1
|
Coccitto SN, Cinthi M, Massacci FR, Albini E, Magistrali CF, Brenciani A, Giovanetti E. Genetic elements harbouring oxazolidinone resistance genes detected in swine enterococci circulate in clinical isolates, Italy. J Glob Antimicrob Resist 2024; 38:245-246. [PMID: 39004341 DOI: 10.1016/j.jgar.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
- Sonia Nina Coccitto
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Marzia Cinthi
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | | | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy.
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
2
|
Mortelé O, van Kleef-van Koeveringe S, Vandamme S, Jansens H, Goossens H, Matheeussen V. Epidemiology and genetic diversity of linezolid-resistant Enterococcus clinical isolates in Belgium from 2013 to 2021. J Glob Antimicrob Resist 2024; 38:21-26. [PMID: 38719188 DOI: 10.1016/j.jgar.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 06/18/2024] Open
Abstract
OBJECTIVES Linezolid-resistant opportunistic human pathogens Enterococcus faecalis and Enterococcus faecium are emerging health threats as limited therapeutic options remain. The aim of this study was to investigate the epidemiology, resistance mechanisms, and genetic diversity of linezolid-resistant enterococci (LRE) isolated between 2013 and 2021 and received at the Belgian National Reference Centre (NRC) for Enterococci. METHODS Linezolid susceptibility testing was performed upon request on 2458 submitted enterococci strains. Whole-genome sequencing was performed on all LRE strains. RESULTS Seventy-eight LRE human isolates, of which 63 (81%) E. faecalis and 15 (19%) E. faecium strains, were submitted to the Belgian NRC for Enterococci. Of the linezolid-resistant E. faecalis strains, 97% harboured the optrA gene (56% wild-type pE349) and 3% the poxtA gene. Of the linezolid-resistant E. faecium strains, 54% harboured the G2576T point mutation in the V domain of the 23S rRNA genes, 23% the poxtA, and 23% the optrA gene. Furthermore, two E. faecium strains were identified with a combination of two resistance mechanisms ([i] optrA and poxtA, and [ii] cfr(B) and G2576T point mutation, respectively). Vancomycin resistance was observed in 15% (n = 12) of the LRE. ST480 (n = 42/63 typed strains, 67%) was the most frequently detected sequence type (ST) in linezolid-resistant E. faecalis strains, while ST203 (n = 5/15 typed strains, 33%) was the most frequently detected ST in linezolid-resistant E. faecium strains. CONCLUSIONS E. faecalis isolates harbouring optrA were the predominant LRE in Belgium, with ST480 as the most prominent multilocus sequence typing. Linezolid resistance in E. faecium could be attributed to either chromosomal mutations or transferable resistance determinants.
Collapse
Affiliation(s)
- Olivier Mortelé
- National Reference Centre for Enterococci and Microbiology Department, University Hospital Antwerp, Edegem, Belgium
| | - Stefanie van Kleef-van Koeveringe
- National Reference Centre for Enterococci and Microbiology Department, University Hospital Antwerp, Edegem, Belgium; Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Sarah Vandamme
- National Reference Centre for Enterococci and Microbiology Department, University Hospital Antwerp, Edegem, Belgium
| | - Hilde Jansens
- National Reference Centre for Enterococci and Microbiology Department, University Hospital Antwerp, Edegem, Belgium; Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Herman Goossens
- National Reference Centre for Enterococci and Microbiology Department, University Hospital Antwerp, Edegem, Belgium; Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Veerle Matheeussen
- National Reference Centre for Enterococci and Microbiology Department, University Hospital Antwerp, Edegem, Belgium; Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium; Laboratory of Medical Biochemistry, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
3
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Yang Q, Wang X, Schwarz S, Zhu Y, Zhang W. Identification of ISVlu1-derived translocatable units containing optrA and/or fexA genes generated by homologous or illegitimate recombination in Lactococcus garvieae of porcine origin. Vet Microbiol 2024; 292:110048. [PMID: 38479301 DOI: 10.1016/j.vetmic.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiumei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
6
|
