Sun
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Piao Xue
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Barnett SE, Youngblut ND, Buckley DH. Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history. Environ Microbiol 2022; 24:5230-5247. [PMID: 35920035 DOI: 10.1111/1462-2920.16146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Soil dwelling microorganisms are key players in the terrestrial carbon cycle, driving both the degradation and stabilization of soil organic matter. Bacterial community structure and function vary with respect to land-use, yet the ecological drivers of this variation remain poorly described and difficult to predict. We conducted a multi-substrate DNA-stable isotope probing experiment across cropland, old-field, and forest habitats to link carbon mineralization dynamics with the dynamics of bacterial growth and carbon assimilation. We tracked the movement of 13 C derived from five distinct carbon sources as it was assimilated into bacterial DNA over time. We show that carbon mineralization, community composition, and carbon assimilation dynamics all differed with respect to land-use. We also show that microbial community dynamics affect carbon assimilation dynamics and are associated with soil DNA content. Soil DNA yield is easy to measure and may be useful in predicting microbial community dynamics linked to soil carbon cycling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Miao Y, Lin Y, Chen Z, Zheng H, Niu Y, Kuzyakov Y, Liu D, Ding W. Fungal key players of cellulose utilization: Microbial networks in aggregates of long-term fertilized soils disentangled using 13C-DNA-stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155051. [PMID: 35390367 DOI: 10.1016/j.scitotenv.2022.155051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Long-term compost application accelerates organic carbon (C) accumulation and macroaggregate formation in soil. Stable aggregates and high soil organic C (SOC) content are supposed to increase microbiota activity and promote transformation of litter compounds (i.e., cellulose) into SOC. Here, we used 13C-DNA-stable isotope probing with subsequent high-throughput sequencing to characterize fungal succession and co-occurrence trends during 13C-cellulose decomposition in aggregate size classes in soils subjected to no fertilizer (control), nitrogen-phosphorus‑potassium (NPK) fertilizers, and compost (Compost) application for 27 years. Ascomycota (mostly saprotrophic fungi) were always highly competitive for cellulose in all aggregate size classes at the early stages of cellulose decomposition (20 days). Compost-treated soil was enriched with Ascomycota compared to the control soil, wherein Sordariomycetes, the majority, strongly dominated the cellulose utilization (13C incorporation in DNA). 13C-labeled fungal communities converged in the Compost soil, with lower abundance and diversity compared with the NPK and control soils. Such convergence led to greater cellulose decomposition, indicating that compost amendment increased the capacity of a few dominant fungal taxa to decompose litter. Compost soil had more 13C-labeled fungal decomposers in microaggregates and lower fungal decomposers in macroaggregates when compared with the levels in the NPK and control soils. This implies that compost application facilitates fungal colonization towards smaller aggregates. Fungal interactions were reinforced in microaggregates (<250 μm), with more positive associations than those in macroaggregates (>250 μm), indicating greater fungal synergism for recalcitrant resource utilization in microaggregates. The keystone taxa in the co-occurrence networks were not related to cellulose decomposition in microaggregates, but did in macroaggregates. The findings advance a process-based understanding of cellulose utilization by fungal key players based on C and energy availability and the regulation of microbial activity at the aggregate level.
Collapse
Affiliation(s)
- Yuncai Miao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zengming Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huijie Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Niu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany; Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| | - Deyan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
23
|
Long-Term Compost Amendment Spurs Cellulose Decomposition by Driving Shifts in Fungal Community Composition and Promoting Fungal Diversity and Phylogenetic Relatedness. mBio 2022; 13:e0032322. [PMID: 35491853 PMCID: PMC9239258 DOI: 10.1128/mbio.00323-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cellulose is the most abundant polysaccharide in plant biomass and an important precursor of soil organic matter formation. Fungi play a key role in carbon cycling dynamics because they tend to decompose recalcitrant materials. Here, we applied [12C]cellulose and [13C]cellulose to distinguish the effects of application of compost, nitrogen-phosphorus-potassium (NPK) fertilizer, and no fertilizer (control) for 27 years upon cellulose decomposition via RNA-based stable isotope probing (RNA-SIP). The loss ratio of added cellulose C in compost soil was 67.6 to 106.7% higher than in NPK and control soils during their 20-day incubation. Dothideomycetes (mainly members of the genus Cryptococcus) dominated cellulose utilization in compost soil, whereas the copiotrophic Sordariomycetes were more abundant in NPK and unfertilized soils. Compared with NPK and control soils, compost application increased the diversity of 13C-assimilating fungi. The 13C-labeled fungal communities in compost soil were more phylogenetically clustered and exhibited greater species relatedness than those in NPK and control soils, perhaps because of stringent filtering of narrow-spectrum organic resources and biological invasion originating from added compost. These changes led to an augmented decomposition capacity of fungal species for cellulose-rich substrates and reduced cellulose C sequestration efficiency. The RNA-SIP technique is more sensitive to responses of fungi to altered soil resource availability than DNA-SIP. Overall, long-term compost application modified fungal community composition and promoted fungal diversity and phylogenetic relatedness, accelerating the decomposition of substrate cellulose in soil. This work also highlights the RNA-SIP technique’s value for comprehensively assessing the contributions of active fungi to the substrate decomposition process.
