1
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
2
|
Gupta R, Anand G, Pandey R, Bar M, Yadav D. Employing Bacillus and Pseudomonas for phytonematode management in agricultural crops. World J Microbiol Biotechnol 2024; 40:331. [PMID: 39358574 DOI: 10.1007/s11274-024-04137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Phytonematodes are responsible for causing significant harm and reducing yields in various agricultural crops. To minimize losses caused by phytonematodes and meet the high demand for agricultural production, it is important to develop effective strategies with minimal environmental impact to manage this biotic stress. Due to the adverse environmental effects associated with synthetic pesticides, it is imperative to use beneficial bacteria, such as Bacillus and Pseudomonas spp., for biocontrol purposes to control phytonematode infestation in agricultural settings. This approach has gained considerable attraction, as there is a promising market for eco-friendly biopesticides based on bacteria that can effectively manage phytonematodes. Furthermore, biocontrol strains of Bacillus and Pseudomonas have the potential to enhance crop productivity by producing various substances that promote plant growth and development. This review aims to explore the role of Bacillus and Pseudomonas spp. in phytonematode management, elucidate different mechanisms by which these bacteria suppress nematode populations, and discuss the future prospects of utilizing these bacteria in agriculture.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, India
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
3
|
Li J, Wei X, Pei Z, Sun J, Xi J, Li X, Shapiro-IIan D, Ruan W. Volatile organic compounds released from entomopathogenic nematode-infected insect cadavers for the biocontrol of Meloidogyne incognita. PEST MANAGEMENT SCIENCE 2024; 80:5400-5411. [PMID: 38943354 DOI: 10.1002/ps.8268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Root-knot nematodes (RKNs), Meloidogyne spp., are one of the most destructive polyphagous plant-parasitic nematodes. They pose a serious threat to global food security and are difficult to control. Entomopathogenic nematodes (EPNs) show promise in controlling RKNs. However, it remains unclear whether the volatile organic compounds (VOCs) emitted from EPN-infected cadavers can control RKNs. RESULTS We investigated the fumigation activity of VOCs released from cadavers infected by five different species of EPNs on RKNs in Petri dishes, and found that VOCs released from Steinernema feltiae (SN strain) and S. carpocapsae (All strain) infected cadavers had a significant lethal effect on second-stage juveniles (J2s) of Meloidogyne incognita. The VOCs released from the cadavers infected with S. feltiae were analyzed using SPME-GC/MS. Dimethyl disulfide (DMDS), tetradecane, pentadecane, and butylated hydroxytoluene (BHT), were selected for a validation experiment with pure compounds. The DMDS compound had significant nematicidal activity and repelled J2s. DMDS also inhibited egg hatching and the invasion of tomato roots by J2s. In a pot experiment, the addition of S. feltiae-infected cadavers and cadavers wrapped with a 400-mesh nylon net also significantly reduced the population of RKNs in tomato roots after 7 days. The number of root knots and eggs was reduced by 58% and 74.34%, respectively, compared to the control. CONCLUSION These results suggested that the VOCs emitted by the EPN-infected cadavers affected various developmental stages of M. incognita and thus have the potential to be used in controlling RKNs through multiple methods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Li
- College of Life Sciences, Nankai University, Tianjin, China
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zixuan Pei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiale Xi
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xingyue Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | | | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Ye S, Zhou S, Ma Y, Yang J, Shi X, Zhang R, Yang Z, Peng D, Ding Z. Biocontrol activity and potential mechanism of Bacillus cereus G5 against Meloidogyne graminicola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106079. [PMID: 39277392 DOI: 10.1016/j.pestbp.2024.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Root-knot nematodes (Meloidogyne spp.) are highly destructive pests that cause significant yield losses annually. Biological control of nematodes has emerged as a potential alternative in sustainable agriculture. In this study, we originally isolated Bacillus cereus G5 from the rhizosphere soil of rice (Oryza sativa). Treatment with the fermentation supernatant of G5 in vitro demonstrated high toxicity to second-stage juveniles (J2) of Meloidogyne graminicola and remarkably inhibited egg hatching. Moreover, G5 steadily colonized rhizosphere soil and rice seedlings, and exhibited excellent biocontrol efficacy against M. graminicola under greenhouse conditions. Notably, the volatile organic compounds (VOCs) produced by G5 displayed high fumigant activity against M. graminicola. The G5 VOCs efficiently reduced the gall index and nematode population in rice roots, while also promoting rice growth in double-layered pot tests. Additionally, the expression of defense genes involved in the salicylic acid (OsNPR1, OsWRKY45, OsPAL1), jasmonic acid (OsJaMYB, OsAOS2) and ethylene (OsACS1) signalling pathways was significantly upregulated in rice seedlings treated with G5 VOCs. This suggests that G5 VOCs contribute to eliciting plant defense responses. Furthermore, we identified 14 major VOCs produced by G5 using solid-phase micro-extraction gas chromatography and mass spectrometry (SPEM-GC-MS). Notably, allomatrine, morantel, 1-octen-3-ol and 3-methyl-2-butanol displayed strong contact nematicidal activity. Among these, only 1-octen-3-ol demonstrated fumigant activity against J2s of M. graminicola, with an LC50 value of 758.95 mg/L at 24 h. Overall, these results indicated that the B. cereus G5 and its synthetic VOCs possess high potential as biocontrol agents for managing root-knot nematodes.
Collapse
Affiliation(s)
- Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan 410128, China
| | - Siyu Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yihang Ma
- Hunan Institute of Metrology and Test, Changsha, Hunan 410005, China
| | - Jiahao Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xuqi Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ruoyu Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan 410128, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan 410128, China.
| |
Collapse
|
5
|
Yang ZY, Dai YC, Mo YQ, Wang JL, Ma L, Zhao PJ, Huang Y, Wang RB, Li W, Al-Rejaie SS, Liu JJ, Cao Y, Mo MH. Exploring the nematicidal mechanisms and control efficiencies of oxalic acid producing Aspergillus tubingensis WF01 against root-knot nematodes. Front Microbiol 2024; 15:1424758. [PMID: 39040900 PMCID: PMC11260745 DOI: 10.3389/fmicb.2024.1424758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and aims Root-knot nematodes (RKN; Meloidogyne spp.) are among the highly prevalent and significantly detrimental pathogens that cause severe economic and yield losses in crops. Currently, control of RKN primarily relies on the application of chemical nematicides but it has environmental and public health concerns, which open new doors for alternative methods in the form of biological control. Methods In this study, we investigated the nematicidal and attractive activities of an endophytic strain WF01 against Meloidogyne incognita in concentration-dependent experiments. The active nematicidal metabolite was extracted in the WF01 crude extract through the Sephadex column, and its structure was identified by nuclear magnetic resonance and mass spectrometry data. Results The strain WF01 was identified as Aspergillus tubingensis based on morphological and molecular characteristics. The nematicidal and attractive metabolite of A. tubingensis WF01 was identified as oxalic acid (OA), which showed solid nematicidal activity against M. incognita, having LC50 of 27.48 μg ml-1. The Nsy-1 of AWC and Odr-7 of AWA were the primary neuron genes for Caenorhabditis elegans to detect OA. Under greenhouse, WF01 broth and 200 μg ml-1 OA could effectively suppress the disease caused by M. incognita on tomatoes respectively with control efficiency (CE) of 62.5% and 70.83%, and promote plant growth. In the field, WF01-WP and 8% OA-WP formulations showed moderate CEs of 51.25%-61.47% against RKN in tomato and tobacco. The combined application of WF01 and OA resulted in excellent CEs of 66.83% and 69.34% toward RKN in tomato and tobacco, respectively. Furthermore, the application of WF01 broth or OA significantly suppressed the infection of J2s in tomatoes by upregulating the expression levels of the genes (PAL, C4H, HCT, and F5H) related to lignin synthesis, and strengthened root lignification. Conclusion Altogether, our results demonstrated that A. tubingensis WF01 exhibited multiple weapons to control RKN mediated by producing OA to lure and kill RKN in a concentration-dependent manner and strengthen root lignification. This fungus could serve as an environmental bio-nematicide for managing the diseases caused by RKN.