Michaelis C, Berger TMI, Kuhlmann K, Ghulam R, Petrowitsch L, Besora Vecino M, Gesslbauer B, Pavkov-Keller T, Keller W, Grohmann E. Effect of TraN key residues involved in DNA binding on pIP501 transfer rates in Enterococcus faecalis. Front Mol Biosci 2024; 11:1268647. [PMID: 38380428 PMCID: PMC10877727 DOI: 10.3389/fmolb.2024.1268647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Conjugation is a major mechanism that facilitates the exchange of antibiotic resistance genes among bacteria. The broad-host-range Inc18 plasmid pIP501 harbors 15 genes that encode for a type IV secretion system (T4SS). It is a membrane-spanning multiprotein complex formed between conjugating donor and recipient cells. The penultimate gene of the pIP501 operon encodes for the cytosolic monomeric protein TraN. This acts as a transcriptional regulator by binding upstream of the operon promotor, partially overlapping with the origin of transfer. Additionally, TraN regulates traN and traO expression by binding upstream of the PtraNO promoter. This study investigates the impact of nine TraN amino acids involved in binding to pIP501 DNA through site-directed mutagenesis by exchanging one to three residues by alanine. For three traN variants, complementation of the pIP501∆traN knockout resulted in an increase of the transfer rate by more than 1.5 orders of magnitude compared to complementation of the mutant with native traN. Microscale thermophoresis (MST) was used to assess the binding affinities of three TraN double-substituted variants and one triple-substituted variant to its cognate pIP501 double-stranded DNA. The MST data strongly correlated with the transfer rates obtained by biparental mating assays in Enterococcus faecalis. The TraN variants TraN_R23A-N24A-Q28A, TraN_H82A-R86A, and TraN_G100A-K101A not only exhibited significantly lower DNA binding affinities but also, upon complementation of the pIP501∆traN knockout, resulted in the highest pIP501 transfer rates. This confirms the important role of the TraN residues R23, N24, Q28, H82, R86, G100, and K101 in downregulating pIP501 transfer. Although TraN is not part of the mating pair formation complex, TraE, TraF, TraH, TraJ, TraK, and TraM were coeluted with TraN in a pull-down. Moreover, TraN homologs are present not only in Inc18 plasmids but also in RepA_N and Rep_3 family plasmids, which are frequently found in enterococci, streptococci, and staphylococci. This points to a widespread role of this repressor in conjugative plasmid transfer among Firmicutes.
Collapse
Affiliation(s)
- Claudia Michaelis
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | | | - Kirill Kuhlmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rangina Ghulam
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| |
Collapse
|
7
|
Tang B, Zou C, Schwarz S, Xu C, Hao W, Yan XM, Huang Y, Ni J, Yang H, Du XD, Shan X. Linezolid-Resistant Enterococcus faecalis of Chicken Origin Harbored Chromosome-Borne optrA and Plasmid-Borne cfr, cfr(D), and poxtA2 Genes. Microbiol Spectr 2023; 11:e0274122. [PMID: 36995237 PMCID: PMC10269796 DOI: 10.1128/spectrum.02741-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/26/2023] [Indexed: 03/31/2023] Open
Abstract
The aim of this study was to investigate the transferability of acquired linezolid resistance genes and associated mobile genetic elements in an Enterococcus faecalis isolate QZ076, cocarrying optrA, cfr, cfr(D), and poxtA2 genes. MICs were determined by broth microdilution. Whole-genome sequencing (WGS) was performed using the Illumina and Nanopore platforms. The transfer of linezolid resistance genes was investigated by conjugation, using E. faecalis JH2-2 and clinical methicillin-resistant Staphylococcus aureus (MRSA) 109 as recipients. E. faecalis QZ076 harbors four plasmids, designated pQZ076-1 to pQZ076-4, with optrA located in the chromosomal DNA. The gene cfr was located on a novel pseudocompound transposon, designated Tn7515, integrated into the 65,961-bp pCF10-like pheromone-responsive conjugative plasmid pQZ076-1. Tn7515 generated 8-bp direct target duplications (5'-GATACGTA-3'). The genes cfr(D) and poxtA2 were colocated on the 16,397-bp mobilizable broad-host-range Inc18 plasmid pQZ076-4. The cfr-carrying plasmid pQZ076-1 could transfer from E. faecalis QZ076 to E. faecalis JH2-2, along with the cfr(D)- and poxtA2-cocarrying plasmid pQZ076-4, conferring the corresponding resistant phenotype to the recipient. Moreover, pQZ076-4 could also transfer to MRSA 109. To the best of our knowledge, this study presented the first report of four acquired linezolid resistance genes [optrA, cfr, cfr(D), and poxtA2] being simultaneously present in the same E. faecalis isolate. The location of the cfr