Collapse
|
24
|
Liu Y, Shen Y, Cheng C, Yuan W, Gao H, Guo P. Analysis of the influence paths of land use and landscape pattern on organic matter decomposition in river ecosystems: Focusing on microbial groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152999. [PMID: 35031368 DOI: 10.1016/j.scitotenv.2022.152999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Organic matter decomposition (OMD) is one of the important river ecosystem functions. Changes in land use and landscape pattern (LULP) have a serious influence on the OMD in neighboring river ecosystems. However, there is limited information on the influence paths of LULP on organic matter decomposition in river ecosystems. In this study, cotton strip (CS) as a substitute for investigating OMD, was introduced to the delineated catchments in Luanhe River Basin in China, meanwhile combining with remote sensing interpretation, water quality analysis, microbial sequencing, and redundancy analysis (RDA) to identify the dominant LULP metrics, water quality parameters, and microbial groups controlling the OMD. Then the structural equation models (SEMs) were used to connect these dominant controlling factors to track the influence paths of LULP on OMD in river ecosystems. RDA results indicated that construction land (CON), farmland (FAR) and landscape shape index (LSI) in LULP, total nitrogen (TN), chemical oxygen demand (COD) and pH in water quality, bacterial phyla Planctomycetes and Firmicutes, as well as fungal phyla Chytridiomycota and Basidiomycota were the dominant factors controlling the OMD (quantified by tensile strength loss (TSL) and respiration (RES)). These four microbial phyla contributed significantly to OMD. SEMs further proposed three paths to explain the mechanism of LULP influencing on OMD, which were CON - TN - Firmicutes - TSL, CON - TN - Chytridiomycota - RES, and FAR - COD - Chytridiomycota - TSL. CON promoted OMD mainly through enhancing TN content in river water to increase Firmicutes and Chytridiomycota. FAR increased Chytridiomycota by decreasing COD in river water, promoting OMD. These results will deepen our understanding of the influence of LULP on river ecosystem functions and provide valuable information for policymakers and managers to carry out watershed land planning and river management in the future.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China; Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Cheng Cheng
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Weilin Yuan
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Hongjie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
25
|
Duan N, Li L, Liang X, Fine A, Zhuang J, Radosevich M, Schaeffer SM. Variation in Bacterial Community Structure Under Long-Term Fertilization, Tillage, and Cover Cropping in Continuous Cotton Production. Front Microbiol 2022; 13:847005. [PMID: 35444635 PMCID: PMC9015707 DOI: 10.3389/fmicb.2022.847005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Agricultural practices alter the structure and functions of soil microbial community. However, few studies have documented the alterations of bacterial communities in soils under long-term conservation management practices for continuous crop production. In this study, we evaluated soil bacterial diversity using 16S rRNA gene sequencing and soil physical and chemical properties within 12 combinations of inorganic N fertilization, cover cropping, and tillage throughout a cotton production cycle. Soil was collected from field plots of the West Tennessee Agriculture Research and Education Center in Jackson, TN, United States. The site has been under continuous cotton production for 38 years. A total of 38,038 OTUs were detected across 171 soil samples. The dominant bacterial phyla were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi, accounting for ∼70% of the total bacterial community membership. Conventional tillage increased alpha diversity in soil samples collected in different stages of cotton production. The effects of inorganic N fertilization and conventional tillage on the structure of bacterial communities were significant at all four sampling dates (p < 0.01). However, cover cropping (p < 0.05) and soil moisture content (p < 0.05) only showed significant influence on the bacterial community structure after burn-down of the cover crops and before planting of cotton (May). Nitrate-N appeared to have a significant effect on the structure of bacterial communities after inorganic fertilization and at the peak of cotton growth (p < 0.01). Structural equation modeling revealed that the relative abundances of denitrifying and nitrifying bacteria were higher when conventional tillage and vetch cover crop practices were applied, respectively. Our results indicate that long-term tillage and fertilization are key factors increasing the diversity and restructuring the composition of bacterial communities, whereas cover cropping may have shorter-term effects on soil bacteria community structure. In this study, management practices might positively influence relative abundances of bacterial functional groups associated with N cycling. The bacteria functional groups may build a network for providing N and meet microbial N needs in the long term.
Collapse
Affiliation(s)
- Ning Duan
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lidong Li
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Xiaolong Liang
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Aubrey Fine
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sean M. Schaeffer
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
26
|
Nuccio EE, Nguyen NH, Nunes da Rocha U, Mayali X, Bougoure J, Weber PK, Brodie E, Firestone M, Pett-Ridge J. Community RNA-Seq: multi-kingdom responses to living versus decaying roots in soil. ISME COMMUNICATIONS 2021; 1:72. [PMID: 36765158 PMCID: PMC9723751 DOI: 10.1038/s43705-021-00059-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Roots are a primary source of organic carbon input in most soils. The consumption of living and detrital root inputs involves multi-trophic processes and multiple kingdoms of microbial life, but typical microbial ecology studies focus on only one or two major lineages. We used Illumina shotgun RNA sequencing to conduct PCR-independent SSU rRNA community analysis ("community RNA-Seq") and simultaneously assess the bacteria, archaea, fungi, and microfauna surrounding both living and decomposing roots of the annual grass, Avena fatua. Plants were grown in 13CO2-labeled microcosms amended with 15N-root litter to identify the preferences of rhizosphere organisms for root exudates (13C) versus decaying root biomass (15N) using NanoSIMS microarray imaging (Chip-SIP). When litter was available, rhizosphere and bulk soil had significantly more Amoebozoa, which are potentially important yet often overlooked top-down drivers of detritusphere community dynamics and nutrient cycling. Bulk soil containing litter was depleted in Actinobacteria but had significantly more Bacteroidetes and Proteobacteria. While Actinobacteria were abundant in the rhizosphere, Chip-SIP showed Actinobacteria preferentially incorporated litter relative to root exudates, indicating this group's more prominent role in detritus elemental cycling in the rhizosphere. Our results emphasize that decomposition is a multi-trophic process involving complex interactions, and our methodology can be used to track the trajectory of carbon through multi-kingdom soil food webs.
Collapse
Affiliation(s)
- Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, Australia
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Eoin Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Mary Firestone
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA.
| |
Collapse
|
27
|
Barnett SE, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. Proc Natl Acad Sci U S A 2021; 118:e2115292118. [PMID: 34799453 PMCID: PMC8617410 DOI: 10.1073/pnas.2115292118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022] Open
Abstract
Soil microorganisms determine the fate of soil organic matter (SOM), and their activities compose a major component of the global carbon (C) cycle. We employed a multisubstrate, DNA-stable isotope probing experiment to track bacterial assimilation of C derived from distinct sources that varied in bioavailability. This approach allowed us to measure microbial contributions to SOM processing by measuring the C assimilation dynamics of diverse microorganisms as they interacted within soil. We identified and tracked 1,286 bacterial taxa that assimilated 13C in an agricultural soil over a period of 48 d. Overall 13C-assimilation dynamics of bacterial taxa, defined by the source and timing of the 13C they assimilated, exhibited low phylogenetic conservation. We identified bacterial guilds composed of taxa that had similar 13C assimilation dynamics. We show that C-source bioavailability explained significant variation in both C mineralization dynamics and guild structure, and that the growth dynamics of bacterial guilds differed significantly in response to C addition. We also demonstrate that the guild structure explains significant variation in the biogeographical distribution of bacteria at continental and global scales. These results suggest that an understanding of in situ growth dynamics is essential for understanding microbial contributions to soil C cycling. We interpret these findings in the context of bacterial life history strategies and their relationship to terrestrial C cycling.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Nicholas D Youngblut
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Chantal N Koechli
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
28
|
Madegwa YM, Uchida Y. Liming improves the stability of soil microbial community structures against the application of digestate made from dairy wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113356. [PMID: 34311257 DOI: 10.1016/j.jenvman.2021.113356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Lime is used to reduce soil acidification in agricultural soils. However, its effects on the soil microbial community are not well understood. Additionally, the soil microbial community is known to be influenced by fertilizers. However, the question remains whether liming influences the magnitude of fertilizers' impact on soil microbial communities. Therefore, an incubation experiment was performed to understand the effect of lime application (pH = 6.5 and 5.5 for the soils with and without lime, respectively) and fertilizer (digestate, urea and control) on the soil microbial community structures, stability and gene functions. Soils were sampled weekly after the application of fertilizers for a month. For microbial community analysis, DNA was extracted and sequenced targeting 16 S rRNA region. For gene abundances i.e 16 S rRNA, ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB), nitrous oxide reductase (nosZ) and nitrite reductase (nirS) quantitative PCR was conducted. In results, the relative abundance of Actinobacteria was influenced more strongly by digestate in lime soils, while Alphaproteobacteria was influenced more strongly by digestate in the no lime soil. In NL treatments, digestate had a significant effect on more operational taxonomic units (146) compared to lime (127), indicating that lime application increased soil microbial community's stability. Liming and fertilizer had a significant effect on 16 S rRNA gene copy numbers with the highest values observed in lime plus digestate treatments. Soil pH had a significant effect on AOA, nosZ and nirS gene copy numbers with the highest values observed in lime treatments. In the lime treatments digestate application had a positive impact on AOB gene copy numbers but this was not the case for soils without liming treatments. These results indicate that soil pH and fertilizer type should be taken into consideration for the management of functional gene abundance in agricultural soils.