Collapse
Affiliation(s)
- Zhong-Yan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yuan-Chen Dai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yuan-Qi Mo
- Institute of Crop Variety Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jia-Lun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Rui-Bin Wang
- Shandong Dianlu Biotechnology Co., Ltd., Feixian, China
| | - Wei Li
- Yunnan Boshiao Biotechnology Co., Ltd., Kunming, China
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jian-Jin Liu
- Pu’er Corporation of Yunnan Tobacco Corporation, Pu’er, China
| | - Yi Cao
- Guizhou Academy of Tobacco Agricultural Sciences, Guiyang, China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Xiao Y, Xiang W, Ma X, Gao D, Bayram H, Lorimer GH, Ghiladi RA, Xie Z, Wang J. HemN2 Regulates the Virulence of Pseudomonas donghuensis HYS through 7-Hydroxytropolone Synthesis and Oxidative Stress. BIOLOGY 2024; 13:373. [PMID: 38927253 PMCID: PMC11200716 DOI: 10.3390/biology13060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Compared to pathogens Pseudomonas aeruginosa and P. putida, P. donghuensis HYS has stronger virulence towards Caenorhabditis elegans. However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for Pseudomonas virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and Pseudomonas virulence were barely pursued. In this study, we hypothesized that hemN2 deficiency affected 7-hydroxytropolone (7-HT) biosynthesis and redox levels, thereby reducing bacterial virulence. There are four hemN genes in P. donghuensis HYS, and we reported for the first time that deletion of hemN2 significantly reduced the virulence of HYS towards C. elegans, whereas the reduction in virulence by the other three genes was not significant. Interestingly, hemN2 deletion significantly reduced colonization of P. donghuensis HYS in the gut of C. elegans. Further studies showed that HemN2 was regulated by GacS and participated in the virulence of P. donghuensis HYS towards C. elegans by mediating the synthesis of the virulence factor 7-HT. In addition, HemN2 and GacS regulated the virulence of P. donghuensis HYS by affecting antioxidant capacity and nitrative stress. In short, the findings that HemN2 was regulated by the Gac system and that it was involved in bacterial virulence via regulating 7-HT synthesis and redox levels were reported for the first time. These insights may enlighten further understanding of HemN-based virulence in the genus Pseudomonas.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Donghao Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, 34010 Istanbul, Turkey;
| | - George H. Lorimer
- Department of Chemistry, University of Maryland, College Park, MD 20742, USA;
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
7
|
Song W, Dai M, Gao S, Mi Y, Zhang S, Wei J, Zhao H, Duan F, Liang C, Shi Q. Volatile organic compounds produced by Paenibacillus polymyxa J2-4 exhibit toxic activity against Meloidogyne incognita. PEST MANAGEMENT SCIENCE 2024; 80:1289-1299. [PMID: 37899496 DOI: 10.1002/ps.7859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Root knot nematodes cause great damage to crops worldwide. Due to the negative effects of the application of fumigant and old chemical nematicides, biological nematicides have drawn increasing attention in recent years. Here we tested the fumigant activity of the volatile organic compounds (VOCs) blends emitted from Paenibacillus polymyxa and pure commercial VOCs against M. incognita. RESULTS In this study, we investigated whether P. polymyxa strain J2-4 could produce VOCs that exhibit nematicidal activity. In vitro assays indicated that J2-4 VOCs were highly toxic to second stage juveniles (J2s) and could inhibit egg hatching. Three-layered pot experiments showed that the number of nematodes that penetrating in cucumber roots was reduced by 69.27% after the application of J2-4 VOCs under greenhouse conditions. We identified 14 volatiles using solid-phase micro-extraction gas chromatography-mass spectrometry. The efficacy of six commercially available VOCs, namely 2-isobutyl-3-methylpyrazine, 2,4-dimethoxybenzaldoxime, 2-dodecanone, 2-tridecanol, 2-tridecanone, and 2-tetradecanol, against M. incognita were examined. Except for 2,4-dimethoxybenzaldoxime, the remaining five VOCs showed strong direct-contact nematicidal activity against J2s of M. incognita, and only 2-isobutyl-3-methylpyrazine showed strong fumigant activity against J2s of M. incognita. In pot experiments, 2-isobutyl-3-methylpyrazine and 2-dodecanone reduced the number of root galls by about 70%, and 2-tridecanone reduced the number of root galls and egg masses by about 63% compared with controls. CONCLUSION Paenibacillus polymyxa strain J2-4 exhibited high fumigant activity against M. incognita. Our results provide evidence for the use of J2-4 and its VOCs as biocontrol agents in the management of root-knot nematodes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenwen Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Mingming Dai
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Shasha Gao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yindong Mi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shijia Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jianyong Wei
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Honghai Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Fangmeng Duan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Chen Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Qianqian Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| |
Collapse
|
8
|
Chen L, Wang Y, Zhu L, Min Y, Tian Y, Gong Y, Liu X. 3-(Methylthio)Propionic Acid from Bacillus thuringiensis Berliner Exhibits High Nematicidal Activity against the Root Knot Nematode Meloidogyne incognita (Kofoid and White) Chitwood. Int J Mol Sci 2024; 25:1708. [PMID: 38338986 PMCID: PMC10855422 DOI: 10.3390/ijms25031708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Root knot nematodes cause serious damage to global agricultural production annually. Given that traditional chemical fumigant nematicides are harmful to non-target organisms and the environment, the development of biocontrol strategies has attracted significant attention in recent years. In this study, it was found that the Bacillus thuringiensis Berliner strain NBIN-863 exhibits strong fumigant nematicidal activity and has a high attraction effect on Meloidogyne incognita (Kofoid and White) Chitwood. Four volatile organic compounds (VOCs) produced by NBIN-863 were identified using solid-phase microextraction and gas chromatography-mass spectrometry. The nematicidal activity of four VOCs, namely, N-methylformamide, propenamide, 3-(methylthio)propionic acid, and phenylmalonic acid, was detected. Among these compounds, 3-(methylthio)propionic acid exhibited the highest direct contact nematicidal activity against M. incognita, with an LC50 value of 6.27 μg/mL at 24 h. In the fumigant bioassay, the mortality rate of M. incognita treated with 1 mg/mL of 3-(methylthio)propionic acid for 24 h increased to 69.93%. Furthermore, 3-(methylthio)propionic acid also exhibited an inhibitory effect on the egg-hatching of M. incognita. Using chemotaxis assays, it was determined that 3-(methylthio)propionic acid was highly attractive to M. incognita. In pot experiments, the application of 3-(methylthio)propionic acid resulted in a reduction in gall numbers, decreasing the number of galls per gram of tomato root from 97.58 to 6.97. Additionally, the root length and plant height of the treated plants showed significant increases in comparison with the control group. The current study suggests that 3-(methylthio)propionic acid is a novel nematicidal virulence factor of B. thuringiensis. Our research provides evidence for the potential use of NBIN-863 or its VOCs in biocontrol against root knot nematodes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.C.); (Y.W.); (L.Z.); (Y.M.); (Y.T.); (Y.G.)
| |
Collapse
|
9
|
Taraghikhah MR, Atıcı Ö. Investigating bioactive phytochemicals in bulb and shoot of Allium longisepalum Bertol. from Iran. Nat Prod Res 2024:1-9. [PMID: 38192189 DOI: 10.1080/14786419.2023.2301022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
This study investigated a wide range of bioactive compounds in bulb and shoot of Allium longisepalum Bertol. from Iran. The organs were first extracted with methanol, followed by hexane, dichloromethane, chloroform, ethyl acetate, and butanol, and phytochemicals in fractions were analysed using GC/MS. Butanol exhibited the highest yield percentages in both organs. Palmitic and oleic acid were found in all fractions, while heptadecene-(8)-carboxylic acid, stearic acid, and myristic acid were detected in at least three fractions. Each fraction contained exclusively unique metabolites found only in itself. Hexane, dichloromethane, and chloroform fractions contained specific metabolites with potential antioxidant, allelopathic, antibacterial, and anti-inflammatory effects. Ethyl acetate and butanol fractions revealed significant compounds that have potential in terms of their anticarcinogenic, anti-inflammatory, hair growth-enhancing, and antimicrobial properties, in addition to containing compounds not previously identified in plants. The study analyzes bioactive compound profiles in A. longisepalum, highlighting its chemical diversity and therapeutic potential.
Collapse
Affiliation(s)
| | - Ökkeş Atıcı
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Wu W, Wang J, Wang Z, Yan X, Wang Y, He X. Comparative Transcriptome Analysis Reveals the Molecular Mechanism of Bacillus velezensis GJ-7 Assisting Panax notoginseng against Meloidogyne hapla. Int J Mol Sci 2023; 24:17581. [PMID: 38139410 PMCID: PMC10743745 DOI: 10.3390/ijms242417581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The rhizosphere bacteria Bacillus velezensis GJ-7, as a biological control agent (BCA), has significant biological control effects on Meloidogyne hapla, and has strong colonization ability in the root of Panax notoginseng. In this study, we conducted a comparative transcriptome analysis using P. notoginseng plant roots treated with B. velezensis GJ-7 or sterile water alone and in combination with M. hapla inoculation to explore the interactions involving the P. notoginseng plant, B. velezensis GJ-7, and M. hapla. Four treatments from P. notoginseng roots were sequenced, and twelve high-quality total clean bases were obtained, ranging from 3.57 to 4.74 Gb. The Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that numerous DEGs are involved in the phenylpropane biosynthesis pathway and the MAPK signaling pathway in the roots of P. notoginseng with B. velezensis GJ-7 treatments. The analysis results of the two signaling pathways indicated that B. velezensis GJ-7 could enhance the expression of lignin- and camalexin-synthesis-related genes in plant roots to resist M. hapla. In addition, B. velezensis GJ-7 could enhance plant resistance to M. hapla by regulating the expression of resistance-related genes and transcription factors (TFs), including ETR, ERF, ChiB, WRKY22, and PR1. The expression of plant disease resistance genes in the roots of P. notoginseng with different treatments was validated by using real-time quantitative PCR (qRT-PCR), and the results were consistent with transcriptome sequencing. Taken together, this study indicated that B. velezensis GJ-7 can trigger a stronger defense response of P. notoginseng against M. hapla.
Collapse
Affiliation(s)
- Wentao Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
| | - Jingjing Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
| | - Zhuhua Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
| | - Xirui Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
| | - Yang Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
11
|
Zhao Y, Zhong C, Li Y, Zhou W, Huang X. Novel Genes and Key Signaling Molecules Involved in the Repulsive Response of Meloidogyne incognita against Biocontrol Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19445-19456. [PMID: 38033160 DOI: 10.1021/acs.jafc.3c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The ability of the model organism, Caenorhabditis elegans, to distinguish and escape from pathogenic bacteria has been extensively studied; however, studies on the repulsive response of Meloidogyne incognita are still in their infancy. We have recently demonstrated that biocontrol bacteria induce a repulsive response in M. incognita via two classical signaling pathways. The present study aimed to identify the novel genes and signaling molecules of M. incognita that potentially contribute to its defense reaction. Analysis of the transcriptome data of M. incognita with and without a repulsive response against Bacillus nematocida B16 obtained 15 candidate genes, of which the novel genes Minc3s01748g26034 and Minc3s02548g30585 were found to regulate the aversive behavior of M. incognita, and their functions were further validated. To further confirm the neuronal localization of the two novel genes in M. incognita, in situ hybridization was conducted using the digoxin-labeled probes of ten tag genes, and preferentially profiled the localization of amphid sensory neurons of M. incognita. Analysis of the overviewed neuronal map suggested that Minc3s01748g26034 and Minc3s02548g30585 functioned in ASK/ASI and CEPD/V neurons, respectively. During their interactions, the volatile compounds 3-methyl-butyric acid and 2-methyl-butyric acid produced by the biocontrol bacteria were predicted as the primary signaling molecules that promoted the repulsive behavior of M. incognita against biocontrol bacteria. The findings provided novel insights into the mechanisms underlying the repulsive response of M. incognita that are different from the canonical molecular pathways previously found in C. elegans and can aid in developing novel strategies for controlling root-knot nematodes.
