1
|
Cubero J, Zarco-Tejada PJ, Cuesta-Morrondo S, Palacio-Bielsa A, Navas-Cortés JA, Sabuquillo P, Poblete T, Landa BB, Garita-Cambronero J. New Approaches to Plant Pathogen Detection and Disease Diagnosis. PHYTOPATHOLOGY 2024; 114:1989-2006. [PMID: 39264350 DOI: 10.1094/phyto-10-23-0366-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.
Collapse
Affiliation(s)
- Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pablo J Zarco-Tejada
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sara Cuesta-Morrondo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ana Palacio-Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón-Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan A Navas-Cortés
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Sabuquillo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Tomás Poblete
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Blanca B Landa
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | |
Collapse
|
2
|
van Gent-Pelzer MPE, Dullemans AM, Verbeek M, Bonants PJM, van der Lee TAJ. Development and evaluation of one-step RT-qPCR TaqMan multiplex panels applied to six viruses occurring in lily and tulip bulbs. J Virol Methods 2024; 329:114987. [PMID: 38901647 DOI: 10.1016/j.jviromet.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
One-step RT-qPCR TaqMan assays have been developed for six plant viruses with considerable economic impact in the growing of tulip and lily bulbs: lily mottle virus, lily symptomless virus, lily virus X, Plantago asiatica mosaic virus, tulip breaking virus and tulip virus X. To enhance efficacy and cost-efficiency these assays were combined into multiplex panels. Four different multiplex panels were designed, each consisting of three virus assays and an adapted assay for the housekeeping gene nad5 of lilies and tulips, that acts as an internal amplification control. To eliminate false negative results due to variation in the viral genome sequences, for each target virus two assays were developed on distinct conserved genomic regions. Specificity, PCR efficiency and compatibility of primers and probes were tested using gBlock constructions. Diagnostic samples were used to evaluate the strategy. High Throughput Sequencing of a set of the diagnostic samples, further verified the presence or absence of the viruses in the RNA samples and sequence variations in the target genes. This interchangeable multiplex panel strategy may be a valuable tool for the detection of viruses in certification, surveys and virus diagnostics.
Collapse
Affiliation(s)
- M P E van Gent-Pelzer
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6700 AA, the Netherlands.
| | - A M Dullemans
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6700 AA, the Netherlands.
| | - M Verbeek
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6700 AA, the Netherlands
| | - P J M Bonants
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6700 AA, the Netherlands
| | - T A J van der Lee
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
3
|
Cui P, Liu K, Yang Z, Sun P, Meng Y, Yang Q, Wu X, Lv Y, Yang Y, Wu J. Design, Synthesis, and Antiviral and Fungicidal Activities of 4-Oxo-4 H-quinolin-1-yl Acylhydrazone Derivatives. ACS OMEGA 2024; 9:36671-36681. [PMID: 39220544 PMCID: PMC11360041 DOI: 10.1021/acsomega.4c05046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
To discover novel antiviral agents, based on the high antiviral activity of (4-oxo-4H-quinolin-1-yl)-acetic acid hydrazide (C), a series of 4-oxo-4H-quinoline acylhydrazone derivatives were designed, synthesized, and first evaluated for their antiviral and fungicidal activities. Most acylhydrazone derivatives exhibited moderate to good antiviral activities in vivo. The inactive, curative, and protective activities of compounds 4 (51.2, 47.6, and 46.3%), 11 (49.6, 43.0, and 45.2% at 500 mg/L), and 17 (47.1, 49.2, and 44.1%) were higher than those of ribavirin (39.2, 38.0, and 40.8%) at 500 mg/L. Molecular docking showed that compound 4 exhibited a stronger affinity to TMV coat protein (TMV-CP) than ribavirin, with a binding energy (-6.89 kcal/mol) slightly lower than that of ribavirin (-6.08 kcal/mol). Microscale thermophoresis showed that compound 4 (K d = 0.142 ± 0.060 μM) exhibited a strong binding ability to TMV-CP, superior to that of ribavirin (K d = 0.512 ± 0.257 μM). The results of transmission electron microscopy showed that compound 4 hindered the self-assembly and growth of TMV. The antifungal activities of most compounds were moderate at 50 mg/L, among which compounds 12 and 21 exhibited a 72.1 and 76.5% inhibitory rate against Physalospora piricola, respectively. Meanwhile, compound 16 exhibited a 60% inhibitory rate against Cercospora arachidicola Hori at 50 mg/L.
Collapse
Affiliation(s)
- Peipei Cui
- College
of Architecture and Arts, Taiyuan University
of Technology, Jinzhong, Shanxi 030060, People’s Republic of China
| | - Kaisi Liu
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Zhaokai Yang
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| | - Ping Sun
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| | - Yanan Meng
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Qilong Yang
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Xinyang Wu
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yongkang Lv
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yan Yang
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Jian Wu
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| |
Collapse
|
4
|
Yue H, Chen G, Zhang Z, Guo Z, Zhang Z, Zhang S, Turlings TCJ, Zhou X, Peng J, Gao Y, Zhang D, Shi X, Liu Y. Single-cell transcriptome landscape elucidates the cellular and developmental responses to tomato chlorosis virus infection in tomato leaf. PLANT, CELL & ENVIRONMENT 2024; 47:2660-2674. [PMID: 38619176 DOI: 10.1111/pce.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhaojiang Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanhong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Songbai Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Deyong Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Xiaobin Shi
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
5
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
6
|
Kim HJ, Cho IS, Choi SR, Jeong RD. Identification of an Isolate of Citrus Tristeza Virus by Nanopore Sequencing in Korea and Development of a CRISPR/Cas12a-Based Assay for Rapid Visual Detection of the Virus. PHYTOPATHOLOGY 2024; 114:1421-1428. [PMID: 38079355 DOI: 10.1094/phyto-10-23-0354-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Citrus tristeza virus (CTV) is a highly destructive viral pathogen posing a significant threat to citrus crops worldwide. Disease management and crop protection strategies necessitate the development of rapid and accurate detection methods. In this study, we employed Oxford Nanopore sequencing to detect CTV in Citrus unshiu samples. Subsequently, we developed a specific and sensitive detection assay combining CRISPR/Cas12a with reverse transcription-recombinase polymerase amplification. The CRISPR-Cas12a assay exhibited exceptional specificity for CTV, surpassing conventional RT-PCR by at least 10-fold in sensitivity. Remarkably, the developed assay detected CTV in field samples, with zero false negatives. This diagnostic approach is user-friendly, cost-effective, and offers tremendous potential for rapid onsite detection of CTV. Therefore, the CRISPR-Cas12a assay plays a significant role in managing and preserving citrus trees that are free from viruses in the industry.
