1
|
Gachara G, Suleiman R, Kilima B, Taoussi M, El Kadili S, Fauconnier ML, Barka EA, Vujanovic V, Lahlali R. Pre- and post-harvest aflatoxin contamination and management strategies of Aspergillus spoilage in East African Community maize: review of etiology and climatic susceptibility. Mycotoxin Res 2024; 40:495-517. [PMID: 39264500 DOI: 10.1007/s12550-024-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Globally, maize (Zea mays L.) is deemed an important cereal that serves as a staple food and feed for humans and animals, respectively. Across the East African Community, maize is the staple food responsible for providing over one-third of calories in diets. Ideally, stored maize functions as man-made grain ecosystems, with nutritive quality changes influenced predominantly by chemical, biological, and physical factors. Food spoilage and fungal contamination are convergent reasons that contribute to the exacerbation of mycotoxins prevalence, particularly when storage conditions have deteriorated. In Kenya, aflatoxins are known to be endemic with the 2004 acute aflatoxicosis outbreak being described as one of the most ravaging epidemics in the history of human mycotoxin poisoning. In Tanzania, the worst aflatoxin outbreak occurred in 2016 with case fatalities reaching 50%. Similar cases of aflatoxicoses have also been reported in Uganda, scenarios that depict the severity of mycotoxin contamination across this region. Rwanda, Burundi, and South Sudan seemingly have minimal occurrences and fatalities of aflatoxicoses and aflatoxin contamination. Low diet diversity tends to aggravate human exposure to aflatoxins since maize, as a dietetic staple, is highly aflatoxin-prone. In light of this, it becomes imperative to formulate and develop workable control frameworks that can be embraced in minimizing aflatoxin contamination throughout the food chain. This review evaluates the scope and magnitude of aflatoxin contamination in post-harvest maize and climate susceptibility within an East African Community context. The paper also treats the potential green control strategies against Aspergillus spoilage including biocontrol-prophylactic handling for better and durable maize production.
Collapse
Affiliation(s)
- G Gachara
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
| | - R Suleiman
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - B Kilima
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - M Taoussi
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - S El Kadili
- Department of Animal Production, Ecole Nationale d'Agriculture de Meknès, Route Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - M L Fauconnier
- Gembloux AgroBiotech, University of Liege, Gembloux, Belgium
| | - E A Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - V Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - R Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
| |
Collapse
|
2
|
Schamann A, Soukup ST, Geisen R, Kulling S, Schmidt-Heydt M. Comparative analysis of the genomes and aflatoxin production patterns of three species within the Aspergillus section Flavi reveals an undescribed chemotype and habitat-specific genetic traits. Commun Biol 2024; 7:1134. [PMID: 39271769 PMCID: PMC11399119 DOI: 10.1038/s42003-024-06738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Aflatoxins are the most dangerous mycotoxins for food safety. They are mainly produced by Aspergillus flavus, A. parasiticus, and A. minisclerotigenes. The latter, an understudied species, was the main culprit for outbreaks of fatal aflatoxicosis in Kenya in the past. To determine specific genetic characteristics of these Aspergillus species, their genomes are comparatively analyzed. Differences reflecting the typical habitat are reported, such as an increased number of carbohydrate-active enzymes, including enzymes for lignin degradation, in the genomes of A. minisclerotigenes and A. parasiticus. Further, variations within the aflatoxin gene clusters are described, which are related to different chemotypes of aflatoxin biosynthesis. These include a substitution within the aflL gene of the A. parasiticus isolate, which leads to the translation of a stop codon, thereby switching off the production of the group 1 aflatoxins B1 and G1. In addition, we demonstrate that the inability of the A. minisclerotigenes isolates to produce group G aflatoxins is associated with a 2.2 kb deletion within the aflF and aflU genes. These findings reveal a relatively high genetic homology among the three Aspergillus species investigated. However, they also demonstrate consequential genetic differences that have an important impact on risk-assessment and food safety.
Collapse
Affiliation(s)
- Alexandra Schamann
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Rolf Geisen
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Markus Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
3
|
El-Dawy EGAM, Gherbawy YA, Hussein MA. Characterization of Aspergillus section Flavi associated with stored grains. Mycotoxin Res 2024; 40:187-202. [PMID: 38231446 PMCID: PMC10834605 DOI: 10.1007/s12550-023-00514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Increased frequencies of Aspergillus section Flavi and aflatoxins in cereal grains have been seen in recent years due to changes in climate circumstances, such as high temperatures and drought. To assess the microbiological risks of contamination, it is critical to have a reliable and accurate means of identifying the fungi. The main goal of this study was to characterize Aspergillus species from section Flavi obtained from twenty-three samples of barley and maize grains, gathered from different markets in Qena, Egypt, using morphological and molecular techniques. Twenty-three isolates were chosen, one isolate from each sample; they were identified as A. aflatoxiformans (4 isolates), A. flavus (18), and A. parasiticus (1). The existence of four aflatoxin biosynthesis genes was also investigated in relation to the strains' ability to produce total aflatoxins and aflatoxin B1, focusing on the regulatory gene aflR and the structural genes aflD and aflM. All strains producing aflatoxins were linked to the presence of aflR1 and/or aflR2, except two isolates that exhibited aflatoxins but from which aflR1 or aflR2 were not detected, which may be due to one or more missing or unstudied additional genes involved in aflatoxin production. AflD and aflM genes were amplified by 10 and 9 isolates, respectively. Five samples of barley and maize were contaminated by aflatoxins. Fifteen isolates were positive for producing total aflatoxins in the range of 0.1-240 ppm. Antagonistic activity of Trichoderma viride against A. flavus (F5) was assessed at 31.3%. Trichoderma reduced total aflatoxins in all treated seeds, particularly those subjected to Trichoderma formulation.
Collapse
Affiliation(s)
- Eman G A M El-Dawy
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt.
- Applied and Environmental Microbiology Center, South Valley University, Qena, Egypt.
| | - Youssuf A Gherbawy
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
- Applied and Environmental Microbiology Center, South Valley University, Qena, Egypt
| | - Mohamed A Hussein
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
- Applied and Environmental Microbiology Center, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Musangi CR, Juma BS, Mukhebi DW, Isoe EM, Kibiti CM, Mbinda WM. Aspergillus population diversity and its role in aflatoxin contamination of cashew nuts from coastal Kenya. PLoS One 2024; 19:e0292519. [PMID: 38271327 PMCID: PMC10810534 DOI: 10.1371/journal.pone.0292519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2023] [Indexed: 01/27/2024] Open
Abstract
Cashew nuts are among the main cash crops in coastal Kenya, due in large part to their high nutritional value. Unfortunately, they also make them highly susceptible to mold contamination, resulting in biodeterioration of the nutritional value and potential contamination with toxic secondary metabolites, such as aflatoxins, that cause them to be rejected for sale at the market. We determined the population diversity of the Aspergillus species and their role in aflatoxin contamination in cashew nuts in selected coastal regions of Kenya. Fifty raw cashew nut samples were collected from post-harvest storage facilities across three counties in Kenya's coastal region and examined for moisture content and the presence of Aspergillus fungi. About 63 presumptive isolates were recovered from the cashew nuts. ITS and 28S rDNA regions were sequenced. The aflD, aflM and aflR genes were amplified to identify the potentially aflatoxigenic from the Aspergillus isolates. The Aflatoxins' presence on the isolates was screened using UV and the ammonia vapour test on coconut milk agar and validated using ELISA assay. A comparison of cashew moisture content between the three counties sampled revealed a significant difference. Sixty-three isolates were recovered and identified to section based on morphological characters and their respective ITS regions were used to obtain species identifications. Three sections from the genus were represented, Flavi and Nigri, and Terrei with isolates from the section Nigri having slightly greater abundance (n = 35). The aflD, aflM and aflR genes were amplified for all isolates to assess the presence of the aflatoxin biosynthesis pathway, indicating the potential for aflatoxin production. Less than half of the Aspergillus isolates (39.68%) contained the aflatoxin pathway genes, while 22.22% isolates were aflatoxigenic, which included only the section Flavi isolates. Section Flavi isolates identification was confirmed by calmodulin gene. The presence of species from Aspergillus section Flavi and section Nigri indicate the potential for aflatoxin or ochratoxin in the cashew nuts. The study established a foundation for future investigations of the fungi and mycotoxins contaminating cashew nuts in Kenya, which necessitates developing strategies to prevent infection by mycotoxigenic fungi, especially during the storage and processing phases.
Collapse
Affiliation(s)
- Colletah Rhoda Musangi
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Bicko Steve Juma
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Dennis Wamalabe Mukhebi
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Everlyne Moraa Isoe
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Wilton Mwema Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| |
Collapse
|
5
|
Bharose AA, Hajare ST, Narayanrao DR, Gajera HG, Prajapati HK, Singh SC, Upadhye V. Whole genome sequencing and annotation of Aspergillus flavus JAM-JKB-B HA-GG20. Sci Rep 2024; 14:18. [PMID: 38168670 PMCID: PMC10762212 DOI: 10.1038/s41598-023-50986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Groundnuts are mostly contaminated with the mold Aspergillus flavus which produces a carcinogenic mycotoxin called as aflatoxin. It is very important to understand the genetic factors underlying its pathogenicity, regulation, and biosynthesis of secondary metabolites and animal toxicities, but it still lacks useful information due to certain gaps in the era of modern technology. Therefore, the present study was considered to determine the key genes and metabolites involved in the biosynthesis of aflatoxin by using a molecular approach in a virulent strain of Aspergillus. The whole genome sequence of highly toxic and virulent Aspergillus isolates JAM-JKB-B HA-GG20 revealed 3,73,54,834 bp genome size, 2, 26, 257 number of contigs with N50 value of 49,272 bp, 12,400 genes and 48.1% of GC contained respectively. The genome sequence was compared with other known aflatoxin producing and non-producing genome of Aspergillus spp. and 61 secondary metabolite (SM) gene clusters were annotated with the toxic strain JAM-JKB-BHA-GG20 which showed similarity with other Aspergillus spp. A total number of eight genes (ver-1, AflR, pksA, uvm8, omt1, nor-1, Vha and aflP) were identified related to biosynthesis of aflatoxin and ochratoxin. Also, 69 SSR with forward and reverse primers and 137 di and tri nucleotide motifs were identified in the nucleotide sequence region related to aflatoxin gene pathway. The genes and putative metabolites identified in this study are potentially involved in host invasion and pathogenicity. As such, the genomic information obtained in this study is helpful in understanding aflatoxin gene producing pathway in comparison to other Aspergillus spp. and predicted presence of other secondary metabolites clusters viz. Nrps, T1pks etc. genes associated with a biosynthesis of OTA mycotoxin.
