1
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
2
|
Daza Prieto B, Raicevic N, Martinovic A, Ladstätter J, Zuber Bogdanovic I, Schorpp A, Stoeger A, Mach RL, Ruppitsch W, Cabal A. Genetic diversity and distinction of Enterococcus faecium and Enterococcus lactis in traditional Montenegrin brine cheeses and salamis. Front Microbiol 2024; 15:1473938. [PMID: 39723131 PMCID: PMC11668737 DOI: 10.3389/fmicb.2024.1473938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Enterococcus faecium is a widespread acid-lactic bacterium found in the environment, humans, and animal microbiota, and it also plays a role in the production of traditional food. However, the worldwide emergence of multidrug-resistant E. faecium strains represents a major public health threat and is the primary reason that the genus Enterococcus is not recommended for the Qualified Presumption of Safety (QPS) list of the European Food Safety Authority (EFSA), raising concerns about its presence in food products. Methods In this study, 39 E. faecium and 5 E. lactis isolates were obtained from artisanal brine cheeses and dry sausages, sourced from 21 different Montenegrin producers. The isolates were collected following the ISO 15214:1998 international method and processed for whole-genome sequencing (WGS). Results Genome analysis based on core genome multilocus sequence type (cgMLST) revealed a high diversity among isolates. Furthermore, the isolates carried antimicrobial resistance genes; the virulence genes acm, sgrA, and ecbA; the bacteriocin genes Enterolysin A, Enterocin A, Enterocin P, Duracin Q, Enterocin B, Bacteriocin 31, Enterocin EJ97, Sactipeptides, and Enterocin SEK4; the secondary metabolite genes T3PKS, cyclic lactone autoinducer, RiPP-like, and NRPS and a maximum of eight plasmids. Conclusion This study highlights the need for careful monitoring of E. faecium and E. lactis strains in food to ensure they do not pose any potential risks to consumer safety.
Collapse
Affiliation(s)
- Beatriz Daza Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Nadja Raicevic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
| | - Aleksandra Martinovic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
| | - Johann Ladstätter
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Ivana Zuber Bogdanovic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
| | - Anika Schorpp
- Institute for Animal Nutrition and Feed, Austrian Agency for Health and Food Safety, Linz, Austria
| | - Anna Stoeger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area of Biochemical Technology, Technical University Vienna, Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Adriana Cabal
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
3
|
Wahyudi D, Kusumasari C. Oxygen as obturation biomaterial in endodontic treatment: development of novel membranous dental restoration system. F1000Res 2024; 12:380. [PMID: 39584013 PMCID: PMC11584453 DOI: 10.12688/f1000research.132479.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 11/26/2024] Open
Abstract
Complexities in obturation and difficulties in disinfection represent significant issues that render endodontic treatment notably time-consuming. A new perspective is essential to reduce both working time and address these two challenges. To date, none of the established techniques for root canal obturation can assure a perfect seal. Solid materials are not easily manipulated to hermetically fill the intricate branches of the root canal system. Concurrently, anaerobic and facultative anaerobic bacteria, particularly Enterococcus faecalis, are predominant in discussions surrounding endodontic infections. Numerous studies have demonstrated that achieving complete disinfection of Enterococcus faecalis is exceedingly difficult, even with the use of irrigating solutions that possess strong antibacterial properties. Under anaerobic conditions, the invasion efficiency of facultative anaerobes is heightened. If irrigation and disinfection fail to entirely eliminate anaerobes and facultative anaerobes, a novel strategy is required to address the bacteria that persist within the root canal. Oxygen can easily permeate the root canal system, eradicate anaerobes, and inhibit facultative anaerobes from becoming pathogenic. Therefore, employing oxygen as a biomaterial for obturation following appropriate cleaning and shaping procedures is anticipated to address the two primary endodontic issues. This article aims to explore a new potential concept for a dental restoration system that utilizes an oxygen-permeable membrane to reduce the time required for endodontic treatment. The membrane is positioned at the orifice of a duct designed to connect the entire root canal system with ambient air outside the restoration. The function of the membrane is somewhat analogous to the masks used during the COVID-19 pandemic, as it allows for the circulation of oxygen while preventing the passage of fluids, debris, and microorganisms. We hypothesize that the oxygen circulating within the root canal system will also function as a continuously renewing antimicrobial agent.
Collapse
Affiliation(s)
- Didi Wahyudi
- Center of Excellence Biomedical and Healthcare Technology, Telkom University, Bandung, Indonesia
- Dental Cooperation Indonesia, Bandung, 40134, Indonesia
| | - Citra Kusumasari
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| |
Collapse
|
4
|
Peña N, Lafuente I, Sevillano E, Feito J, Contente D, Muñoz-Atienza E, Cintas LM, Hernández PE, Borrero J. Screening and Genomic Profiling of Antimicrobial Bacteria Sourced from Poultry Slaughterhouse Effluents: Bacteriocin Production and Safety Evaluation. Genes (Basel) 2024; 15:1564. [PMCID: PMC11675979 DOI: 10.3390/genes15121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Antimicrobial-resistant (AMR) pathogens represent a serious threat to public health, particularly in food production systems where antibiotic use remains widespread. As a result, alternative antimicrobial treatments to antibiotics are essential for effectively managing bacterial infections. This study aimed to identify and characterize novel antimicrobial peptides produced by bacteria, known as bacteriocins, as well as to recognize safe bacteriocin-producing strains, sourced from poultry slaughterhouse effluents. Methods: A total of 864 bacterial isolates were collected across eight stages of a poultry slaughter line and screened for antimicrobial activity against Gram-positive and Gram-negative indicator strains. Whole-genome sequencing (WGS) was performed on 12 selected strains, including Enterococcus faecium (6 isolates), Lactococcus lactis (1 isolate), Lactococcus garvieae (1 isolate) and Escherichia coli (4 isolates). The presence of bacteriocin gene clusters (BGC), antibiotic resistance genes (ARG), and virulence factors (VF) was analyzed. The antimicrobial activity of a novel bacteriocin was further evaluated using in vitro cell-free protein synthesis (IV-CFPS). Results: WGS revealed multiple BGCs, including a novel class IId bacteriocin, lactococcin P1A (LcnP1A), in L. lactis SWD9. LcnP1A showed antimicrobial activity against various indicator strains, including Listeria monocytogenes . While most bacteriocin-encoding strains harbored ARGs and VFs, E. faecium SWG6 was notable for its absence of ARGs and minimal VFs, highlighting its potential as a probiotic. Conclusions : These findings underscore the importance of discovering novel bacteriocins and safer bacteriocin producing strains to address antimicrobial resistance in the food chain. Further research would validate the efficacy of both the novel lactococcin P1A bacteriocin and the E. faecium SWG6 isolate for application in processed food and animal production systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain; (N.P.); (I.L.); (E.S.); (J.F.); (D.C.); (E.M.-A.); (L.M.C.); (P.E.H.)
| |
Collapse
|
5
|
Miri S, Hassan H, Esmail GA, Njoku EN, Chiba M, Yousuf B, Ahmed TAE, Hincke M, Mottawea W, Hammami R. A Two Bacteriocinogenic Ligilactobacillus Strain Association Inhibits Growth, Adhesion, and Invasion of Salmonella in a Simulated Chicken Gut Environment. Probiotics Antimicrob Proteins 2024; 16:2021-2038. [PMID: 37646968 DOI: 10.1007/s12602-023-10148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
In this study, we aimed to develop a protective probiotic coculture to inhibit the growth of Salmonella enterica serovar Typhimurium in the simulated chicken gut environment. Bacterial strains were isolated from the digestive mucosa of broilers and screened in vitro against Salmonella Typhimurium ATCC 14028. A biocompatibility coculture test was performed, which identified two biocompatible strains, Ligilactobacillus salivarius UO.C109 and Ligilactobacillus saerimneri UO.C121 with high inhibitory activity against Salmonella. The cell-free supernatant (CFS) of the selected isolates exhibited dose-dependent effects, and the inhibitory agents were confirmed to be proteinaceous by enzymatic and thermal treatments. Proteome and genome analyses revealed the presence of known bacteriocins in the CFS of L. salivarius UO.C109, but unknown for L. saerimneri UO.C121. The addition of these selected probiotic candidates altered the bacterial community structure, increased the diversity of the chicken gut microbiota challenged with Salmonella, and significantly reduced the abundances of Enterobacteriaceae, Parasutterlla, Phascolarctobacterium, Enterococcus, and Megamonas. It also modulated microbiome production of short-chain fatty acids (SCFAs) with increased levels of acetic and propionic acids after 12 and 24 h of incubation compared to the microbiome challenged with S. Typhimurium. Furthermore, the selected probiotic candidates reduced the adhesion and invasion of Salmonella to Caco-2 cells by 37-39% and 51%, respectively, after 3 h of incubation, compared to the control. These results suggest that the developed coculture probiotic strains has protective activity and could be an effective strategy to control Salmonella infections in poultry.
Collapse
Affiliation(s)
- Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Emmanuel N Njoku
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Tamer A E Ahmed
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, K1H8M5, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, K1H8M5, Ottawa, ON, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Modasiya I, Mori P, Maniya H, Chauhan M, Grover CR, Kumar V, Sarkar AK. In Vitro Screening of Bacterial Isolates From Dairy Products for Probiotic Properties and Other Health-Promoting Attributes. Food Sci Nutr 2024; 12:10756-10769. [PMID: 39723103 PMCID: PMC11666839 DOI: 10.1002/fsn3.4537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 12/28/2024] Open
Abstract
The present research was aimed to isolate potential probiotic organisms from dairy products locally made in and around the Saurashtra region of Gujarat. A total of 224 colonies were screened for primary attributes. Based on the results, 70 isolates were carried further for secondary screening. Out of these, only 23 isolates were further tested for antioxidant activities. Only 6 potential probiotic strains were found to have all the probiotic attributes. These isolates demonstrated survivability up to 4 h at pH ≤ 3, bile concentration ≥ 1.5%, autoaggregation ability ≥ 81.08%, and cell surface hydrophobicity more than 70% while using toluene as the test hydrocarbon. The promising six isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to the genus Bacillus, Enterococcus, and Lactobacillus. The isolates demonstrated higher antioxidant potential as determined by ABTS, DPPH, and FRAP methods. For all three methods, L. rhamnosus was taken as a positive control that showed 85.61%, 39.56%, and 78.18% reduction of free radicals as determined by the ABTS, DPPH, and FRAP methods, respectively. Compared to this, Limosilactobacillus fermentum BAB 7912 demonstrated the highest reduction of ABTS radicals (83.45%), while Bacillus subtilis BAB 7918 reduced 29.95% DPPH free radicals and Bacillus spizizenii BAB 7915 reduced 80.93% ferric ions as determined by the FRAP method. Isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to genus Bacillus, Enterococcus, and Lactobacillus.