gene on a pseudocompound transposon in a pheromone-responsive conjugative plasmid will accelerate its rapid dissemination. In addition, the cfr-carrying pheromone-responsive conjugative plasmid in E. faecalis was also able to mobilize the interspecies transfer of the cfr(D)- and poxtA2-cocarrying plasmid between enterococci and staphylococci. IMPORTANCE In this study, the simultaneous occurrence of four acquired oxazolidinone resistance genes [optrA, cfr, cfr(D), and poxtA2] was identified in an E. faecalis isolate of chicken origin. The association of the cfr gene with a novel pseudocompound transposon Tn7515 integrated into a pCF10-like pheromone-responsive conjugative plasmid will accelerate its dissemination. Moreover, the location of the resistance genes cfr(D) and poxtA2 on a mobilizable broad-host-range Inc18 family plasmid represents the basis for their intra- and interspecies dissemination with the aid of a conjugative plasmid and further accelerates the spreading of acquired oxazolidinone resistance genes, such as cfr, cfr(D), and poxtA2, among Gram-positive pathogens.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chenhui Zou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Chunyan Xu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Hao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Mei Yan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuting Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiang-Dang Du
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinxin Shan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Dai X, Sun J, Zhu B, Lv M, Chen L, Chen L, Wang X, Huang J, Wang L. Various Mobile Genetic Elements Involved in the Dissemination of the Phenicol-Oxazolidinone Resistance Gene optrA in the Zoonotic Pathogen Streptococcus suis: a Nonignorable Risk to Public Health. Microbiol Spectr 2023; 11:e0487522. [PMID: 37070987 PMCID: PMC10269897 DOI: 10.1128/spectrum.04875-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
The rapid increase of phenicol-oxazolidinone (PhO) resistance in Streptococcus suis due to transferable resistance gene optrA is a matter of concern. However, genetic mechanisms for the dissemination of the optrA gene remain to be discovered. Here, we selected 33 optrA-positive S. suis isolates for whole-genome sequencing and analysis. The IS1216E element was present in 85% of the optrA-carrying contigs despite genetic variation observed in the flanking region. IS1216E-optrA-carrying segments could be inserted into larger mobile genetic elements (MGEs), including integrative and conjugative elements, plasmids, prophages, and antibiotic resistance-associated genomic islands. IS1216E-mediated circularization occurred to form the IS1216E-optrA-carrying translocatable units, suggesting a crucial role of IS1216E in optrA spreading. Three optrA-carrying MGEs (ICESsuAKJ47_SSU1797, plasmid pSH0918, and prophage ΦSsuFJSM5_rum) were successfully transferred via conjugation at different transfer frequencies. Interestingly, two types of transconjugants were observed due to the multilocus integration of ICESsuAKJ47 into an alternative SSU1943 attachment site along with the primary SSU1797 attachment site (type 1) or into the single SSU1797 attachment site (type 2). In addition, conjugative transfer of an optrA-carrying plasmid and prophage in streptococci was validated for the first time. Considering the abundance of MGEs in S. suis and the mobility of IS1216E-optrA-carrying translocatable units, attention should be paid to the potential risks to public health from the emergence and spread of PhO-resistant S. suis. IMPORTANCE Antimicrobial resistance to phenicols and oxazolidinones by the dissemination of the optrA gene leads to treatment failure in both veterinary and human medicine. However, information about the profile of these MGEs (mobilome) that carry optrA and their transferability in streptococci was limited, especially for the zoonotic pathogen S. suis. This study showed that the optrA-carrying mobilome in S. suis includes integrative and conjugative elements (ICEs), plasmids, prophages, and antibiotic resistance-associated genomic islands. IS1216E-mediated formation of optrA-carrying translocatable units played important roles in optrA spreading between types of MGEs, and conjugative transfer of various optrA-carrying MGEs (ICEs, plasmids, and prophages) further facilitated the transfer of optrA across strains, highlighting a nonignorable risk to public health of optrA dissemination to other streptococci and even to bacteria of other genera.