Collapse
Affiliation(s)
- Hae-Jun Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Republic of Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Se-Ryung Choi
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Republic of Korea
| |
Collapse
|
7
|
Shao WB, Liao YM, Luo RS, Ji J, Xiao WL, Zhou X, Liu LW, Yang S. Discovery of novel phenothiazine derivatives as new agrochemical alternatives for treating plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:4231-4243. [PMID: 37345486 DOI: 10.1002/ps.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Plant viral diseases, namely 'plant cancer', are extremely difficult to control. Even worse, few antiviral agents can effectively control and totally block viral infection. There is an urgent need to explore and discover novel agrochemicals with high activity and a unique mode of action to manage these refractory diseases. RESULTS Forty-one new phenothiazine derivatives were prepared and their inhibitory activity against tobacco mosaic virus (TMV) was assessed. Compound A8 had the highest protective activity against TMV, with a half-maximal effective concentration (EC50 ) of 115.67 μg/mL, which was significantly better than that of the positive controls ningnanmycin (271.28 μg/mL) and ribavirin (557.47 μg/mL). Biochemical assays demonstrated that compound A8 could inhibit TMV replication by disrupting TMV self-assembly, but also enabled the tobacco plant to enhance its defense potency by increasing the activities of various defense enzymes. CONCLUSION In this study, novel phenothiazine derivatives were elaborately fabricated and showed remarkable anti-TMV behavior that possessed the dual-action mechanisms of inhibiting TMV assembly and invoking the defense responses of tobacco plants. Moreover, new agrochemical alternatives based on phenothiazine were assessed for their antiviral activities and showed extended agricultural application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan-Mei Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin Ji
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Guček T, Jakše J, Radišek S. Optimization and Validation of Singleplex and Multiplex RT-qPCR for Detection of Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), and Hop stunt viroid (HSVd) in Hops ( Humulus lupulus). PLANT DISEASE 2023; 107:3592-3601. [PMID: 37261880 DOI: 10.1094/pdis-11-22-2606-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct crop losses due to plant diseases and the measures used to control them have significant agricultural and economic impacts. The shift from diverse small-scale to large-scale genetically uniform monoculture production, along with agricultural intensification and climate change, has led to several known epidemics in man-made agroecosystems that have been rendered more vulnerable to pathogens. One such example is hop growing, which is threatened by highly aggressive hop viroids. Since 2007, almost one-third (about 500 ha) of Slovenian hop gardens have been affected by severe hop stunt disease caused by Citrus bark cracking viroid (CBCVd), which continues to spread despite strict prevention measures. We have developed and validated a multiplex RT-qPCR (mRT-qPCR) for the sensitive detection of CBCVd, Hop latent viroid (HLVd), and Hop stunt viroid (HSVd). Singleplex RT-qPCR assays were designed individually and subsequently combined in a one-step mRT-qPCR assay. Hop-specific mRNA170 and mRNA1192 internal controls were also developed to detect possible PCR inhibition. Analytical specificity was tested on 35 samples from different hosts, geographic regions, and combinations of viroids. Method validation showed that mRT-qPCR had lower sensitivity than singleplex RT-qPCR, while specificity, selectivity, repeatability, and reproducibility remained unchanged. The newly developed assays were found to be robust, reliable, and suitable for large-scale screening of hop viroids.
Collapse
Affiliation(s)
- Tanja Guček
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| |
Collapse
|
9
|
Li J, Wu X, Liu H, Wang X, Yi S, Zhong X, Wang Y, Wang Z. Identification and Molecular Characterization of a Novel Carlavirus Infecting Chrysanthemum morifolium in China. Viruses 2023; 15:v15041029. [PMID: 37113009 PMCID: PMC10141686 DOI: 10.3390/v15041029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| |
Collapse
|
10
|
Noorani MS, Baig MS, Khan JA, Pravej A. Whole genome characterization and diagnostics of prunus necrotic ringspot virus (PNRSV) infecting apricot in India. Sci Rep 2023; 13:4393. [PMID: 36928763 PMCID: PMC10020458 DOI: 10.1038/s41598-023-31172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Prunus necrotic ringspot virus (PNRSV) is a pathogen that infects Prunus species worldwide, causing major economic losses. Using one and two-step RT-PCR and multiplex RT-PCR, the whole genome of the PNRSV-infecting apricot was obtained and described in this study. Computational approaches were used to investigate the participation of several regulatory motifs and domains of the Replicase1, Replicase2, MP, and CP. A single degenerated reverse and three forward oligo primers were used to amplify PNRSV's tripartite genome. The size of RNA1 was 3.332 kb, RNA2 was 2.591 kb, and RNA3 was 1.952 kb, according to the sequencing analysis. The Sequence Demarcation Tool analysis determined a percentage pair-wise identity ranging between 91 and 99% for RNA1 and 2, and 87-98% for RNA3. Interestingly, the phylogenetic analysis revealed that closely related RNA1, RNA2, and RNA3 sequences of PNRSV strains from various geographical regions of the world are classified into distinct clades or groups. This is the first report on the characterization of the whole genome of PNRSV from India, which provides the cornerstone for further studies on the molecular evolution of this virus. This study will assist in molecular diagnostics and management of the diseases caused by PNRSV.
Collapse
Affiliation(s)
- Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard (A Deemed-to-Be University), New Delhi, India.
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India.
| | - Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Sciences, Jamia Hamdard (A Deemed-to-Be University), New Delhi, India
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Jawaid Ahmad Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Alam Pravej
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), 11942, Alkharj, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Devi OP, Sharma SK, Sanatombi K, Devi KS, Pathaw N, Roy SS, Chanu NT, Sanabam R, Devi HC, Singh AR, Baranwal VK. A Simplified Multiplex PCR Assay for Simultaneous Detection of Six Viruses Infecting Diverse Chilli Species in India and Its Application in Field Diagnosis. Pathogens 2022; 12:pathogens12010006. [PMID: 36678354 PMCID: PMC9861913 DOI: 10.3390/pathogens12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Chilli is infected by at least 65 viruses globally, with a mixed infection of multiple viruses leading to severe losses being a common occurrence. A simple diagnostic procedure that can identify multiple viruses at once is required to track their spread, initiate management measures and manage them using virus-free planting supplies. The present study, for the first time, reports a simplified and robust multiplex PCR (mPCR) assay for the simultaneous detection of five RNA viruses, capsicum chlorosis orthotospovirus (CaCV), chilli veinal mottle virus (ChiVMV), large cardamom chirke virus (LCCV), cucumber mosaic virus (CMV), and pepper mild mottle virus (PMMoV), and a DNA virus, chilli leaf curl virus (ChiLCV) infecting chilli. The developed mPCR employed six pairs of primer from the conserved coat protein (CP) region of the respective viruses. Different parameters viz., primer concentration (150-450 nM) and annealing temperature (50 °C), were optimized in order to achieve specific and sensitive amplification of the target viruses in a single reaction tube. The detection limit of the mPCR assay was 5.00 pg/µL to simultaneously detect all the target viruses in a single reaction, indicating a sufficient sensitivity of the developed assay. The developed assay showed high specificity and showed no cross-amplification. The multiplex PCR assay was validated using field samples collected across Northeast India. Interestingly, out of 61 samples collected across the northeastern states, only 22 samples (36%) were positive for single virus infection while 33 samples (54%) were positive for three or more viruses tested in mPCR, showing the widespread occurrence of mixed infection under field conditions. To the best of our knowledge, this is the first report on the development and field validation of the mPCR assay for six chilli viruses and will have application in routine virus indexing and virus management.