Collapse
Affiliation(s)
| | - Yoshitaka Uchida
- Global Center for Food, Land and Water Resources, Research Faculty of Agriculture, Hokkaido University, Japan.
| |
Collapse
|
29
|
Blagodatskaya E, Tarkka M, Knief C, Koller R, Peth S, Schmidt V, Spielvogel S, Uteau D, Weber M, Razavi BS. Bridging Microbial Functional Traits With Localized Process Rates at Soil Interfaces. Front Microbiol 2021; 12:625697. [PMID: 34777265 PMCID: PMC8581545 DOI: 10.3389/fmicb.2021.625697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we introduce microbially-mediated soil processes, players, their functional traits, and their links to processes at biogeochemical interfaces [e.g., rhizosphere, detritusphere, (bio)-pores, and aggregate surfaces]. A conceptual view emphasizes the central role of the rhizosphere in interactions with other biogeochemical interfaces, considering biotic and abiotic dynamic drivers. We discuss the applicability of three groups of traits based on microbial physiology, activity state, and genomic functional traits to reflect microbial growth in soil. The sensitivity and credibility of modern molecular approaches to estimate microbial-specific growth rates require further development. A link between functional traits determined by physiological (e.g., respiration, biomarkers) and genomic (e.g., genome size, number of ribosomal gene copies per genome, expression of catabolic versus biosynthetic genes) approaches is strongly affected by environmental conditions such as carbon, nutrient availability, and ecosystem type. Therefore, we address the role of soil physico-chemical conditions and trophic interactions as drivers of microbially-mediated soil processes at relevant scales for process localization. The strengths and weaknesses of current approaches (destructive, non-destructive, and predictive) for assessing process localization and the corresponding estimates of process rates are linked to the challenges for modeling microbially-mediated processes in heterogeneous soil microhabitats. Finally, we introduce a conceptual self-regulatory mechanism based on the flexible structure of active microbial communities. Microbial taxa best suited to each successional stage of substrate decomposition become dominant and alter the community structure. The rates of decomposition of organic compounds, therefore, are dependent on the functional traits of dominant taxa and microbial strategies, which are selected and driven by the local environment.
Collapse
Affiliation(s)
- Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, Leipzig, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stephan Peth
- Institute of Soil Science, University of Hannover, Hanover, Germany
| | | | - Sandra Spielvogel
- Department Soil Science, Institute for Plant Nutrition and Soil Science, Christian-Albrechts University Kiel, Kiel, Germany
| | - Daniel Uteau
- Department of Soil Science, Faculty of Organic Agricultural Sciences, University of Kassel, Kassel, Germany
| | | | - Bahar S. Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
30
|
Abstract
Cropping system diversity provides yield benefits that may result from shifts in the composition of root-associated bacterial and fungal communities, which either enhance nutrient availability or limit nutrient loss. We investigated whether temporal diversity of annual cropping systems (four versus two crops in rotation) influences the composition and metabolic activities of root-associated microbial communities in maize at a developmental stage when the peak rate of nitrogen uptake occurs. We monitored total (DNA-based) and potentially active (RNA-based) bacterial communities and total (DNA-based) fungal communities in the soil, rhizosphere, and endosphere. Cropping system diversity strongly influenced the composition of the soil microbial communities, which influenced the recruitment of the resident microbial communities and, in particular, the potentially active rhizosphere and endosphere bacterial communities. The diversified cropping system rhizosphere recruited a more diverse bacterial community (species richness), even though there was little difference in soil species richness between the two cropping systems. In contrast, fungal species richness was greater in the conventional rhizosphere, which was enriched in fungal pathogens; the diversified rhizosphere, however, was enriched in Glomeromycetes. While cropping system influenced endosphere community composition, greater correspondence between DNA- and RNA-based profiles suggests a higher representation of active bacterial populations. Cropping system diversity influenced the composition of ammonia oxidizers, which coincided with diminished potential nitrification activity and gross nitrate production rates, particularly in the rhizosphere. The results of our study suggest that diversified cropping systems shift the composition of the rhizosphere’s active bacterial and total fungal communities, resulting in tighter coupling between plants and microbial processes that influence nitrogen acquisition and retention. IMPORTANCE Crops in simplified, low-diversity agroecosystems assimilate only a fraction of the inorganic nitrogen (N) fertilizer inputs. Much of this N fertilizer is lost to the environment as N oxides, which degrade water quality and contribute to climate change and loss of biodiversity. Ecologically inspired management may facilitate mutualistic interactions between plant roots and microbes to liberate nutrients when plants need them, while also decreasing nutrient loss and pathogen pressure. In this study, we investigate the effects of a conventional (2-year rotation, inorganic fertilization) and a diversified (4-year rotation, manure amendments) cropping system on the assembly of bacterial and fungal root-associated communities, at a maize developmental stage when nitrogen demand is beginning to increase. Our results indicate that agricultural management influences the recruitment of root-associated microbial communities and that diversified cropping systems have lower rates of nitrification (particularly in the rhizosphere), thereby reducing the potential for loss of nitrate from these systems.