Collapse
Affiliation(s)
- Ishita Modasiya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Priya Mori
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Hina Maniya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Mehul Chauhan
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Chand Ram Grover
- Symbiotics, Functional Food and Bioremediation Lab, Dairy Microbiology DivisionICAR‐N.D.R.IKarnalHaryanaIndia
| | - Vijay Kumar
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | | |
Collapse
|
7
|
Goya-Jorge E, Gonza I, Bondue P, Druart G, Al-Chihab M, Boutaleb S, Douny C, Scippo ML, Thonart P, Delcenserie V. Evaluation of Four Multispecies Probiotic Cocktails in a Human Colonic Fermentation Model. Probiotics Antimicrob Proteins 2024; 16:2102-2115. [PMID: 37725305 DOI: 10.1007/s12602-023-10162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Bacteriotherapy represents an attractive approach for both prophylaxis and treatment of human diseases. However, combining probiotic bacteria in "cocktails" is underexplored, despite its potential as an alternative multi-target therapy. Herein, three-strain probiotic mixtures containing different combinations of Bacillus (Bc.) coagulans [ATB-BCS-042], Levilactobacillus (Lv.) brevis [THT 0303101], Lacticaseibacillus (Lc.) paracasei [THT 031901], Bacillus subtilis subsp. natto [ATB-BSN-049], Enterococcus faecium [ATB-EFM-030], and Bifidobacterium (Bf.) animalis subsp. lactis [THT 010802] were prepared. Four cocktails (PA: Bc. coagulans + Lv. brevis + Lc. paracasei, PB: Bc. subtilis subsp. natto + Lv. brevis + Lc. paracasei, PC: E. faecium + Lv. brevis + Lc. paracasei, PD: Bc. coagulans + Lv. brevis + Bf. animalis subsp. lactis) were tested using a short-term (72 h) simulation of the human colonic microbiota in a final dose of 6 × 109 CFU. All these probiotic mixtures significantly increased butyrate production compared to the parallel control experiment. PA and PB promoted a bifidogenic effect and facilitated lactobacilli colonization. Furthermore, reporter gene assays using the AhR_HT29-Lucia cell line revealed that fermentation supernatants from PA and PB notably induced AhR transactivity. Subsequent examination of the metabolic outputs of PA and PB in intestinal epithelial models using cell culture inserts suggested no significant impact on the transepithelial electrical resistance (TEER). Assessment of the expression of proinflammatory and anti-inflammatory cytokines, as well as AhR-related target genes in the Caco-2 cell monolayers indicated that PB's metabolic output upregulated most of the measured endpoints. This in vitro investigation evaluated the potential impact of four multispecies probiotic mixtures in the human colonic microbiota and identified a promising formulation comprising a combination of Bc. subtilis subsp. natto, Lv. brevis, and Lc. paracasei as a promising formulation for further study.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Pauline Bondue
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Germain Druart
- Lacto Research Sprl, Rue Herman Méganck 21, 5032, Isnes-Gembloux, Belgium
| | - Mohamed Al-Chihab
- Lacto Research Sprl, Rue Herman Méganck 21, 5032, Isnes-Gembloux, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium
| | - Philippe Thonart
- Lacto Research Sprl, Rue Herman Méganck 21, 5032, Isnes-Gembloux, Belgium
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000, Liège, Belgium.
| |
Collapse
|
8
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2024. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Thacharodi A, Hassan S, Ahmed ZHT, Singh P, Maqbool M, Meenatchi R, Pugazhendhi A, Sharma A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. ENVIRONMENTAL RESEARCH 2024; 261:119661. [PMID: 39043353 DOI: 10.1016/j.envres.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ruminants release enteric methane into the atmosphere, significantly increasing greenhouse gas emissions and degrading the environment. A common focus of traditional mitigation efforts is on dietary management and manipulation, which may have limits in sustainability and efficacy, exploring the potential of essential microorganisms as a novel way to reduce intestinal methane emissions in ruminants; a topic that has garnered increased attention in recent years. Fermentation and feed digestion are significantly aided by essential microbes found in the rumen, such as bacteria, fungi, and archaea. The practical implications of the findings reported in various studies conducted on rumen gut concerning methane emissions may pave the way to understanding the mechanisms of CH4 production in the rumen to enhance cattle feed efficiency and mitigate CH4 emissions from livestock. This review discussed using essential bacteria to reduce intestinal methane emissions in ruminants. It investigates how particular microbial strains or consortia can alter rumen fermentation pathways to lower methane output while preserving the health and productivity of animals. We also describe the role of probiotics and prebiotics in managing methane emissions using microbial feed additives. Further, recent studies involving microbial interventions have been discussed. The use of new methods involving functional metagenomics and meta-transcriptomics for exploring the rumen microbiome structure has been highlighted. This review also emphasizes the challenges faced in altering the gut microbiome and future directions in this area.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Z H Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Mohsin Maqbool
- Sidney Kimmel Cancer Center, Jefferson Health, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
10
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024; 281:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
11
|
Liu S, Ren J, Li J, Yu D, Xu H, He F, Li N, Zou L, Cao Z, Wen J. Characterizing the gut microbiome of diarrheal mink under farmed conditions: A metagenomic analysis. PLoS One 2024; 19:e0312821. [PMID: 39475924 PMCID: PMC11524518 DOI: 10.1371/journal.pone.0312821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
This study aimed to comprehensively characterize the gut microbiota in diarrheal mink. We conducted Shotgun metagenomic sequencing on samples from five groups of diarrheal mink and five groups of healthy mink. The microbiota α-diversity and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology did not show significant differences between the groups. However, significant differences were observed in microbiota β-diversity and the function of carbohydrate-active enzymes (CAZymes) between diarrheal and healthy mink. Specifically, The relative abundance of Firmicutes was lower, whereas that of Bacteroidetes was higher in diarrheal mink. Fusobacteria were enriched as invasive bacteria in the gut of diarrheal mink compared with healthy mink. In addition, Escherichia albertii was identified as a new bacterium in diarrheal mink. Regarding functions, nicotinate and nicotinamide metabolism and glycoside hydrolases 2 (GH2) family were the enhanced KEGG orthology and CAZymes in diarrheal mink. Furthermore, the diversity and number of antibiotic-resistant genes were significantly higher in the diarrheal mink group than in the healthy group. These findings enhance our understanding of the gut microbiota of adult mink and may lead to new approaches to the diagnosis and treatment of mink diarrhea.
Collapse
Affiliation(s)
- Shuo Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jianwei Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiyuan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Detao Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hang Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Fang He
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Nianfeng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jianxin Wen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Badr L, Yasir M, Alkhaldy AA, Soliman SA, Ganash M, Turkistani SA, Jiman-Fatani AA, Al-Zahrani IA, Azhar EI. Genomic evaluation of the probiotic and pathogenic features of Enterococcus faecalis from human breast milk and comparison with the isolates from animal milk and clinical specimens. PeerJ 2024; 12:e18392. [PMID: 39494274 PMCID: PMC11529597 DOI: 10.7717/peerj.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Enterococcus faecalis is considered a probiotic, commensal lactic acid bacterium in human breast milk (HBM), but there are circulating antibiotic resistant and virulence determinants that could pose a risk in some strains. The study aimed to conduct genomic analysis of E. faecalis isolates recovered from HBM and animal milk and to evaluate their probiotic and pathogenic features through comparative genomics with isolates from clinical specimens (e.g., urine, wound, and blood). Genomic analysis of 61 isolates was performed, including E. faecalis isolates recovered from HBM in Saudi Arabia. Genome sequencing was conducted using the MiSeq system. The fewest antibiotic resistance genes (lsaA, tetM, ermB) were identified in isolates from HBM and animal milk compared to clinical isolates. Several known and unknown mutations in the gyrA and parC genes were observed in clinical isolates. However, 11 virulence genes were commonly found in more than 95% of isolates, and 13 virulence genes were consistently present in the HBM isolates. Phylogenetically, the HBM isolates from China clustered with the probiotic reference strain Symbioflor 1, but all isolates from HBM and animal milk clustered separately from the clinical reference strain V583. Subsystem functions 188 of 263 were common in all analyzed genome assemblies. Regardless of the source of isolation, genes associated with carbohydrate metabolism, fatty acid, and vitamin biosynthesis were commonly found in E. faecalis isolates. In conclusion, comparative genomic analysis can help distinguish the probiotic or pathogenic potential of E. faecalis based on genomic features.
Collapse
Affiliation(s)
- Lobna Badr
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Areej A. Alkhaldy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samah A. Soliman
- Department of Nursing, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safaa A. Turkistani
- Medical Laboratory Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Asif A. Jiman-Fatani
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A. Al-Zahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I. Azhar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Geniş B, Öztürk H, Özden Tuncer B, Tuncer Y. Safety assessment of enterocin-producing Enterococcus strains isolated from sheep and goat colostrum. BMC Microbiol 2024; 24:391. [PMID: 39375633 PMCID: PMC11457484 DOI: 10.1186/s12866-024-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND This study investigates the safety evaluation of enterocin-producing 11 E. mundtii and two E. faecium strains previously isolated from small livestock colostrums. Enterococcus species do not possess Generally Recognized as Safe (GRAS) status. Hence, it is critical to scrutinize enterococci's antibiotic resistance, virulence characteristics, and biogenic amine production capabilities in order to assess their safety before using them as starter or adjunct cultures. RESULTS Enterococcus strains showed susceptibility to medically significant antibiotics. Multiple-drug resistance (MDR) was found in only E. faecium HC121.4, and its multiple antibiotic resistance (MAR) index was detected to be 0.22. The tetL and aph(3')-IIIa were the most commonly found antibiotic resistance genes in the strains. However, E. mundtii strains HC56.3, HC73.1, HC147.1, and E. faecium strain HC121.4 were detected to lack any of the antibiotic resistance genes examined in this study. Only E. mundtii HC166.3 showed hemolytic activity, while none of the strains engage in gelatinase activity. The strains were identified to have virulence factor genes with a low rate. None of the virulence factor genes could be detected in E. mundtii HC26.1, HC56.3, HC73.1, HC165.3, HC166.8, and E. faecium HC121.4. The E. mundtii HC73.2 strain displayed the highest presence of virulence factor genes, namely gelE, efaAfs, cpd, and ccf. Similarly, the E. mundtii HC112.1 strain showed a significant presence of genes efaAfm, ccf, and acm. There was no decarboxylation of histidine, ornithine, or lysine seen in any of the strains. Nevertheless, E. faecium HC121.4 and HC161.1 strains could decarboxylate tyrosine, but E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC147.1, HC155.2, HC165.3, HC166.3, HC166.5, and HC166.8 strains only showed a limited capacity for tyrosine decarboxylation. None of the strains possessed the hdc, odc, or ldc genes, but all of them had the tdc gene. CONCLUSION The E. mundtii HC56.3 and HC73.1 strains were deemed appropriate for utilization in food production. Using the remaining 11 strains as live cultures in food production activities could pose a possible risk to consumer health.
