1
|
Zhai T. Druggable genome-wide Mendelian randomization for identifying the role of integrated stress response in therapeutic targets of bipolar disorder. J Affect Disord 2024; 362:843-852. [PMID: 39025441 DOI: 10.1016/j.jad.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
For bipolar disorder (BD), the inconsistency of treatment guidelines and the long phases of pharmacological adjustment remain major challenges. BD is known to be comorbid with many medical and psychiatric conditions and they may share inflammatory and stress-related aetiologies, which could give rise to this association. The integrated stress response (ISR) responds to various stress conditions that lead to alterations in cellular homeostasis. However, as a causative mechanism underlying cognitive deficits and neurodegeneration in a broad range of brain disorders, the impact of ISR on BD is understudied. Mendelian randomization has been widely used to repurpose licensed drugs and discover novel therapeutic targets. Thus, we aimed to identify novel therapeutic targets for BD and analyze their pathophysiological mechanisms, using the summary data-based Mendelian Randomization (SMR) and Bayesian colocalization (COLOC) methods to integrate the summary-level data of the GWAS on BD and the expression quantitative trait locus (eQTL) study in blood. We utilized the GWAS data including 41,917 BD cases and 371,549 controls from the Psychiatric Genomics Consortium and the eQTL data from 31,684 participants of predominantly European ancestry from the eQTLGen consortium. The SMR analysis identified the EIF2B5 gene that was associated with BD due to no linkage but pleiotropy or causality. The COLOC analysis strongly suggested that EIF2B5 and the trait of BD were affected by shared causal variants, and thus were colocalized. Utilizing data in EpiGraphDB we find other putative causal BD genes (EIF2AK4 and GSK3B) to prioritize potential alternative drug targets.
Collapse
Affiliation(s)
- Ting Zhai
- School of Humanities, Southeast University, Nanjing 211189, China; Institute of Child Development and Education, Southeast University, Nanjing 211189, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 211189, China.
| |
Collapse
|
2
|
Yu X, Zhu Y, Yin G, Wang Y, Shi X, Cheng G. Exploiting hosts and vectors: viral strategies for facilitating transmission. EMBO Rep 2024; 25:3187-3201. [PMID: 39048750 PMCID: PMC11315993 DOI: 10.1038/s44319-024-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.
Collapse
Affiliation(s)
- Xi Yu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gang Yin
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
3
|
Kobayashi N, Shimada K, Ishii A, Osaka R, Nishiyama T, Shigeta M, Yanagisawa H, Oka N, Kondo K. Identification of a strong genetic risk factor for major depressive disorder in the human virome. iScience 2024; 27:109203. [PMID: 38414857 PMCID: PMC10897923 DOI: 10.1016/j.isci.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
The heritability of major depressive disorder (MDD) is reportedly 30-50%. However, the genetic basis of its heritability remains unknown. Within SITH-1, a risk factor for MDD in human herpesvirus 6B (HHV-6B), we discovered a gene polymorphism with a large odds ratio for an association with MDD. It was a sequence whose number of repeats was inversely correlated with SITH-1 expression. This number was significantly lower in MDD patients. Rates for 17 or fewer repeats of the sequence were 67.9% for MDD and 28.6% for normal controls, with an odds ratio of 5.28. For patients with 17 or less repeats, the rate for presence of another MDD patient in their families was 47.4%, whereas there were no MDD patients in the families of patients with more than 17 repeats. Since HHV-6B is transmitted primarily mother to child and within families and persists for life, this gene polymorphism could potentially influence heritability of MDD.
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Azusa Ishii
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Rui Osaka
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Toshiko Nishiyama
- Department of Public Health & Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health & Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
4
|
Wan J, Yang J, Wang Z, Shen R, Zhang C, Wu Y, Zhou M, Chen H, Fu ZF, Sun H, Yi Y, Shen H, Li H, Zhao L. A single immunization with core-shell structured lipopolyplex mRNA vaccine against rabies induces potent humoral immunity in mice and dogs. Emerg Microbes Infect 2023; 12:2270081. [PMID: 37819147 PMCID: PMC10768744 DOI: 10.1080/22221751.2023.2270081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The persistence and clinical consequences of rabies virus (RABV) infection have prompted global efforts to develop a safe and effective vaccines against rabies. mRNA vaccines represent a promising option against emerging and re-emerging infectious diseases, gaining particular interest since the outbreak of COVID-19. Herein, we report the development of a highly efficacious rabies mRNA vaccine composed of sequence-modified mRNA encoding RABV glycoprotein (RABV-G) packaged in core-shell structured lipopolyplex (LPP) nanoparticles, named LPP-mRNA-G. The bilayer structure of LPP improves protection and delivery of RABV-G mRNA and allows gradual release of mRNA molecules as the polymer degrades. The unique core-shell structured nanoparticle of LPP-mRNA-G facilitates vaccine uptake and demonstrates a desirable biodistribution pattern with low liver targeting upon intramuscular immunization. Single administration of low-dose LPP-mRNA-G in mice elicited potent humoral immune response and provided complete protection against intracerebral challenge with lethal RABV. Similarly, single immunization of low-dose LPP-mRNA-G induced high levels of virus-neutralizing antibody titers in dogs. Collectively, our data demonstrate the potential of LPP-mRNA-G as a promising next-generation rabies vaccine used in human and companion animals.
Collapse
Affiliation(s)
- Jiawu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Jianmei Yang
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Ruizhong Shen
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Yuntao Wu
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Haiwei Sun
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Yinglei Yi
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Haifa Shen
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Hangwen Li
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Sumala S, Ekalaksananan T, Pientong C, Buddhisa S, Passorn S, Duangjit S, Janyakhantikul S, Suktus A, Bumrungthai S. The Association of HHV-6 and the TNF-α (-308G/A) Promotor with Major Depressive Disorder Patients and Healthy Controls in Thailand. Viruses 2023; 15:1898. [PMID: 37766304 PMCID: PMC10535374 DOI: 10.3390/v15091898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a silent global health problem that can lead to suicide. MDD development is suggested to result from numerous risk factors, including genetic factors. A precise tool for MDD diagnosis is currently not available. Recently, inflammatory processes have been identified as being strongly involved in MDD development and the reactivation of human herpesvirus type 6 (HHV-6), upregulating cytokines such as TNF-α, which are associated with MDD. Therefore, this study aimed to determine the association of HHV-6 with genetic factors, especially TNF-α mutation, in MDD patients and their relatives compared to healthy controls. The Patient Health Questionnaire (PHQ-9) was used to evaluate MDD status, and 471 oral buccal samples were investigated for HHV-6 infection and viral copy number by qPCR. TNF-α (-308G/A) gene mutation and the cytokines TNF-α, IL-6, and IL-10 were analyzed by high-resolution melting (HRM) analysis and enzyme-linked immunosorbent assay (ELISA). Whole-exome sequencing of buccal samples was performed to analyze for genetic factors. The results showed significantly higher HHV-6 positivities and viral loads in MDD patients (15/59 (25.67%) and 14,473 ± 16,948 copies/µL DNA) and their relatives (blood relatives 17/36 (47.22%) and 8146 ± 5656 copies/µL DNA); non-blood relatives 7/16 (43.75%) and 20,721 ± 12,458 copies/µL DNA) compared to the healthy population (51/360 (14.17%) and 6303 ± 5791 copies/µL DNA). The TNF-α (-308G/A) mutation showed no significant difference. Surprisingly, 12/26 (46.15%) participants with the TNF-α (-308G/A) mutation showed HHV-6 positivities at higher rates than those with wild-type TNF-α (-308G) (70/267 (26.22%)). HHV-6-positive participants with TNF-α (-308G/A) showed higher levels of TNF-α, IL-6, and IL-10 than those of negative control. Exome analysis revealed that common mutations in immune genes were associated with depression. Therefore, this study unveiled the novel association of inflammatory gene TNF-α (-308G/A) mutations with HHV-6 reactivation, which could represent a combined risk factor for MDD. This result could induce further research on MDD development and clinical applications.