Collapse
Affiliation(s)
- Xingyang Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Boqin Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingsiyi Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liye Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Li Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing, China
- Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing, China
- Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing, China
- Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Dai X, Zhao J, Sun J, Chen L, Han P, Wang X, Huang J, Wang L. ICESpsuAH0906, a novel optrA-carrying element conferring resistance to phenicols and oxazolidinones from Streptococcus parasuis, is transferable to Streptococcus suis. Vet Microbiol 2023; 283:109795. [PMID: 37269713 DOI: 10.1016/j.vetmic.2023.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Streptococcus parasuis is a potential opportunistic zoonotic pathogen which is a close relative to Streptococcus suis, which exhibit extensive genetic exchange. The occurrence and dissemination of oxazolidinone resistance poses a severe threat to public health. However, such knowledge about the optrA gene in S. parasuis is limited. Herein, we characterized an optrA-positive multi-resistant S. parasuis isolate AH0906, in which the capsular polysaccharide locus exhibited a hybrid structure of S. suis serotype 11 and S. parasuis serotype 26. The optrA and erm(B) genes were co-located on a novel ICE of the ICESsuYZDH1 family, designated ICESpsuAH0906. IS1216E-optrA-carrying translocatable unit could be formed when excised from ICESpsuAH0906. ICESpsuAH0906 was found to be transferable from isolate AH0906 to Streptococcus suis P1/7RF at a relative high frequency of ∼ 10-5. Nonconservative integrations of ICESpsuAH0906 into the primary site SSU0877 and secondary site SSU1797 with 2-/4-nt imperfect direct repeats in recipient P1/7RF were observed. Upon transfer, the transconjugant displayed elevated MICs of the corresponding antimicrobial agents and performed a weak fitness cost when compared with the recipient strain. To our knowledge, it is the first description of the transfer of optrA in S. prarasuis and the first report of interspecies transfer of ICE with triplet serine integrases (of the ICESsuYZDH1 family). Considering the high transmission frequency of the ICEs and the extensive genetic exchange potential of S. parasuis with other streptococci, attention should be paid to the dissemination of the optrA gene from S. parasuis to clinically more important bacterial pathogens.
Collapse
Affiliation(s)
- Xingyang Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizhao Han
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing 210095, China; Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing 210095, China; Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing 210095, China; Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Kazi TA, Mukhopadhyay BC, Mandal S, Biswas SR. Molecular characterization of five novel plasmids from Enterococcus italicus SD1 isolated from fermented milk: An insight into understanding plasmid incompatibility. Gene 2023; 856:147154. [PMID: 36574936 DOI: 10.1016/j.gene.2022.147154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Enterococcal plasmids have attracted considerable interest because of their indispensable role in the pathogenesis and dissemination of multidrug-resistance. In this work, five novel plasmids pSRB2, pSRB3, pSRB4, pSRB5 and pSRB7 have been identified and characterised, coexisting in Eneterococcus italicus SD1 from fermented milk. The plasmids pSRB2, pSRB3 and pSRB5 were found to replicate via theta mode of replication while pSRB4 and pSRB7 were rolling-circle plasmids. Comparative analysis of SD1-plasmids dictated that the plasmids are mosaic with novel architecture. Plasmids pSRB2 and pSRB5 are comprised of a typical iteron-based class-A theta type origin of replication, whereas pSRB3 has a Class-D theta type replication origin like pAMβ1. The plasmids pSRB4 and pSRB7 shared similar ori as in pWV01. The SD1 class-A theta type plasmids shared significant homology between their replication proteins with differences in their DNA-binding domain and comprises of distinct iterons. The differences in their iterons and replication proteins restricts the "handcuff" formation for inhibition of plasmid replication, rendering to their compatibility to coexist. Similarly, for SD1 rolling circle plasmids the differences in the replication protein binding site in the origin and the replication protein supports their coexistence by inhibiting the crosstalk between the origins and replication proteins. The phylogenetic tree of their replication proteins revealed their distant kinship. The results indicate that the identified plasmids are unique to E. italicus SD1, providing further opportunities to study their utility in designing multiple gene expression systems for the simultaneous production of proteins in enterococci with the renewed concept of plasmid incompatibility.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
11
|
Osman M, Altier C, Cazer C. Antimicrobial resistance among canine enterococci in the northeastern United States, 2007-2020. Front Microbiol 2023; 13:1025242. [PMID: 36687655 PMCID: PMC9849698 DOI: 10.3389/fmicb.2022.1025242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a growing and complex One Health concern worldwide, threatening the practice of human and veterinary medicine. Although dogs are a potential reservoir of multidrug-resistant bacteria, there are very few surveillance studies on AMR from the canine population in the United States. Here, we assessed the antimicrobial susceptibility patterns, identified temporal resistance and minimum inhibitory concentration trends, and described associations between resistance phenotypes among canine clinical enterococci in the northeastern United States. Methods Through a large-scale retrospective study design, we collected species identification, minimum inhibitory concentration, and clinical data from 3,659 canine enterococci isolated at the Cornell University Animal Health Diagnostic Center between 2007 and 2020. We used the Mann-Kendall test, Sen's slope, multivariable logistic regression, and survival analysis models to detect the presence of a significant trend in resistance over the study period. Results Enterococcus faecalis was the most prevalent species (67.1% of isolates), followed by Enterococcus faecium (20.4%). We found high levels of AMR among enterococci to almost all the tested antimicrobials, particularly E. faecium. The lowest percentage of resistance was to vancomycin and chloramphenicol. Multidrug resistance was common (80% of E. faecium and 33% of E. faecalis) and 31 isolates were extensively drug resistant. Multidrug resistance among E. faecium increased over time, but not in E. faecalis. Resistance to penicillins, enrofloxacin, and rifampin increased during the study period, but resistance to tetracyclines is on a downward trajectory compared to AMR data from the last decade. Emerging vancomycin-resistant E. faecalis (0.3%) and E. faecium (0.8%) infections in the canine population are of great concern to both human and animal health. One E. faecium isolate with acquired vancomycin resistance was identified in 2017 and four vancomycin-resistant enterococci isolates were identified in 2020. Conclusion There is a crucial need to make rational prescribing decisions on the prudent use of antimicrobials and improve the quality of care for patients, especially when empirical antimicrobial treatment for enterococcal infection is common.