Collapse
Affiliation(s)
- Burak Geniş
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Hüseyin Öztürk
- Department of Food Technology, Manavgat Vocational School, Akdeniz University, Antalya, 07600, Türkiye
| | - Banu Özden Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Yasin Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye.
| |
Collapse
|
14
|
Ha JS, Kim JW, Lee NK, Paik HD. Antioxidative and immunity-enhancing effects of heat-killed probiotic Enterococcus faecium KU22001 without toxin or antibiotic resistance. Microb Pathog 2024; 195:106875. [PMID: 39173849 DOI: 10.1016/j.micpath.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
This study evaluated the probiotic properties, safety profile, and antioxidative and immune system-enhancing effects of Enterococcus faecium strains isolated from human infant feces. E. faecium KU22001, E. faecium KU22002, and E. faecium KU22005 exhibited potential probiotic properties; however, to eliminate concerns about toxin production and antibiotic resistance, the E. faecium strains were heat-treated prior to experimental usage. E. faecium KU22001 showed the highest antioxidant activity and lowest reactive oxygen species production among the three strains. The immune system-enhancing effects of heat-killed E. faecium strains were evaluated using a nitric oxide assay. E. faecium KU22001 induced an increase in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, and proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in RAW 264.7 cells. Furthermore, E. faecium KU22001 activated the mitogen-activated protein kinase pathway, which was a key regulator of the immune system. These results demonstrate the potential use of E. faecium KU22001 as a multifunctional food material.
Collapse
Affiliation(s)
- Jun-Su Ha
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong-Woo Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Qi P, Chen X, Tian J, Zhong K, Qi Z, Li M, Xie X. The gut homeostasis-immune system axis: novel insights into rheumatoid arthritis pathogenesis and treatment. Front Immunol 2024; 15:1482214. [PMID: 39391302 PMCID: PMC11464316 DOI: 10.3389/fimmu.2024.1482214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis is a widely prevalent autoimmune bone disease that imposes a significant burden on global healthcare systems due to its increasing incidence. In recent years, attention has focused on the interaction between gut homeostasis and the immune system, particularly in relation to bone health. Dysbiosis, which refers to an imbalance in the composition and function of the gut microbiota, has been shown to drive immune dysregulation through mechanisms such as the release of pro-inflammatory metabolites, increased gut permeability, and impaired regulatory T cell function. These factors collectively contribute to immune system imbalance, promoting the onset and progression of Rheumatoid arthritis. Dysbiosis induces both local and systemic inflammatory responses, activating key pro-inflammatory cytokines such as tumor necrosis factor-alpha, Interleukin-6, and Interleukin-17, which exacerbate joint inflammation and damage. Investigating the complex interactions between gut homeostasis and immune regulation in the context of Rheumatoid arthritis pathogenesis holds promise for identifying new therapeutic targets, revealing novel mechanisms of disease progression, and offering innovative strategies for clinical treatment.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kexin Zhong
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhonghua Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Menghan Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
16
|
Li J, Tian X, Hsiang T, Yang Y, Shi C, Wang H, Li W. Microbial Community Structure and Metabolic Function in the Venom Glands of the Predatory Stink Bug, Picromerus lewisi (Hemiptera: Pentatomidae). INSECTS 2024; 15:727. [PMID: 39336695 PMCID: PMC11432061 DOI: 10.3390/insects15090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
The predatory stink bug, Picromerus lewisi (Hemiptera: Pentatomidae), is an important and valuable natural enemy of insect pests in their ecosystems. While insects are known to harbor symbiotic microorganisms, and these microbial symbionts play a crucial role in various aspects of the host's biology, there is a paucity of knowledge regarding the microbiota present in the venom glands of P. lewisi. This study investigated the venom glands of adult bugs using both traditional in vitro isolation and cultural methods, as well as Illumina high-throughput sequencing technology. Additionally, the carbon metabolism of the venom gland's microorganisms was analyzed using Biolog ECO metabolic phenotyping technology. The results showed 10 different culturable bacteria where the dominant ones were Enterococcus spp. and Lactococcus lactis. With high-throughput sequencing, the main bacterial phyla in the microbial community of the venom glands of P. lewisi were Proteobacteria (78.1%) and Firmicutes (20.3%), with the dominant bacterial genera being Wolbachia, Enterococcus, Serratia, and Lactococcus. At the fungal community level, Ascomycota accounted for the largest proportion (64.1%), followed by Basidiomycota (27.6%), with Vishniacozyma, Cladosporium, Papiliotrema, Penicillium, Fusarium, and Aspergillus as the most highly represented fungal genera. The bacterial and fungal community structure of the venom glands of P. lewisi exhibited high species richness and diversity, along with a strong metabolism of 22 carbon sources. Functional prediction indicated that the primary dominant function of P. lewisi venom-gland bacteria was metabolism. The dominant eco-functional groups of the fungal community included undefined saprotroph, fungal parasite-undefined saprotroph, unassigned, endophyte-plant pathogen, plant pathogen-soil saprotroph-wood saprotroph, animal pathogen-endophyte-plant pathogen-wood saprotroph, plant pathogen, and animal pathogen-endophyte-epiphyte-plant pathogen-undefined saprotroph. These results provide a comprehensive characterization of the venom-gland microbiota of P. lewisi and demonstrate the stability (over one week) of the microbial community within the venom glands. This study represents the first report on the characterization of microbial composition from the venom glands of captive-reared P. lewisi individuals. The insights gained from this study are invaluable for future investigations into P. lewisi's development and the possible interactions between P. lewisi's microbiota and some Lepidopteran pests.
Collapse
Affiliation(s)
- Jinmeng Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xu Tian
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Yuting Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Caihua Shi
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
17
|
Kim Y, Lee JH, Ha J, Cho EG. Isolation, genomic analysis and functional characterization of Enterococcus rotai CMTB-CA6, a putative probiotic strain isolated from a medicinal plant Centella asiatica. Front Microbiol 2024; 15:1452127. [PMID: 39323893 PMCID: PMC11423741 DOI: 10.3389/fmicb.2024.1452127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024] Open
Abstract
Probiotics and their derivatives offer significant health benefits by supporting digestive health, boosting the immune system, and regulating the microbiomes not only of the internal gastrointestinal track but also of the skin. To be effective, probiotics and their derivatives must exhibit robust antimicrobial activity, resilience to adverse conditions, and colonization capabilities in host tissues. As an alternative to animal-derived probiotics, plant-derived lactic acid bacteria (LAB) present promising advantages, including enhanced diversity and tolerance to challenging environments. Our study focuses on exploring the potential of plant-derived LAB, particularly from the medicinal plant Centella asiatica, in improving skin conditions. Through a bacterial isolation procedure from C. asiatica leaves, Enterococcus rotai CMTB-CA6 was identified via 16S rRNA sequencing, whole genome sequencing, and bioinformatic analyses. Based on genomic analysis, antimicrobial-resistance and virulence genes were not detected. Additionally, the potential functions of E. rotai CMTB-CA6 were characterized by its lysates' ability to regulate skin microbes, such as stimulating the growth of Staphylococcus epidermidis while inhibiting that of Cutibacterium acnes, to restore the viability of human dermal fibroblasts under inflammatory conditions, and to demonstrate effective antioxidant activities both in a cell-free system and in human dermal fibroblasts. Our investigation revealed the efficacy of E. rotai CMTB-CA6 lysates in improving skin conditions, suggesting its potential use as a probiotic-derived agent for skin care products. Considering the ecological relationship between plant-inhabited bacteria and their host plants, we suggest that the utilization of E. rotai CMTB-CA6 strain for fermenting its host plant, C. asiatica, could be a novel approach to efficiently enriching bioactive molecules for human health benefits.
Collapse
Affiliation(s)
- Yunsik Kim
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam, Republic of Korea
| | - Jin Hee Lee
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam, Republic of Korea
| | - Jimyeong Ha
- Consumer Health 1 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam, Republic of Korea
| | - Eun-Gyung Cho
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam, Republic of Korea
- H&B Science Center, CHA Meditech Co., Ltd., Seongnam, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
18
|
Qiao C, Bian S, Huang H, Xiao H, Ma L, Han R. Impact of ovalbumin allergy on oral and gut microbiome dynamics in 6-week-old BALB/c mice. Front Microbiol 2024; 15:1439452. [PMID: 39290514 PMCID: PMC11406088 DOI: 10.3389/fmicb.2024.1439452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The gut microbiota is known to have a significant impact on the development of food allergy, and several recent studies have suggested that both oral microbiota, which first come into contact with allergenic foods, may have a profound influence on the development of food allergy. Methods In this study, we have established an ovalbumin-sensitive mice model by utilizing ovalbumin as a sensitizing agent. Subsequently, we performed a comprehensive analysis of the gut and oral microbiota in ovalbumin-sensitive mice and the control mice using full-length 16S rRNA sequencing analysis. Results Interestingly, both the gut and oral microbiota of ovalbumin-sensitized mice exhibited significant dysbiosis. The relative abundance of s__Lactobacillus_intestinalis in the gut microbiota of ovalbumin-sensitive mice exhibited a significant decrease, whereas the abundance of s__Agrobacterium_radiobacter and s__Acinetobacter_sp__CIP_56_2 displayed a significant increase. Furthermore, the relative abundance of s__unclassified_g__Staphylococcus, s__Streptococcus_hyointestinalis, and s__unclassified_g__Dechloromonas in the oral microbiota of ovalbumin-sensitive mice revealed a significant decrease. In contrast, the abundance of 63 other species, including s__Proteiniclasticum_ruminis, s__Guggenheimella_bovis, and s__Romboutsia_timonensis, demonstrated a significant increase. The random forest classifier achieved the best accuracy in predicting the outcome of food allergy using three gut and three oral biomarkers, with accuracies of 94.12 and 100%, respectively. Based on the predictions of the PICRUSt2 analysis, the only consistent finding observed across multiple samples from both the groups of mice was a significant up-regulation of the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway in the ovalbumin-sensitized mice. Conclusion Our study demonstrates that ovalbumin-sensitized mice experience substantial alterations in both gut and oral microbial composition and structure, and specific strains identified in this study may serve as potential biomarkers for food allergy screening. Moreover, our findings highlight that the oral environment, under the same experimental conditions, exhibited greater precision in detecting a larger number of species. Additionally, it is worth noting that the NOD-like receptor signaling pathway plays a vital role in the pathogenesis of OVA (ovalbumin)-induced allergy. These findings will generate novel concepts and strategies in the realm of food allergy prevention and treatment.
Collapse
Affiliation(s)
- Chuanyue Qiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Stomatology, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Shuang Bian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Hao Huang
- Department of Stomatology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Han Xiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Rui Han
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Che S, Qin B, Wu K, Zhu M, Hu H, Peng C, Wang Z, Yin Y, Xia Y, Wu M. EGCG drives gut microbial remodeling-induced epithelial GPR43 activation to lessen Th1 polarization in colitis. Redox Biol 2024; 75:103291. [PMID: 39116526 PMCID: PMC11363845 DOI: 10.1016/j.redox.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Modulation of immune microenvironment is critical for inflammatory bowel disease (IBD) intervention. Epigallocatechin gallate (EGCG), as a natural low toxicity product, has shown promise in treating IBD. However, whether and how EGCG regulates the intestinal microenvironment is not fully understood. Here we report that EGCG lessens colitis by orchestrating Th1 polarization and self-amplification in a novel manner that required multilevel-regulated intestinal microecosystem. Mechanistically, EGCG activates GPR43 on IEC to inhibit Th1 polarization dependently of short chain fatty acid (SCFA)-producing gut microbiota. Inhibition of GPR43 activity weakens the protective effects of EGCG on colitis development. Moreover, we confirm that fecal SCFAs and/or intestinal GPR43 are limited in patients with colitis and are correlated with Th1 cell number. Taken together, our study reveals an intestinal microenvironment-dependent immunoregulatory effects of EGCG in treating IBD and provides insight into mechanisms of EGCG-based novel immunotherapeutic strategies for IBD.