Collapse
Affiliation(s)
- Sasiwimon Sumala
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surachat Buddhisa
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Supaporn Passorn
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Sureewan Duangjit
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Somwang Janyakhantikul
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Areeya Suktus
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Bumrungthai
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
6
|
Yu X, Wang S, Wu W, Chang H, Shan P, Yang L, Zhang W, Wang X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023; 12:1767. [PMID: 37443801 PMCID: PMC10340315 DOI: 10.3390/cells12131767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Depression is a common neuropsychiatric disorder with long-term recurrent depressed mood, pain and despair, pessimism and anxiety, and even suicidal tendencies as the main symptoms. Depression usually induces or aggravates the development of other related diseases, such as sleep disorders and endocrine disorders. In today's society, the incidence of depression is increasing worldwide, and its pathogenesis is complex and generally believed to be related to genetic, psychological, environmental, and biological factors. Current studies have shown the key role of glial cells in the development of depression, and it is noteworthy that some recent evidence suggests that the development of depression may be closely related to viral infections, such as SARS-CoV-2, BoDV-1, ZIKV, HIV, and HHV6, which infect the organism and cause some degree of glial cells, such as astrocytes, oligodendrocytes, and microglia. This can affect the transmission of related proteins, neurotransmitters, and cytokines, which in turn leads to neuroinflammation and depression. Based on the close relationship between viruses and depression, this paper provides an in-depth analysis of the new mechanism of virus-induced depression, which is expected to provide a new perspective on the mechanism of depression and a new idea for the diagnosis of depression in the future.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Hongyuan Chang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Pufan Shan
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lin Yang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Wenjie Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| |
Collapse
|
7
|
Suleman M, Khan SH, Rashid F, Khan A, Hussain Z, Zaman N, Rehman SU, Zhai J, Xue M, Zheng C. Designing a multi-epitopes subunit vaccine against human herpes virus 6A based on molecular dynamics and immune stimulation. Int J Biol Macromol 2023:125068. [PMID: 37245745 DOI: 10.1016/j.ijbiomac.2023.125068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Human Herpesvirus 6A (HHV-6A) is a prevalent virus associated with various clinical manifestations, including neurological disorders, autoimmune diseases, and promotes tumor cell growth. HHV-6A is an enveloped, double-stranded DNA virus with a genome of approximately 160-170 kb containing a hundred open-reading frames. An immunoinformatics approach was applied to predict high immunogenic and non-allergenic CTL, HTL, and B cell epitopes and design a multi-epitope subunit vaccine based on HHV-6A glycoprotein B (gB), glycoprotein H (gH), and glycoprotein Q (gQ). The stability and correct folding of the modeled vaccines were confirmed through molecular dynamics simulation. Molecular docking found that the designed vaccines have a strong binding network with human TLR3, with Kd values of 1.5E-11 mol/L, 2.6E-12 mol/L, 6.5E-13 mol/L, and 7.1E-11 mol/L for gB-TLR3, gH-TLR3, gQ-TLR3, and the combined vaccine-TLR3, respectively. The codon adaptation index values of the vaccines were above 0.8, and their GC content was around 67 % (normal range 30-70 %), indicating their potential for high expression. Immune simulation analysis demonstrated robust immune responses against the vaccine, with approximately 650,000/ml combined IgG and IgM antibody titer. This study lays a strong foundation for developing a safe and effective vaccine against HHV-6A, with significant implications for treating associated conditions.
Collapse
Affiliation(s)
- Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Syed Hunain Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Shoaib Ur Rehman
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450001, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Min S, Gandal MJ, Kopp RF, Liu C, Chen C. No Increased Detection of Nucleic Acids of CNS-related Viruses in the Brains of Patients with Schizophrenia, Bipolar Disorder, and Autism Spectrum Disorder. Schizophr Bull 2023; 49:551-558. [PMID: 36857101 PMCID: PMC10154715 DOI: 10.1093/schbul/sbad003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND AND HYPOTHESIS Viral infections are increasingly recognized in the etiology of psychiatric disorders based on epidemiological and serological studies. Few studies have analyzed viruses directly within the brain and no comprehensive investigation of viral infection within diseased brains has been completed. This study aims to determine whether viral infection in brain tissues is a risk factor for 3 major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorder. STUDY DESIGN This study directly evaluated the presence of viral DNA or RNA in 1569 brains of patients and controls using whole-genome sequencing and RNA sequencing data with 4 independent cohorts. The PathSeq tool was used to identify known human viruses in the genome and transcriptome of patients and controls. STUDY RESULTS A variety of DNA and RNA viruses related to the central nervous system were detected in the brains of patients with major psychiatric disorders, including viruses belonging to Herpesviridae, Polyomaviridae, Retroviridae, Flaviviridae, Parvoviridae, and Adenoviridae. However, no consistent significant differences were found between patients and controls in terms of types and amount of virus detected at both DNA and RNA levels. CONCLUSIONS The findings of this study do not suggest an association between viral infection in postmortem brains and major psychiatric disorders.
Collapse
Affiliation(s)
- Shishi Min
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Michael J Gandal
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard F Kopp
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- School of Psychology, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Itoh K, Tsutani H, Mitsuke Y, Iwasaki H. Two possible mechanisms of ganciclovir for treatment of major depressive disorder. Front Psychiatry 2023; 14:1109723. [PMID: 37181897 PMCID: PMC10166851 DOI: 10.3389/fpsyt.2023.1109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Affiliation(s)
- Kazuhiro Itoh
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| | - Hiroshi Tsutani
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Yasuhiko Mitsuke
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Hiromichi Iwasaki
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
10
|
Webster MJ. Infections, Inflammation, and Psychiatric Illness: Review of Postmortem Evidence. Curr Top Behav Neurosci 2023; 61:35-48. [PMID: 35505055 DOI: 10.1007/7854_2022_362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While there is an abundance of epidemiological evidence implicating infectious agents in the etiology of severe mental illnesses, postmortem studies have not yet detected an increased incidence of microbial nucleic acid or proteins in the brains of people with mental illness. Nevertheless, abnormally expressed immune and inflammatory markers have consistently been found in the postmortem brain of patients with schizophrenia and mood disorders. Some of these abnormalities may be the result of an infection in utero or early in life that not only impacted the developing immune system but also the developing neurons of the brain. Some of the immune markers that are consistently found to be upregulated in schizophrenia implicate a possible viral infection and the blood brain barrier in the etiology and neuropathology of the disorder.
Collapse
|
11
|
Kasimir F, Toomey D, Liu Z, Kaiping AC, Ariza ME, Prusty BK. Tissue specific signature of HHV-6 infection in ME/CFS. Front Mol Biosci 2022; 9:1044964. [PMID: 36589231 PMCID: PMC9795011 DOI: 10.3389/fmolb.2022.1044964] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development. HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer's Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome. Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls. Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS.