Collapse
Affiliation(s)
- Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, United States,Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States,*Correspondence: Marwan Osman,
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Casey Cazer
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Habib I, Ghazawi A, Lakshmi GB, Mohamed MYI, Li D, Khan M, Sahibzada S. Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. Foods 2022. [PMCID: PMC9602063 DOI: 10.3390/foods11203190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates’ genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human–food interface.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain 52571, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria 5424041, Egypt
- Correspondence: ; Tel.: +971-501-336-803
| | - Akela Ghazawi
- Department of Medical Microbiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 52571, United Arab Emirates
| | - Glindya Bhagya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain 52571, United Arab Emirates
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain 52571, United Arab Emirates
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Mushtaq Khan
- Department of Medical Microbiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 52571, United Arab Emirates
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
13
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
14
|
Li P, Gao M, Feng C, Yan T, Sheng Z, Shi W, Liu S, Zhang L, Li A, Lu J, Lin X, Li K, Xu T, Bao Q, Sun C. Molecular characterization of florfenicol and oxazolidinone resistance in Enterococcus isolates from animals in China. Front Microbiol 2022; 13:811692. [PMID: 35958123 PMCID: PMC9360786 DOI: 10.3389/fmicb.2022.811692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Florfenicol is widely used for the treatment of bacterial infections in domestic animals. The aim of this study was to analyze the molecular mechanisms of florfenicol and oxazolidinone resistance in Enterococcus isolates from anal feces of domestic animals. The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method. Polymerase chain reaction (PCR) was performed to analyze the distribution of the resistance genes. Whole-genome sequencing and comparative plasmid analysis was conducted to analyze the resistance gene environment. A total of 351 non-duplicated enteric strains were obtained. Among these isolates, 22 Enterococcus isolates, including 19 Enterococcus. faecium and 3 Enterococcus. faecalis, were further studied. 31 florfenicol resistance genes (13 fexA, 3 fexB, 12 optrA, and 3 poxtA genes) were identified in 15 of the 19 E. faecium isolates, and no florfenicol or oxazolidinone resistance genes were identified in 3 E. faecalis isolates. Whole-genome sequencing of E. faecium P47, which had all four florfenicol and oxazolidinone resistance genes and high MIC levels for both florfenicol (256 mg/L) and linezolid (8 mg/L), revealed that it contained a chromosome and 3 plasmids (pP47-27, pP47-61, and pP47-180). The four florfenicol and oxazolidinone resistance genes were all related to the insertion sequences IS1216 and located on two smaller plasmids. The genes fexB and poxtA encoded in pP47-27, while fexA and optrA encoded in the conjugative plasmid pP47-61. Comparative analysis of homologous plasmids revealed that the sequences with high identities were plasmid sequences from various Enterococcus species except for the Tn6349 sequence from a Staphylococcus aureus chromosome (MH746818.1). The current study revealed that florfenicol and oxazolidinone resistance genes (fexA, fexB, poxtA, and optrA) were widely distributed in Enterococcus isolates from animal in China. The mobile genetic elements, including the insertion sequences and conjugative plasmid, played an important role in the horizontal transfer of florfenicol and oxazolidinone resistance.
Collapse
Affiliation(s)
- Pingping Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Zhoukou Maternal and Child Health Hospital, Zhoukou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tielun Yan
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiqiong Sheng
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anqi Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
- Teng Xu,
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Qiyu Bao,
| | - Caixia Sun
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Caixia Sun,
| |
Collapse
|
15
|
Crowe-McAuliffe C, Murina V, Turnbull KJ, Huch S, Kasari M, Takada H, Nersisyan L, Sundsfjord A, Hegstad K, Atkinson GC, Pelechano V, Wilson DN, Hauryliuk V. Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nat Commun 2022; 13:1860. [PMID: 35387982 PMCID: PMC8987054 DOI: 10.1038/s41467-022-29274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Å out of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.