Collapse
|
31
|
Yu H, Wang F, Shao M, Huang L, Xie Y, Xu Y, Kong L. Effects of Rotations With Legume on Soil Functional Microbial Communities Involved in Phosphorus Transformation. Front Microbiol 2021; 12:661100. [PMID: 34659135 PMCID: PMC8519609 DOI: 10.3389/fmicb.2021.661100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Including legumes in the cereal cropping could improve the crop yield and the uptake of nitrogen (N) and phosphorus (P) of subsequent cereals. The effects of legume-cereal crop rotations on the soil microbial community have been studied in recent years, the impact on soil functional genes especially involved in P cycling is raising great concerns. The metagenomic approach was used to investigate the impacts of crop rotation managements of soybean-wheat (SW) and maize-wheat (MW) lasting 2 and 7years on soil microbial communities and genes involved in P transformation in a field experiment. Results indicated that SW rotation increased the relative abundances of Firmicutes and Bacteroidetes, reduced Actinobacteria, Verrucomicrobia, and Chloroflexi compared to MW rotation. gcd, phoR, phoD, and ppx predominated in genes involved in P transformation in both rotations. Genes of gcd, ppa, and ugpABCE showed higher abundances in SW rotation than in MW rotation, whereas gadAC and pstS showed less abundances. Proteobacteria, Acidobacteria, and Gemmatimonadetes played predominant roles in microbial P cycling. Our study provides a novel insight into crop P, which requires strategy and help to understand the mechanism of improving crop nutrient uptake and productivity in different rotations.
Collapse
Affiliation(s)
- Hui Yu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Fenghua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China.,State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Minmin Shao
- Jining Academy of Agricultural Sciences, Jining, China
| | - Ling Huang
- Jining Academy of Agricultural Sciences, Jining, China
| | - Yangyang Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Yuxin Xu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| |
Collapse
|
32
|
Thomas F, Le Duff N, Wu TD, Cébron A, Uroz S, Riera P, Leroux C, Tanguy G, Legeay E, Guerquin-Kern JL. Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. THE ISME JOURNAL 2021; 15:3062-3075. [PMID: 33953365 PMCID: PMC8443679 DOI: 10.1038/s41396-021-00987-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm-3 h-1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France.
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ting-Di Wu
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| | | | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Pascal Riera
- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Cédric Leroux
- CNRS, Sorbonne Université, FR2424, Metabomer, Station Biologique de Roscoff, Roscoff, France
| | - Gwenn Tanguy
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Legeay
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| |
Collapse
|
33
|
Zhang H, Lu Y, Li Y, Wang L, Zhang W, Wang L, Niu L, Jia Z. Bacterial contribution to 17β-estradiol mineralization in lake sediment as revealed by 13C-DNA stable isotope probing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117505. [PMID: 34126514 DOI: 10.1016/j.envpol.2021.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of estrogens in aquatic environments has drawn increasing public concern due to their adverse effects on aquatic ecosystems and human health. Bacteria play important roles in eliminating estrogens from the environment, but knowledge of the identity and functions of the microorganisms involved in metabolizing these steroid hormones in the natural microbial communities is lacking. Here, we added 13C-17β-estradiol (13C-E2) to sediments collected from Zhushan (ZS) Bay, Meiliang (ML) Bay, Gonghu (GH) Bay, and the central area (CA) of the Taihu Lake. The indigenous assimilators of E2 in the sediments were recognized using 13C-DNA stable isotope probing (DNA-SIP), and their effects on 13C-E2 mineralization were studied under aerobic condition. During the 30-day incubation period, ZS Bay had the highest cumulative percentage of 13C-E2 mineralization to 13CO2 (65.5%), while CA presented the lowest (51.4%). Based on DNA-SIP, we saw that Novosphingobium, Ralstonia, Pseudomonas, Sphingomonas, Nitrosomonas, and Alcaligenes were involved in E2-derived 13C assimilation for the entire incubation period. Acinetobacter, Flavobacterium, and Mycobacterium only assimilated 13C for the first half of the incubation. H16 was identified as an E2 assimilator for the first time in this study. In addition, the temporal changes in assimilator abundances during the incubation period indicated that these genera played dominant roles at different stages in the process of E2 biodegradation. The bacteria engaged in the assimilation of E2 in situ were identified, and the rate of increase in the relative abundance of assimilators was significantly (P < 0.05) and positively correlated with the E2 mineralization in sediments. This information enhances our knowledge of in situ E2 biodegradation and provides a potential resource that could be used to eliminate estrogens in sediments.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yin Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Lei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
34
|
Yang H, Li Y, Wang S, Zhan J, Ning Z, Han D. The Response of Critical Microbial Taxa to Litter Micro-Nutrients and Macro-Chemistry Determined the Agricultural Soil Priming Intensity After Afforestation. Front Microbiol 2021; 12:730117. [PMID: 34603260 PMCID: PMC8481769 DOI: 10.3389/fmicb.2021.730117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Afforestation with trees and shrubs around cropland can effectively decrease soil degradation and avoid sand storms, but subsequent modification of litter quality accelerates the degradation of native organic matter via the soil priming effect (PE). Although carbon accumulation in agricultural soils after afforestation was widely studied, little is known about the extent to which soil organic carbon (SOC) mineralization is induced by complex residue input in agro-forest-grass composite ecosystems. Here, we mixed corn field soil and litter of afforestation tree and shrub species together in a micro-environment to quantify the effects of litter-mixture input on farmland soil priming associated with afforestation. Additionally, we studied the responses of bacterial and fungal species to litter chemistry, with the aim to identify the litter and microbial driver of soil priming. The results showed that soil priming was accelerated by different litter addition which varied from 24 to 74% of SOC mineralization, suggesting that priming intensity was relatively flexible and highly affected by litter quality. We also find that the macro-chemistry (including litter carbon, nitrogen, lignin, and cellulose) directly affects priming intensity, while micro-chemistry (including litter soluble sugar, water-soluble phenol, methanol-soluble phenol, and condensed tannin) indirectly influences priming via alteration to dominant bacterial taxa. The stepwise regression analysis suggested that litter nitrogen and cellulose were the critical litter drivers to soil priming (r 2 = 0.279), and the combination of bacterial phylum Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and fungal taxa Eurotiomycetes was a great model to explain the priming intensity (r 2 = 0.407).