Collapse
Affiliation(s)
- Francesca Kasimir
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Danny Toomey
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Zheng Liu
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Agnes C. Kaiping
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics (CBG), Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, OH, United States
| | - Bhupesh K. Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Bayturan S, Sapmaz ŞY, Uzun AD, Kandemir H, Ecemiş T. Relationship of herpesvirus (HSV1, EBV, CMV, HHV6) seropositivity with depressive disorder and its clinical aspects: The first study in children. J Med Virol 2022; 94:5484-5491. [PMID: 35821494 DOI: 10.1002/jmv.27995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
Infections can lead to the onset of mood disorders in adults, partly through inflammatory mechanisms. However pediatric data are lacking. The aim of this study is to evaluate the relationship between depressive disorder and seropositivity of herpes virus infections in children. The sample group consisted of patients diagnosed with depressive disorder according to DSM-5 diagnostic criteria and healthy volunteers, being between 11 and 18 years with clinically normal mental capacity. All children completed DSM-5-Level-2 Depression Scale, DSM-5-Level-2 Irritability Scale, DSM-5-Level-2 Sleep Scale, DSM-5-Level-2 Somatic Symptoms Scale. The levels of anti-HSV1-IgG, anti-CMV-IgG, anti-EBNA, and anti-HHV6-IgG were examined in all participants. Patients with an antibody value above the cut-off values specified in the test kits were evaluated as seropositive. The mean age was 15.54 ± 1.57 years in the depression group (DG), 14.87 ± 1.76 years in the healthy control group (CG). There were 4 boys (11.2%), 32 girls (88.8%) in the DG, 9 boys (21.9%) and 32 girls (78.04%) in the CG. There was no statistically significant difference between the groups in terms of the presence of seropositivity of HSV1, CMV, EBV, and HHV6. HHV6 antibody levels were significantly higher in the DG (p = 0.000). A significant positive correlation was found between HHV6 antibodies and DSM-5 level-2 somatic symptoms scale score. HHV6 antibody levels were found to be significantly higher in patients with existing suicidal ideation in the DG (n = 13) compared to those without existing suicidal ideation in the DG (p = 0.043). HHV6 persistent infections may be responsible for somatic symptoms and etiology of suicidal ideation in childhood depressive disorder.
Collapse
Affiliation(s)
- Semra Bayturan
- Department of Pediatrics, School of Medicine, Division of Pediatric Infectious Disease, Manisa Celal Bayar University, Manisa, Turkey
| | - Şermin Yalın Sapmaz
- Department of Child and Adolescent Psychiatry, School of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Aylin Deniz Uzun
- Department of Child and Adolescent Psychiatry, School of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Hasan Kandemir
- Department of Child and Adolescent Psychiatry, School of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Talat Ecemiş
- Department of Microbiology, School of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
13
|
Della Vecchia A, Marazziti D. Back to the Future: The Role of Infections in Psychopathology. Focus on OCD. CLINICAL NEUROPSYCHIATRY 2022; 19:248-263. [PMID: 36101642 PMCID: PMC9442856 DOI: 10.36131/cnfioritieditore20220407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Recently, there has been a resurgence of interest in the relationship between infections and psychopathology, given the increasing data on the neurotropism and neurological/psychiatric morbidity of the SARS-COV2 virus, responsible for the current worldwide pandemic. Although the majority of observations were those obtained in mood and schizophrenic disorders, a few data are also available on the presence of bacterial or viral infections in patients suffering from obsessive-compulsive disorder (OCD). Therefore, given the limited information, the present paper aimed at reviewing the most updated evidence of infections in neuropsychiatric disorders and their possible mechanisms of actions, with a narrow focus on microbes in OCD. METHOD This paper is a narrative review. The databases of PubMed, Scopus, Embase, PsycINFO and Google Scholar were accessed to research and collect English language papers published between 1 January 1980 and 31 December 2021. The data on PANDAS/PANS and those observed during severe brain infections were excluded. RESULTS Several pathogens have been associated with an increased risk to develop a broad spectrum of neuropsychiatric conditions, such as schizophrenia, mood disorders, autism, attention-deficit/hyperactivity disorder, anorexia nervosa, and post-traumatic stress disorder. Some evidence supported a possible role of infections also in the pathophysiology of OCD. Infections from Herpes simplex virus 1, Borna disease virus, Group A-Beta Hemolytic Streptococcus, Borrelia spp., and Toxoplasma gondii were actually found in patients with OCD. Although different mechanisms have been hypothesized, all would converge to trigger functional/structural alterations of specific circuits or immune processes, with cascade dysfunctions of several other systems. CONCLUSIONS Based on the current evidence, a possible contribution of different types of microbes has been proposed for different neuropsychiatric disorders including OCD. However, the currently available literature is meager and heterogeneous in terms of sample characteristics and methods used. Therefore, further studies are needed to better understand the impact of infectious agents in neuropsychiatric disorders. Our opinion is that deeper insights in this field might contribute to a better definition of biological underpinnings of specific clinical pictures, as well as to promote psychiatric precision medicine, with treatments based on altered pathological pathways of single patients. This might be particularly relevant in OCD, a disorder with a high proportion of patients who are resistant or do not respond to conventional therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, and
| | - Donatella Marazziti
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, and, Saint Camillus International University of Health and Medical Sciences – UniCamillus, Rome, Italy
| |
Collapse
|
14
|
Bahramian E, Furr M, Wu JT, Ceballos RM. Differential Impacts of HHV-6A versus HHV-6B Infection in Differentiated Human Neural Stem Cells. Front Immunol 2022; 13:847106. [PMID: 35911725 PMCID: PMC9326508 DOI: 10.3389/fimmu.2022.847106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Within the family Herpesviridae, sub-family β-herpesvirinae, and genus Roseolovirus, there are only three human herpesviruses that have been described: HHV-6A, HHV-6B, and HHV-7. Initially, HHV-6A and HHV-6B were considered as two variants of the same virus (i.e., HHV6). Despite high overall genetic sequence identity (~90%), HHV-6A and HHV-6B are now recognized as two distinct viruses. Sequence divergence (e.g., >30%) in key coding regions and significant differences in physiological and biochemical profiles (e.g., use of different receptors for viral entry) underscore the conclusion that HHV-6A and HHV-6B are distinct viruses of the β-herpesvirinae. Despite these viruses being implicated as causative agents in several nervous system disorders (e.g., multiple sclerosis, epilepsy, and chronic fatigue syndrome), the mechanisms of action and relative contributions of each virus to neurological dysfunction are unclear. Unresolved questions regarding differences in cell tropism, receptor use and binding affinity (i.e., CD46 versus CD134), host neuro-immunological responses, and relative virulence between HHV-6A versus HHV-6B prevent a complete characterization. Although it has been shown that both HHV-6A and HHV-6B can infect glia (and, recently, cerebellar Purkinje cells), cell tropism of HHV-6A versus HHV-6B for different nerve cell types remains vague. In this study, we show that both viruses can infect different nerve cell types (i.e., glia versus neurons) and different neurotransmitter phenotypes derived from differentiated human neural stem cells. As demonstrated by immunofluorescence, HHV-6A and HHV-6B productively infect VGluT1-containing cells (i.e., glutamatergic neurons) and dopamine-containing cells (i.e., dopaminergic neurons). However, neither virus appears to infect GAD67-containing cells (i.e., GABAergic neurons). As determined by qPCR, expression of immunological factors (e.g., cytokines) in cells infected with HHV-6A versus HHV6-B also differs. These data along with morphometric and image analyses of infected differentiated neural stem cell cultures indicate that while HHV-6B may have greater opportunity for transmission, HHV-6A induces more severe cytopathic effects (e.g., syncytia) at the same post-infection end points. Cumulatively, results suggest that HHV-6A is more virulent than HHV-6B in susceptible cells, while neither virus productively infects GABAergic cells. Consistency between these in vitro data and in vivo experiments would provide new insights into potential mechanisms for HHV6-induced epileptogenesis.