Collapse
Affiliation(s)
| | | | | | - H G Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | | | | | | |
Collapse
|
6
|
Tan S, Ma F, Wu Y, Xu Y, Niu A, Chen Y, Wang G, Qiu W. The biodiversity of Aspergillus flavus in stored rice grain leads to a decrease in the overall aflatoxin B 1 production in these species. Int J Food Microbiol 2023; 406:110416. [PMID: 37769398 DOI: 10.1016/j.ijfoodmicro.2023.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Aspergillus flavus is a significant fungus that poses a threat to food safety by producing mycotoxins in various crops. In this study, A. flavus isolates were obtained from storage rice collected from seven provinces in southern China, and their AFB1 production, biosynthesis genes presence, and diversity were detected. Results showed that 56 out of the 81 A. flavus isolates produced detectable levels of AFB1, and 71 isolates (87.6 %) possessed aflR gene in their AF synthesis gene cluster, while only 41 isolates (50.6 %) had the ver-1 gene present. Genetic diversity analysis using inter-simple sequence repeats (ISSR) markers revealed seven main clusters among the isolates and the genetic similarity coefficients of 81 A. flavus isolates ranged from 0.53 to 1.00. Additionally, coculture assays were conducted using two toxigenic and two atoxigenic isolates from the same grain depot to investigate the effect of intraspecific inhibition on AFB1 production and to assess the AFB1 contamination risk of storage rice. The in situ results demonstrated that the atoxigenic isolates effectively inhibited the AFB1 contamination of toxigenic isolates. These findings provide insight into the genetic diversity of A. flavus isolates populations and highlight the potential food safety hazards of them in stored rice grain in China.
Collapse
Affiliation(s)
- Song Tan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yajie Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuancheng Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ajuan Niu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuping Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weifen Qiu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
7
|
Ochieng PE, Croubels S, Kemboi D, Okoth S, De Baere S, Cavalier E, Kang'ethe E, Faas J, Doupovec B, Gathumbi J, Douny C, Scippo ML, Lindahl JF, Antonissen G. Effects of Aflatoxins and Fumonisins, Alone or in Combination, on Performance, Health, and Safety of Food Products of Broiler Chickens, and Mitigation Efficacy of Bentonite and Fumonisin Esterase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13462-13473. [PMID: 37655855 DOI: 10.1021/acs.jafc.3c01733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The current study evaluated the effects of feeding diets contaminated with aflatoxin B1 (AFB1), fumonisins (FBs), or both on the performance and health of broiler chickens and the safety of their food products as well as the efficacy of bentonite and fumonisin esterase to mitigate the effects of these mycotoxins under conditions representative for sub-Saharan Africa (SSA). Four hundred one-day-old Cobb 500 broiler chickens were randomly assigned to 20 treatments with either a control diet, a diet with moderate AFB1 (60 μg/kg feed) or high AFB1 (220 μg/kg feed), or FBs (17,430 μg FB1+FB2/kg feed), alone or in combination, a diet containing AFB1 (either 60 or 220 μg/kg) and/or FBs (17,430 μg FB1+FB2/kg) and bentonite or fumonisin esterase or both, or a diet with bentonite or fumonisin esterase only. The experimental diets were given to the birds from day 1 to day 35 of age, and the effects of the different treatments on production performance were assessed by feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR). Possible health effects were evaluated through blood biochemistry, organ weights, mortality, liver gross pathological changes, and vaccine response. Residues of aflatoxins (AFB1, B2, G1, G2, M1 and M2) were determined in plasma, muscle, and liver tissues using validated UHPLC-MS/MS methods. The results obtained indicated that broiler chickens fed high AFB1 alone had poor FCR when compared to a diet with both high AFB1 and FBs (p = 0.0063). Serum total protein and albumin from birds fed FBs only or in combination with moderate or high AFB1 or detoxifiers increased when compared to the control (p < 0.05). Liver gross pathological changes were more pronounced in birds fed contaminated diets when compared to birds fed the control or diets supplemented with mycotoxin detoxifiers. The relative weight of the heart was significantly higher in birds fed high AFB1 and FBs when compared to the control or high AFB1 only diets (p < 0.05), indicating interactions between the mycotoxins. Inclusion of bentonite in AFB1-contaminated diets offered a protective effect on the change in weights of the liver, heart and spleen (p < 0.05). Residues of AFB1 were detected above the limit of quantification (max: 0.12 ± 0.03 μg/kg) in liver samples only, from birds fed a diet with high AFB1 only or with FBs or the detoxifiers. Supplementing bentonite into these AFB1-contaminated diets reduced the levels of the liver AFB1 residues by up to 50%. Bentonite or fumonisin esterase, alone, did not affect the performance and health of broiler chickens. Thus, at the doses tested, both detoxifiers were safe and efficient for use as valid means of counteracting the negative effects of AFB1 and FBs as well as transfer of AFB1 to food products (liver) of broiler chickens.
Collapse
Affiliation(s)
- Phillis Emelda Ochieng
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - David Kemboi
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
- Department of Animal Science, Chuka University, P.O. Box 109, 00625 Chuka, Kenya
| | - Sheila Okoth
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, University Hospital of Liège, Liège 4000, Belgium
| | | | | | | | - James Gathumbi
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, 00100 Nairobi, Kenya
| | - Caroline Douny
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | - Marie-Louise Scippo
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | - Johanna F Lindahl
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-751 05, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
8
|
Schamann A, Geisen R, Schmidt-Heydt M. Whole-Genome Sequences of Two Kenyan Aspergillus minisclerotigenes Strains. Microbiol Resour Announc 2023; 12:e0021923. [PMID: 37404178 PMCID: PMC10443383 DOI: 10.1128/mra.00219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Here, we report the sequencing of the whole genome, including the mitochondrial DNA, of the two highly aflatoxigenic Aspergillus minisclerotigenes strains MRI390 and MRI400 using the MiSeq and PacBio platforms and the generated assemblies. The strains were isolated from Kenyan maize kernels.
Collapse
Affiliation(s)
- Alexandra Schamann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany
| | - Rolf Geisen
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany
| | - Markus Schmidt-Heydt
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany
| |
Collapse
|
9
|
Kemboi D, Antonissen G, Ochieng P, Croubels S, De Baere S, Scippo ML, Okoth S, Kangethe E, Faas J, Doupovec B, Lindahl J, Gathumbi J. Efficacy of Bentonite and Fumonisin Esterase in Mitigating the Effects of Aflatoxins and Fumonisins in Two Kenyan Cattle Breeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2143-2151. [PMID: 36649058 DOI: 10.1021/acs.jafc.2c08217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The objective of the study was to investigate the efficacy of bentonite and fumonisin esterase, separately or combined, in mitigating the effects of aflatoxins (AF) and fumonisins (FUM) in Boran and Friesian-Boran crossbreed cattle. These effects were studied by measuring mycotoxins, their metabolites, and biomarkers that relate to animal health, productivity, and food safety. The study was divided into three experiments each lasting for 2 weeks. Cows in experiment 1 received in random order aflatoxin B1 (AFB1) [788 μg/cow/day (69.7 μg/kg dry matter intake (DMI)) for Borans and 2,310 μg/cow/day (154 μg/kg DMI) for crossbreeds], bentonite (60 g/cow/day), or both AFB1 and bentonite. Boran cows in experiment 2 received in random order FUM (12.4 mg/cow/day (1.1 mg/kg DMI)), fumonisin esterase (120 U/cow/day), or both FUM and fumonisin esterase. Boran cows in experiment 3 received in random order AFB1 (952 μg/cow/day (84.2 μg/kg DMI)) + FUM (30.4 mg/cow/day (2.7 mg/kg DMI)), bentonite (60 g/cow/day) + fumonisin esterase (120 U/cow/day), or both AFB1 + FUM and bentonite + fumonisin esterase. Feeding AFB1 and/or FUM contaminated feed with or without the addition of the detoxifiers for 14 days did not affect DMI, milk composition, hematology, and blood biochemical parameters. The addition of bentonite in a diet contaminated with AFB1 led to a decrease in milk aflatoxin M1 (AFM1) concentration of 30% and 43%, with the carry-over subsequently decreasing from 0.35% to 0.20% and 0.08% to 0.06% for crosses and Borans, respectively. No significant change was observed in the sphinganine/sphingosine (Sa/So) ratio following feeding with FUM alone or in combination with fumonisin esterase; however, the ability of fumonisin esterase to hydrolyze FUM into less toxic fully hydrolyzed FUM and partially hydrolyzed FUM was evident in the rumen fluid and feces. These results indicate bentonite was effective in decreasing AFM1 concentration in milk, and AFB1 and AFM1 in plasma, while fumonisin esterase can convert FUM into less toxic metabolites and can be a suitable addition to feed cocontaminated with AFB1 and FUM.
Collapse
Affiliation(s)
- David Kemboi
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi 00100, Kenya
- Department of Animal Science, Chuka University, P.O Box 109-00625, Chuka 00625, Kenya
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Phillis Ochieng
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, Liège 4000, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Marie-Louise Scippo
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, Liège 4000, Belgium
| | - Sheila Okoth
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O Box 30197 Nairobi 00100, Kenya
| | | | - Johannes Faas
- DSM-BIOMIN Research Center, Technopark 1, Tulln 3430, Austria
| | | | - Johanna Lindahl
- International Livestock Research Institute (ILRI), P.O Box 30709, Nairobi 00100, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-751 05, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - James Gathumbi
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi 00100, Kenya
| |
Collapse
|
10
|
Saber H, Chebloune Y, Moussaoui A. Molecular Characterization of Aspergillus flavus Strains Isolated from Animal Feeds. Pol J Microbiol 2022; 71:589-599. [PMID: 36537059 PMCID: PMC9944975 DOI: 10.33073/pjm-2022-048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin (AF)-producing fungi such as Aspergillus flavus commonly contaminate animal feeds, causing high economic losses. A. flavus is the most prevalent and produces AFB1, a potent mutagen, and carcinogen threatening human and animal health. Aspergillaceae is a large group of closely related fungi sharing number of morphological and genetic similarities that complicate the diagnosis of highly pathogenic strains. We used here morphological and molecular assays to characterize fungal isolates from animal feeds in Southwestern Algeria. These tools helped to identify 20 out of 30 Aspergillus strains, and 15 of them belonged to the Aspergillus section Flavi. Further analyses detected four out of 15 as belonging to Aspergillus flavus-parasiticus group. PCR targeting the AF genes' aflR-aflS(J) intergenic region amplified a single 674 bp amplicon in all four isolates. The amplicons were digested with a BglII endonuclease, and three specific fragments were observed for A. flavus but A. parasitucus lacked two typical fragments. Sequencing data of four amplicons confirmed the presence of the two BglII restriction sites yielding the three fragments, confirming that all four strains were A. flavus. In addition, this analysis illustrated the genetic variability within the A. flavus strains.