Collapse
Affiliation(s)
- Hongling Yang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Li
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Shaokun Wang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Jin Zhan
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Zhiying Ning
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Han
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Hobbie E, Rinne-Garmston (Rinne) K, Penttilä R, Vadeboncoeur M, Chen J, Mäkipää R. Carbon and nitrogen acquisition strategies by wood decay fungi influence their isotopic signatures in Picea abies forests. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Suominen S, Dombrowski N, Sinninghe Damsté JS, Villanueva L. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone. Environ Microbiol 2021; 23:2709-2728. [PMID: 31858660 PMCID: PMC8359207 DOI: 10.1111/1462-2920.14902] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022]
Abstract
Organic matter degradation in marine environments is essential for the recycling of nutrients, especially under conditions of anoxia where organic matter tends to accumulate. However, little is known about the diversity of the microbial communities responsible for the mineralization of organic matter in the absence of oxygen, as well as the factors controlling their activities. Here, we determined the active heterotrophic prokaryotic community in the sulphidic water column of the Black Sea, an ideal model system, where a tight coupling between carbon, nitrogen and sulphur cycles is expected. Active microorganisms degrading both dissolved organic matter (DOM) and protein extracts were determined using quantitative DNA stable isotope probing incubation experiments. These results were compared with the metabolic potential of metagenome-assembled genomes obtained from the water column. Organic matter incubations showed that groups like Cloacimonetes and Marinimicrobia are generalists degrading DOM. Based on metagenomic profiles the degradation proceeds in a potential interaction with members of the Deltaproteobacteria and Chloroflexi Dehalococcoidia. On the other hand, microbes with small genomes like the bacterial phyla Parcubacteria, Omnitrophica and of the archaeal phylum Woesearchaeota, were the most active, especially in protein-amended incubations, revealing the potential advantage of streamlined microorganisms in highly reduced conditions.
Collapse
Affiliation(s)
- Saara Suominen
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| |
Collapse
|
37
|
Suominen S, van Vliet DM, Sánchez-Andrea I, van der Meer MTJ, Sinninghe Damsté JS, Villanueva L. Organic Matter Type Defines the Composition of Active Microbial Communities Originating From Anoxic Baltic Sea Sediments. Front Microbiol 2021; 12:628301. [PMID: 34025597 PMCID: PMC8131844 DOI: 10.3389/fmicb.2021.628301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon cycling in anoxic marine sediments is dependent on uncultured microbial communities. Niches of heterotrophic microorganisms are defined by organic matter (OM) type and the different phases in OM degradation. We investigated how OM type defines microbial communities originating from organic-rich, anoxic sediments from the Baltic Sea. We compared changes in the sediment microbial community, after incubation with different stable isotope labeled OM types [i.e., particulate algal organic matter (PAOM), protein, and acetate], by using DNA stable isotope probing (DNA-SIP). Incorporation of 13C and/or 15N label was predominantly detected in members of the phyla Planctomycetes and Chloroflexi, which also formed the majority (>50%) of the original sediment community. While these phylum-level lineages incorporated label from all OM types, phylogenetic analyses revealed a niche separation at the order level. Members of the MSBL9 (Planctomycetes), the Anaerolineales (Chloroflexi), and the class Bathyarchaeota, were identified as initial degraders of carbohydrate-rich OM, while other uncultured orders, like the CCM11a and Phycisphaerales (Planctomycetes), Dehalococcoidia, and JG30-KF-CM66 (Chloroflexi), incorporated label also from protein and acetate. Our study highlights the importance of initial fermentation of complex carbon pools in shaping anoxic sediment microbial communities and reveals niche specialization at the order level for the most important initial degraders in anoxic sediments.
Collapse
Affiliation(s)
- Saara Suominen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Daan M. van Vliet
- Wageningen Food and Biobased Research (WFBR), Bornse Weilanden 9, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | | - Marcel T. J. van der Meer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
38
|
Lerner H, Öztürk B, Dohrmann AB, Thomas J, Marchal K, De Mot R, Dehaen W, Tebbe CC, Springael D. DNA-SIP and repeated isolation corroborate Variovorax as a key organism in maintaining the genetic memory for linuron biodegradation in an agricultural soil. FEMS Microbiol Ecol 2021; 97:6204700. [PMID: 33784375 DOI: 10.1093/femsec/fiab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 11/14/2022] Open
Abstract
The frequent exposure of agricultural soils to pesticides can lead to microbial adaptation, including the development of dedicated microbial populations that utilize the pesticide compound as a carbon and energy source. Soil from an agricultural field in Halen (Belgium) with a history of linuron exposure has been studied for its linuron-degrading bacterial populations at two time points over the past decade and Variovorax was appointed as a key linuron degrader. Like most studies on pesticide degradation, these studies relied on isolates that were retrieved through bias-prone enrichment procedures and therefore might not represent the in situ active pesticide-degrading populations. In this study, we revisited the Halen field and applied, in addition to enrichment-based isolation, DNA stable isotope probing (DNA-SIP), to identify in situ linuron-degrading bacteria in linuron-exposed soil microcosms. Linuron dissipation was unambiguously linked to Variovorax and its linuron catabolic genes and might involve the synergistic cooperation between two species. Additionally, two novel linuron-mineralizing Variovorax isolates were obtained with high 16S rRNA gene sequence similarity to strains isolated from the same field a decade earlier. The results confirm Variovorax as a prime in situ degrader of linuron in the studied agricultural field soil and corroborate the genus as key for maintaining the genetic memory of linuron degradation functionality in that field.
Collapse
Affiliation(s)
- Harry Lerner
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Anja B Dohrmann
- Thünen Institute of Biodiversity, Bundesallee 65, 388116 Braunschweig, Germany
| | - Joice Thomas
- Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics & Department of Information Technology, University of Ghent, iGent Toren, Technologiepark 126, B-9052 Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, B-3001 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 65, 388116 Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
39
|
Yavitt JB, Roco CA, Debenport SJ, Barnett SE, Shapleigh JP. Community Organization and Metagenomics of Bacterial Assemblages Across Local Scale pH Gradients in Northern Forest Soils. MICROBIAL ECOLOGY 2021; 81:758-769. [PMID: 33001224 DOI: 10.1007/s00248-020-01613-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Soil pH has shown to predict bacterial diversity, but mechanisms are still poorly understood. To investigate how bacteria distribute themselves as a function of soil pH, we assessed community composition, diversity, assembly, and gene abundance across local (ca. 1 km) scale gradients in soil pH from ~ 3.8 to 6.5 created by differences in soil parent material in three northern forests. Plant species were the same on all sites, with no evidence of agriculture in the past. Concentrations of extractable calcium, iron, and phosphorus also varied significantly across the pH gradients. Among taxa, Alphaproteobacteria and Acidobacteria were more common in soils with acidic pH values. Overall richness and diversity of OTUs peaked at intermediate pH values. Variations in OTU richness and diversity also had a quadratic fit with concentrations of extractable calcium and phosphorus. Community assembly was via homogeneous deterministic processes in soils with acidic pH values, whereas stochastic processes dominated in soils with near-neutral pH values. Although we expected selection via genes for acid tolerance response in acidic soils, genes for genetic information processing were more selective. Taxa in higher pH soils had differential abundance of transporter genes, suggesting adaptation to acquire metabolic substrates from soils. Soil bacterial communities in northern forest soils are incredibly diverse, and we still have much to learn about how soil pH and co-varying soil parameters directly drive gene selection in this critical component of ecosystem structure.