Collapse
Affiliation(s)
- Elham Bahramian
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Mercede Furr
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jerry T. Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Ruben Michael Ceballos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Ecology, Evolution, and Organismal Biology Group, University of Arkansas, Fayetteville, AR, United States
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Ruben Michael Ceballos,
| |
Collapse
|
15
|
Association between human herpesvirus 6 (HHV-6) and cognitive function in the elderly population in Shenzhen, China. Aging Clin Exp Res 2022; 34:2407-2415. [PMID: 35767152 DOI: 10.1007/s40520-022-02170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
AIM Human herpesvirus 6 (HHV-6) is neurophilic, and its relationship with Alzheimer's disease (AD) remains controversial. This study aimed to examine the relationships between HHV-6 and cognitive abilities in elderly people aged 60 years or above from communities in Shenzhen. METHODS We recruited participants from 10 community health service centers in Shenzhen. Participants were divided into case and control groups according to Mini-Mental State Examination (MMSE) scale standards and were included in this study with 1:1 matching based on sex and age (± 3 years). The HHV-6 gene was detected by real-time fluorescent quantitative PCR, and the HHV-6 copy number was quantified. RESULTS A total of 580 participants (cases, n = 290; controls, n = 290), matched for gender and age was included in this study. A positive HHV-6 test was not associated with a significant difference in global cognitive performance (ORadjusted = 1.651, 95% CI = 0.671-4.062). After adjusting for gender, age, education, Pittsburgh Sleep Quality Index (PSQI) score, homocysteine (Hcy) and glycosylated hemoglobin (HbA1c), the results of multiple linear regression showed that there was a statistically negative correlation between HHV-6 copy number and orientation (βadjusted = -0.974, p = 0.013), attention and calculation (βadjusted = -1.840, p < 0.001), and language (βadjusted = -2.267, p < 0.001). The restricted cubic spline (RCS) model results showed that there was a nonlinear dose-response relationship between HHV-6 log10-transformed copies and orientation (poverall = 0.003, pnonliner = 0.045), attention and calculation (poverall < 0.001, pnonliner < 0.001), and language (poverall < 0.001, pnonliner = 0.016). CONCLUSIONS HHV-6 infection significantly associated with orientation, attention and calculation, and language in elderly individuals.
Collapse
|
16
|
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci 2022; 17:1068-1081. [PMID: 35733348 PMCID: PMC9714429 DOI: 10.1093/scan/nsac042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
The cerebellum is one-third the size of the cerebrum yet holds twice the number of neurons. Historically, its sole function was thought to be in the calibration of smooth movements through the creation and ongoing modification of motor programs. This traditional viewpoint has been challenged by findings showing that cerebellar damage can lead to striking changes in non-motor behavior, including emotional changes. In this manuscript, we review the literature on clinical and subclinical affective disturbances observed in individuals with lesions to the cerebellum. Disorders include pathological laughing and crying, bipolar disorder, depression and mixed mood changes. We propose a theoretical model based on cerebellar connectivity to explain how the cerebellum calibrates affect. We conclude with actionable steps for future researchers to test this model and improve upon the limitations of past literature.
Collapse
Affiliation(s)
| | - Linda J Hoffman
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ingrid R Olson
- Correspondence should be addressed to Ingrid R. Olson, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. E-mail:
| |
Collapse
|
17
|
Suzuki N, Ihira M, Enya Y, Yumi T, Izuru C, Rie I, Higashimoto Y, Hiroki M, Asaki T, Kaoru F, Kawamura Y, Yoshikawa T. Dynamics of salivary human herpesvirus-6 and -7 shedding in pregnant women. J Med Virol 2022; 94:3359-3367. [PMID: 35243652 DOI: 10.1002/jmv.27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Reactivation of Betaherpesvirinae (Human herpesvirus 6A: HHV-6A, -6B, HHV-7) may be associated with mental illness and host fatigue. This study aimed to determine whether viral reactivation, measured by monitoring salivary viral DNA load, can be used to monitor depression in pregnant and postpartum women. METHODS Saliva samples were collected from 64 pregnant women at five-point of observation periods. The HHV-6 and HHV-7 specific qPCRs were carried out to measure viral DNA load. When HHV-6 DNA was detected in saliva, nested PCR was used to discriminate between HHV-6A and B. RESULTS In both viruses, a significant correlation was observed between detection frequency and viral DNA load in saliva. In the low-shedding group, HHV-6 DNA was significantly higher in the third trimester (P<0.0001), the time of delivery (P=0.0003), one month after birth (P=0.0023) compared to the first trimester, and HHV-7 was at the time of delivery (P=0.0277) and one month after birth (P=0.0235). Most of detected HHV-6 DNAs in saliva were HHV-6B. Both viral DNA loads were significantly lower (HHV-6:P=0.0101, HHV-7:P=0.0044) in the subjects with abnormal EPDS scores. CONCLUSIONS Detection rate and viral DNA load of both viruses in saliva increased after the third trimester. Salivary virus DNA shedding was significantly lower in subjects with an abnormal EPDS score. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Noriko Suzuki
- Faculty of Health Care and Nursing, Juntendo University, Tokyo, Japan
| | - Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Yasuko Enya
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | | | | | - Igarashi Rie
- Seibo international Catholic hospital, Tokyo, Japan
| | - Yuki Higashimoto
- Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Miura Hiroki
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takanashi Asaki
- Faculty of Health Care and Nursing, Juntendo University, Tokyo, Japan
| | - Fujimoto Kaoru
- Department of Nursing Faculty of Health Science Technology, Bumkyo Gakuin University, Tokyo, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
18
|
Jain N, Smirnovs M, Strojeva S, Murovska M, Skuja S. Chronic Alcoholism and HHV-6 Infection Synergistically Promote Neuroinflammatory Microglial Phenotypes in the Substantia Nigra of the Adult Human Brain. Biomedicines 2021; 9:biomedicines9091216. [PMID: 34572401 PMCID: PMC8472392 DOI: 10.3390/biomedicines9091216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/25/2022] Open
Abstract
Both chronic alcoholism and human herpesvirus-6 (HHV-6) infection have been identified as promoters of neuroinflammation and known to cause movement-related disorders. Substantia Nigra (SN), the dopaminergic neuron-rich region of the basal ganglia, is involved in regulating motor function and the reward system. Hence, we hypothesize the presence of possible synergism between alcoholism and HHV-6 infection in the SN region and report a comprehensive quantification and characterization of microglial functions and morphology in postmortem brain tissue from 44 healthy, age-matched alcoholics and chronic alcoholics. A decrease in the perivascular CD68+ microglia in alcoholics was noted in both the gray and white matter. Additionally, the CD68+/Iba1− microglial subpopulation was found to be the dominant type in the controls. Conversely, in alcoholics, dystrophic changes in microglia were seen with a significant increase in Iba1 expression and perivascular to diffuse migration. An increase in CD11b expression was noted in alcoholics, with the Iba1+/CD11b− subtype promoting inflammation. All the controls were found to be negative for HHV-6 whilst the alcoholics demonstrated HHV-6 positivity in both gray and white matter. Amongst HHV-6 positive alcoholics, all the above-mentioned changes were found to be heightened when compared with HHV-6 negative alcoholics, thereby highlighting the compounding relationship between alcoholism and HHV-6 infection that promotes microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Nityanand Jain
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
- Correspondence: (N.J.); (S.S.); Tel.: +371-673-204-21 (N.J. & S.S.)
| | - Marks Smirnovs
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
| | - Samanta Strojeva
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia; (S.S.); (M.M.)
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia; (S.S.); (M.M.)