Collapse
Affiliation(s)
- Yanli Zhao
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Chidi Zhong
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Yixin Li
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xiaowei Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
12
|
Fang M, Long W, Sun J, Wang A, Chen L, Cui Y, Huang Z, Li J, Ruan W, Rasmann S, Wei X. Toxicity of fungal-derived volatile organic compounds against root-knot nematodes. PEST MANAGEMENT SCIENCE 2023; 79:5162-5172. [PMID: 37574969 DOI: 10.1002/ps.7719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs), including Meloidogyne species, are among the most destructive plant-parasites worldwide. Recent evidence suggests that entomopathogenic fungi (EPF) can antagonize RKNs. Such antagonistic effects are likely mediated by toxic metabolites, including volatile organic compounds (VOCs), produced by the fungi. However, how widespread these effects are across EPF species, and which VOCs mediate negative interactions between EPF and RKNs needs to be further elucidated. RESULTS First, we evaluated the nematicidal effect of VOCs emitted by 46 EPF isolates against Meloidogyne incognita and found variable toxicity depending on the isolate. Second, we measured the nematicidal effect of highly toxic isolates, including species in the genus Talaromyces, Aspergillus, Clonostachys, and Purpureocillium and, third, we analyzed the nematicidal effect of major VOCs, including 2-methyl-1-propanol, 3-methyl-1-butanol, isopropyl alcohol and 2-methyl-3-pentanone. The mortality of M. incognita juveniles (J2s) was generally high (50%) either via airborne or in-solution contact with VOCs. Moreover, the tested VOCs significantly inhibited egg hatching, and repelled J2s away from the VOCs. CONCLUSION This study not only provides insights into the ecological function of VOCs in the rhizosphere, but also provides new approaches for developing environmentally friendly control methods of RKNs in agroecosystems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming Fang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenxin Long
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ailing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Dai MM, Liu R, Jiang H, Zhang XP, Song WW, Zhang J, Liang C, Zhao HH, Shi QQ. Volatile Organic Compounds of Bacillus pumilus Strain S1-10 Exhibit Fumigant Activity Against Meloidogyne incognita. PLANT DISEASE 2023; 107:3057-3063. [PMID: 36916837 DOI: 10.1094/pdis-10-22-2391-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Root-knot nematodes (RKNs) are highly specialized parasites that cause significant yield losses worldwide. In this study, we isolated Bacillus pumilus strain S1-10 from the rhizosphere soil of Zingiber officinale Rosc. plants and evaluated its fumigant activity against Meloidogyne incognita. S1-10 exhibited a strong repellent effect on second-stage juveniles (J2s) of M. incognita, and in vitro assays indicated that S1-10 volatile organic compounds (VOCs) suppressed J2 activity and egg hatching. Under greenhouse conditions, 71 and 79% reductions of nematodes and eggs were detected on plants treated with S-10 VOCs compared with controls. Ten VOCs were identified through gas chromatography and mass spectrometry (GC-MS), of which 2-(methylamino)-ethanol (2-ME) had strong fumigant activity against J2s of M. incognita, with an LC50 value of 1.5 mM at 12 h. These results indicate that S1-10 represents a potential novel biocontrol agent for RKNs.
Collapse
Affiliation(s)
- Ming-Ming Dai
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiao-Ping Zhang
- School of Medical Science, Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Wen-Wen Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Jie Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Chen Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Hong-Hai Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Qian-Qian Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| |
Collapse
|
14
|
Stucky T, Hochstrasser M, Meyer S, Segessemann T, Ruthes AC, Ahrens CH, Pelludat C, Dahlin P. A Novel Robust Screening Assay Identifies Pseudomonas Strains as Reliable Antagonists of the Root-Knot Nematode Meloidogyne incognita. Microorganisms 2023; 11:2011. [PMID: 37630571 PMCID: PMC10459205 DOI: 10.3390/microorganisms11082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Forty-four bacterial strains isolated from greenhouse soil and beetroots were tested for their antagonistic activity against the plant-parasitic root-knot nematode (RKN) Meloidogyne incognita, which causes significant yield losses in a number of important crops worldwide. Through a novel combination of in vitro and on planta screening assays, Pseudomonas spp. 105 and 108 were identified as the most promising bacterial isolates. Both strains were evaluated for their potential to control different RKN population densities and as root protectants against nematode infestation. Regardless of the application method, both strains significantly reduced root galling caused by M. incognita. These two strains were subjected to whole genome sequencing and de novo genome assembly as a basis for phylogenetic and future functional characterization. Phylogenetic analysis revealed that both Pseudomonas strains cluster within the Pseudomonas fluorescens clade among previously characterized RKN antagonists and Pseudomonas-based biocontrol agents of plant diseases.
Collapse
Affiliation(s)
- Tobias Stucky
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Miro Hochstrasser
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Silvan Meyer
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Tina Segessemann
- Method Development and Analytics, Agroscope, Reckenholzstrasse 190, 8046 Zürich, Switzerland
| | | | - Christian H. Ahrens
- Method Development and Analytics, Agroscope, Reckenholzstrasse 190, 8046 Zürich, Switzerland
- Swiss Institute of Bioinformatics—SIB, Reckenholzstrasse 190, 8046 Zurich, Switzerland
| | - Cosima Pelludat
- Virology, Bacteriology and Phytoplasmology, Plant Protection, Agroscope, 1260 Nyon, Switzerland
| | - Paul Dahlin
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| |
Collapse
|
15
|
Veronico P, Sasanelli N, Troccoli A, Myrta A, Midthassel A, Butt T. Evaluation of Fungal Volatile Organic Compounds for Control the Plant Parasitic Nematode Meloidogyne incognita. PLANTS (BASEL, SWITZERLAND) 2023; 12:1935. [PMID: 37653851 PMCID: PMC10221407 DOI: 10.3390/plants12101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023]
Abstract
Plant parasitic nematodes are a serious threat to crop production worldwide and their control is extremely challenging. Fungal volatile organic compounds (VOCs) provide an ecofriendly alternative to synthetic nematicides, many of which have been withdrawn due to the risks they pose to humans and the environment. This study investigated the biocidal properties of two fungal VOCs, 1-Octen-3-ol and 3-Octanone, against the widespread root-knot nematode Meloidogyne incognita. Both VOCs proved to be highly toxic to the infective second-stage juveniles (J2) and inhibited hatching. Toxicity was dependent on the dose and period of exposure. The LD50 of 1-Octen-3-ol and 3-Octanone was 3.2 and 4.6 µL, respectively. The LT50 of 1-Octen-3-ol and 3-Octanone was 71.2 and 147.1 min, respectively. Both VOCs were highly toxic but 1-Octen-3-ol was more effective than 3-Octanone. Exposure of M. incognita egg-masses for 48 h at two doses (0.8 and 3.2 µL) of these VOCs showed that 1-Octen-3-ol had significantly greater nematicidal activity (100%) than 3-Octanone (14.7%) and the nematicide metham sodium (6.1%). High levels of reactive oxygen species detected in J2 exposed to 1-Octen-3-ol and 3-Octanone suggest oxidative stress was one factor contributing to mortality and needs to be investigated further.
Collapse
Affiliation(s)
- Pasqua Veronico
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (N.S.); (A.T.)
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (N.S.); (A.T.)
| | - Alberto Troccoli
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (N.S.); (A.T.)
| | - Arben Myrta
- Certis Belchim BV, Stadsplateau 16, 3521 AZ Utrecht, The Netherlands; (A.M.); (A.M.)
| | - Audun Midthassel
- Certis Belchim BV, Stadsplateau 16, 3521 AZ Utrecht, The Netherlands; (A.M.); (A.M.)
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| |
Collapse
|
16
|
Sun Y, Ran Y, Yang H, Mo M, Li G. Volatile Metabolites from Brevundimonas diminuta and Nematicidal Esters Inhibit Meloidogyne javanica. Microorganisms 2023; 11:microorganisms11040966. [PMID: 37110389 PMCID: PMC10144101 DOI: 10.3390/microorganisms11040966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Brevundimonas diminuta is broadly distributed in terrestrial and aquatic environments and has various biological activities. In this study, we found that B. diminuta exhibited nematicidal activity against the plant root-knot nematode, Meloidogyne javanica. A total of 42 volatile organic compounds (VOCs) from B. diminuta were identified using gas chromatography-mass spectrometry (GC-MS). The nematicidal activity of the 10 main VOCs was tested against M. javanica. Butyl butanoate (4 µL) caused the mortality of 80.13% of M. javanica after 4 h. The nematicidal activity of an additional 38 butyl-butyrate-like volatile esters was also investigated. Of these, seven had strong nematicidal activity against M. javanica, five of which showed egg-hatching inhibitory activity. This study is the first to report that butyl butanoate, ethyl 2-methylbutanoate, ethyl 4-methylpentanoate, ethyl pent-4-enoate, and methyl undecanoate have nematicidal activity against M. javanica. The results indicated that B. diminuta could serve as a candidate microorganism for the biocontrol of plant root-knot nematodes, showing that volatile esters have great potential as nematicides.