Collapse
Affiliation(s)
- Joseph B Yavitt
- Department of Natural Resources, Cornell University, 226 Mann Drive, Fernow Hall, Ithaca, NY, 14853, USA.
| | - C Armanda Roco
- Department of Microbiology, Cornell University, 123 Wing Drive, Wing Hall, Ithaca, NY, 14853, USA
| | - Spencer J Debenport
- School of Integrative Plant Science, Cornell University, 306 Tower Road, Bradfield Hall, Ithaca, NY, 14853, USA
| | - Samuel E Barnett
- School of Integrative Plant Science, Cornell University, 306 Tower Road, Bradfield Hall, Ithaca, NY, 14853, USA
| | - James P Shapleigh
- Department of Microbiology, Cornell University, 123 Wing Drive, Wing Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
40
|
Kroeger ME, Meredith LK, Meyer KM, Webster KD, de Camargo PB, de Souza LF, Tsai SM, van Haren J, Saleska S, Bohannan BJM, Rodrigues JLM, Berenguer E, Barlow J, Nüsslein K. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. THE ISME JOURNAL 2021; 15:658-672. [PMID: 33082572 PMCID: PMC8027882 DOI: 10.1038/s41396-020-00804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023]
Abstract
The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.
Collapse
Affiliation(s)
- Marie E. Kroeger
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA ,grid.148313.c0000 0004 0428 3079Present Address: Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA
| | - Kyle M. Meyer
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA ,grid.47840.3f0000 0001 2181 7878Department of Integrative Biology, University of California–Berkeley, Berkeley, CA USA
| | - Kevin D. Webster
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, Tucson, AZ USA
| | - Plinio Barbosa de Camargo
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Leandro Fonseca de Souza
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Siu Mui Tsai
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Joost van Haren
- grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XHonors College, University of Arizona, Tucson, AZ USA
| | - Scott Saleska
- grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Brendan J. M. Bohannan
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Jorge L. Mazza Rodrigues
- grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California, Davis, CA USA
| | - Erika Berenguer
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK ,grid.4991.50000 0004 1936 8948Environmental Change Institute, University of Oxford, Oxford, UK
| | - Jos Barlow
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Klaus Nüsslein
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA
| |
Collapse
|
41
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
42
|
St James AR, Yavitt JB, Zinder SH, Richardson RE. Linking microbial Sphagnum degradation and acetate mineralization in acidic peat bogs: from global insights to a genome-centric case study. ISME JOURNAL 2020; 15:293-303. [PMID: 32951020 DOI: 10.1038/s41396-020-00782-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022]
Abstract
Ombrotrophic bogs accumulate large stores of soil carbon that eventually decompose to carbon dioxide and methane. Carbon accumulates because Sphagnum mosses slow microbial carbon decomposition processes, leading to the production of labile intermediate compounds. Acetate is a major product of Sphagnum degradation, yet rates of hydrogenotrophic methanogenesis far exceed rates of aceticlastic methanogenesis, suggesting that alternative acetate mineralization processes exist. Two possible explanations are aerobic respiration and anaerobic respiration via humic acids as electron acceptors. While these processes have been widely observed, microbial community interactions linking Sphagnum degradation and acetate mineralization remain cryptic. In this work, we use ordination and network analysis of functional genes from 110 globally distributed peatland metagenomes to identify conserved metabolic pathways in Sphagnum bogs. We then use metagenome-assembled genomes (MAGs) from McLean Bog, a Sphagnum bog in New York State, as a local case study to reconstruct pathways of Sphagnum degradation and acetate mineralization. We describe metabolically flexible Acidobacteriota MAGs that contain all genes to completely degrade Sphagnum cell wall sugars under both aerobic and anaerobic conditions. Finally, we propose a hypothetical model of acetate oxidation driven by changes in peat redox potential that explain how bogs may circumvent aceticlastic methanogenesis through aerobic and humics-driven respiration.
Collapse
Affiliation(s)
- Andrew R St James
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Joseph B Yavitt
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | | | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
43
|
Lerner H, Öztürk B, Dohrmann AB, Thomas J, Marchal K, De Mot R, Dehaen W, Tebbe CC, Springael D. Culture-Independent Analysis of Linuron-Mineralizing Microbiota and Functions in on-Farm Biopurification Systems via DNA-Stable Isotope Probing: Comparison with Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9387-9397. [PMID: 32569463 DOI: 10.1021/acs.est.0c02124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Our understanding of the microorganisms involved in in situ biodegradation of xenobiotics, like pesticides, in natural and engineered environments is poor. On-farm biopurification systems (BPSs) treat farm-produced pesticide-contaminated wastewater to reduce surface water pollution. BPSs are a labor and cost-efficient technology but are still mainly operated as black box systems. We used DNA-stable isotope probing (DNA-SIP) and classical enrichment to be informed about the organisms responsible for in situ degradation of the phenylurea herbicide linuron in a BPS matrix. DNA-SIP identified Ramlibacter, Variovorax, and an unknown Comamonadaceae genus as the dominant linuron assimilators. While linuron-degrading Variovorax strains have been isolated repeatedly, Ramlibacter has never been associated before with linuron degradation. Genes and mobile genetic elements (MGEs) previously linked to linuron catabolism were enriched in the heavy DNA-SIP fractions, suggesting their involvement in in situ linuron assimilation. BPS material free cultivation of linuron degraders from the same BPS matrix resulted in a community dominated by Variovorax, while Ramlibacter was not observed. Our study provides evidence for the role of Variovorax in in situ linuron biodegradation in a BPS, alongside other organisms like Ramlibacter, and further shows that cultivation results in a biased representation of the in situ linuron-assimilating bacterial populations.