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
- Correspondence: (N.J.); (S.S.); Tel.: +371-673-204-21 (N.J. & S.S.)
| |
Collapse
|
19
|
Yolken RH, Kinnunen PM, Vapalahti O, Dickerson F, Suvisaari J, Chen O, Sabunciyan S. Studying the virome in psychiatric disease. Schizophr Res 2021; 234:78-86. [PMID: 34016507 DOI: 10.1016/j.schres.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
An overlooked aspect of current microbiome studies is the role of viruses in human health. Compared to bacterial studies, laboratory and analytical methods to study the entirety of viral communities in clinical samples are rudimentary and need further refinement. In order to address this need, we developed Virobiome-Seq, a sequence capture method and an accompanying bioinformatics analysis pipeline, that identifies viral reads in human samples. Virobiome-Seq is able to enrich for and detect multiple types of viruses in human samples, including novel subtypes that diverge at the sequence level. In addition, Virobiome-Seq is able to detect RNA transcripts from DNA viruses and may provide a sensitive method for detecting viral activity in vivo. Since Virobiome-Seq also yields the viral sequence, it makes it possible to investigate associations between viral genotype and psychiatric illness. In this proof of concept study, we detected HIV1, Torque Teno, Pegi, Herpes and Papilloma virus sequences in Peripheral Blood Mononuclear Cells, plasma and stool samples collected from individuals with psychiatric disorders. We also detected the presence of numerous novel circular RNA viruses but were unable to determine whether these viruses originate from the sample or represent contaminants. Despite this challenge, we demonstrate that our knowledge of viral diversity is incomplete and opportunities for novel virus discovery exist. Virobiome-Seq will enable a more sophisticated analysis of the virome and has the potential of uncovering complex interactions between viral activity and psychiatric disease.
Collapse
Affiliation(s)
- Robert H Yolken
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Paula M Kinnunen
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HUS Diagnostic Center, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Jaana Suvisaari
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Ou Chen
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People. Int J Mol Sci 2021; 22:ijms22052364. [PMID: 33673426 PMCID: PMC7956495 DOI: 10.3390/ijms22052364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis. This indicates a high number (p < 0.001) of activated microglia observed in the temporal lobe in the UEP group. The question remains of whether human HHV contributes to neurological diseases or are markers for some aspect of the disease process.
Collapse
|
21
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Petit V, Bonnafous P, Fages V, Gautheret-Dejean A, Engelmann I, Baras A, Hober D, Gérard R, Gibier JB, Leteurtre E, Glowacki F, Moulonguet F, Decaestecker A, Provôt F, Chamley P, Faure E, Prusty BK, Maanaoui M, Hazzan M. Donor-to-recipient transmission and reactivation in a kidney transplant recipient of an inherited chromosomally integrated HHV-6A: Evidence and outcomes. Am J Transplant 2020; 20:3667-3672. [PMID: 32428994 DOI: 10.1111/ajt.16067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023]
Abstract
Human herpesvirus (HHV)-6A can be inherited and chromosomally integrated (iciHHV-6A), and donor-to-recipient transmission has been reported in solid organ transplant. However, when HHV-6A reactivation happens after transplant, the source of HHV-6A is often not evident and its pathogenicity remains unclear. Here, we present an exhaustive case of donor-to-recipient transmission and reactivation of iciHHV-6A through kidney transplant. The absence of HHV-6A genome from the nails of the recipient excluded a recipient-related iciHHV-6A. Viral loads > 7 log10 copies/106 cells in donor blood samples and similarities of U38, U39, U69, and U100 viral genes between donor, recipient, and previously published iciHHV-6A strains are proof of donor-related transmission. Detection of noncoding HHV-6 snc-RNA14 using fluorescence in situ hybridization analysis and immunofluorescence staining of HHV-6A gp82/gp105 late proteins on kidney biopsies showed evidence of reactivation in the transplanted kidney. Because HHV-6A reactivation can be life threatening in immunocompromised patients, we provide several tools to help during the complete screening and diagnosis.
Collapse
Affiliation(s)
- Vivien Petit
- Service de Néphrologie, CHU Lille, Lille, France
| | - Pascale Bonnafous
- Sorbonne Department, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), THERAVIR Team, Paris, France
| | - Victor Fages
- Service de Néphrologie, CHU Lille, Lille, France
| | - Agnès Gautheret-Dejean
- Service de Virologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France.,Faculté de Pharmacie de Paris, Laboratoire de Microbiologie, Université de Paris, UMR-S 1139 (3PHM), Paris, France
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, University of Lille, CHU Lille, Lille, France
| | - Agathe Baras
- Laboratoire de Virologie ULR3610, University of Lille, CHU Lille, Lille, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610, University of Lille, CHU Lille, Lille, France
| | - Romain Gérard
- Gastroenterology Department, University of Lille, CHU Lille, Lille, France
| | - Jean-Baptiste Gibier
- Centre de Biologie Pathologie, Institute of Pathology, CHU Lille, Lille, France.,University of Lille, INSERM UMR1172, Lille, France
| | - Emmanuelle Leteurtre
- Centre de Biologie Pathologie, Institute of Pathology, CHU Lille, Lille, France.,University of Lille, INSERM UMR1172, Lille, France
| | - François Glowacki
- Service de Néphrologie, CHU Lille, Lille, France.,UnivErsity of Lille, Lille, France
| | | | | | | | - Paul Chamley
- Service de Néphrologie, CHU Lille, Lille, France
| | - Emmanuel Faure
- Service de Maladies Infectieuses, CHU Lille, Lille, France.,U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, CHU Lille, UnivErsity of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Bhupesh K Prusty
- Institut für Virologie und Immunobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mehdi Maanaoui
- Service de Néphrologie, CHU Lille, Lille, France.,University of Lille, INSERM U1190, Translational Research for Diabetes, Lille, France
| | - Marc Hazzan
- Service de Néphrologie, CHU Lille, Lille, France
| |
Collapse
|
23
|
Santpere G, Telford M, Andrés-Benito P, Navarro A, Ferrer I. The Presence of Human Herpesvirus 6 in the Brain in Health and Disease. Biomolecules 2020; 10:E1520. [PMID: 33172107 PMCID: PMC7694807 DOI: 10.3390/biom10111520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/03/2023] Open
Abstract
The human herpesvirus 6 (HHV-6) -A and -B are two dsDNA beta-herpesviruses infectingalmost the entire worldwide population. These viruses have been implicated in multipleneurological conditions in individuals of various ages and immunological status, includingencephalitis, epilepsy, and febrile seizures. HHV-6s have also been suggested as playing a role inthe etiology of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Theapparent robustness of these suggested associations is contingent on the accuracy of HHV-6detection in the nervous system. The effort of more than three decades of researching HHV-6 in thebrain has yielded numerous observations, albeit using variable technical approaches in terms oftissue preservation, detection techniques, sample sizes, brain regions, and comorbidities. In thisreview, we aimed to summarize current knowledge about the entry routes and direct presence ofHHV-6 in the brain parenchyma at the level of DNA, RNA, proteins, and specific cell types, inhealthy subjects and in those with neurological conditions. We also discuss recent findings relatedto the presence of HHV-6 in the brains of patients with Alzheimer's disease in light of availableevidence.
Collapse
Affiliation(s)
- Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Marco Telford
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Catalonia, Spain; (M.T.); (A.N.)
| | - Pol Andrés-Benito
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Catalonia, Spain; (M.T.); (A.N.)
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
| | - Isidre Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
24
|
André A, Félix C, Corvacho M, Nzwalo H. On the plausibility of late neuropsychiatric manifestations associated with the COVID-19 pandemic. J Neurol Sci 2020; 417:117060. [PMID: 32739501 PMCID: PMC7384401 DOI: 10.1016/j.jns.2020.117060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022]
Abstract
Virus-host interactions in COVID-19 pandemic is a substrate for the emergence of late neurological manifestations Occurrence subacute autoimmune disorders after COVID-19 suggests the risk of late neurological autoimmune disturbance Global monitoring is important to uncover emergence of late neuropsychiatric manifestations
Collapse
Affiliation(s)
- Ana André
- Neurology Department, Algarve University Hospital, Portugal
| | - Catarina Félix
- Neurology Department, Algarve University Hospital, Portugal
| | | | - Hipólito Nzwalo
- Faculty of Medicine and Biomedical Medicine, University of Algarve, Portugal.
| |
Collapse
|
25
|
Tubbs JD, Ding J, Baum L, Sham PC. Immune dysregulation in depression: Evidence from genome-wide association. Brain Behav Immun Health 2020; 7:100108. [PMID: 34589869 PMCID: PMC8474691 DOI: 10.1016/j.bbih.2020.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
A strong body of evidence supports a role for immune dysregulation across many psychiatric disorders including depression, the leading cause of global disability. Recent progress in the search for genetic variants associated with depression provides the opportunity to strengthen our current understanding of etiological factors contributing to depression and generate novel hypotheses. Here, we provide an overview of the literature demonstrating a role for immune dysregulation in depression, followed by a detailed discussion of the immune-related genes identified by the most recent genome-wide meta-analysis of depression. These genes represent strong evidence-based targets for future basic and translational research which aims to understand the role of the immune system in depression pathology and identify novel points for therapeutic intervention.