Collapse
Affiliation(s)
- Yongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yuan Ran
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Hanbo Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Minghe Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Guohong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
17
|
Wu W, Zeng Y, Yan X, Wang Z, Guo L, Zhu Y, Wang Y, He X. Volatile Organic Compounds of Bacillus velezensis GJ-7 against Meloidogyne hapla through Multiple Prevention and Control Modes. Molecules 2023; 28:3182. [PMID: 37049944 PMCID: PMC10096442 DOI: 10.3390/molecules28073182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The Bacillus velezensis GJ-7 strain isolated from the rhizosphere soil of Panax notoginseng showed high nematicidal activity and therefore has been considered a biological control agent that could act against the root-knot nematode Meloidogyne hapla. However, little was known about whether the GJ-7 strain could produce volatile organic compounds (VOCs) that were effective in biocontrol against M. hapla. In this study, we evaluated the nematicidal activity of VOCs produced by the fermentation of GJ-7 in three-compartment Petri dishes. The results revealed that the mortality rates of M. hapla J2s were 85% at 24 h and 97.1% at 48 h after treatment with the VOCs produced during GJ-7 fermentation. Subsequently, the VOCs produced by the GJ-7 strain were identified through solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC/MS). Six characteristic VOCs from the GJ-7 strain fermentation broth were identified, including 3-methyl-1-butanol, 3-methyl-2-pentanone, 5-methyl-2-hexanone, 2-heptanone, 2,5-dimethylpyrazine, and 6-methyl-2-heptanone. The in vitro experimental results from 24-well culture plates showed that the six volatiles had direct-contact nematicidal activity against M. hapla J2s and inhibition activity against egg hatching. In addition, 3-methyl-1-butanol and 2-heptanone showed significant fumigation effects on M. hapla J2s and eggs. Furthermore, all six of the VOCs repelled M. hapla J2 juveniles in 2% water agar Petri plates. The above data suggested that the VOCs of B. velezensis GJ-7 acted against M. hapla through multiple prevention and control modes (including direct-contact nematicidal activity, fumigant activity, and repellent activity), and therefore could be considered as potential biocontrol agents against root-knot nematodes.
Collapse
Affiliation(s)
- Wentao Wu
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
| | - Yuanling Zeng
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
| | - Xirui Yan
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
| | - Zhuhua Wang
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
| | - Liwei Guo
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
| | - Youyong Zhu
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
| | - Yang Wang
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
| | - Xiahong He
- Key Laboratory of Agricultural Biodiversity and Pest Control, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (W.W.); (Y.Z.); (X.Y.); (Z.W.); (L.G.); (Y.Z.)
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
18
|
Rani A, Rana A, Dhaka RK, Singh AP, Chahar M, Singh S, Nain L, Singh KP, Minz D. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnol Adv 2023; 63:108078. [PMID: 36513315 DOI: 10.1016/j.biotechadv.2022.108078] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Bacteria emit a large number of volatile organic compounds (VOCs) into the environment. VOCs are species-specific and their emission depends on environmental conditions, such as growth medium, pH, temperature, incubation time and interaction with other microorganisms. These VOCs can enhance plant growth, suppress pathogens and act as signaling molecules during plant-microorganism interactions. Some bacterial VOCs have been reported to show strong antimicrobial, nematicidal, pesticidal, plant defense, induced tolerance and plant-growth-promoting activities under controlled conditions. Commonly produced antifungal VOCs include dimethyl trisulfide, dimethyl disulfide, benzothiazole, nonane, decanone and 1-butanol. Species of Bacillus, Pseudomonas, Arthrobacter, Enterobacter and Burkholderia produce plant growth promoting VOCs, such as acetoin and 2,3-butenediol. These VOCs affect expression of genes involved in defense and development in plant species (i.e., Arabidopsis, tobacco, tomato, potato, millet and maize). VOCs are also implicated in altering pathogenesis-related genes, inducing systemic resistance, modulating plant metabolic pathways and acquiring nutrients. However, detailed mechanisms of action of VOCs need to be further explored. This review summarizes the bioactive VOCs produced by diverse bacterial species as an alternative to agrochemicals, their mechanism of action and challenges for employment of bacterial VOCs for sustainable agricultural practices. Future studies on technological improvements for bacterial VOCs application under greenhouse and open field conditions are warranted.
Collapse
Affiliation(s)
- Annu Rani
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India; Centre for Bio-Nanotechnology, CCS HAU, Hisar, India.
| | - Rahul Kumar Dhaka
- Centre for Bio-Nanotechnology, CCS HAU, Hisar, India; Department of Chemistry, College of Basic Science & Humanities, CCS HAU, Hisar, India
| | - Arvind Pratap Singh
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Madhvi Chahar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh, India
| | - Lata Nain
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar, India; Vice Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, UP, India
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
19
|
Petrikovszki R, Tóth F, Nagy PI. Aqueous Extracts of Organic Mulch Materials Have Nematicide and Repellent Effect on Meloidogyne incognita Infective Juveniles: A Laboratory Study. J Nematol 2023; 55:20230037. [PMID: 37664002 PMCID: PMC10473840 DOI: 10.2478/jofnem-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 09/05/2023] Open
Abstract
While the nematicidal effectiveness of mulching against root-knot nematodes (Meloidogyne spp.) is calculated within organic crop protection, underlying mechanisms are not yet fully explored. Laboratory experiments were set up to determine whether mulch-derived substances cause mortality directly, or repel Meloidogyne juveniles from crop rhizosphere. Mortality and area choice tests were conducted with mulch-derived extracts, supported by the measurements on tannic acid content and the pH values of extracts as supplementary examinations. In our study, leaf litter and straw extracts were generally found lethal to the juveniles, which is in line with the results from area preference tests. However, compost extract had no effect on Meloidogyne incognita juveniles. Tannic acid content showed positive correlation with mortality only in the case of straw and sycamore leaf litter extracts. Tannic acid and pH weakly correlated with repellent effect of the applied extracts generally. Our results have inspired further experiments to explore nematicidal components of leaf litters, contributing to the development of a new approach in crop protection based on the repellent effect of these materials.
Collapse
Affiliation(s)
- Renáta Petrikovszki
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2100, Páter Károly u. 1., Gödöllő, Hungary
| | - Ferenc Tóth
- Research Institute of Organic Agriculture, H-1033, Miklós tér 1., Budapest, Hungary
| | - Péter I Nagy
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2100, Páter Károly u. 1., Gödöllő, Hungary
| |
Collapse
|
20
|
Volynchikova E, Kim KD. Anti-Oomycete Activity and Pepper Root Colonization of Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 against Phytophthora capsici. THE PLANT PATHOLOGY JOURNAL 2023; 39:123-135. [PMID: 36760054 PMCID: PMC9929162 DOI: 10.5423/ppj.oa.01.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Previously, Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 from a sequential screening procedure were proven to effectively control Phytophthora blight caused by Phytophthora capsici. In this study, we further investigated the anti-oomycete activities of these strains against mycelial growth, zoospore germination, and germ tube elongation of P. capsici. We also investigated root colonization ability of the bacterial strains in square dishes, including cell motility (swimming and swarming motilities) and biofilm formation. Both strains significantly inhibited mycelial growth in liquid and solid V8 juice media and M9 minimal media, zoospore germination, and germ tube elongation compared with Bacillus vallismortis EXTN-1 (positive biocontrol strain), Sphingomonas aquatilis KU408 (negative biocontrol strain), and MgSO4 solution (untreated control). In diluted (nutrient-deficient) V8 juice broth, the tested strain populations were maintained at >108 cells/ml, simultaneously providing mycelial inhibitory activity. Additionally, these strains colonized pepper roots at a 106 cells/ml concentration for 7 days. The root colonization of the strains was supported by strong swimming and swarming activities, biofilm formation, and chemotactic activity towards exudate components (amino acids, organic acids, and sugars) of pepper roots. Collectively, these results suggest that strains YJR13 and YJR92 can effectively suppress Phytophthora blight of pepper through direct anti-oomycete activities against mycelial growth, zoospore germination and germ tube elongation. Bacterial colonization of pepper roots may be mediated by cell motility and biofilm formation together with chemotaxis to root exudates.
Collapse
Affiliation(s)
| | - Ki Deok Kim
- Corresponding author: Phone) +82-2-3290-3065, FAX) +82-2-925-1970, E-mail)
| |
Collapse
|
21
|
Jeong YS, Huh S, Kim JC, Park JY, Lee C, Kim MS, Koo J, Bae YS. 2-Undecanone derived from Pseudomonas aeruginosa modulates the neutrophil activity. BMB Rep 2022. [PMID: 35651330 PMCID: PMC9442345 DOI: 10.5483/bmbrep.2022.55.8.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a well-known Gram-negative opportunistic pathogen. Neutrophils play key roles in mediating host defense against P. aeruginosa infection. In this study, we identified a metabolite derived from P. aeruginosa that regulates neutrophil activities. Using gas chromatography-mass spectrometry, a markedly increased level of 2-undecanone was identified in the peritoneal fluid of P. aeruginosa-infected mice. 2-Undecanone elicited the activation of neutrophils in a Gai-phospholipase C pathway. However, 2-undecanone strongly inhibited responses to lipopolysaccharide and bactericidal activity of neutrophils against P. aeruginosa by inducing apoptosis. Our results demonstrate that 2-undecanone from P. aeruginosa limits the innate defense activity of neutrophils, suggesting that the production of inhibitory metabolites is a strategy of P. aeruginosa for escaping the host immune system.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sunghyun Huh
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Ye Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
22
|
Ye L, Wang JY, Liu XF, Guan Q, Dou NX, Li J, Zhang Q, Gao YM, Wang M, Li JS, Zhou B. Nematicidal activity of volatile organic compounds produced by Bacillus altitudinis AMCC 1040 against Meloidogyne incognita. Arch Microbiol 2022; 204:521. [PMID: 35879581 DOI: 10.1007/s00203-022-03024-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
The application of nematicidal microorganisms and their virulence factors provides more opportunities to control root-knot nematodes. Bacillus altitudinis AMCC 1040, previously isolated from suppressive soils, showed significant nematicidal activity, and in this study, nematicidal substances produced by Bacillus altitudinis AMCC 1040 were investigated. The results of the basic properties of active substances showed that these compounds have good thermal stability and passage, are resistant to acidic environment and sensitive to alkaline conditions. Further analysis showed that it is a volatile component. Using HS-SPME-GC/MS, the volatile compounds produced by Bacillus altitudinis AMCC 1040 were identified and grouped into four major categories: ethers, alcohols, ketone, and organic acids, comprising a total of eight molecules. Six of them possess nematicidal activities, including 2,3-butanedione, acetic acid, 2-isopropoxy ethylamine, 3-methylbutyric acid, 2-methylbutyric acid and octanoic acid. Our results further our understanding of the effects of Bacillus altitudinis and its nematicidal metabolites on the management of Meloidogyne incognita and may help in finding less toxic nematicides to control root knot nematodes.