Collapse
Affiliation(s)
- Oinam Priyoda Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, India
| | - Susheel Kumar Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence:
| | | | - Konjengbam Sarda Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | | | - Rakesh Sanabam
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | | | | | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
12
|
Xu L, Ming J. Development of a multiplex RT-PCR assay for simultaneous detection of Lily symptomless virus, Lily mottle virus, Cucumber mosaic virus, and Plantago asiatica mosaic virus in Lilies. Virol J 2022; 19:219. [PMID: 36527114 PMCID: PMC9758769 DOI: 10.1186/s12985-022-01947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Viral pathogens causing significant economic losses in lilies (Lilium spp. and hybrids) include Lily symptomless virus (LSV), Lily mottle virus (LMoV), Cucumber mosaic virus (CMV), and Plantago asiatica mosaic virus (PlAMV). Rapid and efficient virus detection methods are pivotal to prevent the spread of these viruses. RESULTS In this study, four specific primer pairs designed from conserved regions of genomic sequences of each virus were used to amplify a 116 bp product for LSV, a 247 bp product for LMoV, a 359 bp product for CMV, and a 525 bp product for PlAMV in a multiplex reverse transcription-polymerase chain reaction (multiplex RT-PCR). The amplified products were clearly separated by 2% agarose gel electrophoresis. The optimal reaction annealing temperature and cycle number were 53.8 °C and 35, respectively. The developed multiplex RT-PCR method was then used to test virus infections from lily samples collected from different regions of China. CONCLUSIONS An effective multiplex RT-PCR assay was established for the simultaneous detection and differentiation of LSV, LMoV, CMV, and PlAMV in lilies, which offers a useful tool for routine molecular diagnosis and epidemiological studies of these viruses.
Collapse
Affiliation(s)
- Leifeng Xu
- grid.410727.70000 0001 0526 1937Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Ming
- grid.410727.70000 0001 0526 1937Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
13
|
Costa LC, Atha B, Hu X, Lamour K, Yang Y, O’Connell M, McFarland C, Foster JA, Hurtado-Gonzales OP. High-throughput detection of a large set of viruses and viroids of pome and stone fruit trees by multiplex PCR-based amplicon sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1072768. [PMID: 36578329 PMCID: PMC9791224 DOI: 10.3389/fpls.2022.1072768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A comprehensive diagnostic method of known plant viruses and viroids is necessary to provide an accurate phytosanitary status of fruit trees. However, most widely used detection methods have a small limit on either the number of targeted viruses/viroids or the number of samples to be evaluated at a time, hampering the ability to rapidly scale up the test capacity. Here we report that by combining the power of high multiplexing PCR (499 primer pairs) of small amplicons (120-135bp), targeting 27 viruses and 7 viroids of fruit trees, followed by a single high-throughput sequencing (HTS) run, we accurately diagnosed the viruses and viroids on as many as 123 pome and stone fruit tree samples. We compared the accuracy, sensitivity, and reproducibility of this approach and contrast it with other detection methods including HTS of total RNA (RNA-Seq) and individual RT-qPCR for every fruit tree virus or viroid under the study. We argue that this robust and high-throughput cost-effective diagnostic tool will enhance the viral/viroid knowledge of fruit trees while increasing the capacity for large scale diagnostics. This approach can also be adopted for the detection of multiple viruses and viroids in other crops.
Collapse
Affiliation(s)
- Larissa Carvalho Costa
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Benjamin Atha
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Xiaojun Hu
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Yu Yang
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Mary O’Connell
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Clint McFarland
- Plant Protection and Quarantine - Field Operations, Animal and Plant Health Inspection Service, United States Department of Agriculture, Raleigh, NC, United States
| | - Joseph A. Foster
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Oscar P. Hurtado-Gonzales
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
14
|
Wu Z, Ma G, Zhu H, Chen M, Huang M, Xie X, Li X. Plant Viral Coat Proteins as Biochemical Targets for Antiviral Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8892-8900. [PMID: 35830295 DOI: 10.1021/acs.jafc.2c02888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coat proteins (CPs) of RNA plant viruses play a pivotal role in virus particle assembly, vector transmission, host identification, RNA replication, and intracellular and intercellular movement. Numerous compounds targeting CPs have been designed, synthesized, and screened for their antiviral activities. This review is intended to fill a knowledge gap where a comprehensive summary is needed for antiviral agent discovery based on plant viral CPs. In this review, major achievements are summarized with emphasis on plant viral CPs as biochemical targets and action mechanisms of antiviral agents. This review hopefully provides new insights and references for the further development of new safe and effective antiviral pesticides.