Collapse
Affiliation(s)
- Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C. Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Lathe R, St Clair D. From conifers to cognition: Microbes, brain and behavior. GENES BRAIN AND BEHAVIOR 2020; 19:e12680. [PMID: 32515128 DOI: 10.1111/gbb.12680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
A diversity of bacteria, protozoans and viruses ("endozoites") were recently uncovered within healthy tissues including the human brain. By contrast, it was already recognized a century ago that healthy plants tissues contain abundant endogenous microbes ("endophytes"). Taking endophytes as an informative precedent, we overview the nature, prevalence, and role of endozoites in mammalian tissues, centrally focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues. These passengers often remain subclinical, but they are not silent. We address their routes of entry, mechanisms of persistence, tissue specificity, and potential to cause long-term behavioral changes and/or immunosuppression in mammals, where rabies virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and disadvantages that endozoite infection might afford to the host and to the ecosystem. We provide a clinical perspective in which endozoites are implicated in neurodegenerative disease, anxiety/depression, and schizophrenia. We conclude that endozoites are instrumental in the delicate balance between health and disease, including age-related brain disease, and that endozoites have played an important role in the evolution of brain function and human behavior.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
27
|
Subramaney U, Kim AW, Chetty I, Chetty S, Jayrajh P, Govender M, Maharaj P, Pak E. Coronavirus Disease 2019 (COVID-19) and Psychiatric Sequelae in South Africa: Anxiety and Beyond. WITS JOURNAL OF CLINICAL MEDICINE 2020; 2:115-122. [PMID: 34056576 PMCID: PMC8162198 DOI: 10.18772/26180197.2020.v2n2a2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The 2019 coronavirus (COVID-19) pandemic has brought unprecedented challenges to the health sector nationwide and internationally. Across all disciplines, unique and novel modes of presentation with substantial morbidity and mortality are being encountered, and growing evidence suggests that psychiatric comorbidity is likely among COVID-19 patients. OBJECTIVE This article aims to broaden the current discussion on the psychiatric sequalae of COVID-19, which has largely focused on anxiety, and examine the recently documented psychiatric sequelae of COVID-19 infection, the secondary effects of the pandemic on public mental health, and future psychiatric conditions that may arise due to COVID-19. METHODS We conducted an in-depth review of the current global psychiatric literature and describe the wide range of psychopathological presentations reported among past COVID-19 patients worldwide and those that are expected to emerge. RESULTS Current discussions in the psychiatric literature on COVID-19 report anxiety and anxiety disorders as a predominant set of clinical presentations during the pandemic. The impacts of direct COVID-19 infection, associated psychopathological sequelae, and drastic lifestyle changes due to the COVID-19 pandemic in South Africa, are associated with a broad range of psychopathologies and other neuropsychiatric presentations. Pre-existing societal conditions and burdens on the health system in South Africa prompt healthcare providers and public health planners to accordingly prepare for the expected rise in new psychiatric presentations. CONCLUSION Greater awareness of the various psychiatric conditions attributed to COVID-19 infection may allow for earlier screening, more effective treatment, and greater positive health outcomes and better prepare health systems to address the growing pandemic in South Africa.
Collapse
Affiliation(s)
- Ugasvaree Subramaney
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Area 459, Charlotte Maxexe Johannesburg Academic Hospital, Jubilee Road, Parktown 2193, Po Box 10411, Vorna Valley 1686, Johannesburg, South Africa, Tel: (011)7172712 082822 4530, Fax (011) 7172423
| | - Andrew Wooyoung Kim
- SAMRC Developmental Pathways for Health Research Unit, Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Indhrin Chetty
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Area 459, Charlotte Maxexe Johannesburg Academic Hospital, Jubilee Road, Parktown 2193, Po Box 10411, Vorna Valley 1686, Johannesburg, South Africa, Tel: (011)7172712 082822 4530, Fax (011) 7172423
| | - Shren Chetty
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Area 459, Charlotte Maxexe Johannesburg Academic Hospital, Jubilee Road, Parktown 2193, Po Box 10411, Vorna Valley 1686, Johannesburg, South Africa, Tel: (011)7172712 082822 4530, Fax (011) 7172423
| | - Preethi Jayrajh
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Area 459, Charlotte Maxexe Johannesburg Academic Hospital, Jubilee Road, Parktown 2193, Po Box 10411, Vorna Valley 1686, Johannesburg, South Africa, Tel: (011)7172712 082822 4530, Fax (011) 7172423
| | - Mallorie Govender
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Area 459, Charlotte Maxexe Johannesburg Academic Hospital, Jubilee Road, Parktown 2193, Po Box 10411, Vorna Valley 1686, Johannesburg, South Africa, Tel: (011)7172712 082822 4530, Fax (011) 7172423
| | - Pralene Maharaj
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Area 459, Charlotte Maxexe Johannesburg Academic Hospital, Jubilee Road, Parktown 2193, Po Box 10411, Vorna Valley 1686, Johannesburg, South Africa, Tel: (011)7172712 082822 4530, Fax (011) 7172423
| | - EungSok Pak
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Area 459, Charlotte Maxexe Johannesburg Academic Hospital, Jubilee Road, Parktown 2193, Po Box 10411, Vorna Valley 1686, Johannesburg, South Africa, Tel: (011)7172712 082822 4530, Fax (011) 7172423
| |
Collapse
|
28
|
Kobayashi N, Oka N, Takahashi M, Shimada K, Ishii A, Tatebayashi Y, Shigeta M, Yanagisawa H, Kondo K. Human Herpesvirus 6B Greatly Increases Risk of Depression by Activating Hypothalamic-Pituitary -Adrenal Axis during Latent Phase of Infection. iScience 2020; 23:101187. [PMID: 32534440 PMCID: PMC7298549 DOI: 10.1016/j.isci.2020.101187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Little is known about the effect of latent-phase herpesviruses on their host. Human herpesvirus 6B (HHV-6B) is one of the most ubiquitous herpesviruses, and olfactory astrocytes are one of the most important sites of its latency. Here, we identified SITH-1, an HHV-6B latent protein specifically expressed in astrocytes. Mice induced to produce SITH-1 in their olfactory astrocytes exhibited olfactory bulb apoptosis, a hyper-activated hypothalamic-pituitary-adrenal (HPA) axis and depressive symptoms. The binding of SITH-1 to the host protein calcium-modulating ligand (CAML) to form an activated complex promoted the influx of extracellular calcium. The serum antibody titers for depressive patients with respect to this activated complex were significantly higher than for normal controls (p = 1.78 × 10−15), when the antibody positive rates were 79.8% and 24.4%, respectively, and the odds ratio was 12.2. These results suggest that, in the latent phase, HHV-6B may be involved in the onset of depression. We identified SITH-1, a new protein specific to HHV-6B latent infection Mice expressing SITH-1 at HHV-6B latent infection site had depressive symptoms Depressive symptoms due to SITH-1 were associated with a hyper-activated HPA axis SITH-1-specific antibody detection significantly greater in depressive patients
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Psychiatry, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Mayumi Takahashi
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Azusa Ishii
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yoshitaka Tatebayashi
- Affective Disorders Research Team, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health & Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
29
|
Flux MC, Lowry CA. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 2020; 135:104578. [PMID: 31454550 PMCID: PMC6995775 DOI: 10.1016/j.nbd.2019.104578] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.