Collapse
Affiliation(s)
- Siyan Che
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Beibei Qin
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Kunfu Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - Han Hu
- Institute of Apicultural Research/State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Can Peng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital of Central South University; Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| | - Yulong Yin
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Miaomiao Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
20
|
Pires BRB, de Paoli F, Mencalha AL, de Souza da Fonseca A. Photodynamic therapy on mRNA levels in bacteria. Lasers Med Sci 2024; 39:229. [PMID: 39214913 DOI: 10.1007/s10103-024-04179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) has shown efficacy in inactivating different bacterial species by photosensitizer-induced free radical production. Despite aPDT is considered unable to cause resistant strains, enzymatic pathways for detoxification of reactive oxygen species and transmembrane photosensitizer efflux systems could cause resistance to aPDT. Resistance mechanisms can be evaluated by measurement of mRNA from by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Thus, the aim of this study was to access the mRNA level data obtained by RT-qPCR in bacterial cells submitted to photodynamic therapy. Studies performed on mRNA levels in bacteria after PDT were assessed on MEDLINE/Pubmed. The mRNA levels from genes related to various functions have been successfully evaluated in both Gram-positive and -negative bacteria after aPDT by RT-qPCR. Such an approach has improved the understanding of aPDT-induced effects, and reinforced the effectiveness of aPDT on bacteria, which can cause infections in different human tissues.
Collapse
Affiliation(s)
- Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, 36036900, Minas Gerais, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil.
| |
Collapse
|
21
|
Cherif W, Ktari L, Hassen B, Ismail A, El Bour M. Epibiotic Bacteria Isolated from the Non-Indigenous Species Codium fragile ssp. fragile: Identification, Characterization, and Biotechnological Potential. Microorganisms 2024; 12:1803. [PMID: 39338477 PMCID: PMC11434462 DOI: 10.3390/microorganisms12091803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 09/30/2024] Open
Abstract
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological properties beneficial for applications in both industry and medicine. In this study, we assess the diversity of culturable bacterial community of the invasive alga Codium fragile ssp. fragile with the aim to identify key groups within this epiphytic community. Seaweed samples were collected from the Northern Tunisian coast. A total of fifty bacteria were isolated in pure culture. These bacterial strains were identified by amplification of the ribosomal intergenic transcribed spacer between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. Antimicrobial activity, biochemical, and antibiotic resistance profile characterization were determined for the isolates. Isolated strains were tested for their antimicrobial potential against human and fish bacterial pathogens and the yeast Candida albicans, using the in vitro drop method. About 37% of isolated strains possess antibacterial activity with a variable antimicrobial spectrum. Ba1 (closely related to Pseudoalteromonas spiralis), Ba12 (closely related to Enterococcus faecium), and Bw4 (closely related to Pseudoalteromonas sp.) exhibited strong antimicrobial activity against E. coli. The isolated strain Ba4, closely related to Serratia marcescens, demonstrated the most potent activity against pathogens. The susceptibility of these strains to 12 commonly used antibiotics was investigated. Majority of the isolates were resistant to oxacillin, cefoxitin, tobramycin, and nitrofurantoin. Ba7 and Ba10, closely related to the Vibrio anguillarum strains, had the highest multidrug resistance profiles. The enzymes most commonly produced by the isolated strains were amylase, lecithinase, and agarase. Moreover, nine isolates produced disintegration zones around their colonies on agar plates with agarolitic index, ranging from 0.60 to 2.38. This investigation highlighted that Codium fragile ssp. fragile possesses an important diversity of epiphytic bacteria on its surface that could be cultivated in high biomass and may be considered for biotechnological application and as sources of antimicrobial drugs.
Collapse
Affiliation(s)
| | - Leila Ktari
- National Institute of Marine Sciences and Technologies (INSTM), University of Carthage, Tunis 2025, Tunisia; (W.C.); (B.H.); (A.I.)
| | | | | | - Monia El Bour
- National Institute of Marine Sciences and Technologies (INSTM), University of Carthage, Tunis 2025, Tunisia; (W.C.); (B.H.); (A.I.)
| |
Collapse
|
22
|
Herrera G, Castañeda S, Arboleda JC, Pérez-Jaramillo JE, Patarroyo MA, Ramírez JD, Muñoz M. Metagenome-assembled genomes (MAGs) suggest an acetate-driven protective role in gut microbiota disrupted by Clostridioides difficile. Microbiol Res 2024; 285:127739. [PMID: 38763016 DOI: 10.1016/j.micres.2024.127739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Clostridioides difficile may have a negative impact on gut microbiota composition in terms of diversity and abundance, thereby triggering functional changes supported by the differential presence of genes involved in significant metabolic pathways, such as short-chain fatty acids (SCFA). This work has evaluated shotgun metagenomics data regarding 48 samples from four groups classified according to diarrhea acquisition site (community- and healthcare facility-onset) and positive or negative Clostridioides difficile infection (CDI) result. The metagenomic-assembled genomes (MAGs) obtained from each sample were taxonomically assigned for preliminary comparative analysis concerning differences in composition among groups. The predicted genes involved in metabolism, transport, and signaling remained constant in microbiota members; characteristic patterns were observed in MAGs and genes involved in SCFA butyrate and acetate metabolic pathways for each study group. A decrease in genera and species, as well as relative MAG abundance with the presence of the acetate metabolism-related gene, was evident in the HCFO/- group. Increased antibiotic resistance markers (ARM) were observed in MAGs along with the genes involved in acetate metabolism. The results highlight the need to explore the role of acetate in greater depth as a potential protector of the imbalances produced by CDI, as occurs in other inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan Camilo Arboleda
- Unidad de Bioprospección and Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia; Semillero de Investigación en Bioinformática - GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia; Grupo de Fundamentos y Enseñanza de la Física y las Sistemas Dinámicas, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Juan E Pérez-Jaramillo
- Unidad de Bioprospección and Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia; Semillero de Investigación en Bioinformática - GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia; Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
23
|
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks. Animals (Basel) 2024; 14:2120. [PMID: 39061581 PMCID: PMC11274025 DOI: 10.3390/ani14142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were randomly assigned to two groups, each with 15 replicates of two minks per replicate. The minks in two groups were fed the basal diets and the basal diets with viable Enterococcus faecium (more than 107 cfu/kg of diet), respectively. Compared with the minks in control, Enterococcus faecium minks had heavier body weight (BW) at week 4 and week 8 of the study (p < 0.05), greater average daily gain (ADG), and a lower feed/gain ratio (F/G) of male minks during the initial 4 weeks and the entire 8-week study period (p < 0.05). Furthermore, Enterococcus faecium increased the apparent digestibility of crude protein (CP) and dry matter (DM) compared to the control (p < 0.05). Moreover, Enterococcus faecium enhanced the serum superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) contents (p < 0.05). The results also confirmed that Enterococcus faecium increased the levels of serum immunoglobulin A (IgA), immunoglobulin G (IgG), and the concentrations of secretory immunoglobulin A (SIgA) in the jejunal mucosa while decreasing the interleukin-8 (IL-8) and interleukin-1β (IL-1β) levels in the jejunal mucosa (p < 0.05). Intestinal microbiota analysis revealed that Enterococcus faecium increased the species numbers at the OUT level. Compared with the control, Enterococcus faecium had significant effects on the relative abundance of Paraclostridium, Brevinema, and Comamonas (p < 0.05). The results showed that Enterococcus faecium could improve the growth performance, increase the antioxidant capacity, improve the immunity of growing male minks, and also modulate the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (L.C.); (F.S.); (Q.R.); (Z.J.); (J.C.); (Y.L.)
| |
Collapse
|
24
|
Hanzelová Z, Dudriková E, Lovayová V, Výrostková J, Regecová I, Zigo F, Bartáková K. Occurrence of Enterococci in the Process of Artisanal Cheesemaking and Their Antimicrobial Resistance. Life (Basel) 2024; 14:890. [PMID: 39063643 PMCID: PMC11277685 DOI: 10.3390/life14070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Enterococci are a group of microorganisms that have a controversial position from some scientific points of view. The species of the greatest clinical importance are E. faecalis and E. faecium, which are common agents of nosocomial infections. However, enterococci also have important applications in the dairy industry, as they are used as non-starter lactic acid bacteria (NSLAB) in a variety of cheeses, especially artisanal cheeses. The aim of this study was to determine the presence of representatives from the Enterococcus genus using PCR and MALDI-TOF MS methods on samples of raw milk, processing environment swabs, and cheese from four different artisanal dairy plants in Slovakia. Among the 136 isolates of enterococci, 9 species of genus Enterococci (E. faecalis, E. faecium, E. durans, E. devriesi, E. hirae, E. italicus, E. casseliflavus, E. malodoratus, and E. gallinarum) were identified and were tested for their antimicrobial resistance (AMR) to 8 antibiotics (amoxicillin, penicillin, ampicillin, erythromycin, levofloxacin, vancomycin, rifampicin, and tetracycline); most of them were resistant to rifampicin (35.3%), ampicillin (22.8%), and tetracycline (19.9%). A PCR analysis of vanA (4.41%) and tetM (14.71%) revealed that antimicrobial resistance genes were present in not only phenotypic resistant isolates of enterococci but also susceptible isolates. The investigation of antimicrobial resistance in enterococci during the cheesemaking process can be a source of valuable information for public health in the concept of "One Health".
Collapse
Affiliation(s)
- Zuzana Hanzelová
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (Z.H.); (J.V.); (I.R.)
| | - Eva Dudriková
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (Z.H.); (J.V.); (I.R.)
| | - Viera Lovayová
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Kosice, Slovakia;
| | - Jana Výrostková
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (Z.H.); (J.V.); (I.R.)
| | - Ivana Regecová
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (Z.H.); (J.V.); (I.R.)
| | - František Zigo
- Department of Animal Nutrition and Husbandry, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia;
| | - Klára Bartáková
- Department of Animal Origin Food & Gastronomic Sciences, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic;
| |
Collapse
|
25
|
Acciarri G, Taborra ME, Gizzi FO, Blancato VS, Magni C. Insertion sequence IS6770 modulates potassium symporter kup transcription in Enterococcus faecalis JH2-2 under low pH conditions. Int J Food Microbiol 2024; 419:110736. [PMID: 38772216 DOI: 10.1016/j.ijfoodmicro.2024.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Enterococcus faecalis is a phylogenetically and industrially relevant microorganism associated with Lactic Acid Bacteria. Some strains of this bacterium are employed as probiotics in commercial applications, while others serve as the principal component in starter cultures for artisanal regional cheese production. However, over the last decade, this species has emerged as an opportunistic multiresistant pathogen, raising concerns about its impact on human health. Recently, we identified multiple potassium transporter systems in E. faecalis, including the Ktr systems (KtrAB and KtrAD), Kup, KimA and Kdp complex (KdpFABC). Nevertheless, the physiological significance of these proteins remains not fully understood. In this study, we observed that the kup gene promoter region in the JH2-2 strain was modified due to the insertion of a complete copy of the IS6770 insertion sequence. Consequently, we investigated the influence of IS6770 on the expression of the kup gene. To achieve this, we conducted a mapping of the promoter region of this gene in the E. faecalis JH2-2 strain, employing fluorescence gene reporters. In addition, a transcriptional analysis of the kup gene was executed in a strain derived from E. faecalis V583 that lacks the IS30-related insertion element, facilitating the identification of the transcriptional start site. Next, the expression of the kup gene was evaluated via RT-qPCR under different pH stressful conditions. A strong upregulation of the kup gene was observed at an initial pH of 5.0 in the strain derived from E. faecalis V583. However, the activation of transcription was not observed in the E. faecalis JH2-2 strain due to the hindrance caused by the presence of IS6770. Besides that, our computational analysis of E. faecalis genomes elucidates a plausible association between transposition and the regulation of the kup gene. Remarkably, the ubiquitous presence of IS6770 throughout the phylogenetic tree implies its ancient existence within E. faecalis. Moreover, the recurrent co-occurrence of IS6770 with the kup gene, observed in 30 % of IS6770-positive strains, alludes to the potential involvement of this genomic arrangement in the adaptive strategies of E. faecalis across diverse niches.