Collapse
Affiliation(s)
- Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Victoriia Murina
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Kathryn Jane Turnbull
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Marje Kasari
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Hiraku Takada
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Arnfinn Sundsfjord
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Kristin Hegstad
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Gemma C Atkinson
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| | - Vasili Hauryliuk
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
16
|
Characterization of a Novel Linezolid Resistance Gene optrA and Bacitracin Resistance Locus-Carrying Multiple Antibiotic Resistant Integrative and Conjugative Element ICE Ssu1112S in Streptococccus Suis. Microbiol Spectr 2022; 10:e0196321. [PMID: 35170998 PMCID: PMC8849049 DOI: 10.1128/spectrum.01963-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Streptococcus suis strain 1112S was isolated from a diseased pig in a feedlot from Henan, China, in 2019. The isolate harbored a linezolid resistance gene optrA. WGS data revealed that the optrA gene was associated with a single copy ETAf ISS1S, in tandem with erm(B) and tet(O), located in a novel 72,587 bp integrative and conjugative element (ICE). Notably, this novel element, designated ICESsu1112S, also carried a novel bacitracin resistance locus. ICESsu1112S could be excised from chromosome and transferred to the recipient strain S. suis P1/7 with a frequency of 5.9 × 10−6 transconjugants per donor cell. This study provided the first description of the coexistence of optrA and a novel bacitracin locus on a multiple antibiotic resistant ICE and highlighted that ICE were major vehicle and contribute to the potential transfer of clinically relevant antibiotic resistance genes. IMPORTANCE Antimicrobial resistance (AMR) caused by the imprudent use of antimicrobials has become a global problem, which poses a serious threat to treatment of S. suis infection in pigs and humans. Importantly, AMR genes can horizontally spread among commensal organisms and pathogenic microbiota, thereby accelerating the dissemination of AMR determinants. These transfers are mainly mediated by mobile genetic elements, including ICEs. In S. suis, ICEs are the major vehicles that contribute to the natural transfers of AMR genes among different bacterial pathogens. However, ICEs that carry optrA and bacitracin resistance locus are rarely investigated in S. suis isolates. Here, we investigated a S. suis isolate carrying an optrA and a novel bacitracin resistance locus, which were co-located on a novel multiple antibiotic resistant ICESsu1112S. Our study suggests that more research is needed to access the real significance of ICEs that horizontally spread clinical important resistance genes.
Collapse
|
17
|
Yi M, Zou J, Zhao J, Tang Y, Yuan Y, Yang B, Huang J, Xia P, Xia Y. Emergence of optrA-Mediated Linezolid Resistance in Enterococcus faecium: A Molecular Investigation in a Tertiary Hospital of Southwest China from 2014-2018. Infect Drug Resist 2022; 15:13-20. [PMID: 35018102 PMCID: PMC8742577 DOI: 10.2147/idr.s339761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose To investigate the potential mechanism and molecular characteristics of linezolid-non-sensitive Enterococcus faecium from a tertiary hospital in southwest China and characterize the relevant plasmids. Patients and Methods Linezolid-non-sensitive Enterococcus faecium (LNSEFM) isolates collected from January 2014 to December 2018 were screened for resistant genes 23s rRNA, rplC, rplD, rplV, optrA, cfr, poxtA, by PCR. Molecular epidemiological analysis was performed by multilocus sequence typing (MLST). The optrA-and-poxtA co-harboring strain EFM_7150 was subjected to the whole genome sequencing (WGS) by Illumina HiSeq and Oxford Nanopore MinION. Results A total of 15 LNSEFM with linezolid MICs ranging from 4 to 16 mg/L were identified. About 66.7% (10/15) of isolates were linezolid-resistant. About 46.7% (7/15) of strains were positive for optrA. Two types of optrA variants (P and EYDNDM) were identified. About 13.3% (2/15) of isolates had poxtA. 1 harbored a L22 protein alteration (Ser77Thr). One isolate coharbored optrA (EYDNDM variant) and poxtA. There was no mutation in the gene that encoded the ribosomal protein L3/L4 or the domain V of 23S rRNA. No cfr gene was detected. Based on WGS data, optrA was associated with Tn558 inserted to radC gene and poxtA was flanked by IS1216E. Conclusion OptrA is primary mechanism in linezolid-resistant Enterococcus faecium. This is the first report ofoptrA variants P and EYDNDM identified in Enterococcus faecium and optrA-and-poxtA co-harboring Enterococcus faecium clinically in southwest China. Besides, Tn558 and IS1216Es may play an important role in the dissemination of optrA and poxtA, respectively. The findings revealed the potential threat to nosocomial infection by optrA and coexistence of optrA and poxtA in Enterococcus faecium. Thus, clinical surveillance of linezolid-resistant Enterococcus is urgently needed.