Collapse
Affiliation(s)
- M C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Senior Fellow, VIVO Planetary Health, Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
30
|
Finkel Y, Schmiedel D, Tai-Schmiedel J, Nachshon A, Winkler R, Dobesova M, Schwartz M, Mandelboim O, Stern-Ginossar N. Comprehensive annotations of human herpesvirus 6A and 6B genomes reveal novel and conserved genomic features. eLife 2020; 9:e50960. [PMID: 31944176 PMCID: PMC6964970 DOI: 10.7554/elife.50960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus-6 (HHV-6) A and B are ubiquitous betaherpesviruses, infecting the majority of the human population. They encompass large genomes and our understanding of their protein coding potential is far from complete. Here, we employ ribosome-profiling and systematic transcript-analysis to experimentally define HHV-6 translation products. We identify hundreds of new open reading frames (ORFs), including upstream ORFs (uORFs) and internal ORFs (iORFs), generating a complete unbiased atlas of HHV-6 proteome. By integrating systematic data from the prototypic betaherpesvirus, human cytomegalovirus, we uncover numerous uORFs and iORFs conserved across betaherpesviruses and we show uORFs are enriched in late viral genes. We identified three highly abundant HHV-6 encoded long non-coding RNAs, one of which generates a non-polyadenylated stable intron appearing to be a conserved feature of betaherpesviruses. Overall, our work reveals the complexity of HHV-6 genomes and highlights novel features conserved between betaherpesviruses, providing a rich resource for future functional studies.
Collapse
Affiliation(s)
- Yaara Finkel
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Dominik Schmiedel
- The Lautenberg Center for General and Tumor ImmunologyInstitute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical SchoolJerusalemIsrael
| | | | - Aharon Nachshon
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Roni Winkler
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Martina Dobesova
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Michal Schwartz
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor ImmunologyInstitute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical SchoolJerusalemIsrael
| | | |
Collapse
|
31
|
Henderson TA, van Lierop MJ, McLean M, Uszler JM, Thornton JF, Siow YH, Pavel DG, Cardaci J, Cohen P. Functional Neuroimaging in Psychiatry-Aiding in Diagnosis and Guiding Treatment. What the American Psychiatric Association Does Not Know. Front Psychiatry 2020; 11:276. [PMID: 32351416 PMCID: PMC7176045 DOI: 10.3389/fpsyt.2020.00276] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
While early efforts in psychiatry were focused on uncovering the neurobiological basis of psychiatric symptoms, they made little progress due to limited ability to observe the living brain. Today, we know a great deal about the workings of the brain; yet, none of this neurobiological awareness has translated into the practice of psychiatry. The categorical system which dominates psychiatric diagnosis and thinking fails to match up to the real world of genetics, sophisticated psychological testing, and neuroimaging. Nevertheless, the American Psychiatric Association (APA) recently published a position paper stating that neuroimaging provided no benefit to the diagnosis and treatment of psychiatric disorders. Using the diagnosis of depression as a model, we illustrate how setting aside the unrealistic expectation of a pathognomonic "fingerprint" for categorical diagnoses, we can avoid missing the biological and, therefore, treatable contributors to psychopathology which can and are visualized using functional neuroimaging. Infection, toxicity, inflammation, gut-brain dysregulation, and traumatic brain injury can all induce psychiatric manifestations which masquerade as depression and other psychiatric disorders. We review these and provide illustrative clinical examples. We further describe situations for which single photon emission computed tomography (SPECT) and positron emission tomography (PET) functional neuroimaging already meet or exceed the criteria set forth by the APA to define a neuroimaging biomarker, including the differential diagnosis of Alzheimer's disease and other dementias, the differential diagnosis of ADHD, and the evaluation of traumatic brain injury. The limitations, both real and perceived, of SPECT and PET functional neuroimaging in the field of psychiatry are also elaborated. An important overarching concept for diagnostic imaging in all its forms, including functional neuroimaging, is that imaging allows a clinician to eliminate possibilities, narrow the differential diagnosis, and tailor the treatment plan. This progression is central to any medical diagnostic process.
Collapse
Affiliation(s)
- Theodore A Henderson
- The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,International Society of Applied Neuroimaging, Denver, CO, United States
| | - Muriel J van Lierop
- International Society of Applied Neuroimaging, Denver, CO, United States.,Private Practice, Toronto, ON, Canada
| | - Mary McLean
- International Society of Applied Neuroimaging, Denver, CO, United States.,Private Practice, Toronto, ON, Canada
| | - John Michael Uszler
- International Society of Applied Neuroimaging, Denver, CO, United States.,Nuclear Medicine, Providence St. John's Health Center, Santa Monica, CA, United States.,Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - John F Thornton
- International Society of Applied Neuroimaging, Denver, CO, United States.,Rossiter-Thornton Associates, Toronto, ON, Canada
| | - Yin-Hui Siow
- International Society of Applied Neuroimaging, Denver, CO, United States.,Nuclear Medicine, Southlake Regional Health Centre, Newmarket, ON, Canada
| | - Dan G Pavel
- International Society of Applied Neuroimaging, Denver, CO, United States.,PathFinder Brain SPECT, Deerfield, IL, United States
| | - Joe Cardaci
- International Society of Applied Neuroimaging, Denver, CO, United States.,Fremantle-School of Medicine, University of Notre Dame, Fremantle, WA, Australia.,Diagnostic Nuclear Medicine, Hollywood Private Hospital, Nedlands, WA, Australia.,Consultant Physician, Perth, WA, Australia
| | - Phil Cohen
- International Society of Applied Neuroimaging, Denver, CO, United States.,Nuclear Medicine, Lions Gate Hospital, Vancouver, BC, Canada.,Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Romeo MA, Gilardini Montani MS, Gaeta A, D'Orazi G, Faggioni A, Cirone M. HHV-6A infection dysregulates autophagy/UPR interplay increasing beta amyloid production and tau phosphorylation in astrocytoma cells as well as in primary neurons, possible molecular mechanisms linking viral infection to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165647. [PMID: 31866416 DOI: 10.1016/j.bbadis.2019.165647] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022]
Abstract
HHV-6A and HHV-6B are neurotropic viruses able to dysregulate autophagy and activate ER stress/UPR in several cell types. The appropriate functioning of these processes is required for cell homeostasis, particularly in post-mitotic cells such as neuronal cells. Interestingly, neurodegenerative diseases such as Alzheimer's disease (AD) are often accompanied by autophagy dysregulation and abnormal UPR activation. This study demonstrated for the first time that HHV-6A infection of astrocytoma cells and primary neurons reduces autophagy, increases Aβ production and activates ER stress/UPR promoting tau protein hyper-phosphorylation. Our results support previous studies suggesting that HHV-6A infection may play a role in AD and unveil the possible underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Aurelia Gaeta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy; Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", 66100 Chieti, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
33
|