Collapse
Affiliation(s)
- Giuliana Acciarri
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Maria Eugenia Taborra
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Fernan O Gizzi
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Victor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina.
| |
Collapse
|
26
|
Kholif AE, Anele A, Anele UY. Microbial feed additives in ruminant feeding. AIMS Microbiol 2024; 10:542-571. [PMID: 39219749 PMCID: PMC11362274 DOI: 10.3934/microbiol.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
The main purposes of feed additives administration are to increase feed quality, feed utilization, and the performance and health of animals. For many years, antibiotic-based feed additives showed promising results; however, their administration in animal feeds has been banned due to some public concerns regarding their residues in the produced milk and meat from treated animals. Some microorganisms have desirable properties and elicit certain effects, which makes them potential alternatives to antibiotics to enhance intestinal health and ruminal fermentation. The commonly evaluated microorganisms are some species of bacteria and yeasts. Supplementing microorganisms to ruminants boosts animal health, feed digestion, ruminal fermentation, animal performance (meat and milk), and feed efficiency. Moreover, feeding microorganisms helps young calves adapt quickly to consume solid feed and prevents thriving populations of enteric pathogens in the gastrointestinal tract which cause diarrhea. Lactobacillus, Streptococcus, Lactococcus, Bacillus, Enterococcus, Bifidobacterium, Saccharomyces cerevisiae, and Aspergillus oryzae are the commonly used microbial feed additives in ruminant production. The response of feeding such microorganisms depends on many factors including the level of administration, diet fed to animal, physiological status of animal, and many other factors. However, the precise modes of action in which microbial feed additives improve nutrient utilization and livestock production are under study. Therefore, we aim to highlight some of the uses of microorganisms-based feed additives effects on animal production, the modes of action of microorganisms, and their potential use as an alternative to antibiotic feed additives.
Collapse
Affiliation(s)
- Ahmed E. Kholif
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Anuoluwapo Anele
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Uchenna Y. Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
27
|
Tang Z, Yang Y, Yang M, Jiang D, Ge Y, Zhang X, Liu H, Fu Q, Liu X, Yang Y, Wu Z, Ji Y. Elucidating the modulatory role of dietary hydroxyproline on the integrity and functional performance of the intestinal barrier in early-weaned piglets: A comprehensive analysis of its interplay with the gut microbiota and metabolites. Int Immunopharmacol 2024; 134:112268. [PMID: 38759371 DOI: 10.1016/j.intimp.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Piglets receive far less hydroxyproline (Hyp) from a diet after weaning than they obtained from sow's milk prior to weaning, suggesting that Hyp may play a protective role in preserving intestinal mucosal homeostasis. This study aimed to evaluate the effect of Hyp on intestinal barrier function and its associated gut microbiota and metabolites in early-weaned piglets. Eighty weaned piglets were divided into four groups and fed diets containing different Hyp levels (0 %, 0.5 %, 1 %, or 2 %) for 21 days. Samples, including intestinal contents, tissues, and blood, were collected on day 7 for analysis of microbial composition, intestinal barrier function, and metabolites. We demonstrated that dietary supplementation with 2 % Hyp improved the feed conversion ratio and reduced the incidence of diarrhea in early-weaned piglets compared to the control group. Concurrently, Hyp enhanced intestinal barrier function by facilitating tight junction protein (zonula occludens (ZO)-1 and occludin) expression and mucin production in the jejunal, ileal, and colonic mucosas. It also improved mucosal immunity (by increasing the amount of secretory IgA (sIgA) and the ratio of CD4+/CD8+ T lymphocytes and decreasing NF-κB phosphorylation) and increased antioxidant capacity (by raising total antioxidant capacity (T-AOC) and glutathione levels) in the intestinal mucosa. In addition, Hyp supplementation resulted in an increase in the levels of glycine, glutathione, and glycine-conjugated bile acids, while decreasing the concentrations of cortisol and methionine sulfoxide in plasma. Intriguingly, piglets fed diet containing Hyp exhibited a remarkable increase in the abundance of probiotic Enterococcus faecium within their colonic contents. This elevation occurred alongside an attenuation of pro-inflammatory responses and an enhancement in intestinal barrier integrity. Further, these changes were accompanied by a rise in anti-inflammatory metabolites, specifically glycochenodeoxycholic acid and guanosine, along with a suppression of pro-inflammatory lipid peroxidation products, including (12Z)-9,10-dihydroxyoctadec-12-enoic acid (9,10-DHOME) and 13-L-hydroperoxylinoleic acid (13(S)-HPODE). In summary, Hyp holds the capacity to enhance the intestinal barrier function in weaned piglets; this effect is correlated with changes in the gut microbiota and metabolites. Our findings provide novel insights into the role of Hyp in maintaining gut homeostasis, highlighting its potential as a dietary supplement for promoting intestinal health in early-weaned piglets.
Collapse
Affiliation(s)
- Zhining Tang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Mingrui Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Da Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Qingyao Fu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Klupt S, Fam KT, Zhang X, Chodisetti PK, Mehmood A, Boyd T, Grotjahn D, Park D, Hang HC. Secreted antigen A peptidoglycan hydrolase is essential for Enterococcus faecium cell separation and priming of immune checkpoint inhibitor therapy. eLife 2024; 13:RP95297. [PMID: 38857064 PMCID: PMC11164530 DOI: 10.7554/elife.95297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.
Collapse
Affiliation(s)
- Steven Klupt
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | - Xing Zhang
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | | | - Abeera Mehmood
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | - Tumara Boyd
- Department of Integrative Structural & Computational Biology, Scripps ResearchLa JollaUnited States
| | - Danielle Grotjahn
- Department of Integrative Structural & Computational Biology, Scripps ResearchLa JollaUnited States
| | - Donghyun Park
- Department of Integrative Structural & Computational Biology, Scripps ResearchLa JollaUnited States
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
- Department of Chemistry, Scripps ResearchLa JollaUnited States
| |
Collapse
|
29
|
Van Looveren N, IJdema F, van der Heijden N, Van Der Borght M, Vandeweyer D. Microbial dynamics and vertical transmission of Escherichia coli across consecutive life stages of the black soldier fly (Hermetia illucens). Anim Microbiome 2024; 6:29. [PMID: 38797818 PMCID: PMC11129375 DOI: 10.1186/s42523-024-00317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The black soldier fly (BSF, Hermetia illucens L.) is one of the most promising insects for bioconversion of organic waste, which often carry a high microbial load with potential foodborne pathogens. Although horizontal transmission (from rearing substrate to larvae) has been extensively studied, less is known about vertical transmission of microorganisms, and particularly of foodborne pathogens, across different BSF life stages. RESULTS This study investigated the microbial dynamics and vertical transmission of Escherichia coli across different life stages (larvae, prepupae, pupae and adults) of one BSF life cycle and its associated substrate (chicken feed) and frass, based on a combination of general microbial counts (based on culture-dependent techniques) and the bacterial community composition (based on 16S rRNA gene sequencing). Multiple interactions between the microbiota of the substrate, frass and BSF larvae were affirmed. The larvae showed relative consistency among both the microbial counts and bacterial community composition. Diversification of the bacterial communities started during the pupal stage, while most notable changes of the microbial counts and bacterial community compositions occurred during metamorphosis to adults. Furthermore, vertical transmission of E. coli was investigated after substrate inoculation with approximately 7.0 log cfu/g of kanamycin-resistant E. coli, and monitoring E. coli counts from larval to adult stage. Although the frass still contained substantial levels of E. coli (> 4.5 log cfu/g) and E. coli was taken up by the larvae, limited vertical transmission of E. coli was observed with a decreasing trend until the prepupal stage. E. coli counts were below the detection limit (1.0 log cfu/g) for all BSF samples from the end of the pupal stage and the adult stage. Additionally, substrate inoculation of E. coli did not have a substantial impact on the bacterial community composition of the substrate, frass or different BSF life stages. CONCLUSIONS The fluctuating microbial counts and bacterial community composition underscored the dynamic character of the microbiota of BSF life stages. Additionally, vertical transmission throughout one BSF life cycle was not observed for E. coli. Hence, these findings paved the way for future case studies on vertical transmission of foodborne pathogens across consecutive BSF life stages or other insect species.
Collapse
Affiliation(s)
- Noor Van Looveren
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Freek IJdema
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Niels van der Heijden
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Mik Van Der Borght
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Dries Vandeweyer
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium.
| |
Collapse
|
30
|
Huang Z, Chen C, Tan L, Ling Y, Ma W, Zhang J. 16S rRNA Gene Sequencing of Gut Microbiota in Rheumatoid Arthritis Treated with 99Tc-MDP. Pharmgenomics Pers Med 2024; 17:237-249. [PMID: 38807628 PMCID: PMC11130713 DOI: 10.2147/pgpm.s451065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/27/2024] [Indexed: 05/30/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a common autoimmune disease with the main symptoms being joint swelling and pain. In severe cases, joint deformity or even complete loss of function occurs. Technetium methylene diphosphonate (99Tc-MDP) is widely used for RA treatment in China, but there are no studies on the effects of 99Tc-MDP on intestinal flora. Objective To explore the effects of 99Tc-MDP treatment on the composition and function of the intestinal flora and to provide new information on the mechanism of 99Tc-MDP in RA treatment. Methods Stool samples from RA patients before and after 99Tc-MDP treatment were collected to form two groups (Before and After). Total genomic DNA of the samples was extracted for 16S rRNA gene sequencing. The altered composition of the intestinal flora, the key target bacteria regulated by 99Tc-MDP, and the pathways of action of 99 Tc-MDP were analyzed by bioinformatics. Results A total of 64 fresh stool samples were collected from 32 RA patients. Compared to the Before group, the After group showed increased Bacteroidetes abundance and decreased Firmicutes abundance. At the genus level, Prevotella increased whereas Escherichia decreased. Both α and β diversity analyses showed that 99Tc-MDP treatment did not affect gut microbial diversity in RA patients. LEfSe analyses and random forest analyses showed Bacteroidetes, Prevotella, Enterococcus, Escherichia and Ruminococcaceae were the main 99Tc-MDP regulating bacteria. Functional enrichment analysis revealed that the functional differences in gut flora of the two groups centered on Metabolism and Genetic Information Processing. Conclusion This study revealed differences in the composition of the gut microbiota in RA patients before and after 99Tc-MDP treatment. The therapeutic effect of 99Tc MDP is mainly achieved through Bacteroidetes, Prevotella, and Enterococcus. Regulating metabolism and genetic information processing of gut flora may be the mechanism of 99Tc-MDP in treating RA.