Collapse
Affiliation(s)
- Harry Lerner
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Anja B Dohrmann
- Thünen Institut für Biodiversität, 38116 Braunschweig, Germany
| | - Joice Thomas
- Molecular Design and Synthesis, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000 Gent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | | | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| |
Collapse
|
44
|
Choudhary M, Jat HS, Datta A, Sharma PC, Rajashekar B, Jat ML. Topsoil Bacterial Community Changes and Nutrient Dynamics Under Cereal Based Climate-Smart Agri-Food Systems. Front Microbiol 2020; 11:1812. [PMID: 32849419 PMCID: PMC7399647 DOI: 10.3389/fmicb.2020.01812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/10/2020] [Indexed: 02/01/2023] Open
Abstract
Soil microorganisms play a critical role in soil biogeochemical processes, nutrient cycling, and resilience of agri-food systems and are immensely influenced by agronomic management practices. Understanding soil bacterial community and nutrient dynamics under contrasting management practices is of utmost importance for building climate-smart agri-food systems. Soil samples were collected at 0–15 cm soil depth from six management scenarios in long-term conservation agriculture (CA) and climate-smart agriculture (CSA) practices. These scenarios (Sc) involved; ScI-conventional tillage based rice-wheat rotation, ScII- partial CA based rice-wheat-mungbean, ScIII- partial CSA based rice-wheat-mungbean, ScIV is partial CSA based maize-wheat-mungbean, ScV and ScVI are CSA based scenarios, were similar to ScIII and ScIV respectively, layered with precision water & nutrient management. The sequencing of soil DNA results revealed that across the six scenarios, a total of forty bacterial phyla were observed, with Proteobacteria as dominant in all scenarios, followed by Acidobacteria and Actinobacteria. The relative abundance of Proteobacteria was 29% higher in rice-based CSA scenarios (ScIII and ScV) and 16% higher in maize-based CSA scenarios (ScIV and ScVI) compared to conventional-till practice (ScI). The relative abundance of Acidobacteria and Actinobacteria was respectively 29% and 91% higher in CT than CSA based rice and 27% and 110% higher than maize-based scenarios. Some taxa are present relatively in very low abundance or exclusively in some scenarios, but these might play important roles there. Three phyla are exclusively present in ScI and ScII i.e., Spirochaetes, Thermi, and Euryarchaeota. Shannon diversity index was 11% higher in CT compared to CSA scenarios. Maize based CSA scenarios recorded higher diversity indices than rice-based CSA scenarios. Similar to changes in soil bacterial community, the nutrient dynamics among the different scenarios also varied significantly. After nine years of continuous cropping, the soil organic carbon was improved by 111% and 31% in CSA and CA scenarios over the CT scenario. Similarly, the available nitrogen, phosphorus, and potassium were improved by, respectively, 38, 70, and 59% in CSA scenarios compared to the CT scenario. These results indicate that CSA based management has a positive influence on soil resilience in terms of relative abundances of bacterial groups, soil organic carbon & available plant nutrients and hence may play a critical role in the sustainability of the intensive cereal based agri-food systems.
Collapse
Affiliation(s)
- Madhu Choudhary
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India
| | - Hanuman S Jat
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India.,International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
| | - Ashim Datta
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India
| | - Parbodh C Sharma
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India
| | | | - Mangi L Jat
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
| |
Collapse
|
45
|
Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, Blazewicz SJ, Firestone MK, Hofmockel KS, Schwartz E, Hungate BA, Pett-Ridge J. Measurement Error and Resolution in Quantitative Stable Isotope Probing: Implications for Experimental Design. mSystems 2020; 5:e00151-20. [PMID: 32694124 PMCID: PMC7566279 DOI: 10.1128/msystems.00151-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Quantitative stable isotope probing (qSIP) estimates isotope tracer incorporation into DNA of individual microbes and can link microbial biodiversity and biogeochemistry in complex communities. As with any quantitative estimation technique, qSIP involves measurement error, and a fuller understanding of error, precision, and statistical power benefits qSIP experimental design and data interpretation. We used several qSIP data sets-from soil and seawater microbiomes-to evaluate how variance in isotope incorporation estimates depends on organism abundance and resolution of the density fractionation scheme. We assessed statistical power for replicated qSIP studies, plus sensitivity and specificity for unreplicated designs. As a taxon's abundance increases, the variance of its weighted mean density declines. Nine fractions appear to be a reasonable trade-off between cost and precision for most qSIP applications. Increasing the number of density fractions beyond that reduces variance, although the magnitude of this benefit declines with additional fractions. Our analysis suggests that, if a taxon has an isotope enrichment of 10 atom% excess, there is a 60% chance that this will be detected as significantly different from zero (with alpha 0.1). With five replicates, isotope enrichment of 5 atom% could be detected with power (0.6) and alpha (0.1). Finally, we illustrate the importance of internal standards, which can help to calibrate per sample conversions of %GC to mean weighted density. These results should benefit researchers designing future SIP experiments and provide a useful reference for metagenomic SIP applications where both financial and computational limitations constrain experimental scope.IMPORTANCE One of the biggest challenges in microbial ecology is correlating the identity of microorganisms with the roles they fulfill in natural environmental systems. Studies of microbes in pure culture reveal much about their genomic content and potential functions but may not reflect an organism's activity within its natural community. Culture-independent studies supply a community-wide view of composition and function in the context of community interactions but often fail to link the two. Quantitative stable isotope probing (qSIP) is a method that can link the identity and functional activity of specific microbes within a naturally occurring community. Here, we explore how the resolution of density gradient fractionation affects the error and precision of qSIP results, how they may be improved via additional experimental replication, and discuss cost-benefit balanced scenarios for SIP experimental design.
Collapse
Affiliation(s)
- Ella T Sieradzki
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alex Greenlon
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Rohan Sachdeva
- University of California Berkeley, Earth and Planetary Sciences, Berkeley, California, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Mary K Firestone
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
46
|
Zhang K, Ni Y, Liu X, Chu H. Microbes changed their carbon use strategy to regulate the priming effect in an 11-year nitrogen addition experiment in grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138645. [PMID: 32330721 DOI: 10.1016/j.scitotenv.2020.138645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen availability is a key factor that regulates soil priming (the strong short-term changes in microbial decomposition of soil organic carbon after addition of fresh carbon resources); however, how soil priming changes under nitrogen addition is unclear. In this study, we collected soils from a grassland with 11-year history of nitrogen addition (0, 60, 120, and 240 kg N ha-1 yr-1 NH4NO3), and the soils were incubated for 6 weeks to estimate the direction and magnitude of soil priming and the underlying microbial carbon use strategy. We found glucose addition triggered a positive priming effect among all the treatments; however, the magnitude of the positive priming did not change under nitrogen addition. The stable soil organic carbon content under different nitrogen addition levels might support the no significant change in the magnitude of those positive priming. Using DNA stable-isotope probing (DNA-SIP), we found that bacterial and fungal taxa consuming the added glucose were different in different nitrogen addition levels. The relative abundance of the K-strategist Acidobacteria increased with increasing nitrogen addition levels, while the r-strategist Firmicutes decreased with increasing nitrogen addition levels. Our results indicated microbial taxa exhibited carbon use plasticity, with most taxa altering their use of glucose under nitrogen addition.