Frye MA, Coombes BJ, McElroy SL, Jones-Brando L, Bond DJ, Veldic M, Romo-Nava F, Bobo WV, Singh B, Colby C, Skime MK, Biernacka JM, Yolken R. Association of Cytomegalovirus and Toxoplasma gondii Antibody Titers With Bipolar Disorder. JAMA Psychiatry 2019; 76:1285-1293. [PMID: 31532468 PMCID: PMC6751798 DOI: 10.1001/jamapsychiatry.2019.2499] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Infection-associated immune activation and inflammation are increasingly recognized in the pathophysiology of bipolar disorder. OBJECTIVE To determine whether antibodies to common infectious agents, including cytomegalovirus (CMV), Toxoplasma gondii, and measles, as well as the inflammatory marker C-reactive protein, in serum samples differ between patients with bipolar disorder and control individuals without bipolar disorder. DESIGN, SETTING, AND PARTICIPANTS In this case-control study, antibody titers were measured in serum samples from 1207 patients with bipolar disorder and 745 controls that were obtained from biobanks with participating sites in Rochester and Minneapolis, Minnesota (n = 1537), and Cincinnati, Ohio (n = 415), from January 5, 2009, through May 12, 2014. A subset of case patients and controls from Minnesota were matched by age, sex, and educational level. Bipolar type, age at onset, and history of psychosis were assessed for case patients as well as current drug treatment at the time of blood sample obtainment from the biobank. Data were analyzed from February 5, 2018, to January 4, 2019. EXPOSURES The CMV and T gondii antibodies with IgM titers were expressed as z scores and IgG titers dichotomized into seropositive and seronegative based on expected prevalence in the US population and further classified based on the joint CMV-positive/T gondii-negative IgG status, C-reactive protein z score, and drug treatments with antitoxoplasma activity. MAIN OUTCOMES AND MEASURES Patients were stratified by bipolar disorder type I or type II, nonearly (>19 years of age) and early (≤19 years of age) onset, and history of psychosis during mania or no psychosis. RESULTS Of 1207 patients with bipolar disorder (mean [SD] age, 43.2 [15.1] years; 742 [61.5%] female), the CMV-positive/T gondii-negative IgG status was significantly higher (odds ratio [OR], 1.33; 95% CI, 1.09-1.62; P = .004) compared with that in the 745 controls (mean [SD] age, 44.5 [15.5] years; 444 [59.6%] female). The CMV-positive/T gondii-negative IgG status was associated with bipolar cases type I (OR, 1.41; 95% CI, 1.14-1.75; P = .001), nonearly age at onset (OR, 1.41; 95% CI, 1.16-1.72; P = .001), and history of manic psychosis (OR, 1.46; 95% CI, 1.13-1.88; P = .004). Patients with bipolar disorder who received drug treatment with antitoxoplasma activity (n = 272) had significantly lower T gondii IgM titers (median, 1.59; interquartile range, 1.30-2.07) compared with those (n = 900) who did not receive this treatment (median, 1.69; interquartile range, 1.35-2.25) (P = .03). CONCLUSIONS AND RELEVANCE In this sample, increased long-term antibody response to CMV and decreased long-term antibody response to T gondii were associated with bipolar disorder and the subphenotypes of bipolar type I, nonearly disease onset, and manic psychosis. Further work appears to be needed to better understand genetic vs environmental disease risk and infection or immune activation contribution to overall disease pathogenesis with particular reference to disease onset.
Collapse
Affiliation(s)
- Mark A. Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | - Brandon J. Coombes
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Susan L. McElroy
- Department of Psychiatry and Behavioral Neuroscience, Lindner Center of HOPE, University of Cincinnati, Cincinnati, Ohio
| | - Lori Jones-Brando
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David J. Bond
- Department of Psychiatry, University of Minnesota, Minneapolis
| | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | - Francisco Romo-Nava
- Department of Psychiatry and Behavioral Neuroscience, Lindner Center of HOPE, University of Cincinnati, Cincinnati, Ohio
| | - William V. Bobo
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, Florida
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | - Colin Colby
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Michelle K. Skime
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | - Joanna M. Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota,Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front Neurol 2019; 9:1033. [PMID: 30687207 PMCID: PMC6335565 DOI: 10.3389/fneur.2018.01033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying. The name "myalgic encephalomyelitis" essentially means "muscle pain related to central nervous system inflammation" and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement. The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable. We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine "profile" for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies. We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.
Collapse
Affiliation(s)
- Michael B. VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
35
|
Toro CT, Eliassen E, Prusty BK. Does infection of cerebellar Purkinje neurons with human herpes virus 6A or 6B (HHV-6) increase the risk of developing mood disorders? Future Microbiol 2019; 14:85-88. [DOI: 10.2217/fmb-2018-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Carla T Toro
- Applied Psychology, Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, UK
| | | | - Bhupesh K Prusty
- Institute for Virology & Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
36
|
Romeo MA, Faggioni A, Cirone M. Could autophagy dysregulation link neurotropic viruses to Alzheimer's disease? Neural Regen Res 2019; 14:1503-1506. [PMID: 31089040 PMCID: PMC6557098 DOI: 10.4103/1673-5374.253508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurotropic herpesviruses have been associated with the onset and progression of Alzheimer’s disease, a common form of dementia that afflicts a large percentage of elderly individuals. Interestingly, among the neurotropic herpesviruses, herpes simplex virus-1, human herpesvirus-6A, and human herpesvirus-6B have been reported to infect several cell types present in the central nervous system and to dysregulate autophagy, a process required for homeostasis of cells, especially neurons. Indeed autophagosome accumulation, indicating an unbalance between autophagosome formation and autophagosome degradation, has been observed in neurons of Alzheimer’s disease patients and may play a role in the intracellular and extracellular accumulation of amyloid β and in the altered protein tau metabolism. Moreover, herpesvirus infection of central nervous system cells such as glia and microglia can increase the production of oxidant species through the alteration of mitochondrial dynamics and promote inflammation, another hallmark of Alzheimer’s disease. This evidence suggests that it is worth further investigating the role of neurotropic herpesviruses, particularly human herpesvirus-6A/B, in the etiopathogenesis of Alzheimer’s disease.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
37
|
Cawthorpe D. A 16-Year Cohort Analysis of Autism Spectrum Disorder-Associated Morbidity in a Pediatric Population. Front Psychiatry 2018; 9:635. [PMID: 30555361 PMCID: PMC6281889 DOI: 10.3389/fpsyt.2018.00635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Introduction: This chapter presents the analysis of physician-diagnosed International Classification of Diseases (ICD version 9) disorders and diseases associated with autism spectrum disorders (ASD) in a 16-year pediatric cohort. Materials and Methods: The sample (n = 47,180; 62% male) consisted of children in the Alberta Health Services Calgary Health Region catchment under the age of 3 years, who received any physician-assigned ICD 9 diagnosis before the age of three between April 1993 and December 31, 1994. There were 111 females and 609 males with ASD diagnosed at any time between 1993 and 2010. The results detail the 16-year odds ratio (OR) associations of ASD diagnosis within the major classes of international classification of diseases (ICD 9) stratified by age and sex in the cohort. Further, for those suffering from ASD and any other disorder or disease, the analysis presents by sex, age, and duration, the proportions of all index physician-assigned ICD diagnoses, arising significantly before and after the index ASD diagnosis. Results: The rate of treated ASD in the cohort was 1 in 65 and the 16-year population rate of ASD was 62 per 10,000. For males with an ASD over the 16 year period, the ORs were significantly greater than the value one for 15 of the 17 main ICD classes and for 10 of the main ICD classes for females. Different age strata presented a more specific account of the main ICD class OR profiles. More specifically, 28 ICD disorders significantly preceded and 95 ICD disorders significantly followed ASD for females. Thirty-eight ICD disorders significantly preceded and 234 ICD disorders significantly followed ASD for males. Conclusions: The results largely confirm past studies focusing on more constrained sets of ASD morbidity. The age-stratified ORs gauge the order of risk in time for the cohort. The proportions of specific ICD disorders arising before and after ASD may be useful in respect to informing basic ASD research and ASD clinical management. Limitations are discussed.
Collapse
Affiliation(s)
- David Cawthorpe
- Cumming School of Medicine, Departments of Psychiatry and Community Health Sciences, Institute for Child and Maternal Health, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|