Collapse
Affiliation(s)
- Lin Ye
- Agriculture College, Ningxia University, Yinchuan, Ning'xia, China
| | - Jian-Yu Wang
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an , 271018, China
| | - Xiao-Fang Liu
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an , 271018, China
| | - Qi Guan
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an , 271018, China
| | - Nong-Xiao Dou
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an , 271018, China
| | - Jian Li
- College of Food and Bioengineering, Jimei University, Xiamen, 361021, China.
| | - Qian Zhang
- Shandong Institute of Pomology, Tai'an, 271018, China
| | - Yan-Ming Gao
- Agriculture College, Ningxia University, Yinchuan, Ning'xia, China
| | - Min Wang
- Shandong Wanhao Fertilizer Co., LTD, Jinan, 25000, China
| | - Jian-She Li
- Agriculture College, Ningxia University, Yinchuan, Ning'xia, China.
| | - Bo Zhou
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an , 271018, China. .,National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, Tai'an, 271018, China.
| |
Collapse
|
23
|
Fumigant Activity of Bacterial Volatile Organic Compounds against the Nematodes Caenorhabditis elegans and Meloidogyne incognita. Molecules 2022; 27:molecules27154714. [PMID: 35897889 PMCID: PMC9330711 DOI: 10.3390/molecules27154714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
Plant-parasitic nematodes infect a diversity of crops, resulting in severe economic losses in agriculture. Microbial volatile organic compounds (VOCs) are potential agents to control plant-parasitic nematodes and other pests. In this study, VOCs emitted by a dozen bacterial strains were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry. Fumigant toxicity of selected VOCs, including dimethyl disulfide (DMDS), 2-butanone, 2-pentanone, 2-nonanone, 2-undecanone, anisole, 2,5-dimethylfuran, glyoxylic acid, and S-methyl thioacetate (MTA) was then tested against Caenorhabditis elegans. DMDS and MTA exhibited much stronger fumigant toxicity than the others. Probit analysis suggested that the values of LC50 were 8.57 and 1.43 μg/cm3 air for DMDS and MTA, respectively. MTA also showed stronger fumigant toxicity than DMDS against the root-knot nematode Meloidogyne incognita, suggesting the application potential of MTA.
Collapse
|
24
|
Diyapoglu A, Oner M, Meng M. Application Potential of Bacterial Volatile Organic Compounds in the Control of Root-Knot Nematodes. Molecules 2022; 27:4355. [PMID: 35889228 PMCID: PMC9318376 DOI: 10.3390/molecules27144355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) constitute the most damaging group of plant pathogens. Plant infections by root-knot nematodes (RKNs) alone could cause approximately 5% of global crop loss. Conventionally, chemical-based methods are used to control PPNs at the expense of the environment and human health. Accordingly, the development of eco-friendly and safer methods has been urged to supplement or replace chemical-based methods for the control of RKNs. Using microorganisms or their metabolites as biological control agents (BCAs) is a promising approach to controlling RKNs. Among the metabolites, volatile organic compounds (VOCs) have gained increasing attention because of their potential in the control of not only RKNs but also other plant pathogens, such as insects, fungi, and bacteria. This review discusses the biology of RKNs as well as the status of various control strategies. The discovery of VOCs emitted by bacteria from various environmental sources and their application potential as BCAs in controlling RKNs are specifically addressed.
Collapse
Affiliation(s)
- Ali Diyapoglu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Muhammet Oner
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan;
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| |
Collapse
|
25
|
Borrajo MP, Mondino EA, Maroniche GA, Fernández M, Creus CM. Potential of rhizobacteria native to Argentina for the control of Meloidogyne javanica. Rev Argent Microbiol 2022; 54:224-232. [PMID: 33947589 DOI: 10.1016/j.ram.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/24/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Biocontrol of the nematode Meloidogyne javanica was studied using the Argentinean strains Pseudomonas fluorescens MME3, TAE4, TAR5 and ZME4 and Bacillus sp. B7S, B9T and B19S. Pseudomonas protegens CHA0 was used as a positive control. Egg hatching and juvenile mortality were evaluated in vitro by exposure of nematodes to bacterial suspensions or their cell-free supernatants (CFS). The effect of bacteria on nematode infestation of lettuce was also studied. results showed that most of the tested strains and CFS reduced egg hatching and juvenile survival in vitro. The bacterial suspension of Bacillus sp. B9T produced the lowest hatching of eggs. Juvenile mortality was higher when M. javanica was exposed to Bacillus sp. than to Pseudomonas spp. suspensions. Except for CFS of B9T, all filtrates inhibited hatching at levels similar to or higher than the biocontrol strain P. protegens CHA0. The CFS of CHA0 showed the highest level of juvenile mortality followed by Bacillus sp. strains and P. fluorescens TAE4. None of the inoculated rhizobacteria reverted the negative effect of infestation on the aerial dry weight of lettuce plants. However, inoculation impacted on reproduction of M. javanica by reducing the development of galls and egg masses on roots and diminishing the number of individuals both on roots and in the substrate, as well as the reproduction factor. These results show that most of the analyzed native strains can control the nematode M. javanica. Among them, P. fluorescens TAE4 and Bacillus sp. B9T showed the most promising performances for the biocontrol of this pathogen and have a potential use in the formulation of commercial products.
Collapse
Affiliation(s)
- María P Borrajo
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Eduardo A Mondino
- Laboratorio de Nematología, Estación Experimental Agropecuaria INTA Balcarce, Argentina
| | - Guillermo A Maroniche
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Macarena Fernández
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia M Creus
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina.
| |
Collapse
|
26
|
Nematicidal Effects of Volatile Organic Compounds from Microorganisms and Plants on Plant-Parasitic Nematodes. Microorganisms 2022; 10:microorganisms10061201. [PMID: 35744719 PMCID: PMC9228967 DOI: 10.3390/microorganisms10061201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) are one of the most destructive plant pathogens worldwide, and controlling them is extremely challenging. Volatile organic compounds (VOCs), which naturally exist in plants and microorganisms, play an important role in the biological control of PPNs and are considered potential substances for the development of commercial nematicides. This paper summarizes the VOCs produced by microorganisms and plants as well as their toxic effects on PPNs. VOCs from 26 microbial strains and 51 plants that are active against nematodes from over the last decade were reviewed. Furthermore, the mechanisms of toxicity of some VOCs against PPNs are also illustrated.
Collapse
|
27
|
Tian XL, Zhao XM, Zhao SY, Zhao JL, Mao ZC. The Biocontrol Functions of Bacillus velezensis Strain Bv-25 Against Meloidogyne incognita. Front Microbiol 2022; 13:843041. [PMID: 35464938 PMCID: PMC9022661 DOI: 10.3389/fmicb.2022.843041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Meloidogyne incognita is obligate parasitic nematode with a wide variety of hosts that causes huge economic losses every year. In an effort to identify novel bacterial biocontrols against M. incognita, the nematicidal activity of Bacillus velezensis strain Bv-25 obtained from cucumber rhizosphere soil was measured. Strain Bv-25 could inhibit the egg hatching of M. incognita and had strong nematicidal activity, with the mortality rate of second-stage M. incognita juveniles (J2s) at 100% within 12 h of exposure to Bv-25 fermentation broth. The M. incognita genes ord-1, mpk-1, and flp-18 were suppressed by Bv-25 fumigation treatment after 48 h. Strain Bv-25 could colonize cucumber roots, with 5.94 × 107 colony-forming units/g attached within 24 h, effectively reducing the infection rate with J2s by 98.6%. The bacteria up-regulated the expression levels of cucumber defense response genes pr1, pr3, and lox1 and induced resistance to M. incognita in split-root trials. Potted trials showed that Bv-25 reduced cucumber root knots by 73.8%. The field experiment demonstrated that disease index was reduced by 61.6%, cucumber height increased by 14.4%, and yield increased by 36.5% in Bv-25-treated plants compared with control. To summarize, B. velezensis strain Bv-25 strain has good potential to control root-knot nematodes both when colonizing the plant roots and through its volatile compounds.
Collapse
Affiliation(s)
- Xue-liang Tian
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao-man Zhao
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, China
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song-yu Zhao
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, China
| | - Jian-long Zhao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen-chuan Mao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Reproductive Toxicity of Furfural Acetone in Meloidogyne incognita and Caenorhabditis elegans. Cells 2022; 11:cells11030401. [PMID: 35159211 PMCID: PMC8834415 DOI: 10.3390/cells11030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Furfural acetone (FAc) is a promising alternative to currently available nematicides, and it exhibits equivalent control efficiency on root-knot nematodes with avermectin in fields. However, its effect on the reproduction of root-knot nematode is poorly understood. In this study, the natural metabolite FAc was found to exhibit reproductive toxicity on Meloidogyne incognita and Caenorhabditis elegans. The number of germ cells of C. elegans was observed to decrease after exposure to FAc, with a reduction of 59.9% at a dose of 200 mg/L. FAc in various concentrations induced the germ-cell apoptosis of C. elegans, with an increase over six-fold in the number of apoptotic germ cells at 200 mg/L. These findings suggested that FAc decreased the brood size of nematode by inducing germ-cell apoptosis. Moreover, FAc-induced germ-cell apoptosis was suppressed by the mutation of gene hus-1, clk-2, cep-1, egl-1, ced-3, ced-4, or ced-9. The expression of genes spo-11, cep-1, and egl-1 in C. elegans was increased significantly after FAc treatment. Taken together, these results indicate that nematode exposure to FAc might inflict DNA damage through protein SPO-11, activate CEP-1 and EGL-1, and induce the core apoptosis pathway to cause germ-cell apoptosis, resulting in decreased brood size of C. elegans.