Collapse
Affiliation(s)
- Zilin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangming Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hengmin Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Meiqing Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Xie
- College of Agriculture, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
15
|
Singhal P, Baranwal VK, Prajapati MR, Singh J. High throughput
RNA
sequencing and genetic structure studies of turnip mosaic virus infecting black and yellow mustard revealing emergence of
world‐B3
pathotype in India. J Appl Microbiol 2022; 133:2618-2630. [DOI: 10.1111/jam.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Pankhuri Singhal
- Division of Plant Pathology, ICAR‐Indian Agricultural Research Institute New Delhi India
| | | | - Malyaj R. Prajapati
- College of Biotechnology Sardar Vallabhbhai Patel University of Agriculture and Technology Meerut India
| | - Jitender Singh
- College of Biotechnology Sardar Vallabhbhai Patel University of Agriculture and Technology Meerut India
| |
Collapse
|
16
|
Marcolungo L, Passera A, Maestri S, Segala E, Alfano M, Gaffuri F, Marturano G, Casati P, Bianco PA, Delledonne M. Real-Time On-Site Diagnosis of Quarantine Pathogens in Plant Tissues by Nanopore-Based Sequencing. Pathogens 2022; 11:pathogens11020199. [PMID: 35215142 PMCID: PMC8876587 DOI: 10.3390/pathogens11020199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 12/31/2022] Open
Abstract
Rapid and sensitive assays for the identification of plant pathogens are necessary for the effective management of crop diseases. The main limitation of current diagnostic testing is the inability to combine broad and sensitive pathogen detection with the identification of key strains, pathovars, and subspecies. Such discrimination is necessary for quarantine pathogens, whose management is strictly dependent on genotype identification. To address these needs, we have established and evaluated a novel all-in-one diagnostic assay based on nanopore sequencing for the detection and simultaneous characterization of quarantine pathogens, using Xylella fastidiosa as a case study. The assay proved to be at least as sensitive as standard diagnostic tests and the quantitative results agreed closely with qPCR-based analysis. The same sequencing results also allowed discrimination between subspecies when present either individually or in combination. Pathogen detection and typing were achieved within 13 min of sequencing owing to the use of an internal control that allowed to stop sequencing when sufficient data had accumulated. These advantages, combined with the use of portable equipment, will facilitate the development of next-generation diagnostic assays for the efficient monitoring of other plant pathogens.
Collapse
Affiliation(s)
- Luca Marcolungo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Elena Segala
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Massimiliano Alfano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Francesca Gaffuri
- Servizio Fitosanitario Regione Lombardia Laboratorio Fitopatologico c/o Fondazione Minoprio, 22100 Minoprio, Italy;
| | - Giovanni Marturano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Paola Casati
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce, 73, 10135 Turin, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
- Genartis S.r.l., Via P. Mascagni 98, 37060 Castel D’Azzano, Italy
- Correspondence: ; Tel.: +39-045-802-7962
| |
Collapse
|
17
|
One-Enzyme RTX-PCR for the Detection of RNA Viruses from Multiple Virus Genera and Crop Plants. Viruses 2022; 14:v14020298. [PMID: 35215892 PMCID: PMC8924886 DOI: 10.3390/v14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in a separate tube in the second step. However, one-step kits containing multiple enzymes optimized for RT and PCR amplification in a single tube can also be used. Here, we describe an RT-PCR single-enzyme assay based on an RTX DNA polymerase that has both RT and polymerase activities. The expression plasmid pET_RTX_(exo-) was transferred to various E. coli genotypes that either compensated for codon bias (Rosetta-gami 2) or contained additional chaperones to promote solubility (BL21 (DE3) with plasmids pKJE8 or pTf2). The RTX enzyme was then purified and used for the RT-PCR assay. Several purified plant viruses (TMV, PVX, and PVY) were used to determine the efficiency of the assay compared to a commercial one-step RT-PCR kit. The RT-PCR assay with the RTX enzyme was validated for the detection of viruses from different genera using both total RNA and crude sap from infected plants. The detection endpoint of RTX-PCR for purified TMV was estimated to be approximately 0.01 pg of the whole virus per 25 µL reaction, corresponding to 6 virus particles/µL. Interestingly, the endpoint for detection of TMV from crude sap was also 0.01 pg per reaction in simulated crude plant extracts. The longest RNA fragment that could be amplified in a one-tube arrangement was 2379 bp long. The longest DNA fragment that could be amplified during a 10s extension was 6899 bp long. In total, we were able to detect 13 viruses from 11 genera using RTX-PCR. For each virus, two to three specific fragments were amplified. The RT-PCR assay using the RTX enzyme described here is a very robust, inexpensive, rapid, easy to perform, and sensitive single-enzyme assay for the detection of plant viruses.
Collapse
|
18
|
Identification of Viruses Infecting Oats in Korea by Metatranscriptomics. PLANTS 2022; 11:plants11030256. [PMID: 35161235 PMCID: PMC8839655 DOI: 10.3390/plants11030256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
Abstract
Controlling infectious plant viruses presents a constant challenge in agriculture. As a source of valuable nutrients for human health, the cultivation of oats (Avena sativa L.) has recently been increased in Korea. To date, however, few studies have been undertaken to identify the viruses infecting oats in this country. In this study, we carried out RNA-sequencing followed by bioinformatics analyses to understand the virosphere in six different geographical locations in Korea where oats are cultivated. We identified three different virus species, namely, barley yellow dwarf virus (BYDV) (BYDV-PAV and BYDV-PAS), cereal yellow dwarf virus (CYDV) (CYDV-RPS and CYDV-RPV), and rice black-streaked dwarf virus (RBSDV). Based on the number of virus-associated reads and contigs, BYDV-PAV was a dominant virus infecting winter oats in Korea. Interestingly, RBSDV was identified in only a single region, and this is the first report of this virus infecting oats in Korea. Single nucleotide polymorphisms analyses indicated that most BYDV, CYDV, and RBSDV isolates show considerable genetic variations. Phylogenetic analyses indicated that BYDVs and CYDVs were largely grouped in isolates from Asia and USA, whereas RBSDV was genetically similar to isolates from China. Overall, the findings of this study provide a preliminary characterization of the types of plant viruses infecting oats in six geographical regions of Korea.
Collapse
|
19
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
20
|
Duplex PCR assay for detection of chickpea chlorotic dwarf virus and peanut witches' broom phytoplasma in chickpea. 3 Biotech 2022; 12:23. [PMID: 35036271 PMCID: PMC8695644 DOI: 10.1007/s13205-021-03094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023] Open
Abstract
A duplex PCR assay was standardized by optimizing PCR reaction constituents and cycles for the simultaneous detection of chickpea chlorotic dwarf virus (CpCDV) and a peanut witches' broom (PnWB) phytoplasma associated with the chickpea stunt disease. Coat protein gene and tuf gene specific primers for CpCDV and phytoplasmas were used. Different concentrations of the PCR components such as Taq polymerase, primers and PCR annealing temperature were standardized for the identification of the two agents by a duplex PCR assay. Expected amplicons of 590 bp for CpCDV and 1090 bp for phytoplasmas were consistently amplified from the symptomatic chickpea tissues. That resulted in equally efficient and sensitive in detecting single or mixed infection of CpCDV and PnWB phytoplasma in 148 symptomatic chickpea stunt samples collected in two states of India. The results indicate the robustness in the detection of pathogens present in chickpea showing stunt disease and for theoretical use in epidemiological studies that would help the appropriate disease management strategies.