Collapse
Affiliation(s)
- Hadjer Saber
- Laboratory of Plant Resources Valorization and Food Safety in Semi-Arid Areas of Southwestern Algeria, Department of Biology, University of Bechar, Bechar, Algeria
| | - Yahia Chebloune
- USC 1450 INRAE/UGA Lentiviral Pathogenesis and Vaccination Laboratory, Department of Biology, University of Grenoble Alpes, Saint-Martin-d’Hères, France, Y. Chebloune, Lentiviral Pathogenesis and Vaccination Laboratory, PAVAL Lab., Department of Biology, University of Grenoble Alpes, Saint-Martin-d’Hères, France;
| | - Abdallah Moussaoui
- Laboratory of Plant Resources Valorization and Food Safety in Semi-Arid Areas of Southwestern Algeria, Department of Biology, University of Bechar, Bechar, Algeria
| |
Collapse
|
11
|
Maximizing Laboratory Production of Aflatoxins and Fumonisins for Use in Experimental Animal Feeds. Microorganisms 2022; 10:microorganisms10122385. [PMID: 36557638 PMCID: PMC9786054 DOI: 10.3390/microorganisms10122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Warm and humid climatic conditions coupled with poor agricultural practices in sub-Saharan Africa favor the contamination of food and feed by Aspergillus flavus and Fusarium verticillioides fungi, which subsequently may produce aflatoxins (AFs) and fumonisins (FBs), respectively. The growth of fungi and the production of mycotoxins are influenced by physical (temperature, pH, water activity, light and aeration), nutritional, and biological factors. This study aimed at optimizing the conditions for the laboratory production of large quantities of AFs and FBs for use in the animal experiments. A. flavus and F. verticillioides strains, previously isolated from maize in Kenya, were used. Levels of AFB1 and total FBs (FB1, FB2, and FB3) in different growth substrates were screened using ELISA methods. Maize kernels inoculated with three different strains of A. flavus simultaneously and incubated at 29 °C for 21 days had the highest AFB1 level of 12,550 ± 3397 μg/kg of substrate. The highest level of total FBs (386,533 ± 153,302 μg/kg of substrate) was detected in cracked maize inoculated with three different strains of F. verticillioides and incubated for 21 days at temperatures of 22-25 °C in a growth chamber fitted with yellow light. These two methods are recommended for the mass production of AFB1 and FBs for animal feeding trials.
Collapse
|
12
|
Gachara G, Suleiman R, El Kadili S, Ait Barka E, Kilima B, Lahlali R. Drivers of Post-Harvest Aflatoxin Contamination: Evidence Gathered from Knowledge Disparities and Field Surveys of Maize Farmers in the Rift Valley Region of Kenya. Toxins (Basel) 2022; 14:toxins14090618. [PMID: 36136556 PMCID: PMC9500662 DOI: 10.3390/toxins14090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Maize-dependent populations in sub-Saharan Africa are continually exposed to aflatoxin poisoning owing to their regular consumption of this dietetic cereal. Being a staple in Kenyan households, consumption of maize-based meals is done almost daily, thereby exposing consumers to aflatoxicoses. This study assessed awareness levels, knowledge disparities, and perceptions regarding aflatoxin contamination at the post-harvest phase among farmers in the Rift Valley Region of Kenya. Households were randomly selected using a geographical positioning system (GPS) overlay of the agro-ecological zones within Uasin Gishu and Elgeyo Marakwet counties. Face-to-face interviews were conducted in 212 smallholder and large-scale farms. The study documented the demographic profiles of farmers and knowledge, awareness, and perceptions of aflatoxin contamination using a pre-designed structured questionnaire. Most farmers were familiar with aflatoxins and the adverse effects they present to health (61.32%). Almost all the farmers (94.37%) were aware of storage molds and food-spoilage fungi. However, few farmers adopted good post-harvest practices (PHPs), such as avoiding premature harvests (49.8%), using well-ventilated storage spaces (44.6%), grain sorting (30.5%), proper drying of maize (17.8%), and using hermetic bags for storage (30.5%). Conclusively, intensified farmer education is required to train farmers on good PHPs to protect their maize from aflatoxigenic fungi and aflatoxin accumulation.
Collapse
Affiliation(s)
- Grace Gachara
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, Morogoro P.O. Box 3006, Tanzania
- Southern Africa Centre of Excellence for Infectious Diseases (SACIDS), SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro P.O. Box 3019, Tanzania
- Correspondence: (G.G.); (R.L.); Tel.: +255-725109725 (G.G.); +212-55-30-02-39 (R.L.)
| | - Rashid Suleiman
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, Morogoro P.O. Box 3006, Tanzania
| | - Sara El Kadili
- Department of Animal Production, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Beatrice Kilima
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, Morogoro P.O. Box 3006, Tanzania
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Correspondence: (G.G.); (R.L.); Tel.: +255-725109725 (G.G.); +212-55-30-02-39 (R.L.)
| |
Collapse
|
13
|
Safety evaluation and comparative genomics analysis of the industrial strain Aspergillus flavus SU-16 used for huangjiu brewing. Int J Food Microbiol 2022; 380:109859. [DOI: 10.1016/j.ijfoodmicro.2022.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
14
|
Assessment of the Potential of a Native Non-Aflatoxigenic Aspergillus flavus Isolate to Reduce Aflatoxin Contamination in Dairy Feed. Toxins (Basel) 2022; 14:toxins14070437. [PMID: 35878175 PMCID: PMC9319854 DOI: 10.3390/toxins14070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus species can produce aflatoxins (AFs), which can severely affect human and animal health. The objective was to evaluate the efficacy of reducing AF contamination of a non-aflatoxigenic isolate of A. flavus experimentally coinoculated with different aflatoxigenic strains in whole plant (WP), corn silage (CS), immature grains (IG) and in culture media (CM). An L-morphotype of A. flavus (CS1) was obtained from CS in a dairy farm located in the Mexican Highland Plateau; The CS1 failed to amplify the AFs biosynthetic pathway regulatory gene (aflR). Monosporic CS1 isolates were coinoculated in WP, CS, IG and CM, together with A. flavus strains with known aflatoxigenic capacity (originating from Cuautitlán and Tamaulipas, Mexico), and native isolates from concentrate feed (CF1, CF2 and CF3) and CS (CS2, CS3). AF production was evaluated by HPLC and fungal growth rate was measured on culture media. The positive control strains and those isolated from CF produced a large average amount of AFs (15,622 ± 3952 and 12,189 ± 3311 µg/kg), whereas A. flavus strains obtained from CS produced a lower AF concentration (126 ± 25.9 µg/kg). CS1 was efficient (p < 0.01) in decreasing AF concentrations when coinoculated together with CF, CS and aflatoxigenic positive control strains (71.6−88.7, 51.0−51.1 and 63.1−71.5%) on WP, CS, IG and CM substrates (73.9−78.2, 65.1−73.7, 63.8−68.4 and 57.4−67.6%). The results suggest that the non-aflatoxigenic isolate can be an effective tool to reduce AF contamination in feed and to minimize the presence of its metabolites in raw milk and dairy products intended for human nutrition.
Collapse
|
15
|
Moore GG, Lebar MD, Carter-Wientjes CH. Cumulative Effects of Non-Aflatoxigenic Aspergillus flavus Volatile Organic Compounds to Abate Toxin Production by Mycotoxigenic Aspergilli. Toxins (Basel) 2022; 14:toxins14050340. [PMID: 35622587 PMCID: PMC9148032 DOI: 10.3390/toxins14050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Previously, authors reported that individual volatile organic compounds (VOCs) emitted by non-aflatoxigenic Aspergillus flavus could act as a mechanism of biocontrol to significantly reduce aflatoxins and cyclopiazonic acid (CPA) produced by toxigenic strains. In this study, various combinations and volumes of three mycotoxin-reductive VOCs (2,3-dihydrofuran, 3-octanone and decane) were assessed for their cumulative impacts on four Aspergillus strains (LA1–LA4), which were then analyzed for changes in growth, as well as the production of mycotoxins, including aflatoxins, CPA and multiple indole diterpenes. Fungal growth remained minimally inhibited when exposed to various combinations of VOCs. No single combination was able to consistently, or completely, inhibit aflatoxin or CPA across all toxigenic strains tested. However, the combination of 2,3-dihydrofuran and 3-octanone offered the greatest overall reductions in aflatoxin and CPA production. Despite no elimination of their production, findings showed that combining VOCs produced solely by non-aflatoxigenic A. flavus still inhibited several agriculturally important mycotoxins, including B and G aflatoxins and CPA. Therefore, other VOC combinations are worth testing as post-harvest biocontrol treatments to ensure the prolonged effectiveness of pre-harvest biocontrol efforts.
Collapse
|
16
|
Kagot V, De Boevre M, De Saeger S, Moretti A, Mwamuye M, Okoth S. Incidence of toxigenic Aspergillus and Fusarium species occurring in maize kernels from Kenyan households. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus and Fusarium are fungal genera that include toxigenic and pathogenic species, able to suffuse farmers’ crops and secrete an array of small molecular weight secondary metabolites which can cause health complications to humans and animals when ingested. In sub-Sahara Africa, contamination and persistence of these fungi is increased by the tropical climatic conditions which are ideal for the fungi to thrive. This study evaluated the incidence, regional distribution and toxigenic potential of Aspergillus and Fusarium species occurring in maize kernels from Eastern, Western, Coastal and the Lake Victoria agro-ecological zones of Kenya. Maize kernels were collected from 16 households in each agro-ecological zone. Single spore technique was used to isolate pure cultures of Aspergillus and Fusarium which were identified morphologically. Further, molecular analysis was done using the internal transcribed spacer 1 (ITS 1) region of the ribosomal DNA for Aspergillus and the translation elongation factor-1 alpha (TEF-1α) for Fusarium. The potential of the isolated fungi to produce mycotoxins was probed by polymerase chain reaction (PCR) based on the aflatoxin regulatory aflaR gene in Aspergillus, and the fumonisin backbone structure gene FUM1 in Fusarium. Among the potentially aflatoxigenic A. flavus species isolated, 55% were from Eastern, 27% from the Coastal zone, 13% from Lake Victoria zone and 5% from Western Kenya. Among the potentially fumonisin producing F. verticillioides isolated, 45% were from the Lake Victoria agro-ecological zone, 30% were from Western, 15% from Eastern Kenya and 10% from the Coastal agro-ecological zone. This study adds data on potential mycotoxin hotspots in Kenya useful in employing targeted and regional mycotoxin mitigation strategies in efforts to avert future mycotoxicoses outbreaks in Kenya.