Collapse
Affiliation(s)
- Miao Yi
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiaqi Zou
- Department of Clinical Laboratory, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jinxin Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu Tang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
| | - Yaling Yuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bingxue Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinzhu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peiwen Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
18
|
Zhang F, Wu S, Lei T, Wu Q, Zhang J, Huang J, Dai J, Chen M, Ding Y, Wang J, Wei X, Zhang Y. Presence and characterization of methicillin-resistant Staphylococcus aureus co-carrying the multidrug resistance genes cfr and lsa(E) in retail food in China. Int J Food Microbiol 2021; 363:109512. [PMID: 34971878 DOI: 10.1016/j.ijfoodmicro.2021.109512] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus is an important food-related pathogen associated with bacterial poisoning that is difficult to treat due to its multidrug resistance. The cfr and lsa(E) genes both cause multiple drug resistance and have been identified in numerous Staphylococcus species, respectively. In this study, we found that a methicillin-resistant S. aureus (MRSA) strain, 2868B2, which was isolated from a sample of frozen dumplings in Hangzhou in 2015, co-carried these two different multidrug resistance genes. Further analysis showed that this strain was resistant to more than 18 antibiotics and expressed high-level resistance to florfenicol, chloramphenicol, clindamycin, tiamulin, erythromycin, ampicillin, cefepime, ceftazidime, kanamycin, streptomycin, tetracycline, trimethoprim-sulfamethoxazole and linezolid (MIC = 8 μg/mL). Whole genome sequencing was performed to characterize the genetic environment of these resistance genes and other genomic features. The cfr gene was located on the single plasmid p2868B2 (39,159 bp), which demonstrated considerable similarity to many plasmids previously identified in humans and animals. p2868B2 contained the insertion sequence (IS) element IS21-558, which allowed the insertion of cfr into Tn558 and played an important role in the mobility of cfr. Additionally, a novel multidrug resistance region (36.9 kb) harbouring lsa(E) along with nine additional antibiotic resistance genes (ARGs) (aadD, aadE, aacA-aphD, spc, lnu(B), lsa(E), tetL, ermC and blaZ) was identified. The multidrug resistance region harboured four copies of IS257 that were active and can mediate the formation of four circular structures containing ARGs and ISs. In addition, genes encoding various virulence factors and affecting multiple cell adhesion properties were identified in the genome of MRSA 2868B2. This study confirmed that the cfr and lsa(E) genes coexist in one MRSA strain and the presence of plasmid and IS257 in the multi-ARG cluster can promote both ARG transfer and dissemination. Furthermore, the presence of so many ARGs and virulence genes in food-related pathogens may seriously compromise the effectiveness of clinical therapy and threaten public health, its occurrence should pay public attention and the traceability of these genes in food-related samples needs further surveillance.
Collapse
Affiliation(s)
- Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Guangzhou 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
19
|
Cinthi M, Coccitto SN, Fioriti S, Morroni G, Simoni S, Vignaroli C, Magistrali CF, Albini E, Brenciani A, Giovanetti E. Occurrence of a plasmid co-carrying cfr(D) and poxtA2 linezolid resistance genes in Enterococcus faecalis and Enterococcus casseliflavus from porcine manure, Italy. J Antimicrob Chemother 2021; 77:598-603. [PMID: 34910146 DOI: 10.1093/jac/dkab456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the genetic elements and the transferability of linezolid resistance genes in three enterococci co-carrying cfr(D) and poxtA2 isolates from manure of a swine farm in central Italy. METHODS Two Enterococcus faecalis isolates and one Enterococcus casseliflavus isolate carrying both cfr(D) and poxtA genes were tested for their susceptibility to florfenicol, chloramphenicol, linezolid, tedizolid, tetracycline and vancomycin. Linezolid resistance genes transfer (filter mating), localization (S1-PFGE/hybridization), genetic elements and relatedness between isolates (WGS) were analysed. RESULTS Two E. faecalis isolates and one E. casseliflavus isolate carried the cfr(D) gene and the recently described poxtA2 variant. In the three enterococci, cfr(D) and poxtA2 were co-located on a 33 480 bp plasmid, pV386, 95%-100% identical (coverage 84%) to the Tn6349 transposon of Staphylococcus aureus AOUC-0915. In all isolates, both genes also showed a chromosomal location. Same sequence identities were found from the comparison with currently known poxtA2 genetic elements. In the plasmid pV386, poxtA2 gene was not bounded by two IS1216, as described in pIB-BOL, but closely associated to the cfr(D) and fexA genes. pV386 was always transferred by filter mating to Enterococcus faecium 64/3 recipient. CONCLUSIONS The occurrence of the pV386 plasmid in E. faecalis and E. casseliflavus from swine manure is of great concern and highlights the need for control measures to contain its spread to other enterococcal species.