Collapse
|
21
|
Tanaka S, Tomitaka Y, Kitamura T, Ohnishi J. A multiplex RT-PCR assay combined with co-extraction of DNA and RNA for simultaneous detection of TYLCV and ToCV in whitefly. J Virol Methods 2021; 301:114431. [PMID: 34921840 DOI: 10.1016/j.jviromet.2021.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) were transmitted by the sweet potato whitefly Bemisia tabaci (Gennadius) and cause serious yield losses on tomato around the world. To understand the actual situation of co-infection of TYLCV and ToCV of individual whiteflies, we developed multiplex RT-PCR combined with co-extraction of DNA and RNA from a single whitefly. First, a nucleic acid extraction method previously reported was modified and adopted to obtain the RNA-DNA mixture including TYLCV and ToCV in a simple form without manual homogenization. Second, primers were newly designed in actin gene of B. tabaci for the confirmation of extraction and PCR success, and multiplex RT-PCR method was developed using specific primer sets for TYLCV, ToCV and B. tabaci. This method enables the detection of TYLCV and ToCV from a single insect and efficient use of field samples obtained using sticky traps. The method will be useful to monitor infection status of TYLCV and ToCV in the field while reducing labor and cost.
Collapse
Affiliation(s)
- Sayumi Tanaka
- Institute for Plant Protection, National Agriculture and Food Research Organization, 2421 Suya, Koshi, Kumamoto, 861-1192, Japan.
| | - Yasuhiro Tomitaka
- Institute for Plant Protection, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8666, Japan
| | - Toshio Kitamura
- Western Region Agricultural Research Center (Kinki, Chugoku and Shikoku Regions), National Agriculture and Food Research Organization, 6-12-1 Nishifukatsucho, Fukuyama, Hiroshima. 721-8514, Japan
| | - Jun Ohnishi
- Core Technology Research Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| |
Collapse
|
22
|
Zhang D, Song L, Lin Z, Huang K, Liu C, Wang Y, Liu D, Zhang S, Yang J. HACC-Based Nanoscale Delivery of the NbMLP28 Plasmid as a Crop Protection Strategy for Viral Diseases. ACS OMEGA 2021; 6:33953-33960. [PMID: 34926942 PMCID: PMC8674983 DOI: 10.1021/acsomega.1c05295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Resistant genes as an effective strategy to antivirus of plants are at the core of sustainability efforts. We use the antiviral protein major latex protein 28 (NbMLP28 plasmid) and N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) designated as the HACC/NbMLP28 complex as protective gene delivery vectors to prepare nanonucleic acid drugs. The maximum drug loading capacity of HACC was 4. The particle size of HACC/NbMLP28 was measured by transmission electron microscopy and found to be approximately 40-120 nm, the particle dispersion index (PDI) was 0.448, and the ζ-potential was 22.3 mV. This facilitates its ability to deliver particles. Different controls of laser scanning confocal experiments verified the effective expression of NbMLP28 and the feasibility of nanodelivery. The optimal ratio of HACC/plasmid was 2:1. Finally, the nanoparticle/plasmid complex was tested for its ability to control diseases and was found to significantly improve resistance to three viruses. The enhanced resistance was particularly notable 4 days after inoculation. Taken together, these results indicate that HACC/NbMLP28 is a promising tool to treat plant viruses. To the best of our knowledge, this is the first study that successfully delivered and expressed antiviral protein particles in plants. This gene delivery system can effectively load antiviral plasmids and express them in plant leaves, significantly affecting the plant resistance of three RNA viruses.
Collapse
Affiliation(s)
- Daoshun Zhang
- Hubei
Engineering Research Center for Pest Forewarning and Management, College
of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhonglong Lin
- China
Tobacco Corporation Yunnan Company, Kunming 650001, Yunnan, China
| | - Kun Huang
- Honghe
City Company of Yunnan Tobacco Company, Honghe 652399, Yunnan, China
| | - Chunming Liu
- Honghe
City Company of Yunnan Tobacco Company, Honghe 652399, Yunnan, China
| | - Yong Wang
- Liangshan
State Company of Sichuan Province Tobacco Company, Liangshan 615000, Sichuan, China
| | - Dongyang Liu
- Liangshan
State Company of Sichuan Province Tobacco Company, Liangshan 615000, Sichuan, China
| | - Songbai Zhang
- Hubei
Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
23
|
Hataya T. An Improved Method for the Extraction of Nucleic Acids from Plant Tissue without Grinding to Detect Plant Viruses and Viroids. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122683. [PMID: 34961154 PMCID: PMC8708111 DOI: 10.3390/plants10122683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Gene amplification techniques such as polymerase chain reaction (PCR) are widely used for the diagnosis of plant diseases caused by viruses and viroids. It is preferable that sample preparation methods for PCR or reverse transcription (RT) PCR are rapid, straightforward, and inexpensive. We previously reported a method for the extraction of nucleic acids without mechanical tissue grinding using a buffer containing potassium ethyl xanthogenate (PEX) to detect viroid RNAs. In the present report, the previous PEX method was improved and simplified. In the simplified PEX (SPEX) method, the process of PEX buffer treatment for plant cell wall disruption is improved to one step of incubation at 80 °C for 10 min, instead of three steps that took more than 26 min at 65 °C in the previous method. Total nucleic acids could be extracted from fresh, frozen, or dried leaves of a cultivar or wild species of tobacco, tomato, citron, hop plants, and pericarps of persimmon fruits by the SPEX method. Several RNA viruses and viroids were successfully detected from the extracted nucleic acids together with an internal mRNA by RT-PCR. The SPEX method may be useful for detecting not only viruses and viroids, but also other plant pathogens.
Collapse
Affiliation(s)
- Tatsuji Hataya
- Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
24
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Multiplex Assay of Viruses Integrating Recombinase Polymerase Amplification, Barcode-Anti-Barcode Pairs, Blocking Anti-Primers, and Lateral Flow Assay. Anal Chem 2021; 93:13641-13650. [PMID: 34586776 DOI: 10.1021/acs.analchem.1c03030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multiplex assay based on recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a desirable tool for many areas. This multiplex assay could be efficiently realized using single-stranded (ss) DNAs located in separate zones on the test strip and bound complementary ssDNA tags of double-stranded (ds) DNA amplicons. Here, we investigate how to enrich multiplex assay capabilities using ssDNAs. Bifunctional oligonucleotide probes integrating (1) a forward primer for RPA, (2) a C9 spacer to stop polymerase, and (3) a ssDNA tag for binding at test strip are developed. The amplicons have a unique individual ssDNA tag at one end and a universal label of fluorescein introducing through a reverse primer at the other end. A conjugate of gold nanoparticles (GNP) with antibodies to fluorescein is used to detect all amplicons. The remainder of primers after RPA interacting with GNP conjugate was found to be a limiting factor for sensitive and specific multiplex assay. The addition of anti-RPA-primers before the use of test strips was proposed to simply and effectively eliminate remaining primers. This approach was successfully applied for the detection of three priority plant RNA viruses: potato virus Y (PVY), -S (PVS) and potato leafroll virus (PLRV). The total time of the assay is 30 min. The multiplex RPA-LFT detected at least 4 ng of PVY per g of plant leaves, 0.04 ng/g for PVS, and 0.04 ng/g for PLRV. The testing of healthy and infected potato samples showed concordance between the developed assay and reverse transcription-polymerase chain reaction. Thus, the capabilities of the proposed universal modules (ssDNA anchors, bifunctional probes, and blocking anti-primers) for multiplex detection of RNA analytes with high specificity and sensitivity were demonstrated.