Collapse
Affiliation(s)
- V. Kagot
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- School of Biological Sciences-University of Nairobi, Riverside Drive, 00100 Nairobi, Kenya
| | - M. De Boevre
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - S. De Saeger
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028 Johannesburg, South Africa
| | - A. Moretti
- Institute of Sciences of Food Production, CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - M. Mwamuye
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - S. Okoth
- School of Biological Sciences-University of Nairobi, Riverside Drive, 00100 Nairobi, Kenya
| |
Collapse
|
17
|
Association between aflatoxin M1 excretion in milk and indicators of rumen fermentation in bovines. Trop Anim Health Prod 2022; 54:121. [PMID: 35230546 DOI: 10.1007/s11250-022-03123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Aflatoxins and its metabolites negatively impact the ruminant health and production. The present cross-sectional study was aimed to determine the effect of aflatoxins on rumen fermentation by deducing the correlation between the aflatoxin M1 (AFM1) excretion in milk and indicators of rumen fermentation in bovines. The indicators of rumen fermentation were taken into account and correlated with AFM1 concentration in milk of 120 bovines (cattle (n = 82) and buffalo (n = 38)). The AFM1 in milk samples (n = 120) was quantified by ELISA kit. The correlation analysis revealed that with increase in excretion of AFM1 in milk, the pH (r = 0.38), methylene blue reduction time (MBRT) (r = 0.43), sedimentation activity time (SAT) (r = 0.31) and ammonia nitrogen content (r = 0.34) of rumen liquor increase, whereas the total volatile fatty acid (TVFA) content (r = - 0.25), total bacterial count (TBC) (r = - 0.43) and total protozoal count (TPC) (r = - 0.14) of rumen liquor decrease. The results of the present study suggest that the presence of aflatoxins in rumen could have negative effect on the process of rumen fermentation. Therefore, the prevention of primary entry point(s) of AFB1 through the feed of bovines is important for the animal health as well as public health.
Collapse
|
18
|
Zhou Y, Wu Y, Chen Z. Early Detection of Mold-Contaminated Maize Kernels Based on Optical Coherence Tomography. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Kagot V, De Boevre M, Landschoot S, Obiero G, Okoth S, De Saeger S. Comprehensive analysis of multiple mycotoxins and Aspergillus flavus metabolites in maize from Kenyan households. Int J Food Microbiol 2021; 363:109502. [PMID: 34952410 DOI: 10.1016/j.ijfoodmicro.2021.109502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
This study assessed the levels of mycotoxins in maize from Kenyan households. Further, local open pollinated maize varieties were compared with commercial hybrids to evaluate which variety is less susceptible to mycotoxin contamination. Four hundred and eighty (n = 480) maize samples were collected in the years 2018-2020 from households in Eastern, Western, Coastal and Lake Victoria regions of Kenya. Liquid chromatography coupled to tandem mass spectrometry was used to detect and quantify 22 mycotoxins, along with 31 Aspergillus flavus metabolites in the samples. Eastern Kenya had the highest aflatoxin (AF) contamination with 75% of samples having AF levels above the Kenyan regulatory limits (10 μg/kg), the highest concentration was 558.1 μg/kg. In Western Kenya, only 18% of samples had concentration levels above the Kenyan regulatory limits for AF with highest sample having 73.3 μg/kg. The Lake Victoria region had the most fumonisins (F) contamination, with 53% of the samples having fumonisin B1 (FB1) < 1000 μg/kg. However, only 20% of the samples surpassed the Kenyan regulatory limit for total fumonisins (2000 μg/kg) with the highest concentration being 13,022 μg/kg. In addition, 21.6% of samples from the Lake Victoria region had zearalenone (ZEN) and deoxynivalenol (DON) above regulatory limits for European countries (1000 μg/kg). Western region had the least A. flavus metabolites contamination (18%) while the Eastern region had the highest incidence of A. flavus metabolites (81%). Among the A. flavus metabolites, cyclopiazonic acid (CPA), beta-cyclopiazonic acid (β CPA), flavacol (FLV) and methylcitreo-isocoumarin (MIC) positively correlated with each other but negatively correlated with the other metabolites. Significant positive co-occurrence was also noted among Fusarium mycotoxins: nivalenol (NIV) positively correlated with DON (r = 0.81), fusarenon-X (FX) (r = 0.81) and ZEN (r = 0.70). Negative correlations were observed between Aspergillus and Fusarium mycotoxins: aflatoxin B1 (AFB1) negatively correlated with FB1 (r = -0.11), FX (r = -0.17) and ZEN (r = -0.20). Local open-pollinated maize varieties (L-opv) were less susceptible to mycotoxin contamination compared to the commercial hybrids (C-hy). This study reveals that Kenyan maize is contaminated with multiple mycotoxins most of which are not regulated in Kenya despite being regulated in other parts of the world. A comprehensive legislation should therefore be put in place to protect the Kenyan public against chronic exposure to these mycotoxins. In addition to high yield, there is a need for commercial hybrid maize breeders to incorporate mycotoxin resistance as an important trait in germplasm improvement in seeds production.
Collapse
Affiliation(s)
- Victor Kagot
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - George Obiero
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Sheila Okoth
- School of Biological sciences, University of Nairobi, Nairobi, Kenya
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, Johannesburg, South Africa..
| |
Collapse
|
20
|
Rahimi A, Sasani E, Rezaie S, Soltan Dallal MM, Mahmoudi S, Ahmadi A, Ghaffari M, Aala F, Khodavaisy S. Molecular identification of aflatoxigenic Aspergillus species in dried nuts and grains collected from Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1795-1799. [PMID: 34900308 PMCID: PMC8617228 DOI: 10.1007/s40201-021-00734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Agricultural commodities contaminated by molds and mycotoxins can be considered as public health problems in less developed countries, particularly in Iran. Hence the main purpose of this study was to identify mold fungi and molecular analysis of the most important species of aflatoxin-B1-producing Aspergillus species in some dried nuts and grains in local markets in Tehran. MATERIALS AND METHODS Two hundred fifty samples of wheat, rice, corn, pistachios, and peanuts were collected from the five different locations of Tehran between January 2018 and January 2019. The samples were analyzed by using direct seed inoculation method and grain crushing method. Fungal strains were identified as Aspergillus spp. on the basis of morphological characters and further confirmed by using of β-tubulin gene sequencing. To differentiate between aflatoxigenic and non-aflatoxigenic Aspergillus spp., the isolates were screened for the presence of aflatoxigenic genes (nor-1, ver-1, omtA, and aflR). RESULTS One-handed forty-eight aflatoxigenic Aspergillus isolates (144 A. flavus and 4 A. parasiticus) were identified and aflR gene was the most frequent gene in these species. Five isolates (4 A. flavus, 1 A. parasiticus) had quadruplet pattern, 64 isolates (63 A. flavus, 1 A. parasiticus) had more than 1 gene and 39 isolates (38 A. flavus,1 A. parasiticus) did not have any genes. CONCLUSION According to the contamination of dried nuts and grains by some aflatoxigenic fungi, an extensive surveillance is necessary to provide a wider view on these products. Moreover, effective and efficient aflatoxin control program requires identifying and managing key elements that are effective in reducing mycotoxin production at farm level or in storage conditions.
Collapse
Affiliation(s)
- Arash Rahimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Sasani
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Ghaffari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Varamin-, Pishva, Iran
| | - Farzad Aala
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Hassanien AA, Shaker EM, El-Sharkawy EE, Elsherif WM. Antifungal and antitoxin effects of propolis and its nanoemulsion formulation against Aspergillus flavus isolated from human sputum and milk powder samples. Vet World 2021; 14:2306-2312. [PMID: 34840447 PMCID: PMC8613795 DOI: 10.14202/vetworld.2021.2306-2312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Aspergillus flavus causes human and animal diseases through either inhalation of fungal spores or ingestion of mycotoxins as aflatoxins produced in human and animal feed as secondary metabolites. This study was aimed to detect the incidence of A. flavus and its aflatoxins in human sputum and milk powder samples and explore the efficacy of pure propolis (PP) and propolis nanoemulsion (PNE) as natural decontaminants against fungal growth and its released aflatoxins. Materials and Methods: A. flavus was isolated by mycological culture and identified macroscopically and microscopically. Coconut agar medium and thin-layer chromatography (TLC) were used to qualitatively detect aflatoxins in the isolated strains. Toxins were extracted from toxigenic strains by the fast extraction technique. The quantitative detection of toxin types was explored by high-performance liquid chromatography (HPLC). PNE was prepared by a novel method using natural components and characterized by Fourier-transform infrared spectroscopy, Zetasizer, and transmission electron microscopy. The effects of PP and PNE on A. flavus growth and its toxin were determined by the well-diffusion method and HPLC. Results: The mycological culture showed that 30.9% and 29.2% of sputum and milk powder samples were positive for A. flavus, respectively. TLC confirmed the production of 61.8% and 63.2% aflatoxin by the isolated strains in sputum and milk powder, respectively. PP and PNE showed antifungal activity on A. flavus growth with mean±standard error (SE) inhibition zones of 27.55±3.98 and 39.133±5.32 mm, respectively. HPLC revealed positive contamination of toxin extracts with AFB1, AFB2, and AFG2 at 0.57±0.026, 0.28±0.043, and 0.1±0.05 mg/L, respectively. After treatment with PP and PNE, a significant decrease in AFB1, AFB2, and AFG2 concentrations was observed. Conclusion: This study suggested using propolis and its nanoformulation as antifungal and antitoxins in human medicine and the food industry to increase the food safety level and stop food spoilage.