Collapse
Affiliation(s)
- Kaoping Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Abstract
Shotgun metagenomic sequencing has revolutionized our ability to detect and characterize the diversity and function of complex microbial communities. In this review, we highlight the benefits of using metagenomics as well as the breadth of conclusions that can be made using currently available analytical tools, such as greater resolution of species and strains across phyla and functional content, while highlighting challenges of metagenomic data analysis. Major challenges remain in annotating function, given the dearth of functional databases for environmental bacteria compared to model organisms, and the technical difficulties of metagenome assembly and phasing in heterogeneous environmental samples. In the future, improvements and innovation in technology and methodology will lead to lowered costs. Data integration using multiple technological platforms will lead to a better understanding of how to harness metagenomes. Subsequently, we will be able not only to characterize complex microbiomes but also to manipulate communities to achieve prosperous outcomes for health, agriculture, and environmental sustainability.
Collapse
Affiliation(s)
- Felicia N New
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA;
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
48
|
Microbial Taxon-Specific Isotope Incorporation with DNA Quantitative Stable Isotope Probing. Methods Mol Biol 2020; 2046:137-149. [PMID: 31407302 DOI: 10.1007/978-1-4939-9721-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Quantitative stable isotope probing (qSIP) measures rates of taxon-specific element assimilation in intact microbial communities, utilizing substrates labeled with a heavy isotope.The laboratory protocol for qSIP is nearly identical to that for conventional stable isotope probing, with two key additions: (1) in qSIP, qPCR measurements are conducted on each density fraction recovered after isopycnic separation, and (2) in qSIP, multiple density fractions are sequenced spanning the entire range of densities over which nucleic acids were recovered. qSIP goes beyond identifying taxa assimilating a substrate, as it also allows for measuring that assimilation for each taxon within a given microbial community. Here, we describe an analysis process necessary to determine atom fraction excess of a heavy stable isotope added to an environmental sample for a given taxon's DNA.
Collapse
|
49
|
Wang J, Zhang X, Yao H. Optimizing ultracentrifugation conditions for DNA-based stable isotope probing (DNA-SIP). J Microbiol Methods 2020; 173:105938. [PMID: 32360380 DOI: 10.1016/j.mimet.2020.105938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
DNA-SIP (DNA-based stable isotope probing) is increasingly being employed in soil microbial ecology to identify those microbes assimilating the 13C/15N labelled substrate. Isopycnic gradient centrifugation is the primary experimental process for conducting DNA-SIP. However, diverse centrifugal conditions have been used in various recent studies. In order to get the optimum conditions of centrifugation for DNA-SIP, centrifugation time (36, 42, 48, 60 h), speed (45,000, 55,000 rpm) and the initial buoyant density (1.69, 1.71, 1.725 g ml-1), as were used extensively in related studies, were tested in this experiment with the Vti 65.2 rotor. DNA with either 13C-labelling or unlabelled was extracted from a paddy soil pre-incubated with either 13C-labelled or natural abundance glucose. After ultracentrifugation, the gene abundance of bacterial 16S rRNA, fungal 18S rRNA, bacterial and archaeal amoA within the fractioned DNA was detected. The results showed that centrifugation for 48 h was enough for the DNA to reach stabilization in the CsCl solution. The initial density of the mixed solution was best adjusted to 1.71 g ml-1 to ensure that most of the genes were concentrated on the middle fractions of the density gradient. Increasing the centrifugation speed would increase the density gradient of fractions; therefore, 45,000 rpm (184,000 g) was recommended so as to obtain the more widespread pattern of DNA in the centrifugal tube. We hope these findings will assist future researchers to conduct optimum ultracentrifugation for DNA-SIP.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.
| |
Collapse
|
50
|
Kong Y, Kuzyakov Y, Ruan Y, Zhang J, Wang T, Wang M, Guo S, Shen Q, Ling N. DNA Stable-Isotope Probing Delineates Carbon Flows from Rice Residues into Soil Microbial Communities Depending on Fertilization. Appl Environ Microbiol 2020; 86:e02151-19. [PMID: 31953339 PMCID: PMC7082572 DOI: 10.1128/aem.02151-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
Decomposition of crop residues in soil is mediated by microorganisms whose activities vary with fertilization. The complexity of active microorganisms and their interactions utilizing residues is impossible to disentangle without isotope applications. Thus, 13C-labeled rice residues were employed, and DNA stable-isotope probing (DNA-SIP) combined with high-throughput sequencing was applied to identify microbes active in assimilating residue carbon (C). Manure addition strongly modified microbial community compositions involved in the C flow from rice residues. Relative abundances of the bacterial genus Lysobacter and fungal genus Syncephalis were increased, but abundances of the bacterial genus Streptomyces and fungal genus Trichoderma were decreased in soils receiving mineral fertilizers plus manure (NPKM) compared to levels in soils receiving only mineral fertilizers (NPK). Microbes involved in the flow of residue C formed a more complex network in NPKM than in NPK soils because of the necessity to decompose more diverse organic compounds. The fungal species (Jugulospora rotula and Emericellopsis terricola in NPK and NPKM soils, respectively) were identified as keystone species in the network and may significantly contribute to residue C decomposition. Most of the fungal genera in NPKM soils, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded faster to residue addition than those in NPK soils. This is connected with the changes in the composition of the rice residue during degradation and with fungal adaptation (abundance and activity) to continuous manure input. Our findings provide fundamental information about the roles of key microbial groups in residue decomposition and offer important cues on manipulating the soil microbiome for residue utilization and C sequestration in soil.IMPORTANCE Identifying and understanding the active microbial communities and interactions involved in plant residue utilization are key questions to elucidate the transformation of soil organic matter (SOM) in agricultural ecosystems. Microbial community composition responds strongly to management, but little is known about specific microbial groups involved in plant residue utilization and, consequently, microbial functions under different methods of fertilization. We combined DNA stable-isotope (13C) probing and high-throughput sequencing to identify active fungal and bacterial groups degrading residues in soils after 3 years of mineral fertilization with and without manure. Manuring changed the active microbial composition and complexified microbial interactions involved in residue C flow. Most fungal genera, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded to residue addition faster in soils that historically had received manure. We generated a valuable library of microorganisms involved in plant residue utilization for future targeted research to exploit specific functions of microbial groups in organic matter utilization and C sequestration.
Collapse
Affiliation(s)
- Yali Kong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Agro-Technology Institute, RUDN University, Moscow, Russia
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junwei Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Tingting Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|