Collapse
|
29
|
Pacheco PVM, Campos VP, Terra WC, Pedroso MP, de Paula LL, da Silva MSG, Monteiro TSA, de Freitas LG. Attraction and toxicity: Ways volatile organic compounds released by Pochonia chlamydosporia affect Meloidogyne incognita. Microbiol Res 2021; 255:126925. [PMID: 34823077 DOI: 10.1016/j.micres.2021.126925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
The production of volatile organic compounds (VOCs) acting against plant-parasitic nematodes has been characterized in different fungi; however, the role of VOCs emitted by Pochonia chlamydosporia in its trophic interaction with Meloidogyne incognita is still unknown. The aim of this study was to determine the effects of VOCs emitted by P. chlamydosporia strain Pc-10 on different stages (eggs, juveniles and female) of the M. incognita life cycle. Exposure of M. incognita eggs to VOCs released by Pc-10 resulted in a reduction up to 88 % in the nematode egg hatching, when compared to the control treatments. The VOCs emitted by Pc-10 also attracted M. incognita second-stage juveniles (J2). Through gas chromatography-mass spectrometry (GC-MS), three molecules were identified from the volatiles of the strain Pc-10, with 1,4-dimethoxybenzene being the major compound. In tests performed in vitro, 1,4-dimethoxybenzene at a concentration of 1050 μg mL-1 inhibited M. incognita egg hatching by up to 78.7 % compared to the control (0 μg mL-1) and attracted M. incognita J2 in all concentrations evaluated (1, 10, 100, 1000, and 10000 μg mL-1). The 1,4-dimethoxybenzene also showed fumigant and non-fumigant nematicidal activity against M. incognita. This compound presented lethal concentration for 50 % (LC50) of M. incognita J2 ranged from 132 to 136 μg mL-1. Fumigation with 1,4-dimethoxybenzene (100 mg) reduced egg hatching by up to 89 % and killed up to 86 % of M. incognita J2 compared to the control (0 μg mL-1). In vivo, the VOCs produced by Pc-10, 1,4-dimethoxybenzene, and the combination of both (Pc-10 + 1,4-dimethoxybenzene) attracted the M. incognita J2, compared to the respective controls. To the best of our knowledge, this is the first report on the attraction of M. incognita J2 and the toxicity to eggs and J2 by VOCs from P. chlamydosporia in which 1,4-dimethoxybenzene is the main toxin and attractant.
Collapse
Affiliation(s)
| | - Vicente Paulo Campos
- Federal University of Lavras (UFLA), Department of Plant Pathology, 37200-900, Lavras, MG, Brazil.
| | - Willian César Terra
- Federal University of Lavras (UFLA), Department of Plant Pathology, 37200-900, Lavras, MG, Brazil.
| | - Marcio Pozzobon Pedroso
- Federal University of Lavras (UFLA), Department of Chemistry, 37200-900, Lavras, MG, Brazil.
| | - Letícia Lopes de Paula
- Federal University of Lavras (UFLA), Department of Plant Pathology, 37200-900, Lavras, MG, Brazil.
| | | | | | | |
Collapse
|
30
|
Mei X, Wang X, Li G. Pathogenicity and Volatile Nematicidal Metabolites from Duddingtonia flagrans against Meloidogyne incognita. Microorganisms 2021; 9:microorganisms9112268. [PMID: 34835396 PMCID: PMC8624258 DOI: 10.3390/microorganisms9112268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Plant parasitic nematodes, especially parasitic root-knot nematodes, are one of the most destructive plant pathogens worldwide. The control of plant root-knot nematodes is extremely challenging. Duddingtonia flagrans is a type of nematode-trapping fungi (NTF), which produces three-dimensional adhesive networks to trap nematodes. In this study, the pathogenicity and volatile organic compounds (VOCs) of the NTF D. flagrans against the plant root-knot nematode, Meloidogyne incognita, were investigated. The predatory process of D. flagrans trapping M. incognita was observed using scanning electron microscopy. Gas chromatography-mass spectrometry analysis of the VOCs from D. flagrans led to the identification of 52 metabolites, of which 11 main compounds were tested individually for their activity against M. incognita. Three compounds, cyclohexanamine, cyclohexanone, and cyclohexanol, were toxic to M. incognita. Furthermore, these three VOCs inhibited egg hatching of M. incognita. Cyclohexanamine showed the highest nematicidal activity, which can cause 97.93% mortality of M. incognita at 8.71 µM within 12 h. The number of hatched juveniles per egg mass after 3 days was just 8.44 when treated with 26.14 µM cyclohexanamine. This study is the first to demonstrate the nematicidal activity of VOCs produced by D. flagrans against M. incognita, which indicates that D. flagrans has the potential to biocontrol plant root-knot nematodes.
Collapse
|
31
|
Tóthné Bogdányi F, Boziné Pullai K, Doshi P, Erdős E, Gilián LD, Lajos K, Leonetti P, Nagy PI, Pantaleo V, Petrikovszki R, Sera B, Seres A, Simon B, Tóth F. Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes-A Review. Microorganisms 2021; 9:2130. [PMID: 34683451 PMCID: PMC8538326 DOI: 10.3390/microorganisms9102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
The last few years have witnessed the emergence of alternative measures to control plant parasitic nematodes (PPNs). We briefly reviewed the potential of compost and the direct or indirect roles of soil-dwelling organisms against PPNs. We compiled and assessed the most intensively researched factors of suppressivity. Municipal green waste (MGW) was identified and profiled. We found that compost, with or without beneficial microorganisms as biocontrol agents (BCAs) against PPNs, were shown to have mechanisms for the control of plant parasitic nematodes. Compost supports a diverse microbiome, introduces and enhances populations of antagonistic microorganisms, releases nematicidal compounds, increases the tolerance and resistance of plants, and encourages the establishment of a "soil environment" that is unsuitable for PPNs. Our compilation of recent papers reveals that while the scope of research on compost and BCAs is extensive, the role of MGW-based compost (MGWC) in the control of PPNs has been given less attention. We conclude that the most environmentally friendly and long-term, sustainable form of PPN control is to encourage and enhance the soil microbiome. MGW is a valuable resource material produced in significant amounts worldwide. More studies are suggested on the use of MGWC, because it has a considerable potential to create and maintain soil suppressivity against PPNs. To expand knowledge, future research directions shall include trials investigating MGWC, inoculated with BCAs.
Collapse
Affiliation(s)
| | - Krisztina Boziné Pullai
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.B.P.); (R.P.)
| | - Pratik Doshi
- ImMuniPot Independent Research Group, H-2100 Gödöllő, Hungary
| | - Eszter Erdős
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (E.E.); (K.L.)
| | - Lilla Diána Gilián
- Szent István Campus Dormitories, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary;
| | - Károly Lajos
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (E.E.); (K.L.)
| | - Paola Leonetti
- Bari Unit, Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection of the CNR, 70126 Bari, Italy; (P.L.); (V.P.)
| | - Péter István Nagy
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Vitantonio Pantaleo
- Bari Unit, Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection of the CNR, 70126 Bari, Italy; (P.L.); (V.P.)
| | - Renáta Petrikovszki
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.B.P.); (R.P.)
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Bozena Sera
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Anikó Seres
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Barbara Simon
- Department of Soil Science, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary;
| | - Ferenc Tóth
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| |
Collapse
|
32
|
Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens. Microbiol Spectr 2021; 9:e0040421. [PMID: 34378969 PMCID: PMC8552673 DOI: 10.1128/spectrum.00404-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.
Collapse
|
33
|
Cheng W, Chen Z, Zeng L, Yang X, Huang D, Zhai Y, Cai M, Zheng L, Thomashow LS, Weller DM, Yu Z, Zhang J. Control of Meloidogyne incognita in Three-Dimensional Model Systems and Pot Experiments by the Attract-and-Kill Effect of Furfural Acetone. PLANT DISEASE 2021; 105:2169-2176. [PMID: 33258435 DOI: 10.1094/pdis-07-20-1501-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Meloidogyne incognita causes large-scale losses of agricultural crops worldwide. The natural metabolite furfural acetone has been reported to attract and kill M. incognita, but whether the attractant and nematicidal activities of furfural acetone on M. incognita function simultaneously in the same system, especially in three-dimensional spaces or in soil, is still unknown. Here, we used 23% Pluronic F-127 gel and a soil simulation device to demonstrate that furfural acetone has a significant attract-and-kill effect on M. incognita in both three-dimensional model systems. At 24 h, the chemotaxis index and the corrected mortality of nematodes exposed to 60 mg/ml of furfural acetone in 23% Pluronic F-127 gel were as high as 0.82 and 74.44%, respectively. Soil simulation experiments in moist sand showed that at 48 h, the chemotaxis index and the corrected mortality of the nematode toward furfural acetone reached 0.63 and 82.12%, respectively, and the effect persisted in the presence of tomato plants. In choice experiments, nematodes selected furfural acetone over plant roots and were subsequently killed. In pot studies, furfural acetone had a control rate of 82.80% against M. incognita. Collectively, these results provide compelling evidence for further investigation of furfural acetone as a novel nematode control agent.
Collapse
Affiliation(s)
- Wanli Cheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhen Chen
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Li Zeng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xue Yang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Dian Huang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yile Zhai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, U.S. Department of Agriculture Agricultural Research Service, Pullman, WA 99164-6430, U.S.A
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, U.S. Department of Agriculture Agricultural Research Service, Pullman, WA 99164-6430, U.S.A
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
34
|
Velloso JA, Campos VP, Terra WC, Barros AF, Pedroso MP, Pedroso LA, Paula LL. Slight induction and strong inhibition of Heterodera glycines hatching by short-chain molecules released by different plant species. J Nematol 2021; 53:e2021-71. [PMID: 34337424 PMCID: PMC8324887 DOI: 10.21307/jofnem-2021-071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 11/28/2022] Open
Abstract
New management tools are necessary to reduce the damage caused by the soybean cyst nematode (SCN), Heterodera glycines. Identification of molecules that can stimulate second-stage juveniles (J2) hatching in an environment without food may contribute to that. In in vitro experiments, we evaluate the effect of volatile organic compounds (VOCs) released by soybean (Glycine max), bean (Phaseolus vulgaris), ryegrass (Lolium multiflorum), and alfalfa (Medicago sativa) on H. glycines egg hatching. VOCs released by all plant species significantly (p < 0.05) increased egg hatching. Short-chain molecules released by leaves and roots of soybean and bean increased the hatching up to 71.4%. The analysis of the volatilome done by gas chromatography coupled with mass spectrometry revealed 44 compounds in the plant emissions. Four of them, namely 3-octanol, 1-hexanol, hexanal and linalool were tested individually as hatching inductors. Under concentrations of 200, 600, and 1,000 µg/ml there was no hatching induction of H. glycines J2 by these compounds. On the other hand, in these concentrations, the compounds 3-octanol and 1-hexanol caused hatching reduction with values similar to the commercial nematicide carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methyl carbamate). In subsequent tests, the compounds 1-hexanol and 3-octanol showed lethal concentration values required to kill 50% of thenematode population (LC50) of 210 and 228 µg/ml, respectively, in the first experiment and, 230 and 124 µg/mlin the second one. Although we have not identified any molecules acting as hatching factor (HF), here we present a list (44 candidate molecules) that can be explored in future studies to find an efficient HF.