Collapse
Affiliation(s)
- Alexandr V Ivanov
- Research Centre of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, 119071 Moscow, Russia
| | - Irina V Safenkova
- Research Centre of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- Research Centre of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, 119071 Moscow, Russia
| | - Boris B Dzantiev
- Research Centre of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, 119071 Moscow, Russia
| |
Collapse
|
25
|
Jablonski M, Poghossian A, Keusgen M, Wege C, Schöning MJ. Detection of plant virus particles with a capacitive field-effect sensor. Anal Bioanal Chem 2021; 413:5669-5678. [PMID: 34244834 PMCID: PMC8270236 DOI: 10.1007/s00216-021-03448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/25/2022]
Abstract
Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.
Collapse
Affiliation(s)
- Melanie Jablonski
- Institute of Nano- and Biotechnologies, FH Aachen, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, 35032, Marburg, Germany
| | | | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, 35032, Marburg, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany.
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
26
|
Morris C, Lee YS, Yoon S. Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma. Curr Opin Biotechnol 2021; 71:105-114. [PMID: 34325176 DOI: 10.1016/j.copbio.2021.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Adventitious agents present significant complications to biopharmaceutical manufacturing. Adventitious agents include numerous lifeforms such as bacteria, fungi, viruses, mycoplasma, and others that are inadvertently introduced into biological systems. They present significant problems to the stability of cell cultures and the sterility of manufacturing products. In this review, detection methods for bacteria, viruses, and mycoplasma are comprehensively addressed. Detection methods for viruses include traditional culture-based methods, electron microscopy studies, in vitro molecular and antibody assays, sequencing methods (massive parallel or next generation sequencing), and degenerate PCR (polymerase chain reaction). Bacteria, on the other hand, can be detected with culture-based approaches, PCR, and biosensor-based methods. Mycoplasma can be detected via PCR (including specific kits), microbiological culture methods, and enzyme-linked immunosorbent assays (ELISA). This review highlights the advantages and weaknesses of current detection methods while exploring potential avenues for further development and improvement of novel detection methods. Additionally, a brief evaluation of the transition of these methods into the gene therapy production realm with a focus on viral titer monitoring will be presented.
Collapse
Affiliation(s)
- Caitlin Morris
- Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Yong Suk Lee
- Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Seongkyu Yoon
- Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
27
|
Rihne T, Namita, Singh KP, Singh MK, Talukdar A. Improvement in molecular detection of phytoplasma associated with rose by selection of suitable primers and development of a multiplex PCR assay. 3 Biotech 2021; 11:190. [PMID: 33927981 PMCID: PMC7988127 DOI: 10.1007/s13205-021-02713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022] Open
Abstract
Sensitive and effective phytoplasma DNA amplification in symptomatic rose cultivars is a long unresolved problem. In the present study, improvement in standardization for PCR assay for phytoplasma detection was established with rose samples by selection of various combinations of nested primer pairs of 16S ribosomal gene and secA gene. CTAB DNA extraction method was slightly modified by adding 2% polyvinyl pyrrolidone and increased the isopropanol volume which yielded better quality DNA. Best amplification results were achieved in nested PCR assay employing P1/P7, R16mF2/R16mR2 and R16F2n/R16R2, P1/P7 and R16mF2/R16mR2, and R16mF2/R16mR2 and fU5/rU3 primer pairs. Besides, a multiplex PCR assay was also developed and optimized for consistent identification of phytoplasma in rose samples by employing primer pairs of 16S rRNA and secA genes together in a single PCR reaction by optimizing annealing temperature at 55 °C.
Collapse
Affiliation(s)
- Tasou Rihne
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Namita
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Kanwar Pal Singh
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - M. K. Singh
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Akshay Talukdar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
28
|
Maina S, Zheng L, Rodoni BC. Targeted Genome Sequencing (TG-Seq) Approaches to Detect Plant Viruses. Viruses 2021; 13:583. [PMID: 33808381 PMCID: PMC8066983 DOI: 10.3390/v13040583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/18/2022] Open
Abstract
Globally, high-throughput sequencing (HTS) has been used for virus detection in germplasm certification programs. However, sequencing costs have impeded its implementation as a routine diagnostic certification tool. In this study, the targeted genome sequencing (TG-Seq) approach was developed to simultaneously detect multiple (four) viral species of; Pea early browning virus (PEBV), Cucumber mosaic virus (CMV), Bean yellow mosaic virus (BYMV) and Pea seedborne mosaic virus (PSbMV). TG-Seq detected all the expected viral amplicons within multiplex PCR (mPCR) reactions. In contrast, the expected PCR amplicons were not detected by gel electrophoresis (GE). For example, for CMV, GE only detected RNA1 and RNA2 while TG-Seq detected all the three RNA components of CMV. In an mPCR to amplify all four viruses, TG-Seq readily detected each virus with more than 732,277 sequence reads mapping to each amplicon. In addition, TG-Seq also detected all four amplicons within a 10-8 serial dilution that were not detectable by GE. Our current findings reveal that the TG-Seq approach offers significant potential and is a highly sensitive targeted approach for detecting multiple plant viruses within a given biological sample. This is the first study describing direct HTS of plant virus mPCR products. These findings have major implications for grain germplasm healthy certification programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.
Collapse
Affiliation(s)
- Solomon Maina
- Microbial Sciences, Pests & Diseases, Agriculture Victoria, 110 Natimuk Road, Horsham, Victoria 3400, Australia
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, Victoria 3400, Australia
| | - Linda Zheng
- Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia; (L.Z.); (B.C.R.)
| | - Brendan C. Rodoni
- Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia; (L.Z.); (B.C.R.)