Collapse
Affiliation(s)
- Alshimaa A Hassanien
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, 82511, Egypt
| | - Eman M Shaker
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, 82511, Egypt
| | - Eman E El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, 71515, Egypt
| | - Walaa M Elsherif
- Nanotechnology Research Unit, Animal Health Research Institute, Agriculture Research Centre, 12618, Egypt
| |
Collapse
|
22
|
Li T, Zhang Z, Wang Y, Li Y, Zhu J, Hu R, Yang Y, Liu M. Quantitative Proteomic Analysis for High- and Low-Aflatoxin-Yield Aspergillus flavus Strains Isolated From Natural Environments. Front Microbiol 2021; 12:741875. [PMID: 34621259 PMCID: PMC8491651 DOI: 10.3389/fmicb.2021.741875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying aflatoxin production have been well-studied in strains of the fungus Aspergillus flavus (A. flavus) under artificial conditions. However, aflatoxin biosynthesis has rarely been studied in A. flavus strains isolated from field conditions with different aflatoxin-producing ability. In the present study, tandem mass tag (TMT) labeling and high-performance liquid chromatography (HPLC) coupled with tandem-mass spectrometry analysis were used for proteomic quantification in natural isolates of high- and low-aflatoxin-yield A. flavus strains. Additionally, findings obtained using the TMT-labeling method were validated using the high-resolution multiple reaction monitoring (MRM-HR) method. In total, 4,363 proteins were quantified, among which 1,045 proteins were differentially expressed between the high- and low-aflatoxin-yield A. flavus strains. Bioinformatics analysis showed that the up-regulated proteins were significantly enriched in carbon-related metabolism and the biosynthesis of secondary metabolites, whereas the down-regulated proteins were enriched in oxidative phosphorylation. Moreover, GST proteins were found to be significantly down-regulated in high-yield A. flavus strains; this result contradicted previous findings obtained from A. flavus strains grown under artificial conditions. In summary, our study provides novel insights into aflatoxin regulation in A. flavus under field conditions and could facilitate the development of various strategies for the effective control of aflatoxin contamination in food crops.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaowei Zhang
- Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yu Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Early Detection of Mold-Contaminated Peanuts Using Machine Learning and Deep Features Based on Optical Coherence Tomography. AGRIENGINEERING 2021. [DOI: 10.3390/agriengineering3030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fungal infection is a pre-harvest and post-harvest crisis for farmers of peanuts. In environments with temperatures around 28 °C to 30 °C or relative humidity of approximately 90%, mold-contaminated peanuts have a considerable likelihood to be infected with Aflatoxins. Aflatoxins are known to be highly carcinogenic, posing danger to humans and livestock. In this work, we proposed a new approach for detection of mold-contaminated peanuts at an early stage. The approach employs the optical coherence tomography (OCT) imaging technique and an error-correcting output code (ECOC) based Support Vector Machine (SVM) trained on features extracted using a pre-trained Deep Convolutional Neural Network (DCNN). To this end, mold-contaminated and uncontaminated peanuts were scanned to create a data set of OCT images used for training and evaluation of the ECOC-SVM model. Results showed that the proposed approach is capable of detecting mold-contaminated peanuts with respective accuracies of approximately 85% and 96% after incubation periods of 48 and 96 h.
Collapse
|
24
|
Ochieng PE, Scippo ML, Kemboi DC, Croubels S, Okoth S, Kang’ethe EK, Doupovec B, Gathumbi JK, Lindahl JF, Antonissen G. Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review. Toxins (Basel) 2021; 13:633. [PMID: 34564637 PMCID: PMC8473361 DOI: 10.3390/toxins13090633] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 μg/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins.
Collapse
Affiliation(s)
- Phillis E. Ochieng
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
| | - David C. Kemboi
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
- Department of Animal Science, Chuka University, P.O. Box 109-00625, Chuka 00625, Kenya
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | | | | | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya;
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
25
|
Habibi A, Afzali D. Aspergillus Section Flavi from Four Agricultural Products and Association of Mycotoxin and Sclerotia Production with Isolation Source. Curr Microbiol 2021; 78:3674-3685. [PMID: 34398304 DOI: 10.1007/s00284-021-02620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Many agricultural products are susceptible to contamination by aflatoxin-producing species from Aspergillus section Flavi. The objectives of this study were to determine the occurrence of Aspergillus section Flavi in four agricultural products, such as pistachio, walnut, hazelnut, and dried fruits, collected from market and retail shops in various areas of Kerman County and obtain information on the relationships between isolation source and ability to produce sclerotia and potential for aflatoxin production. Aspergillus species were identified based on morphological characteristics as well as subsequent sequencing of the parts of the β-tubulin and calmodulin genes. From 207 isolated strains, the following species were identified: A. flavus, A. tamarii A. nomius, A. parasiticus, A. arachidicola, A. caelatus, A. pseudotamarii, and A. leporis. To the best of our knowledge, this is the first report of A. pseudotamarii and A. arachidicola with the potential to produce aflatoxins from dried apricots and hazelnuts, respectively. Sclerotial type was significantly different between isolates from different isolation sources. From 192 tested isolates, 38% were aflatoxin producer from which 5% were scored as strong aflatoxin producers and 33% as average aflatoxin producers. A significant difference in the population of aflatoxin-producing strains across the isolation sources was observed which may reflect host adaptation and thereby different vulnerabilities to aflatoxin-producing species among the examined products.
Collapse
Affiliation(s)
- Azadeh Habibi
- Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Daryoush Afzali
- Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
26
|
Finotti E, Parroni A, Zaccaria M, Domin M, Momeni B, Fanelli C, Reverberi M. Aflatoxins are natural scavengers of reactive oxygen species. Sci Rep 2021; 11:16024. [PMID: 34362972 PMCID: PMC8346536 DOI: 10.1038/s41598-021-95325-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
The role of aflatoxins (AFs) in the biology of producing strains, Aspergillus sect. Flavi, is still a matter of debate. Over recent years, research has pointed to how environmental factors altering the redox balance in the fungal cell can switch on the synthesis of AF. Notably, it has been known for decades that oxidants promote AF synthesis. More recent evidence has indicated that AF synthesis is controlled at the transcriptional level: reactive species that accumulate in fungal cells in the stationary growth phase modulate the expression of aflR, the main regulator of AF synthesis—through the oxidative stress related transcription factor AP-1. Thus, AFs are largely synthesized and secreted when (i) the fungus has exploited most nutritional resources; (ii) the hyphal density is high; and (iii) reactive species are abundant in the environment. In this study, we show that AFs efficiently scavenge peroxides and extend the lifespan of E. coli grown under oxidative stress conditions. We hypothesize a novel role for AF as an antioxidant and suggest its biological purpose is to extend the lifespan of AFs-producing strains of Aspergillus sect. Flavi under highly oxidizing conditions such as when substrate resources are depleted, or within a host.
Collapse
Affiliation(s)
- E Finotti
- Council for Agricultural Research and Economics-Food and Nutrition Center, Via Ardeatina 543, Rome, Italy.
| | - A Parroni
- Department of Environmental Biology, "Sapienza" University of Rome, P.le Aldo Moro 5, Rome, Italy
| | - M Zaccaria
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, USA
| | - M Domin
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, USA
| | - B Momeni
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, USA
| | - C Fanelli
- Department of Environmental Biology, "Sapienza" University of Rome, P.le Aldo Moro 5, Rome, Italy
| | - M Reverberi
- Department of Environmental Biology, "Sapienza" University of Rome, P.le Aldo Moro 5, Rome, Italy
| |
Collapse
|
27
|
Susceptibility of Tribolium castaneum (Coleoptera: Tenebrionidae) to the Fumigation of Two Essential Satureja Oils: Optimization and Modeling. Processes (Basel) 2021. [DOI: 10.3390/pr9071243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Due to the numerous side effects of synthetic pesticides, including environmental pollution, threats to human health, harmful effects on non-target organisms and pest resistance, the use of alternative healthy, available and efficient agents in pest management strategies is necessary. In this paper, the susceptibility of the cosmopolitan, polyphagous, stored-product pest Tribolium castaneum (red flour beetle) to the fumigation of the essential oils of two important medicinal and food additive plants, Satureja hortensis and S. intermedia, was investigated. The insecticidal properties of the essential oils were modeled and optimized using response surface methodology. It was found that a maximum significant mortality of 94.72% and 92.97% could be achieved within 72 h with the applications of 55.15 µL/L of S. hortensis (with the linear model) and 58.82 µL/L of S. intermedia (with the quadratic model), respectively. There were insecticidal terpenes and phenylpropanoids in both essential oils, including thymol (50.8%), carvacrol (11.2%) and p-cymene (13.4%), in the S. intermedia and estragole (68.0%) and methyl eugenol (5.6%) in the S. hortensis. It was suggested that the essential oils of S. hortensis and S. intermedia could be offered as promising pesticidal agents against T. castaneum for further studies in the management of such pests instead of detrimental synthetic pesticides.
Collapse
|
28
|
Navale V, Vamkudoth KR, Ajmera S, Dhuri V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep 2021; 8:1008-1030. [PMID: 34408970 PMCID: PMC8363598 DOI: 10.1016/j.toxrep.2021.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aspergillus species are the paramount ubiquitous fungi that contaminate various food substrates and produce biochemicals known as mycotoxins. Aflatoxins (AFTs), ochratoxin A (OTA), patulin (PAT), citrinin (CIT), aflatrem (AT), secalonic acids (SA), cyclopiazonic acid (CPA), terrein (TR), sterigmatocystin (ST) and gliotoxin (GT), and other toxins produced by species of Aspergillus plays a major role in food and human health. Mycotoxins exhibited wide range of toxicity to the humans and animal models even at nanomolar (nM) concentration. Consumption of detrimental mycotoxins adulterated foodstuffs affects human and animal health even trace amounts. Bioaerosols consisting of spores and hyphal fragments are active elicitors of bronchial irritation and allergy, and challenging to the public health. Aspergillus is the furthermost predominant environmental contaminant unswervingly defile lives with a 40-90 % mortality risk in patients with conceded immunity. Genomics, proteomics, transcriptomics, and metabolomics approaches useful for mycotoxins' detection which are expensive. Antibody based detection of toxins chemotypes may result in cross-reactivity and uncertainty. Aptamers (APT) are single stranded DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX). APT are fast, sensitive, simple, in-expensive, and field-deployable rapid point of care (POC) detection of toxins, and a better alternative to antibodies.
Collapse
Affiliation(s)
- Vishwambar Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | | | - Vaibhavi Dhuri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
29
|
Nešić K, Habschied K, Mastanjević K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins (Basel) 2021; 13:198. [PMID: 33801997 PMCID: PMC8001018 DOI: 10.3390/toxins13030198] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
Seeking useful biological agents for mycotoxin detoxification has achieved success in the last twenty years thanks to the participation of many multidisciplinary teams. We have recently witnessed discoveries in the fields of bacterial genetics (inclusive of next-generation sequencing), protein encoding, and bioinformatics that have helped to shape the latest perception of how microorganisms/mycotoxins/environmental factors intertwine and interact, so the road is opened for new breakthroughs. Analysis of literature data related to the biological control of mycotoxins indicates the ability of yeast, bacteria, fungi and enzymes to degrade or adsorb mycotoxins, which increases the safety and quality of susceptible crops, animal feed and, ultimately, food of animal origin (milk, meat and eggs) by preventing the presence of residues. Microbial detoxification (transformation and adsorption) is becoming a trustworthy strategy that leaves no or less toxic compounds and contributes to food security. This review summarizes the data and highlights the importance and prospects of these methods.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Autoput 3, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|
30
|
Abstract
Aflatoxins are endemic in Kenya. The 2004 outbreak of acute aflatoxicosis in the country was one of the unprecedented epidemics of human aflatoxin poisoning recorded in mycotoxin history. In this study, an elaborate review was performed to synthesize Kenya’s major findings in relation to aflatoxins, their prevalence, detection, quantification, exposure assessment, prevention, and management in various matrices. Data retrieved indicate that the toxins are primarily biosynthesized by Aspergillus flavus and A. parasiticus, with the eastern part of the country reportedly more aflatoxin-prone. Aflatoxins have been reported in maize and maize products (Busaa, chan’gaa, githeri, irio, muthokoi, uji, and ugali), peanuts and its products, rice, cassava, sorghum, millet, yams, beers, dried fish, animal feeds, dairy and herbal products, and sometimes in tandem with other mycotoxins. The highest total aflatoxin concentration of 58,000 μg/kg has been reported in maize. At least 500 acute human illnesses and 200 deaths due to aflatoxins have been reported. The causes and prevalence of aflatoxins have been grossly ascribed to poor agronomic practices, low education levels, and inadequate statutory regulation and sensitization. Low diet diversity has aggravated exposure to aflatoxins in Kenya because maize as a dietetic staple is aflatoxin-prone. Detection and surveillance are only barely adequate, though some exposure assessments have been conducted. There is a need to widen diet diversity as a measure of reducing exposure due to consumption of aflatoxin-contaminated foods.