Collapse
Affiliation(s)
- Zhaowei Huang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
| | - Changming Chen
- Department of Rheumatology & Immunology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Linlin Tan
- Department of Internal Medicine, Jinshazhou Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yi Ling
- Department of Rheumatology & Immunology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Wukai Ma
- Department of Rheumatology & Immunology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Jinan Zhang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Satomi S, Takahashi S, Inoue T, Taniguchi M, Sugi M, Natsume M, Suzuki S. Identification and Safety Assessment of Enterococcus casseliflavus KB1733 Isolated from Traditional Japanese Pickle Based on Whole-Genome Sequencing Analysis and Preclinical Toxicity Studies. Microorganisms 2024; 12:953. [PMID: 38792783 PMCID: PMC11123836 DOI: 10.3390/microorganisms12050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The present study involves the precise identification and safety evaluation of Enterococcus casseliflavus KB1733, previously identified using 16S rRNA analysis, through whole-genome sequencing, phenotypic analysis, and preclinical toxicity studies. Analyses based on the genome sequencing data confirm the identity of KB1733 as E. casseliflavus and show that the genes related to vancomycin resistance are only present on the chromosome, while no virulence factor genes are present on the chromosome or plasmid. Phenotypic analyses of antibiotic resistance and hemolytic activity also indicated no safety concerns. A bacterial reverse mutation test showed there was no increase in revertant colonies of heat-killed KB1733. An acute toxicity test employing heat-killed KB1733 at a dose of 2000 mg/kg body weight in rats resulted in no deaths and no weight gain or other abnormalities in the general condition of the animals, with renal depression foci and renal cysts only occurring at the same frequency as in the control. Taking the background data into consideration, the effects on the kidneys observed in the current study were not caused by KB1733. Our findings suggest that KB1733 is non-pathogenic to humans/animals, although further studies involving repeated oral toxicity tests and/or clinical tests are required.
Collapse
Affiliation(s)
- Shohei Satomi
- Diet and Well-Being Research Institute, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.T.); (T.I.); (S.S.)
| | - Shingo Takahashi
- Diet and Well-Being Research Institute, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.T.); (T.I.); (S.S.)
| | - Takuro Inoue
- Diet and Well-Being Research Institute, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.T.); (T.I.); (S.S.)
| | - Makoto Taniguchi
- Genome Lead Co., Ltd., 2-3-35 Tokiwa-chou, Takamatsu 760-0054, Kagawa, Japan;
| | - Mai Sugi
- BioSafety Research Center Inc., 582-2 Shioshinden, Iwata 437-1213, Shizuoka, Japan; (M.S.); (M.N.)
| | - Masakatsu Natsume
- BioSafety Research Center Inc., 582-2 Shioshinden, Iwata 437-1213, Shizuoka, Japan; (M.S.); (M.N.)
| | - Shigenori Suzuki
- Diet and Well-Being Research Institute, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.T.); (T.I.); (S.S.)
| |
Collapse
|
32
|
Kung HC, Bui NH, Huang BW, Cheruiyot NK, Chang-Chien GP. Biosynthetic Pathways of Tryptophan Metabolites in Saccharomyces cerevisiae Strain: Insights and Implications. Int J Mol Sci 2024; 25:4747. [PMID: 38731967 PMCID: PMC11083699 DOI: 10.3390/ijms25094747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L-1 and 0.0650 ± 0.00211 mg L-1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production.
Collapse
Affiliation(s)
- Hsin-Chieh Kung
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
| | - Ngoc-Han Bui
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
| | - Bo-Wun Huang
- Department of Mechanical and Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung 83347, Taiwan;
| | - Nicholas Kiprotich Cheruiyot
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
| |
Collapse
|
33
|
Filidou E, Kandilogiannakis L, Shrewsbury A, Kolios G, Kotzampassi K. Probiotics: Shaping the gut immunological responses. World J Gastroenterol 2024; 30:2096-2108. [PMID: 38681982 PMCID: PMC11045475 DOI: 10.3748/wjg.v30.i15.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Probiotics are live microorganisms exerting beneficial effects on the host's health when administered in adequate amounts. Among the most popular and adequately studied probiotics are bacteria from the families Lactobacillaceae, Bifidobacteriaceae and yeasts. Most of them have been shown, both in vitro and in vivo studies of intestinal inflammation models, to provide favorable results by means of improving the gut microbiota composition, promoting the wound healing process and shaping the immunological responses. Chronic intestinal conditions, such as inflammatory bowel diseases (IBD), are characterized by an imbalance in microbiota composition, with decreased diversity, and by relapsing and persisting inflammation, which may lead to mucosal damage. Although the results of the clinical studies investigating the effect of probiotics on patients with IBD are still controversial, it is without doubt that these microorganisms and their metabolites, now named postbiotics, have a positive influence on both the host's microbiota and the immune system, and ultimately alter the topical tissue microenvironment. This influence is achieved through three axes: (1) By displacement of potential pathogens via competitive exclusion; (2) by offering protection to the host through the secretion of various defensive mediators; and (3) by supplying the host with essential nutrients. We will analyze and discuss almost all the in vitro and in vivo studies of the past 2 years dealing with the possible favorable effects of certain probiotic genus on gut immunological responses, highlighting which species are the most beneficial against intestinal inflammation.
Collapse
Affiliation(s)
- Eirini Filidou
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Leonidas Kandilogiannakis
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Anne Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - George Kolios
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| |
Collapse
|
34
|
Lei Y, Yan Y, Zhong J, Zhao Y, Xu Y, Zhang T, Xiong H, Chen Y, Wang X, Zhang K. Enterococcus durans 98D alters gut microbial composition and function to improve DSS-induced colitis in mice. Heliyon 2024; 10:e28486. [PMID: 38560132 PMCID: PMC10981110 DOI: 10.1016/j.heliyon.2024.e28486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Enterococcus durans, is a potential functional strain with the capacity to regulate intestinal health and ameliorate colonic inflammation. However, the strain requires further investigation regarding its safety profile and potential mechanisms of colitis improvement. In this study, the safety of E. durans 98D (Ed) as a potential probiotic was studied using in vitro methods. Additionally, a dextran sulfate sodium (DSS)-induced murine colitis model was employed to investigate its impact on the intestinal microbiota and colitis. In vitro antimicrobial assays revealed Ed sensitivity to common antibiotics and its inhibitory effect on the growth of Escherichia coli O157, Streptococcus pneumoniae CCUG 37328, and Staphylococcus aureus ATCC 25923. To elucidate the functional properties of Ed, 24 weight-matched 6-week-old female C57BL/6J mice were randomly divided into three groups (n = 8): NC group, Con group (DSS), and Ed group (DSS + Ed). Ed administration demonstrated a protective effect on colitis mice, as evidenced by improvements in body weight, colonic length, reduced disease activity index, histological scores, diminished splenomegaly, and decreased goblet cell loss. Furthermore, Ed downregulated the expression of the pro-inflammatory cytokine genes (IL-6, IL-1β, and TNF-α) and upregulated the expression of the anti-inflammatory cytokine gene IL-10. The 16S rRNA gene sequencing revealed significant alterations in microbial α-diversity, with principal coordinate analysis indicating distinct differences in microbial composition among the three groups. At the phylum level, the relative abundance of Actinomycetota significantly increased in the Ed-treated group. At the genus level, Ed treatment markedly elevated the relative abundance of Paraprevotella, Rikenellaceae_RC9, and Odoribacter in DSS-induced colitis mice. In conclusion, Ed exhibits potential as a safe and effective therapeutic agent for DSS-induced colitis by reshaping the colonic microbiota.
Collapse
Affiliation(s)
| | | | - Junyu Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yitong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
35
|
Klupt S, Fam KT, Zhang X, Chodisetti PK, Mehmood A, Boyd T, Grotjahn D, Park D, Hang HC. Secreted antigen A peptidoglycan hydrolase is essential for Enterococcus faecium cell separation and priming of immune checkpoint inhibitor therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567738. [PMID: 38014356 PMCID: PMC10680833 DOI: 10.1101/2023.11.19.567738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Enterococcus faecium is a microbiota species in humans that can modulate host immunity1, but has also acquired antibiotic resistance and is a major cause of hospital-associated infections2. Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity3-5 and immune checkpoint inhibitor antitumor activity6. However, the functions of SagA in E. faecium were unknown. Here we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, plasmid-based expression of SagA, but not its catalytically-inactive mutant, restored ΔsagA growth, production of active muropeptides and NOD2 activation. SagA is therefore essential for E. faecium growth, stress resistance and activation of host immunity.
Collapse
Affiliation(s)
- Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Contributed equally
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Contributed equally
| | - Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Contributed equally
| | - Pavan Kumar Chodisetti
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
| | - Abeera Mehmood
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
| | - Tumara Boyd
- Department of Integrative Structural & Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Danielle Grotjahn
- Department of Integrative Structural & Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Donghyun Park
- Department of Integrative Structural & Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
36
|
Junaid M, Lu H, Din AU, Yu B, Liu Y, Li Y, Liu K, Yan J, Qi Z. Deciphering Microbiome, Transcriptome, and Metabolic Interactions in the Presence of Probiotic Lactobacillus acidophilus against Salmonella Typhimurium in a Murine Model. Antibiotics (Basel) 2024; 13:352. [PMID: 38667028 PMCID: PMC11047355 DOI: 10.3390/antibiotics13040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-β) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.
Collapse
Affiliation(s)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Bin Yu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China
| | - Kefei Liu
- Tianjin Shengji Group., Co., Ltd., No. 2, Hai Tai Development 2nd Road, Huayuan Industrial Zone, Tianjin 300384, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
37
|
Peng ZR, Zhang JG, Zhang JB, Lin XQ, Chen W, Yang YJ, Liu ZZ. Identification and biological characteristics of Enterococcus casseliflavus TN-47 isolated from Monochamus alternatus. Int J Syst Evol Microbiol 2024; 74. [PMID: 38602465 DOI: 10.1099/ijsem.0.006305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
With the widespread use of antibiotics, the incidence of antibiotic resistance in microorganisms has increased. Monochamus alternatus is a trunk borer of pine trees. This study aimed to investigate the in vitro antimicrobial and biological characteristics of Enterococcus casseliflavus TN-47 (PP411196), isolated from the gastrointestinal tract of M. alternatus in Jilin Province, PR China. Among 13 isolates obtained from the insects, five were preliminarily screened for antimicrobial activity. E. casseliflavus TN-47, which exhibited the strongest antimicrobial activity, was identified. E. casseliflavus TN-47 possessed antimicrobial activity against Staphylococcus aureus USA300 and Salmonella enterica serovar Pullorum ATCC 19945. Furthermore, E. casseliflavus TN-47 was sensitive to tetracyclines, penicillins (ampicillin, carbenicillin, and piperacillin), quinolones and nitrofuran antibiotics, and resistant to certain beta-lactam antibiotics (oxacillin, cefradine and cephalexin), macrolide antibiotics, sulfonamides and aminoglycosides. E. casseliflavus TN-47 could tolerate low pH and pepsin-rich conditions in the stomach and grow in the presence of bile acids. E. casseliflavus TN-47 retained its strong auto-aggregating ability and hydrophobicity. This strain did not exhibit any haemolytic activity. These results indicate that E. casseliflavus TN-47 has potential as a probiotic. This study provides a theoretical foundation for the future applications of E. casseliflavus TN-47 and its secondary metabolites in animal nutrition and feed.