Collapse
Affiliation(s)
- Jeanny A. Velloso
- Laboratory of Nematology, Department of Plant Pathology, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais, Brazil
| | - Vicente P. Campos
- Laboratory of Nematology, Department of Plant Pathology, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais, Brazil
| | - Willian C. Terra
- Laboratory of Nematology, Department of Plant Pathology, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais, Brazil
| | - Aline F. Barros
- Laboratory of Nematology, Department of Plant Pathology, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais, Brazil
| | - Márcio P. Pedroso
- Department of Chemistry, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais, Brazil
| | - Luma A. Pedroso
- Laboratory of Nematology, Department of Plant Pathology, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais, Brazil
| | - Letícia L. Paula
- Laboratory of Nematology, Department of Plant Pathology, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais, Brazil
| |
Collapse
|
35
|
Yin N, Liu R, Zhao JL, Khan RAA, Li Y, Ling J, Liu W, Yang YH, Xie BY, Mao ZC. Volatile Organic Compounds of Bacillus cereus Strain Bc-cm103 Exhibit Fumigation Activity against Meloidogyne incognita. PLANT DISEASE 2021; 105:904-911. [PMID: 33135991 DOI: 10.1094/pdis-04-20-0783-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacillus cereus strain Bc-cm103 shows nematicidal activity and, therefore, has been used as a biological control agent to control the root-knot nematode Meloidogyne incognita. However, it remains unknown whether volatile organic compounds (VOCs) produced by B. cereus strain Bc-cm103 are effective in biocontrol against M. incognita. Therefore, in this study, we investigated the activity of Bc-cm103 VOCs against M. incognita. The B. cereus strain Bc-cm103 significantly repelled the second-stage juveniles (J2s) of M. incognita. In vitro evaluation of VOCs produced by the fermentation of Bc-cm103 in a three-compartment Petri dish revealed the mortality rates of M. incognita J2s as 90.8% at 24 h and 97.2% at 48 h. Additionally, evaluation of the ability of Bc-cm103 VOCs to suppress M. incognita infection in a double-layered pot test showed that root galls on cucumber roots decreased by 46.1%. Furthermore, 21 VOCs were identified from strain Bc-cm103 by solid-phase microextraction gas chromatography-mass spectrometry, including alkanes, alkenes, esters, and sulfides. Among them, dimethyl disulfide (30.63%) and S-methyl ester butanethioic acid (30.29%) were reported to have strong nematicidal activity. Together, these results suggest that B. cereus strain Bc-cm103 exhibits fumigation activity against M. incognita.
Collapse
Affiliation(s)
- Nan Yin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jian-Long Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Raja Asad Ali Khan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Wei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yu-Hong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bing-Yan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhen-Chuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
36
|
Bui HX, Desaeger JA. Volatile compounds as potential bio-fumigants against plant-parasitic nematodes - a mini review. J Nematol 2021; 53:e2021-14. [PMID: 33860253 PMCID: PMC8039993 DOI: 10.21307/jofnem-2021-014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Soil fumigation remains the standard practice to manage soilborne pathogens such as plant-parasitic nematodes, bacteria, and fungi, especially in high-value crops. However, increasing regulatory pressure due to the inherent and broad-spectrum toxicity and negative environmental impact of chemical soil fumigants, its negative effect on overall soil health, and increasing demand for organic produce, has created a growing interest in biological fumigants. Many plants and microorganisms emit volatile compounds, which can potentially be used as bio-fumigants. In this mini-review, we summarize the current status of nematology studies focused on the development of volatile compounds emitted from plants and microorganisms as fumigants to control plant-parasitic nematodes. The gap of knowledge and challenges of studying volatile compounds are also addressed.
Collapse
Affiliation(s)
- Hung Xuan Bui
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598
| | - Johan A. Desaeger
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598
| |
Collapse
|
37
|
Khoja S, Eltayef KM, Baxter I, Myrta A, Bull JC, Butt T. Volatiles of the entomopathogenic fungus, Metarhizium brunneum, attract and kill plant parasitic nematodes. BIOLOGICAL CONTROL : THEORY AND APPLICATIONS IN PEST MANAGEMENT 2021; 152:104472. [PMID: 33390683 PMCID: PMC7737096 DOI: 10.1016/j.biocontrol.2020.104472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 11/01/2020] [Indexed: 05/29/2023]
Abstract
Root knot nematodes (RKNs) cause significant crop losses. Although RKNs and entomopathogenic fungi, such as Metarhizium brunneum, are associated with plant roots, very little is known about the interactions between these two organisms. This study showed that conidia and VOCs of Me. brunneum influenced the behaviour of M. hapla. The response was dependent on the fungal strain, VOC, concentration of both VOC and conidia, and time. Tomatoes planted in soil treated with the highest doses of conidia usually had a higher number of nematodes than untreated control plants. This was particularly obvious for Me. brunneum strain ARSEF 4556, 7 and 14-days post-treatment. The VOCs, 1-octen-3-ol and 3-octanone, lured M. hapla to plants when used at low doses and repelled them at high doses. In Petri dish assays. the VOCs 1-octen-3-ol and 3-octanone, caused 100% mortality of M. hapla at the highest dose tested (20 µl). Very few live M. hapla were recovered from soil treated with the VOC 1-octen-3-ol, especially at the highest doses tested.
Collapse
Affiliation(s)
- Salim Khoja
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| | - Khalifa M. Eltayef
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| | - Ian Baxter
- Certis Europe BV, Stadsplateau 16, 3521 AZ Utrecht, the Netherlands
| | - Arben Myrta
- Certis Europe BV, Stadsplateau 16, 3521 AZ Utrecht, the Netherlands
| | - James C. Bull
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP. Swansea, UK
| |
Collapse
|
38
|
Abd-Elgawad MMM, Askary TH. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL 2020; 30:17. [DOI: 10.1186/s41938-020-00215-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 09/02/2023]
Abstract
AbstractBiological control agents (BCAs) are increasingly used against various plant-parasitic nematode (PPN) pests and offer a favorable alternative to hazardous chemical nematicides. Yet, their lack of efficacy, inconsistent field performance, and/or unfavorable economic factors have generally relegated them to a relatively small sector of pesticide market. Efficacy and biocontrol success can be boosted via holistic grasping of soil biological and ecological factors. Therefore, such factors were highlighted to give better directions for their use. Main points discussed currently are considered to affect the transmission success of these BCAs so that their use must be a way forward in crop protection/pest management. These included improved sampling, grasping BCAs interactions with soil biota and ecology, cost-effective use of BCAs, genetic manipulation for better PPN control, grower acceptance and awareness-raising of BCA techniques, and commercial application.
Collapse
|
39
|
Evaluation of Multiple Impacts of Furfural Acetone on Nematodes In Vitro and Control Efficiency against Root-Knot Nematodes in Pots and Fields. Antibiotics (Basel) 2020; 9:antibiotics9090605. [PMID: 32942652 PMCID: PMC7557934 DOI: 10.3390/antibiotics9090605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Root-knot nematodes (RKNs) seriously endanger agricultural development and cause great economic losses worldwide. Natural product furfural acetone (FAc) is a promising nematicide with strong attractant and nematicidal activities, but baseline information about the impact of FAc on the reproduction, egg hatching, feeding, and growth of nematodes and its pest control efficiency in field are lacking. Here, the inhibition effects of FAc on nematodes in vitro and its RKN control efficiency in pot and field were investigated. FAc inhibited the egg hatching of Meloidogyne incognita by 91.7% at 200 mg/L after 2 days and suppressed the reproduction, feeding, and growth of Caenorhabditis elegans in vitro. In pot experiments, FAc in various dosages reduced the disease index of plant root significantly. In field experiments, FAc exhibited control effect on RKNs equivalent to commercial nematicides avermectin and metam sodium, with a reduction in disease index by 36.9% at a dose of 50 mg/plant. FAc also reduced the population density of RKNs in soil, with a reduction rate of 75.3% at the dose of 750 mg/m2. No adverse effect was detected on plant growth after FAc application. These results provide compelling evidence for development of FAc as an appropriate alternative for current nematicides.
Collapse
|
40
|
Sharma N, Khanna K, Manhas RK, Bhardwaj R, Ohri P, Alkahtani J, Alwahibi MS, Ahmad P. Insights into the Role of Streptomyces hydrogenans as the Plant Growth Promoter, Photosynthetic Pigment Enhancer and Biocontrol Agent against Meloidogyne incognita in Solanum lycopersicum Seedlings. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1109. [PMID: 32867342 PMCID: PMC7570317 DOI: 10.3390/plants9091109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022]
Abstract
Root-knot nematodes (RKN), Meloidogyne sp. hinders functioning of crops and causes global losses in terms of productivity and yield. Meloidogyne sp. are microscopic, obligatory endoparasites with ubiquitous distribution in different parts of the world. Taking into consideration these aspects, the present study was conducted to explore nematicidal activity of the Streptomyces hydrogenans strain DH-16 against M. incognita to regulate its pathogenicity in plants. In-vitro experimentation revealed that pretreated seeds with solvent and culture supernatant lowered root galls in infested plants and promoted growth of Solanum lycopersicum seedlings, revealed through the morphological analysis. Additionally, antioxidative defense responses were induced with microbes. However, oxidative stress markers were considerably reduced after microbial inoculations. Apart from this, secondary metabolites were assessed and modulated in RKN infested plants on microbial supplementations. Confocal studies evaluated glutathione accumulation within root apices and its enhancement was directly proportional to defense responses. Therefore, the current study concluded the role of S. hydrogenans in stimulating antioxidant potential against RKN along with growth promoting aids. Thus, the outcome of the current study endorses that metabolites produced by S. hydrogenans can be used as safe biocontrol agents against M. incognita and also as plant growth promoting agents.