Collapse
|
31
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
32
|
Massomo SM. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Two New Aspergillus flavus Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production. G3-GENES GENOMES GENETICS 2020; 10:3515-3531. [PMID: 32817124 PMCID: PMC7534430 DOI: 10.1534/g3.120.401405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efforts in genome sequencing in the Aspergillus genus have led to the development of quality reference genomes for several important species including A. nidulans, A. fumigatus, and A. oryzae However, less progress has been made for A. flavus As part of the effort of the USDA-ARS Annual Aflatoxin Workshop Fungal Genome Project, the isolate NRRL3357 was sequenced and resulted in a scaffold-level genome released in 2005. Our goal has been biologically driven, focusing on two areas: isolate variation in aflatoxin production and drought stress exacerbating aflatoxin production by A. flavus Therefore, we developed two reference pseudomolecule genome assemblies derived from chromosome arms for two isolates: AF13, a MAT1-2, highly stress tolerant, and highly aflatoxigenic isolate; and NRRL3357, a MAT1-1, less stress tolerant, and moderate aflatoxin producer in comparison to AF13. Here, we report these two reference-grade assemblies for these isolates through a combination of PacBio long-read sequencing and optical mapping, and coupled them with comparative, functional, and phylogenetic analyses. This analysis resulted in the identification of 153 and 45 unique genes in AF13 and NRRL3357, respectively. We also confirmed the presence of a unique 310 Kb insertion in AF13 containing 60 genes. Analysis of this insertion revealed the presence of a bZIP transcription factor, named atfC, which may contribute to isolate pathogenicity and stress tolerance. Phylogenomic analyses comparing these and other available assemblies also suggest that the species complex of A. flavus is polyphyletic.
Collapse
|
34
|
Rahman HU, Yue X, Ren X, Zhang W, Zhang Q, Li P. Multiplex PCR assay to detect Aspergillus, Penicillium and Fusarium species simultaneously. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1939-1950. [PMID: 32897821 DOI: 10.1080/19440049.2020.1810860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A wide variety of mycotoxins is produced by mycotoxigenic fungi and naturally contaminates food and feed products worldwide. Synergistic effects of multi-toxins are potentially more harmful than exposure to a single compound and can induce acute and chronic toxicity to animals and humans. The aim of the present study is to timely and simultaneously identify the multiple mycotoxigenic fungi capable of causing synergistic toxicity to improve the safety level of food and feedstuff. Here, a multiplex polymerase chain reaction assay was developed for simultaneous detection of mycotoxigenic fungi belonging to the genera Aspergillus, Fusarium and Penicillium. Three pairs of genus-specific primers were designed based on internal transcribed spacer (ITS) sequences of Aspergillus and Penicillium, and Elongation factor 1 alpha (EF- 1α) of Fusarium. Amplicons of 170, 750 and 490 bp respectively for the corresponding primer pairs were detected; thus amplicon length is diagnostic for the individual fungal genus. The sensitivity of the developed method was tested with genomic DNA obtained from mould pure cultures and artificially contaminated maize grain powder. The sensitivity result showed that spore concentrations in the contaminated maize grain powder of 102 spores/mL were detected without prior incubation. This result suggests that the developed mPCR assay would allow a rapid, specific and simultaneous detection of various mycotoxigenic potential fungi based on the occurrence and size of the amplification products and thus to estimate the multi-mycotoxins contamination potential in food and feedstuff.
Collapse
Affiliation(s)
- Hamid Ur Rahman
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture , Wuhan, PR China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture , Wuhan, PR China
| | - Xianfeng Ren
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture , Wuhan, PR China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Ministry of Agriculture, National Reference Laboratory for Agricultural Testing (Biotoxin) , Wuhan, PR China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture , Wuhan, PR China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture , Wuhan, PR China.,Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture , Wuhan, PR China.,Ministry of Agriculture, National Reference Laboratory for Agricultural Testing (Biotoxin) , Wuhan, PR China.,Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture , Wuhan, PR China
| |
Collapse
|
35
|
Acur A, Arias RS, Odongo S, Tuhaise S, Ssekandi J, Adriko J, Muhanguzi D, Buah S, Kiggundu A. Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from selected groundnut growing agro-ecological zones of Uganda. BMC Microbiol 2020; 20:252. [PMID: 32795262 PMCID: PMC7427931 DOI: 10.1186/s12866-020-01924-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/26/2020] [Indexed: 12/30/2022] Open
Abstract
Background Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agro-ecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap. Results The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 = 2, p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ2 = 6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ2 = 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r = 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates. Conclusions These findings provide evidence that genetic differentiation in A. flavus populations is independent of geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy of aflatoxin-producing A. flavus.
Collapse
Affiliation(s)
- Amos Acur
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - Renée S Arias
- National Peanut Research Laboratories, P.O. Box 509, 1011 Forrester Drive, S.E, Dawson, GA, 39842, USA
| | - Steven Odongo
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Samuel Tuhaise
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - Joseph Ssekandi
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - John Adriko
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - Dennis Muhanguzi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Stephen Buah
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda.
| | - Andrew Kiggundu
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| |
Collapse
|
36
|
Del Palacio A, Pan D. Occurrence and toxigenic potential of Aspergillus section Flavi on wheat and sorghum silages in Uruguay. Mycology 2020; 11:147-157. [PMID: 32923022 PMCID: PMC7448941 DOI: 10.1080/21501203.2020.1752321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Species belonging to Aspergillus section Flavi occur naturally in crops and can cause food spoilage and/or toxin production. The aim of this study was to determine the occurrence and diversity of the species of Aspergillus section Flavi found in wheat and sorghum at harvest time and during silage storage, and to evaluate the toxigenic potential of the isolates to determine the contamination risk of mycotoxins in grains. Strains from Aspergillus flavus and Aspergillus parasiticus were found based on multi-gene phylogenetic analyses. This is the first report on the presence of A. parasiticus in wheat from Uruguay. Of the 80 isolates Aspergillus section Flavi, 30% produced aflatoxins (AFs), mainly type B1, and 25% produced cyclopiazonic acid (CPA). Within the isolates from wheat samples, 35% were AFs producers and 27.5% were CPA producers. Among the Aspergillus section Flavi isolates from sorghum, 25% were AFs producers while 22.5% were CPA producers. This work contributes to the knowledge of the species in crops and helps define appropriate strategies for the prevention and control of contamination with AFs and CPA by Aspergillus section Flavi fungi.
Collapse
Affiliation(s)
- Agustina Del Palacio
- Laboratorio de Micología, Facultad de Ciencias, Facultad de Ingeniería, UdelaR, Montevideo, Uruguay
| | - Dinorah Pan
- Laboratorio de Micología, Facultad de Ciencias, Facultad de Ingeniería, UdelaR, Montevideo, Uruguay
| |
Collapse
|
37
|
Lagat MK, Toroitich FJ, Obonyo MA. Development of an ELISA-based method for testing aflatoxigenicity and aflatoxigenic variability among Aspergillus species in culture. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
38
|
Benkerroum N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1215. [PMID: 32070028 PMCID: PMC7068566 DOI: 10.3390/ijerph17041215] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022]
Abstract
This review aims to update the main aspects of aflatoxin production, occurrence and incidence in selected countries, and associated aflatoxicosis outbreaks. Means to reduce aflatoxin incidence in crops were also presented, with an emphasis on the environmentally-friendly technology using atoxigenic strains of Aspergillus flavus. Aflatoxins are unavoidable widespread natural contaminants of foods and feeds with serious impacts on health, agricultural and livestock productivity, and food safety. They are secondary metabolites produced by Aspergillus species distributed on three main sections of the genus (section Flavi, section Ochraceorosei, and section Nidulantes). Poor economic status of a country exacerbates the risk and the extent of crop contamination due to faulty storage conditions that are usually suitable for mold growth and mycotoxin production: temperature of 22 to 29 °C and water activity of 0.90 to 0.99. This situation paralleled the prevalence of high liver cancer and the occasional acute aflatoxicosis episodes that have been associated with these regions. Risk assessment studies revealed that Southeast Asian (SEA) and Sub-Saharan African (SSA) countries remain at high risk and that, apart from the regulatory standards revision to be more restrictive, other actions to prevent or decontaminate crops are to be taken for adequate public health protection. Indeed, a review of publications on the incidence of aflatoxins in selected foods and feeds from countries whose crops are classically known for their highest contamination with aflatoxins, reveals that despite the intensive efforts made to reduce such an incidence, there has been no clear tendency, with the possible exception of South Africa, towards sustained improvements. Nonetheless, a global risk assessment of the new situation regarding crop contamination with aflatoxins by international organizations with the required expertise is suggested to appraise where we stand presently.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
39
|
A Liquid Chromatographic Method for Rapid and Sensitive Analysis of Aflatoxins in Laboratory Fungal Cultures. Toxins (Basel) 2020; 12:toxins12020093. [PMID: 32019110 PMCID: PMC7076963 DOI: 10.3390/toxins12020093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Culture methods supplemented with high-performance liquid chromatography (HPLC) technique provide a rapid and simple tool for detecting levels of aflatoxins (AFs) produced by fungi. This study presents a robust method for simultaneous quantification of aflatoxin (AF) B1, B2, G1, and G2 levels in several fungal cultivation states: submerged shake culture, liquid slant culture, and solid-state culture. The recovery of the method was evaluated by spiking a mixture of AFs at several concentrations to the test medium. The applicability of the method was evaluated by using aflatoxigenic and non-aflatoxigenic Aspergilli. A HPLC coupled with the diode array (DAD) and fluorescence (FLD) detectors was used to determine the presence and amounts of AFs. Both detectors showed high sensitivity in detecting spiked AFs or AFs produced in situ by toxigenic fungi. Our methods showed 76%–88% recovery from medium spiked with 2.5, 10, 50, 100, and 500 ng/mL AFs. The limit of quantification (LOQ) for AFs were 2.5 to 5.0 ng/mL with DAD and 0.025 to 2.5 ng/mL with FLD. In this work, we described in detail a protocol, which can be considered the foremost and only verified method, to extract, detect, and quantify AFs employing both aflatoxigenic and non-toxigenic Aspergilli.