Collapse
Affiliation(s)
- Zi-Ran Peng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jia-Bao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Xiao-Qi Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| |
Collapse
|
38
|
Li W, Lim CH, Zhao Z, Wang Y, Conway PL, Loo SCJ. In Vitro Profiling of Potential Fish Probiotics, Enterococcus hirae Strains, Isolated from Jade Perch, and Safety Properties Assessed Using Whole Genome Sequencing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10244-0. [PMID: 38498111 DOI: 10.1007/s12602-024-10244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
The demands of intensified aquaculture production and escalating disease prevalence underscore the need for efficacious probiotic strategies to enhance fish health. This study focused on isolating and characterising potential probiotics from the gut microbiota of the emerging aquaculture species jade perch (Scortum barcoo). Eighty-seven lactic acid bacteria and 149 other bacteria were isolated from the digestive tract of five adult jade perch. The screening revealed that 24 Enterococcus hirae isolates inhibited the freshwater pathogens Aeromonas sobria and Streptococcus iniae. Co-incubating E. hirae with the host gut suspensions demonstrated a two- to five-fold increase in the size of growth inhibition zones compared to the results when using gut suspensions from tilapia (a non-host), indicating host-specificity. Genome analysis of the lead isolate, E. hirae R44, predicted the presence of antimicrobial compounds like enterolysin A, class II lanthipeptide, and terpenes, which underlay its antibacterial attributes. Isolate R44 exhibited desirable probiotic characteristics, including survival at pH values within the range of 3 to 12, bile tolerance, antioxidant activity, ampicillin sensitivity, and absence of transferable antimicrobial resistance genes and virulence factors commonly associated with hospital Enterococcus strains (IS16, hylEfm, and esp). This study offers a foundation for sourcing host-adapted probiotics from underexplored aquaculture species. Characterisation of novel probiotics like E. hirae R44 can expedite the development of disease mitigation strategies to support aquaculture intensification.
Collapse
Affiliation(s)
- Wenrui Li
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, 61 Nanyang Drive, Singapore, 637335, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chiun Hao Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Patricia Lynne Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Centre for Marine Science Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
39
|
Wu L, Wang XW, Tao Z, Wang T, Zuo W, Zeng Y, Liu YY, Dai L. Data-driven prediction of colonization outcomes for complex microbial communities. Nat Commun 2024; 15:2406. [PMID: 38493186 PMCID: PMC10944475 DOI: 10.1038/s41467-024-46766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Microbial interactions can lead to different colonization outcomes of exogenous species, be they pathogenic or beneficial in nature. Predicting the colonization of exogenous species in complex communities remains a fundamental challenge in microbial ecology, mainly due to our limited knowledge of the diverse mechanisms governing microbial dynamics. Here, we propose a data-driven approach independent of any dynamics model to predict colonization outcomes of exogenous species from the baseline compositions of microbial communities. We systematically validate this approach using synthetic data, finding that machine learning models can predict not only the binary colonization outcome but also the post-invasion steady-state abundance of the invading species. Then we conduct colonization experiments for commensal gut bacteria species Enterococcus faecium and Akkermansia muciniphila in hundreds of human stool-derived in vitro microbial communities, confirming that the data-driven approaches can predict the colonization outcomes in experiments. Furthermore, we find that while most resident species are predicted to have a weak negative impact on the colonization of exogenous species, strongly interacting species could significantly alter the colonization outcomes, e.g., Enterococcus faecalis inhibits the invasion of E. faecium invasion. The presented results suggest that the data-driven approaches are powerful tools to inform the ecology and management of microbial communities.
Collapse
Affiliation(s)
- Lu Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xu-Wen Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zining Tao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shandong Agricultural University, Tai'an, China
| | - Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Wagner TM, Pöntinen AK, Fenzel CK, Engi D, Janice J, Almeida-Santos AC, Tedim AP, Freitas AR, Peixe L, van Schaik W, Johannessen M, Hegstad K. Interactions between commensal Enterococcus faecium and Enterococcus lactis and clinical isolates of Enterococcus faecium. FEMS MICROBES 2024; 5:xtae009. [PMID: 38606354 PMCID: PMC11008740 DOI: 10.1093/femsmc/xtae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Anna Kaarina Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Carolin Kornelia Fenzel
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Engi
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Ana C Almeida-Santos
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana P Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CiberES CB22/06/00035), 28029 Madrid, Spain
| | - Ana R Freitas
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 1H- TOXRUN – One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4584-116 Gandra, Portugal
| | - Luísa Peixe
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mona Johannessen
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
41
|
Dikbaş N, Orman YC, Alım Ş, Uçar S, Tülek A. Evaluating Enterococcus faecium9 N-2 as a probiotic candidate from traditional village white cheese. Food Sci Nutr 2024; 12:1847-1856. [PMID: 38455208 PMCID: PMC10916548 DOI: 10.1002/fsn3.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
In this study, various functional and probiotic attributes of the Enterococcus faecium 9 N-2 strain isolated from village-style white cheese were characterized, while also assessing its safety. To achieve this, we conducted an in vitro analysis of several key probiotic properties exhibited by the 9 N-2 strain. Notably, this strain demonstrated robust resilience to low pH, high bile salt concentrations, lysozyme, pepsin, pancreatin, and phenol. Furthermore, this strain displayed exceptional auto-aggregation capabilities and moderate co-aggregation tendencies when interacting with Escherichia coli. The cell-free supernatant derived from strain 9 N-2 exhibited significant antimicrobial activity against the tested pathogens. The strain exhibited resistance to gentamicin, meropenem, and bacitracin, while remaining susceptible to vancomycin and various other antibiotics. Furthermore, it was found that E. faecium 9 N-2 possessed the capacity to produce the phytase enzyme. When all the results of this study are evaluated, it is thought that 9 N-2 strain has superior probiotic properties, and therefore it can be used as probiotic in food, medicine, and animal feed in the future. In addition, further in vivo tests should be performed to fully understand its effects and mechanisms of action and to confirm its safety and probiotic effects. Further research and clinical trials are also needed to identify new strains with potential probiotic properties.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Yusuf Can Orman
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Şeyma Alım
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and TechnologySivas Science and Technology UniversitySivasTurkey
| | - Ahmet Tülek
- Department of Bioengineering and SciencesIğdır UniversityIğdırTurkey
| |
Collapse
|
42
|
Emerson KJ, Woodley SK. Something in the water: aquatic microbial communities influence the larval amphibian gut microbiota, neurodevelopment and behaviour. Proc Biol Sci 2024; 291:20232850. [PMID: 38412968 PMCID: PMC10898966 DOI: 10.1098/rspb.2023.2850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Microorganisms colonize the gastrointestinal tract of animals and establish symbiotic host-associated microbial communities that influence vertebrate physiology. More specifically, these gut microbial communities influence neurodevelopment through the microbiota-gut-brain (MGB) axis. We tested the hypothesis that larval amphibian neurodevelopment is affected by the aquatic microbial community present in their housing water. Newly hatched Northern Leopard Frog (Lithobates pipiens) tadpoles were raised in pond water that was unmanipulated (natural) or autoclaved. Tadpoles raised in autoclaved pond water had a gut microbiota with reduced bacterial diversity and altered community composition, had decreased behavioural responses to sensory stimuli, were larger in overall body mass, had relatively heavier brains and had altered brain shape when compared with tadpoles raised in natural pond water. Further, the diversity and composition of the gut microbiota were associated with tadpole behavioural responses and brain measurements. Our results suggest that aquatic microbial communities shape tadpole behaviour and brain development, providing strong support for the occurrence of the MGB axis in amphibians. Lastly, the dramatic role played by aquatic microbial communities on vertebrate neurodevelopment and behaviour should be considered in future wildlife conservation efforts.
Collapse
Affiliation(s)
- Kyle J Emerson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15220, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15220, USA
| |
Collapse
|
43
|
Chen C, Xu J, Han T, Chen G, Yu K, Du C, Shen W, Sun Y, Zeng X. Microencapsulation as a Protective Strategy for Sialylated Immunoglobulin G: Efficacy in Alleviating Symptoms of Dextran Sulfate Sodium-Induced Colitis in Mice and Potential Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4074-4088. [PMID: 38323407 DOI: 10.1021/acs.jafc.3c07733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Sialylated immunoglobulin G (IgG) is a vital glycoprotein in breast milk with the ability to promote the growth of Bifidobacterium in gut microbiota and relieve inflammatory bowel disease (IBD) symptoms in vitro. Here, it was found that the microcapsules with sialylated IgG could protect and release sialylated IgG with its structure and function in the intestine. Furthermore, the sialylated IgG microcapsules alleviated the clinical symptoms (body weight, feed quantity, and colon length loss), decreased disease activity index score, suppressed the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, and MCP-1) and endotoxin (lipopolysaccharide), and enhanced the intestinal mucosal barrier (Claudin1, Muc2, Occludin, and ZO-1) in dextran sulfate sodium (DSS)-induced colitis mice. Additionally, the sialylated IgG microcapsules improved the gut microbiota by increasing the relative abundance of critical microbe Bifidobacterium bifidum and promoted the production of short-chain fatty acids (SCFAs). Correlation analysis indicated that the key microbes were strongly correlated with pro-inflammatory factors, clinical symptoms, tight junction protein, and SCFAs. These findings suggest that the sialylated IgG microcapsules have the potential to be used as a novel therapeutic approach for treating IBD.
Collapse
Affiliation(s)
- Chunxu Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jiaming Xu
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Tianxiang Han
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kun Yu
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Wenbiao Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
44
|
de Oliveira TF, Kuniyoshi TM, Frota EG, Bermúdez-Puga S, Sakaue LN, Cassiano LL, Tachibana L, Piccoli RAM, Converti A, Oliveira RPDS. Anti-Listerial Activity of Bacteriocin-like Inhibitory Substance Produced by Enterococcus lactis LBM BT2 Using Alternative Medium with Sugarcane Molasses. Antibiotics (Basel) 2024; 13:210. [PMID: 38534645 PMCID: PMC10967575 DOI: 10.3390/antibiotics13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.