- School of Applied Systems Biology (SASB), La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
29
|
Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:v13030412. [PMID: 33807625 PMCID: PMC7999175 DOI: 10.3390/v13030412] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Collapse
|
30
|
Hariharan G, Prasannath K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front Cell Infect Microbiol 2021; 10:600234. [PMID: 33505921 PMCID: PMC7829251 DOI: 10.3389/fcimb.2020.600234] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.
Collapse
Affiliation(s)
- Ganeshamoorthy Hariharan
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Kandeeparoopan Prasannath
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| |
Collapse
|
31
|
Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles. MICROMACHINES 2021; 12:mi12010057. [PMID: 33418949 PMCID: PMC7825068 DOI: 10.3390/mi12010057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta2O5-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta2O5-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.
Collapse
|
32
|
Stackhouse T, Martinez-Espinoza AD, Ali ME. Turfgrass Disease Diagnosis: Past, Present, and Future. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1544. [PMID: 33187303 PMCID: PMC7697262 DOI: 10.3390/plants9111544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Turfgrass is a multibillion-dollar industry severely affected by plant pathogens including fungi, bacteria, viruses, and nematodes. Many of the diseases in turfgrass have similar signs and symptoms, making it difficult to diagnose the specific problem pathogen. Incorrect diagnosis leads to the delay of treatment and excessive use of chemicals. To effectively control these diseases, it is important to have rapid and accurate detection systems in the early stages of infection that harbor relatively low pathogen populations. There are many methods for diagnosing pathogens on turfgrass. Traditional methods include symptoms, morphology, and microscopy identification. These have been followed by nucleic acid detection and onsite detection techniques. Many of these methods allow for rapid diagnosis, some even within the field without much expertise. There are several methods that have great potential, such as high-throughput sequencing and remote sensing. Utilization of these techniques for disease diagnosis allows for faster and accurate disease diagnosis and a reduction in damage and cost of control. Understanding of each of these techniques can allow researchers to select which method is best suited for their pathogen of interest. The objective of this article is to provide an overview of the turfgrass diagnostics efforts used and highlight prospects for disease detection.
Collapse
Affiliation(s)
- Tammy Stackhouse
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA;
| | | | - Md Emran Ali
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
33
|
Meena GG, Wall TA, Stott MA, Brown O, Robison R, Hawkins AR, Schmidt H. 7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening. OPTICS EXPRESS 2020; 28:33019-33027. [PMID: 33114971 PMCID: PMC7679188 DOI: 10.1364/oe.402311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rapid and accurate diagnosis of bacterial infections resistant to multiple antibiotics requires development of new bio-sensors for differentiated detection of multiple targets. This work demonstrates 7x multiplexed detection for antibiotic-resistance bacterial screening on an optofluidic platform. We utilize spectrally multiplexed multi-spot excitation for simultaneous detection of nucleic acid strands corresponding to bacterial targets and resistance genes. This is enabled by multi-mode interference (MMI) waveguides integrated in an optofluidic device. We employ a combinatorial three-color labeling scheme for the nucleic acid assays to scale up their multiplexing capability to seven different nucleic acids, representing three species and four resistance genes.
Collapse
Affiliation(s)
- G. G. Meena
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - T. A. Wall
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - M. A. Stott
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - O. Brown
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - R. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - A. R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - H. Schmidt
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| |
Collapse
|
34
|
Molecular Detection of Potato Viruses in Bangladesh and Their Phylogenetic Analysis. PLANTS 2020; 9:plants9111413. [PMID: 33105821 PMCID: PMC7690588 DOI: 10.3390/plants9111413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022]
Abstract
Potato (Solanum tuberosum) is a major food source in the whole world including Bangladesh. Viral diseases are the key constraint for sustainable potato production by reducing both quality and quantity. To determine the present status of eight important potato viruses in Bangladesh, tuber samples were collected from three major potato growing regions (Munshiganj, Jessore and Bogra districts) in January–February 2017 and February 2018. Reverse transcription polymerase chain reaction (RT-PCR) with coat protein (CP)-specific primers were used to amplify CP sequences of the respective viruses, and confirmed by sequencing, which were deposited in the GenBank. Results indicated that the tuber samples were subjected to Potato leafroll virus (PLRV), Potato virus X (PVX), Potato virus Y (PVY), Potato virus S (PVS), Potato virus H (PVH), Potato aucuba mosaic virus (PAMV) and Potato virus M (PVM) infection, whereas mixed infections were very common. Phylogenetic analysis revealed that the PLRV from this study was closely related to a Canadian and a Chinese isolate, respectively; PVX was closely related to a Canadian and a Chinese isolate, respectively; PVY was closely related to a Chinese isolate; PVS was closely related to a Chinese and an Iranian isolate, respectively; PAMV was closely related to a Canadian isolate; PVH was closely related to a Huhhot isolate of China; and PVM was closely related to an Indian and an Iranian isolate, respectively. As far as we know, PAMV in this study is the first report in Bangladesh. These findings will provide a great scope for appropriate virus control strategies to virus free potato production in Bangladesh.
Collapse
|
35
|
Kubota K, Chiaki Y, Yanagisawa H, Yamasaki J, Horikawa H, Tsunekawa K, Morita Y. Novel degenerate primer sets for the detection and identification of emaraviruses reveal new chrysanthemum species. J Virol Methods 2020; 288:113992. [PMID: 33045282 DOI: 10.1016/j.jviromet.2020.113992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Emaraviruses are a genus of plant viruses that have been newly described in the past decade. These viruses, some of which are transmitted by eriophyid mites, are important pathogens of cereals, fruits, and ornamental trees worldwide. This study used sequence data for emaraviruses to design new degenerate primer sets that identify an extensive range of known and unknown emaraviruses. Sequence alignment of the amino acid and nucleotide sequences of RNA-dependent RNA polymerases for 11 accessions among nine emaraviruses confirmed the presence of seven conserved motifs (Pre-A, F, A, B, C, D, and E). Subsequently, new degenerate primers were designed based on motifs F, A, and B, which were the most conserved among the seven motifs. Reverse transcription-polymerase chain reaction using these primers detected known emaraviruses more efficiently than previously known primers. These new primers enabled the identification of a partial nucleotide sequence of a putative novel emaravirus from chrysanthemum leaves showing mosaic or yellowish ringspot symptoms known to be associated with eriophyid mites, Paraphytoptus kikus. These sequences were specifically detected from the symptomatic leaves of a chrysanthemum, and the putative emaravirus was tentatively named chrysanthemum mosaic-associated virus.