Collapse
|
40
|
Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies - A review. Toxicon 2020; 177:96-108. [PMID: 31972175 DOI: 10.1016/j.toxicon.2020.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Mycotoxin residues are transferred from feed to animal products, yet, less attention has been paid to it in developing countries. There is a need to find alternative alleviation material for reducing the impact of mycotoxin. This review is meant to elucidate different additives that can reduce mycotoxin residue in animal products in the world, especially in developing countries. There is evidence of relationship between mycotoxin residue in breast milk of nursing mothers and mycotoxin exposure through crop and animal product (egg and milk) intake, especially in Asia, Africa, Middle East, Latin America, and some parts of Europe. Younger livestock tends to have more toxin residues in their tissue compared to older ones. Grazing animal are also exposed to mycotoxin intake which corresponds to high level of mycotoxins in their products including meat and milk. This review shows that phytogenic, probiotic, and prebiotic additives can decrease mycotoxin residues in milk, eggs, meat liver and other tissues of livestock. Specifically, bentonites, difructose anhydride III, yeast (Trichosporon mycotoxinivorans), Bacillus spp., or their biodegradable products can reduce mycotoxin residue in animal products. In addition, Ally isothiocyanates from mustard seed were able to mitigate mycotoxins in silo-simulated system. Evidence shows that there are now low-cost, accessible, and eco-friendly additives, which could alleviate the effect of mycotoxin in feed and food. In addition, there is need for aggressive public awareness and farmers' education on the prevalence, and danger caused by mycotoxins, as well as detoxification strategies that can reduce toxin absorption into animal products.
Collapse
|
41
|
Abbas A, Hussien T, Yli-Mattila T. A Polyphasic Approach to Compare the Genomic Profiles of Aflatoxigenic and Non-Aflatoxigenic Isolates of Aspergillus Section Flavi. Toxins (Basel) 2020; 12:E56. [PMID: 31963352 PMCID: PMC7020436 DOI: 10.3390/toxins12010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/16/2023] Open
Abstract
Aflatoxins (AF) are highly toxic compounds produced by Aspergillus section Flavi. They spoil food crops and present a serious global health hazard to humans and livestock. The aim of this study was to examine the phylogenetic relationships among aflatoxigenic and non-aflatoxigenic Aspergillus isolates. A polyphasic approach combining phylogenetic, sequence, and toxin analyses was applied to 40 Aspergillus section Flavi isolates collected from eight countries around the world (USA, Philippines, Egypt, India, Australia, Indonesia, China, and Uganda). This allows one to pinpoint the key genomic features that distinguish AF producing and non-producing isolates. Based on molecular identification, 32 (80%) were identified as A. flavus, three (7.5%) as A. parasiticus, three (7.5%) as A. nomius and one (2.5%) as A. tamarii. Toxin analysis showed that 22 (55%) Aspergillus isolates were aflatoxigenic. The majority of the toxic isolates (62.5%) originated from Egypt. The highest aflatoxin production potential was observed in an A. nomius isolate which is originally isolated from the Philippines. DNA-based molecular markers such as random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) were used to evaluate the genetic diversity and phylogenetic relationships among these 40 Aspergillus isolates, which were originally selected from 80 isolates. The percentage of polymorphic bands in three RAPD and three ISSR primers was 81.9% and 79.37%, respectively. Analysis of molecular variance showed significant diversity within the populations, 92% for RAPD and 85% for ISSR primers. The average of Polymorphism Information Content (PIC), Marker Index (MI), Nei's gene diversity (H) and Shannon's diversity index (I) in ISSR markers are higher than those in RAPD markers. Based on banding patterns and gene diversities values, we observed that the ISSR-PCR provides clearer data and is more successful in genetic diversity analyses than RAPD-PCR. Dendrograms generated from UPGMA (Unweighted Pair Group Method with Arithmetic Mean) cluster analyses for RAPD and ISSR markers were related to the geographic origin.
Collapse
Affiliation(s)
- Asmaa Abbas
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (A.A.); (T.H.)
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Taha Hussien
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (A.A.); (T.H.)
- Department of Food Toxicology and Contaminant, National Research Center, Cairo 12311, Egypt
| | - Tapani Yli-Mattila
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (A.A.); (T.H.)
| |
Collapse
|
42
|
Bouti K, Verheecke‐Vaessen C, Mokrane S, Meklat A, Djemouai N, Sabaou N, Mathieu F, Riba A. Polyphasic characterization of
Aspergillus
section
Flavi
isolated from animal feeds in Algeria. J Food Saf 2019. [DOI: 10.1111/jfs.12743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Karima Bouti
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Carol Verheecke‐Vaessen
- Applied Mycology Group, Environment and AgriFood ThemeCranfield University Cranfield UK
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS Toulouse France
| | - Salim Mokrane
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Département de Biologie et Physiologie Cellulaire, Faculté des Sciences de la Nature et de la VieUniversité Saad Dahlab Blida Algeria
| | - Nadjette Djemouai
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Laboratoire de Biologie et Physiologie des OrganismesUniversité des Sciences et de la Technologie Houari Boumediene Bab Ezzouar (USTHB) Algiers Algeria
| | - Nasserdine Sabaou
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Florence Mathieu
- Applied Mycology Group, Environment and AgriFood ThemeCranfield University Cranfield UK
| | - Amar Riba
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Département de Biologie, Faculté des SciencesUniversité M'Hamed Bougara Boumerdès Algeria
| |
Collapse
|
43
|
Rasheed U, Wu H, Wei J, Ou X, Qin P, Yao X, Chen H, Chen AJ, Liu B. A polyphasic study of Aspergillus section Flavi isolated from corn in Guangxi, China- a hot spot of aflatoxin contamination. Int J Food Microbiol 2019; 310:108307. [PMID: 31476582 DOI: 10.1016/j.ijfoodmicro.2019.108307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/22/2023]
Abstract
Aspergillus section Flavi is widely known as a potential threat to contaminate agricultural products and food commodities. In this study, a polyphasic approach consisting of micro- and macro-morphological, chemical and molecular features, was applied to survey the Aspergillus section Flavi population in corn collected from Guangxi, China. Based on multigene phylogenies as well as morphological observations, Aspergillus flavus (192/195), A. arachidicola (1/195), A. pseudonomius (1/195) and A. novoparasiticus (1/195) were found to be the predominant section Flavi population. Among them, 31 representative isolates were selected for mycotoxin determination. The results showed that Aspergillus flavus chemotype I was most common, chemotype IV was also detected with low incidence and low CPA amounts, while chemotypes II and III were absent. Other tested species including A. arachidicola, A. pseudonomius, and A. novoparasiticus produced all types of aflatoxins, but none of them produced CPA. The polyphasic approach applied in this study permitted reliable understanding of the prevailing Aspergillus section Flavi population and their mycotoxin profiles. Knowledge of the prevailing section Flavi population will aid in developing a sustainable strategy to mitigate the effects of aflatoxin contamination. This study suggests that CPA contamination of food should be considered while conducting mycotoxigenic surveys of food commodities, and the same should be considered while planning a bio-control strategy to control aflatoxin contamination.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Hao Wu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Jinfan Wei
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Xiaoyun Ou
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Peisheng Qin
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Xiaohua Yao
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Han Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Amanda Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
44
|
Dooso Oloo R, Okoth S, Wachira P, Mutiga S, Ochieng P, Kago L, Nganga F, Domelevo Entfellner JB, Ghimire S. Genetic Profiling of Aspergillus Isolates with Varying Aflatoxin Production Potential from Different Maize-Growing Regions of Kenya. Toxins (Basel) 2019; 11:toxins11080467. [PMID: 31404960 PMCID: PMC6723045 DOI: 10.3390/toxins11080467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023] Open
Abstract
Highly toxigenic strains of Aspergillus flavus have been reported to frequently contaminate maize, causing fatal aflatoxin poisoning in Kenya. To gain insights into the environmental and genetic factors that influence toxigenicity, fungi (n = 218) that were culturally identified as A. flavus were isolated from maize grains samples (n = 120) from three regions of Kenya. The fungi were further characterized to confirm their identities using a PCR-sequence analysis of the internal transcribed spacer (ITS) region of rDNA which also revealed all of them to be A. flavus. A subset of 72 isolates representing ITS sequence-based phylogeny cluster and the agroecological origin of maize samples was constituted for subsequent analysis. The analysis of partial calmodulin gene sequences showed that the subset consisted of A. flavus (87%) and Aspergillus minisclerotigenes (13%). No obvious association was detected between the presence of seven aflatoxin biosynthesis genes and fungal species or region. However, the presence of the aflD and aflS genes showed some association with aflatoxin production. The assessment of toxigenicity showed higher aflatoxin production potential in A. minisclerotigenes isolates. Given that A. minisclerotigenes were mainly observed in maize samples from Eastern Kenya, a known aflatoxin hotspot, we speculate that production of copious aflatoxin is an adaptative trait of this recently discovered species in the region.
Collapse
Affiliation(s)
- Richard Dooso Oloo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
| | - Peter Wachira
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
| | - Samuel Mutiga
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Phillis Ochieng
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Leah Kago
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Fredrick Nganga
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Sita Ghimire
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya.
| |
Collapse
|
45
|
Lewis MH, Carbone I, Luis JM, Payne GA, Bowen KL, Hagan AK, Kemerait R, Heiniger R, Ojiambo PS. Biocontrol Strains Differentially Shift the Genetic Structure of Indigenous Soil Populations of Aspergillus flavus. Front Microbiol 2019; 10:1738. [PMID: 31417528 PMCID: PMC6685141 DOI: 10.3389/fmicb.2019.01738] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 01/22/2023] Open
Abstract
Biocontrol using non-aflatoxigenic strains of Aspergillus flavus has the greatest potential to mitigate aflatoxin contamination in agricultural produce. However, factors that influence the efficacy of biocontrol agents in reducing aflatoxin accumulation under field conditions are not well-understood. Shifts in the genetic structure of indigenous soil populations of A. flavus following application of biocontrol products Afla-Guard and AF36 were investigated to determine how these changes can influence the efficacy of biocontrol strains in reducing aflatoxin contamination. Soil samples were collected from maize fields in Alabama, Georgia, and North Carolina in 2012 and 2013 to determine changes in the population genetic structure of A. flavus in the soil following application of the biocontrol strains. A. flavus L was the most dominant species of Aspergillus section Flavi with a frequency ranging from 61 to 100%, followed by Aspergillus parasiticus that had a frequency of <35%. The frequency of A. flavus L increased, while that of A. parasiticus decreased after application of biocontrol strains. A total of 112 multilocus haplotypes (MLHs) were inferred from 1,282 isolates of A. flavus L using multilocus sequence typing of the trpC, mfs, and AF17 loci. A. flavus individuals belonging to the Afla-Guard MLH in the IB lineage were the most dominant before and after application of biocontrol strains, while individuals of the AF36 MLH in the IC lineage were either recovered in very low frequencies or not recovered at harvest. There were no significant (P > 0.05) differences in the frequency of individuals with MAT1-1 and MAT1-2 for clone-corrected MLH data, an indication of a recombining population resulting from sexual reproduction. Population mean mutation rates were not different across temporal and spatial scales indicating that mutation alone is not a driving force in observed multilocus sequence diversity. Clustering based on principal component analysis identified two distinct evolutionary lineages (IB and IC) across all three states. Additionally, patristic distance analysis revealed phylogenetic incongruency among single locus phylogenies which suggests ongoing genetic exchange and recombination. Levels of aflatoxin accumulation were very low except in North Carolina in 2012, where aflatoxin levels were significantly (P < 0.05) lower in grain from treated compared to untreated plots. Phylogenetic analysis showed that Afla-Guard was more effective than AF36 in shifting the indigenous soil populations of A. flavus toward the non-toxigenic or low aflatoxin producing IB lineage. These results suggest that Afla-Guard, which matches the genetic and ecological structure of indigenous soil populations of A. flavus in Alabama, Georgia, and North Carolina, is likely to be more effective in reducing aflatoxin accumulation and will also persist longer in the soil than AF36 in the southeastern United States.