Collapse
Affiliation(s)
- Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India;
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India; (K.K.); (R.B.)
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India;
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India; (K.K.); (R.B.)
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India;
| | - Jawaher Alkahtani
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (M.S.A.)
| | - Mona S. Alwahibi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (M.S.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (M.S.A.)
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir 190001, India
| |
Collapse
|
41
|
Anderson AJ, Kim YC. Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. J Med Microbiol 2020; 69:361-371. [DOI: 10.1099/jmm.0.001157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas chlororaphisisolates have been studied intensively for their beneficial traits.P. chlororaphisspecies function as probiotics in plants and fish, offering plants protection against microbes, nematodes and insects. In this review, we discuss the classification ofP. chlororaphisisolates within four subspecies; the shared traits include the production of coloured antimicrobial phenazines, high sequence identity between housekeeping genes and similar cellular fatty acid composition. The direct antimicrobial, insecticidal and nematocidal effects ofP. chlororaphisisolates are correlated with known metabolites. Other metabolites prime the plants for stress tolerance and participate in microbial cell signalling events and biofilm formation among other things. Formulations ofP. chlororaphisisolates and their metabolites are currently being commercialized for agricultural use.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan UT84322, USA
| | - Young Cheol Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
42
|
Huang D, Yu C, Shao Z, Cai M, Li G, Zheng L, Yu Z, Zhang J. Identification and Characterization of Nematicidal Volatile Organic Compounds from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493. Molecules 2020; 25:molecules25030744. [PMID: 32050419 PMCID: PMC7037310 DOI: 10.3390/molecules25030744] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
Root-knot nematode diseases cause severe yield and economic losses each year in global agricultural production. Virgibacillus dokdonensis MCCC 1A00493, a deep-sea bacterium, shows a significant nematicidal activity against Meloidogyne incognita in vitro. However, information about the active substances of V. dokdonensis MCCC 1A00493 is limited. In this study, volatile organic compounds (VOCs) from V. dokdonensis MCCC 1A00493 were isolated and analyzed through solid-phase microextraction and gas chromatography-mass spectrometry. Four VOCs, namely, acetaldehyde, dimethyl disulfide, ethylbenzene, and 2-butanone, were identified, and their nematicidal activities were evaluated. The four VOCs had a variety of active modes on M. incognita juveniles. Acetaldehyde had direct contact killing, fumigation, and attraction activities; dimethyl disulfide had direct contact killing and attraction activities; ethylbenzene had an attraction activity; and 2-butanone had a repellent activity. Only acetaldehyde had a fumigant activity to inhibit egg hatching. Combining this fumigant activity against eggs and juveniles could be an effective strategy to control the different developmental stages of M. incognita. The combination of direct contact and attraction activities could also establish trapping and killing strategies against root-knot nematodes. Considering all nematicidal modes or strategies, we could use V. dokdonensis MCCC 1A00493 to set up an integrated strategy to control root-knot nematodes.
Collapse
Affiliation(s)
- Dian Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (C.Y.); (M.C.); (L.Z.); (Z.Y.)
| | - Chen Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (C.Y.); (M.C.); (L.Z.); (Z.Y.)
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Z.S.); (G.L.)
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (C.Y.); (M.C.); (L.Z.); (Z.Y.)
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Z.S.); (G.L.)
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (C.Y.); (M.C.); (L.Z.); (Z.Y.)
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (C.Y.); (M.C.); (L.Z.); (Z.Y.)
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (C.Y.); (M.C.); (L.Z.); (Z.Y.)
- Correspondence: ; Tel.: +86-27-87287701; Fax: +86-27-87287254
| |
Collapse
|
43
|
Habash SS, Brass HUC, Klein AS, Klebl DP, Weber TM, Classen T, Pietruszka J, Grundler FMW, Schleker ASS. Novel Prodiginine Derivatives Demonstrate Bioactivities on Plants, Nematodes, and Fungi. FRONTIERS IN PLANT SCIENCE 2020; 11:579807. [PMID: 33178246 PMCID: PMC7596250 DOI: 10.3389/fpls.2020.579807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 05/06/2023]
Abstract
Bacterial metabolites represent an invaluable source of bioactive molecules which can be used as such or serve as chemical frameworks for developing new antimicrobial compounds for various applications including crop protection against pathogens. Prodiginines are tripyrrolic, red-colored compounds produced by many bacterial species. Recently, due to the use of chemical-, bio-, or mutasynthesis, a novel group of prodiginines was generated. In our study, we perform different assays to evaluate the effects of prodigiosin and five derivatives on nematodes and plant pathogenic fungi as well as on plant development. Our results showed that prodigiosin and the derivatives were active against the bacterial feeding nematode Caenorhabditis elegans in a concentration- and derivative-dependent manner while a direct effect on infective juveniles of the plant parasitic nematode Heterodera schachtii was observed for prodigiosin only. All compounds were found to be active against the plant pathogenic fungi Phoma lingam and Sclerotinia sclerotiorum. Efficacy varied depending on compound concentration and chemical structure. We observed that prodigiosin (1), the 12 ring- 9, and hexenol 10 derivatives are neutral or even positive for growth of Arabidopsis thaliana depending on the applied compound concentration, whereas other derivatives appear to be suppressive. Our infection assays revealed that the total number of developed H. schachtii individuals on A. thaliana was decreased to 50% in the presence of compounds 1 or 9. Furthermore, female nematodes and their associated syncytia were smaller in size. Prodiginines seem to indirectly inhibit H. schachtii parasitism of the plant. Further research is needed to elucidate their mode of action. Our results indicate that prodiginines are promising metabolites that have the potential to be developed into novel antinematodal and antifungal agents.
Collapse
Affiliation(s)
- Samer S. Habash
- INRES Molecular Phytomedicine, University of Bonn, Bonn, Germany
- *Correspondence: Samer S. Habash, ; orcid.org/0000-0002-4493-1451
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - David P. Klebl
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Tim Moritz Weber
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Thomas Classen
- IBG-1: Bioorganic Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
- IBG-1: Bioorganic Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - A. Sylvia S. Schleker
- INRES Molecular Phytomedicine, University of Bonn, Bonn, Germany
- A. Sylvia S. Schleker,
| |
Collapse
|
44
|
Zhao J, Liu D, Wang Y, Zhu X, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines. PEST MANAGEMENT SCIENCE 2019; 75:3381-3391. [PMID: 31282045 DOI: 10.1002/ps.5546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The soybean cyst nematode Heterodera glycines (Ichinohe) is the most devastating pathogen affecting soybean production worldwide. Biocontrol agents have become eco-friendly candidates to control pathogens. The aim of this study was to discover novel biocontrol agents against H. glycines. RESULTS Microbacterium maritypicum Sneb159, screened from 804 strains, effectively reduced the number of females in field experiments conducted in 2014 and 2015. The stability and efficiency of H. glycines control by Sneb159 was further assessed in growth chamber and field experiments. Sneb159 decreased H. glycines population densities, especially the number of females by 43.9%-67.7%. To confirm Sneb159 induced plant resistance, a split-root assay was conducted. Sneb159 induced local and systemic resistance to suppress the penetration and development of H. glycines, and enhanced the gene expression of PR2, PR3b, and JAZ1, involved in the salicylic acid and jasmonic acid pathways. CONCLUSION This is the first report of M. maritypicum Sneb159 suppressing H. glycines infection. This effect may be the result of Sneb159-induced resistance. Our study indicates that M. maritypicum Sneb159 is a promising biocontrol agent against H. glycines. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dan Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Sciences, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
45
|
Zhai Y, Shao Z, Cai M, Zheng L, Li G, Yu Z, Zhang J. Cyclo(l-Pro⁻l-Leu) of Pseudomonas putida MCCC 1A00316 Isolated from Antarctic Soil: Identification and Characterization of Activity against Meloidogyne incognita. Molecules 2019; 24:molecules24040768. [PMID: 30791605 PMCID: PMC6412658 DOI: 10.3390/molecules24040768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas putida MCCC 1A00316 was originally isolated from an Antarctic soil and has demonstrated potential nematicidal activity. Thus, it has promising applications for the biological control of Meloidogyne incognita. The larval mortality and egg-hatching inhibition rates of M. incognita will increase with the rising concentration of culture filtrates of P. putida MCCC 1A00316 and the duration of exposure. Thus, this study aimed to separate, purify, and identify nematicidal compounds from P. putida MCCC 1A00316 and to validate their anti-M. incognita activities. Compounds were purified through silica gel column chromatography and thin-layer chromatography combined with high-performance liquid chromatography (HPLC). Structural identification was conducted through liquid chromatography time-of-flight mass spectrometry, 1H nuclear magnetic resonance (NMR) spectroscopy, 13C-NMR, and Marfey’s method. The isolated compounds were identified as cyclo(l-Pro–l-Leu) on the basis of the results of the above analyses and previously reported data. The effects of various concentrations of cyclo(l-Pro–l-Leu) on the mortality rates of second-stage juveniles (J2) of M. incognita were investigated. Results showed that HPLC-purified cyclo(l-Pro–l-Leu) displayed nematicidal activities. The mortality rate of M. incognita J2 reached 84.3% after 72 h of exposure to 67.5 mg/L cyclo(l-Pro–l-Leu). The lowest egg-hatching rate (9.74%) was observed after 8 days of incubation with 2000 mg/L cyclo(l-Pro–l-Leu). An egg-hatching rate of 53.11% was obtained under the control treatment (sterile distilled water). However, cyclo(l-Pro–l-Leu) did not elicit chemotaxis activity to M. incognita. This is the first work to investigate the anti-M. incognita characteristics of cyclo(l-Pro–l-Leu).
Collapse
Affiliation(s)
- Yile Zhai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|