Collapse
Affiliation(s)
- Kenji Kubota
- Central Region Agricultural Research Center, NARO, Kannondai, Tsukuba, Ibaraki 305-8666, Japan.
| | - Yuya Chiaki
- Central Region Agricultural Research Center, NARO, Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Hironobu Yanagisawa
- Central Region Agricultural Research Center, NARO, Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Junki Yamasaki
- Kochi Agricultural Research Center, Hataeda, Nankoku, Kochi 783-0023, Japan
| | - Hidenori Horikawa
- Aichi Agricultural Research Center, Sagamine, Yazako, Nagakute, Aichi 480-1193, Japan
| | - Kenta Tsunekawa
- Aichi Agricultural Research Center, Sagamine, Yazako, Nagakute, Aichi 480-1193, Japan
| | - Yasuaki Morita
- Kochi Agricultural Research Center, Hataeda, Nankoku, Kochi 783-0023, Japan
| |
Collapse
|
36
|
Noorani MS, Khan JA. Development of a novel polyprobe for simultaneous detection of six viruses infecting stone and pome fruits. 3 Biotech 2020; 10:389. [PMID: 32832339 DOI: 10.1007/s13205-020-02384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022] Open
Abstract
A biotin-labeled, non-isotopic, novel polyprobe was developed for the simultaneous detection of six viruses viz. apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV), apple stem grooving virus (ASGV), cherry virus A (CVA), prunus necrotic ringspot virus (PNRSV) and plum pox virus (PPV) infecting stone and pome fruit trees through dot-blot hybridization assay. The sensitivity of the polyprobe was checked by serial dilutions of total RNA extracted from the tissues of infected trees. ACLSV was detected up to a dilution of 5-5, whereas ApMV, ASGV, CVA, PPV and PNRSV up to 5-4. The developed assay was validated following testing a total of 45 symptomatic leaf samples collected from different geographical regions of Jammu and Kashmir (India), and the presence of the viruses was further confirmed by RT-PCR and sequencing. The polyprobe, designed for performing molecular hybridization assay can be developed quickly and avoid the tedious transformation and cloning procedures. Apart from simultaneously detecting viruses in stone and pome fruit trees, it holds great potential for virus indexing programmes to ascertain the supply of virus-free plant materials to the growers.
Collapse
Affiliation(s)
- Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard (A Deemed to be University), Hamdard Nagar, New Delhi, 110062 India.,Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), Jamia Nagar, New Delhi, 110025 India
| | - Jawaid Ahmad Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), Jamia Nagar, New Delhi, 110025 India
| |
Collapse
|
37
|
Pappi PG, Fotiou I, Efthimiou KE, Katis NI, Maliogka VI. Development of three duplex real-time RT-PCR assays for the sensitive and rapid detection of a phytoplasma and five viral pathogens affecting stone fruit trees. Mol Cell Probes 2020; 53:101621. [PMID: 32603761 DOI: 10.1016/j.mcp.2020.101621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Three duplex real-time reverse-transcription polymerase chain reaction (real-time RT-PCR) assays based on TaqMan chemistry, were developed for the simultaneous detection and specific quantification of apple chlorotic leafspot virus (ACLSV), plum pox virus (PPV), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), peach latent mosaic viroid (PLMVd) and the European stone fruit yellows (ESFY) phytoplasma, which are considered among the most important pathogens affecting stone fruit trees. The quantitative RT-PCR (RT-qPCR) assays were optimized using RNA transcripts (linearized plasmid was used for the assay optimization of the ESFY phytoplasma) of known concentrations. No differences in sensitivity were recorded between the duplex and singleplex RT-qPCR assays. The amplification efficiency of the duplex assays reached 91.1-95.8%, while the linear range of quantification was from 20 to 2 × 107 RNA/linearized plasmid transcripts for PLMVd and ESFY phytoplasma, 40 to 4 × 107 RNA transcripts for ACLSV, PPV and PDV, and 102 to 108 RNA transcripts for PNRSV, respectively. The duplex RT-qPCR assays, which were validated using both characterized isolates from all pathogens and field samples from Prunus species in Northern Greece, exhibited a broad detection range. Overall, the developed methods comprise useful tools that could be applied for the simultaneous and reliable detection of graft-transmissible pathogens in certification programs of Prunus spp.
Collapse
Affiliation(s)
- Polyxeni G Pappi
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, University Campus, Thessaloniki, Greece
| | - Ioanna Fotiou
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, University Campus, Thessaloniki, Greece
| | - Konstantinos E Efthimiou
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, University Campus, Thessaloniki, Greece
| | - Nikolaos I Katis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, University Campus, Thessaloniki, Greece
| | - Varvara I Maliogka
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, University Campus, Thessaloniki, Greece.
| |
Collapse
|
38
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|
39
|
Poghossian A, Jablonski M, Molinnus D, Wege C, Schöning MJ. Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers. FRONTIERS IN PLANT SCIENCE 2020; 11:598103. [PMID: 33329662 PMCID: PMC7732584 DOI: 10.3389/fpls.2020.598103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 05/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.
Collapse
Affiliation(s)
| | - Melanie Jablonski
- Institute of Nano- and Biotechnologies, FH Aachen University of Applied Sciences, Jülich, Germany
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Denise Molinnus
- Institute of Nano- and Biotechnologies, FH Aachen University of Applied Sciences, Jülich, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- *Correspondence: Christina Wege,
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, FH Aachen University of Applied Sciences, Jülich, Germany
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Jülich, Germany
- Michael J. Schöning,
| |
Collapse
|
40
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
41
|
Hadidi A. Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics. Viruses 2019; 11:E120. [PMID: 30699972 PMCID: PMC6409718 DOI: 10.3390/v11020120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Viroid discovery as well as the economic significance of viroids and biological properties are presented. Next-generation sequencing (NGS) technologies combined with informatics have been applied to viroid research and diagnostics for almost a decade. NGS provides highly efficient, rapid, low-cost high-throughput sequencing of viroid genomes and of the 21⁻24 nt vd-sRNAs generated by the RNA silencing defense of the host. NGS has been utilized in various viroid studies which are presented. The discovery during the last few years that prokaryotes have heritable adaptive immunity mediated through clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated Cas proteins, have led to transformative advances in molecular biology, notably genome engineering and most recently molecular diagnostics. The potential application of the CRISPR-Cas13a system for engineering viroid interference in plants is suggested by targeting specific motifs of three economically important viroids. The CRISPR-Cas13 system has been utilized recently for the accurate detection of human RNA viruses by visual read out in 90 min or less and by paper-based assay. Multitarget RNA tests by this technology have a good potential for application as a rapid and accurate diagnostic assay for known viroids. The CRISPR/Cas system will work only for known viroids in contrast to NGS, but it should be much faster.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|