Collapse
Affiliation(s)
- Mary H Lewis
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Jane M Luis
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Gary A Payne
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Kira L Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Austin K Hagan
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Robert Kemerait
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, GA, United States
| | - Ron Heiniger
- Department of Crop Science, North Carolina State University, Raleigh, NC, United States
| | - Peter S Ojiambo
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
46
|
Frisvad J, Hubka V, Ezekiel C, Hong SB, Nováková A, Chen A, Arzanlou M, Larsen T, Sklenář F, Mahakarnchanakul W, Samson R, Houbraken J. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 2019; 93:1-63. [PMID: 30108412 PMCID: PMC6080641 DOI: 10.1016/j.simyco.2018.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Rémo, Nigeria
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | - A. Nováková
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A.J. Chen
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - M. Arzanlou
- Department of Plant Protection, University of Tabriz, Tabriz, Iran
| | - T.O. Larsen
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - W. Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
47
|
Toyotome T, Hamada S, Yamaguchi S, Takahashi H, Kondoh D, Takino M, Kanesaki Y, Kamei K. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan. DNA Res 2019; 26:95-103. [PMID: 30520983 PMCID: PMC6379028 DOI: 10.1093/dnares/dsy041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/01/2018] [Indexed: 01/21/2023] Open
Abstract
Aspergillus flavus is an important zoonotic pathogen and a well-known aflatoxin producer. Aspergillus flavus strains that are prevalent in Japanese environments are reported to be non-aflatoxigenic, although their aflatoxin productivity, especially among clinical isolates, has not been thoroughly investigated to date. In this study, we sequenced the genomes of ten strains of A. flavus isolated in Japan and compared their sequences with each other as well as with those of Aspergillus oryzae RIB40 and A. flavus NRRL3357. The phylogenetic analysis based on identified SNPs indicated that five strains were closer to A. oryzae RIB40 than to A. flavus NRRL3357. In contrast, of those isolates that were closer to A. flavus NRRL3357 than to A. oryzae RIB40, three were found to possess either the entire or partial aflatoxin biosynthesis gene cluster of NRRL3357-type. Furthermore, two of the three actually produced either aflatoxin B1 or an intermediate of the reaction leading to aflatoxin formation. Three of the ten strains we isolated were identified to possess part of the aflatoxin gene cluster, while five others retained the A. oryzae RIB40-type cluster. The genome data thus obtained may be further explored and utilized for comparative analysis of aflatoxin production in environmental and clinical isolates of A. flavus.
Collapse
Affiliation(s)
- Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Graduate School of Animal Husbandry, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Medical Mycology Research Center, Chiba University, Chiba City, Chiba, Japan
| | - Saho Hamada
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Satoe Yamaguchi
- Graduate School of Animal Husbandry, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba City, Chiba, Japan
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masahiko Takino
- Japan Application Center, Life Sciences and Chemical Analysis, Agilent Technologies Japan, Ltd, 9-1 Takakura-cho, Hachioji, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba City, Chiba, Japan
| |
Collapse
|
48
|
Mitema A, Okoth S, Rafudeen SM. The Development of a qPCR Assay to Measure Aspergillus flavus Biomass in Maize and the Use of a Biocontrol Strategy to Limit Aflatoxin Production. Toxins (Basel) 2019; 11:toxins11030179. [PMID: 30934573 PMCID: PMC6468655 DOI: 10.3390/toxins11030179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Aspergillus flavus colonisation of maize can produce mycotoxins that are detrimental to both human and animal health. Screening of maize lines, resistant to A. flavus infection, together with a biocontrol strategy, could help minimize subsequent aflatoxin contamination. We developed a qPCR assay to measure A. flavus biomass and showed that two African maize lines, GAF4 and KDV1, had different fungal loads for the aflatoxigenic isolate (KSM014), fourteen days after infection. The qPCR assay revealed no significant variation in A. flavus biomass between diseased and non-diseased maize tissues for GAF4, while KDV1 had a significantly higher A. flavus biomass (p < 0.05) in infected shoots and roots compared to the control. The biocontrol strategy using an atoxigenic isolate (KSM012) against the toxigenic isolate (KSM014), showed aflatoxin production inhibition at the co-infection ratio, 50:50 for both maize lines (KDV1 > 99.7% and GAF ≥ 69.4%), as confirmed by bioanalytical techniques. As far as we are aware, this is the first report in Kenya where the biomass of A. flavus from maize tissue was detected and quantified using a qPCR assay. Our results suggest that maize lines, which have adequate resistance to A. flavus, together with the appropriate biocontrol strategy, could limit outbreaks of aflatoxicoses.
Collapse
Affiliation(s)
- Alfred Mitema
- Plant Stress Laboratory 204/207, Department of Molecular and Cell Biology, MCB Building, Upper Campus, University of Cape Town, Private bag X3, Rondebosch, Cape Town 7701, South Africa.
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Suhail M Rafudeen
- Plant Stress Laboratory 204/207, Department of Molecular and Cell Biology, MCB Building, Upper Campus, University of Cape Town, Private bag X3, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
49
|
Kagot V, Okoth S, De Boevre M, De Saeger S. Biocontrol of Aspergillus and Fusarium Mycotoxins in Africa: Benefits and Limitations. Toxins (Basel) 2019; 11:E109. [PMID: 30781776 PMCID: PMC6409615 DOI: 10.3390/toxins11020109] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/27/2023] Open
Abstract
Fungal contamination and the consequent mycotoxin production is a hindrance to food and feed safety, international trade and human and animal health. In Africa, fungal contamination by Fusarium and Aspergillus is heightened by tropical climatic conditions that create a suitable environment for pre- and postharvest mycotoxin production. The biocontrol of Fusarium and its associated fusariotoxins has stagnated at laboratory and experimental levels with species of Trichoderma, Bacillus and atoxigenic Fusarium being tested as the most promising candidates. Hitherto, there is no impetus to upscale for field use owing to the inconsistent results of these agents. Non-aflatoxigenic strains of Aspergillus have been developed to create biocontrol formulations by outcompeting the aflatoxigenic strains, thus thwarting aflatoxins on the target produce by 70% to 90%. Questions have been raised on their ability to produce other mycotoxins like cyclopiazonic acid, to potentially exchange genetic material and to become aflatoxigenic with consequent deleterious effects on other organisms and environments. Other biocontrol approaches to mitigate aflatoxins include the use of lactic acid bacteria and yeast species which have demonstrated the ability to prevent the growth of Aspergillus flavus and consequent toxin production under laboratory conditions. Nevertheless, these strategies seem to be ineffective under field conditions. The efficacy of biological agents is normally dependent on environmental factors, formulations' safety to non-target hosts and the ecological impact. Biocontrol agents can only be effectively evaluated after long-term use, causing a never-ending debate on the use of live organisms as a remedy to pests and diseases over the use of chemicals. Biocontrol should be used in conjunction with good agricultural practices coupled with good postharvest management to significantly reduce mycotoxins in the African continent.
Collapse
Affiliation(s)
- Victor Kagot
- MYTOX-SOUTH, Centre of Excellence in Mycotoxicology and Public health, Ghent University, 9000 Ghent, Belgium.
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi 00100, Kenya.
| | - Sheila Okoth
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi 00100, Kenya.
| | - Marthe De Boevre
- MYTOX-SOUTH, Centre of Excellence in Mycotoxicology and Public health, Ghent University, 9000 Ghent, Belgium.
| | - Sarah De Saeger
- MYTOX-SOUTH, Centre of Excellence in Mycotoxicology and Public health, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
50
|
Adekoya I, Njobeh P, Obadina A, Landschoot S, Audenaert K, Okoth S, De Boevre M, De Saeger S. Investigation of the Metabolic Profile and Toxigenic Variability of Fungal Species Occurring in Fermented Foods and Beverage from Nigeria and South Africa Using UPLC-MS/MS. Toxins (Basel) 2019; 11:E85. [PMID: 30717215 PMCID: PMC6409632 DOI: 10.3390/toxins11020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022] Open
Abstract
Fungal species recovered from fermented foods and beverage from Nigeria and South Africa were studied to establish their toxigenic potential in producing an array of secondary metabolites including mycotoxins (n = 49) that could compromise human and animal safety. In total, 385 fungal isolates were grown on solidified yeast extract sucrose agar. Their metabolites were extracted and analyzed via ultra-performance liquid chromatography tandem mass spectrometry. To examine the grouping of isolates and co-occurrence of metabolites, hierarchal clustering and pairwise association analysis was performed. Of the 385 fungal strains tested, over 41% were toxigenic producing different mycotoxins. A. flavus and A. parasiticus strains were the principal producers of aflatoxin B₁ (27⁻7406 µg/kg). Aflatoxin B₁ and cyclopiazonic acid had a positive association. Ochratoxin A was produced by 67% of the A. niger strains in the range of 28⁻1302 µg/kg. The sterigmatocystin producers found were A. versicolor (n = 12), A. amstelodami (n = 4), and A. sydowii (n = 6). Apart from P. chrysogenum, none of the Penicillium spp. produced roquefortine C. Amongst the Fusarium strains tested, F. verticillioides produced fumonisin B₁ (range: 77⁻218 µg/kg) meanwhile low levels of deoxynivalenol were observed. The production of multiple metabolites by single fungal species was also evident.
Collapse
Affiliation(s)
- Ifeoluwa Adekoya
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Adewale Obadina
- Department of Food Science and Technology, Federal University of Agriculture, PMB, 2240 Abeokuta, Nigeria.
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium.
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, B-9000 Ghent, Belgium.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box, Nairobi 30197, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|