Collapse
Affiliation(s)
- Taciana Freire de Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Taís Mayumi Kuniyoshi
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Elionio Galvão Frota
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Sebastián Bermúdez-Puga
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Letícia Naomy Sakaue
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Luara Lucena Cassiano
- Aquaculture Research Center, Scientific Research of Fisheries Institute, APTA, SAA, Av. Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, Brazil; (L.L.C.); (L.T.)
| | - Leonardo Tachibana
- Aquaculture Research Center, Scientific Research of Fisheries Institute, APTA, SAA, Av. Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, Brazil; (L.L.C.); (L.T.)
| | - Rosane Aparecida Moniz Piccoli
- Bionanomanufacturing Nucleus, Institute for Technological Research (IPT), Av. Prof. Almeida Prado, 532, São Paulo 05508-901, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy;
| | - Ricardo Pinheiro de Souza Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| |
Collapse
|
45
|
Amenu D, Bacha K. Antagonistic Effects of Lactic Acid Bacteria Isolated from Ethiopian Traditional Fermented Foods and Beverages Against Foodborne Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10231-5. [PMID: 38381263 DOI: 10.1007/s12602-024-10231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Lactic acid bacteria (LAB) found in Ethiopian traditional fermented foods and beverages have potential antagonistic effects against foodborne pathogens due to their capacity to produce various antimicrobial metabolites. This study evaluated the antagonistic activity of LAB isolated from Ethiopian traditional fermented foods and beverages against foodborne pathogens and characterized their antimicrobial substances. A total of 180 traditional fermented foods and beverages were collected, and the antagonistic activities of LAB were evaluated against selected foodborne pathogens. The effects of pH, temperature, enzymes, and food additives on the antagonistic effects of cell-free supernatant produced by LAB were investigated. LAB identification and characterization were conducted using an integrated phenotypic approach and MALDI TOF MS spectrum analysis, and data were analyzed using one-way ANOVA and Tukey post hoc analysis. A total of 956 LAB were isolated, of which seventeen (17 LAB) isolates of Pediococcus pentosaceus (Pc. pentosaceus (n = 7)), Pediococcus acidilactici (Pc. acidilactici (n = 2)), Enterococcus faecium (Ec. faecium (n = 6)), and Lactococcus lactis (Lc. lactis (n = 2)) were screened for antagonistic activity based on their ability to produce bacteriocins, probiotic activity, and preservative potential. Pc. pentosaceus JULABB16, Pc. pentosaceus JULABB01, and Ec. faecium JULABBr39 showed strong antagonistic activity against all pathogens, with mean inhibition zone diameters ranging from 23.50 to 35.50 mm. Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium produced bioactive metabolites that were sensitive to proteolytic enzymes and capable of withstanding high temperatures (80-100 °C) and acid concentrations (pH 2-10). The CFS produced by Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium showed the most impending antagonistic activity against all pathogens. The bioactive substances produced by LAB isolates had promising effects against food spoilage and pathogenic bacteria, making them potential natural food preservatives.
Collapse
Affiliation(s)
- Desalegn Amenu
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box: 378, Jimma, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Wollega University, P.O Box: 395, Nekemte, Oromia, Ethiopia.
| | - Ketema Bacha
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box: 378, Jimma, Ethiopia
| |
Collapse
|
46
|
Landete JM, Montiel R, Rodríguez-Mínguez E, Arqués JL. Enterocins Produced by Enterococci Isolated from Breast-Fed Infants: Antilisterial Potential. CHILDREN (BASEL, SWITZERLAND) 2024; 11:261. [PMID: 38397373 PMCID: PMC10887673 DOI: 10.3390/children11020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Enterocins are bacteriocins synthesized by Enterococcus strains that show an interesting antimicrobial effectiveness against foodborne pathogens such as Listeria monocytogenes. The objectives of this study were to identify and analyze the expression of enterocin genes of Enterococcus isolated from breast-fed infants and evaluate their ability to inhibit three human isolates of virulent L. monocytogenes, as well as some probiotic bacteria. The susceptibility of the strains of L. monocytogenes to fifteen antibiotics was tested, detecting their resistance to cefoxitin (constitutively resistant), oxacillin, and clindamycin. The production of enterocins A, B, and P was observed in Enterococcus faecium isolates, while enterocin AS-48 was detected in an Enterococcus faecalis isolate. AS-48 showed antilisterial activity by itself, while the joint action of enterocins A and B or B and P was necessary for inhibiting L. monocytogenes, demonstrating the synergistic effect of those combinations. The presence of multiple enterocin genes does not assure the inhibition of L. monocytogenes strains. However, the expression of multiple enterocin genes showed a good correlation with the inhibition capacity of these strains. Furthermore, the potential beneficial strains of lactobacilli and bifidobacteria examined were not inhibited by any of the enterocins produced individually or in combination, with the exception of Bifidobacterium longum BB536, which was inhibited by enterocin AS-48 and the joint production of enterocins A and B or B and P. The enterocins studied here could be candidates for developing alternative treatments against antibiotic-resistant bacterial infections. Moreover, these selected enterocin-producing E. faecium strains isolated from breast-fed infants could be used as probiotic strains due to their antilisterial effect, as well as the absence of virulence factors.
Collapse
Affiliation(s)
| | | | | | - Juan L. Arqués
- Department of Food Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (J.M.L.); (R.M.); (E.R.-M.)
| |
Collapse
|
47
|
Toquet M, Bataller E, Toledo-Perona R, Gomis J, Contreras A, Sánchez A, Jiménez-Trigos E, Gómez-Martín Á. In Vitro Interaction between Mycoplasma agalactiae and Small Ruminants' Endogenous Bacterial Strains of Enterococcus spp. and Coagulase-Negative Staphylococcus. Microorganisms 2024; 12:406. [PMID: 38399811 PMCID: PMC10891560 DOI: 10.3390/microorganisms12020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, an antimicrobial effect on Mycoplasma agalactiae (Ma), the main etiological agent of contagious agalactia (CA), was reported in vitro with strains of Enterococcus spp. from ovine and caprine milk. The aim of this work was to evaluate the interaction of Ma with the same Enterococcus spp. isolated from other anatomical locations (vagina) and other bacterial populations present in milk, such as coagulase-negative staphylococci (CNS). The vaginal Enterococcus strains and the raw milk CNS were isolated from sheep and goats. Experimental in vitro conditions were prepared to assess the growth of Ma with and without the presence of these strains. The selected vaginal strains were identified as Enterococcus (E.) hirae and E. mundtii, and the strains of CNS were identified as Staphylococcus petrasii. Different interactions of Ma with ovine and caprine wild vaginal strains of Enterococcus and dairy strains of CNS are described for the first time: Ma can grow exponentially during 15 h with the selected strains, although with certain strains, its optimal growth can be negatively affected (p < 0.05). The colonization and/or excretion of Ma could, therefore, be influenced by certain endogenous bacterial strains. Our results increase the knowledge about possible bacterial ecology dynamics surrounding CA.
Collapse
Affiliation(s)
- Marion Toquet
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Esther Bataller
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Raquel Toledo-Perona
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Jesús Gomis
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Antonio Contreras
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Antonio Sánchez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Estrella Jiménez-Trigos
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Ángel Gómez-Martín
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| |
Collapse
|
48
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
49
|
Ocejo M, Mugica M, Oporto B, Lavín JL, Hurtado A. Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis. Microbiol Spectr 2024; 12:e0367223. [PMID: 38230937 PMCID: PMC10846211 DOI: 10.1128/spectrum.03672-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Enterococcus faecalis (Efs) and Enterococcus faecium (Efm) are major causes of multiresistant healthcare-associated or nosocomial infections. Efm has been traditionally divided into clades A (healthcare associated) and B (community associated) but clade B has been recently reassigned to Enterococcus lactis (Elc). However, identification techniques do not routinely differentiate Elc from Efm. As part of a longitudinal study to investigate the antimicrobial resistance of Enterococcus in dairy cattle, isolates initially identified as Efm were confirmed as Elc after Oxford-Nanopore long-fragment whole-genome sequencing and genome comparisons. An Efm-specific PCR assay was developed and used to identify isolates recovered from animal feces on five farms, resulting in 44 Efs, 23 Efm, and 59 Elc. Resistance, determined by broth microdilution, was more frequent in Efs than in Efm and Elc but all isolates were susceptible to ampicillin, daptomycin, teicoplanin, tigecycline, and vancomycin. Genome sequencing analysis of 32 isolates identified 23 antimicrobial resistance genes (ARGs, mostly plasmid-located) and 2 single nucleotide polymorphisms associated with resistance to 10 antimicrobial classes, showing high concordance with phenotypic resistance. Notably, linezolid resistance in Efm was encoded by the optrA gene, located in plasmids downstream of the fexA gene. Although most Elc lacked virulence factors and genetic determinants of resistance, one isolate carried a plasmid with eight ARGs. This study showed that Elc is more prevalent than Efm in dairy cattle but carries fewer ARGs and virulence genes. However, Elc can carry multi-drug-resistant plasmids like those harbored by Efm and could act as a donor of ARGs for other pathogenic enterococcal species.IMPORTANCEEnterococcus species identification is crucial due to differences in pathogenicity and antibiotic resistance profiles. The failure of traditional methods or whole-genome sequencing-based taxonomic classifiers to distinguish Enterococcus lactis (Elc) from Enterococcus faecium (Efm) results in a biased interpretation of Efm epidemiology. The Efm species-specific real-time PCR assay developed here will help to properly identify Efm (only the formerly known clade A) in future studies. Here, we showed that Elc is prevalent in dairy cattle, and although this species carries fewer genetic determinants of resistance (GDRs) than Enterococcus faecalis (Efs) and Efm, it can carry multi-drug-resistant (MDR) plasmids and could act as a donor of resistance genes for other pathogenic enterococcal species. Although all isolates (Efs, Efm, and Elc) were susceptible to critically or highly important antibiotics like daptomycin, teicoplanin, tigecycline, and vancomycin, the presence of GDRs in MDR-plasmids is a concern since antimicrobials commonly used in livestock could co-select and confer resistance to critically important antimicrobials not used in food-producing animals.
Collapse
Affiliation(s)
- Medelin Ocejo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Maitane Mugica
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - José Luis Lavín
- Applied Mathematics Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
50
|
Xu W, Fang Y, Zhu K. Enterococci facilitate polymicrobial infections. Trends Microbiol 2024; 32:162-177. [PMID: 37550091 DOI: 10.1016/j.tim.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Enterococci are ubiquitous members of the gut microbiota in human beings and animals and are among the most important nosocomial organisms. Due to their opportunistic pathogenicity, enterococci are referred to as pathobionts and play decisive roles in a diverse array of polymicrobial infections. Enterococci can promote the colonization, pathogenesis, and persistence of various pathogens, compromise the efficacy of drugs, and pose a severe threat to public health. Most current treatments tend to focus on the sole pathogenic bacteria, with insufficient attention to the driving role of enterococci. In this review, we summarize the characteristics of enterococci in infections, the factors facilitating their outgrowth, as well as the sites and types of enterococci-associated polymicrobial infections. We present an overview of the underlying mechanisms of enterococci-mediated pathogenesis in polymicrobial infections. Furthermore, we discuss alternative strategies and potential intervention approaches to restrict such infections, shedding light on the discovery and development of new therapies against polymicrobial infections.
Collapse
Affiliation(s)
- Wenjiao Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuwen Fang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|