Collapse
Affiliation(s)
- Marzia Cinthi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
20
|
Genetic context of optrA and poxtA in florfenicol-resistant enterococci isolated from flowing surface water in Switzerland. Antimicrob Agents Chemother 2021; 65:e0108321. [PMID: 34252296 DOI: 10.1128/aac.01083-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Linezolid is an important last-resort antibiotic for the treatment of multi-drug resistant enterococci. The aim of this study was to further characterize the genetic context of optrA and poxtA in ten florfenicol-resistant enterococci isolated from flowing surface water. In most genomes, optrA and poxtA were embedded in transposition units integrated into plasmids or into the chromosomal radC. For the first time a chromosomally integrated optrA in an Enterococcus raffinosus isolate is described.
Collapse
|
21
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Bakthavatchalam YD, Vasudevan K, Babu P, Neeravi AR, Narasiman V, Veeraraghavan B. Genomic insights of optrA-carrying linezolid-resistant Enterococcus faecium using hybrid assembly: first report from India. J Glob Antimicrob Resist 2021; 25:331-336. [PMID: 33957286 DOI: 10.1016/j.jgar.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Linezolid resistance in Enterococcus faecium is emerging worldwide. In this study, we aimed to characterise two linezolid-resistant E. faecium isolates using whole-genome sequencing. METHODS Antimicrobial susceptibility testing was performed by the broth microdilution method. A hybrid assembly approach of IonTorrent and MinION sequencing reads was used to generate the complete genome of linezolid-resistant E. faecium isolates VB3025 and VB3240. RESULTS VB3025 and VB3240 had minimum inhibitory concentration (MICs) for linezolid of 1024 μg/mL and 512 μg/mL, respectively. In addition, VB3025 was found to be resistant to both vancomycin and teicoplanin, while VB3240 was susceptible to these antibiotics. A hybrid assembly approach was used to generate the complete genome of VB3025 and VB3240 isolates harbouring the optrA gene. Notably, VB3025 carried two copies of optrA (chromosomal and plasmid), while in VB3240 optrA was identified on the chromosome. Interestingly, the plasmid pVB3025_2 co-carried the resistance gene clusters aph(3)-IIIa-sat4-ant(6)-Ia-ermB, the vanHAX operon and a copy of the optrA gene. Moreover, the optrA gene inserted into a Tn554 transposon carrying the ermA gene was identified in both VB3025 and VB3240 isolates. Furthermore, mutation analysis revealed the presence of a G2592T mutation in the 23S rRNA of both isolates. CONCLUSION This is the first study reporting optrA-positive linezolid-resistant E. faecium from India. A novel plasmid co-carrying vancomycin and linezolid resistance determinants highlights the threat for potential dissemination.
Collapse
Affiliation(s)
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, Tamil Nadu, India
| | - Priyanka Babu
- Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, Tamil Nadu, India
| | - Ayyan Raj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, Tamil Nadu, India
| | - Vignesh Narasiman
- Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, Tamil Nadu, India.
| |
Collapse
|
23
|
Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Appl Environ Microbiol 2021; 87:AEM.02958-20. [PMID: 33608287 DOI: 10.1128/aem.02958-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Linezolid is a last-resort antibiotic for the treatment of severe infections caused by multidrug-resistant Gram-positive organisms; although linezolid resistance remains uncommon, the number of linezolid-resistant enterococci has increased in recent years due to worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. In this study, we investigated the occurrence of linezolid-resistant enterococci in marine samples from two coastal areas in Italy. Isolates grown on florfenicol-supplemented Slanetz-Bartley agar plates were investigated for their carriage of optrA, poxtA, and cfr genes; optrA was found in one Enterococcus faecalis isolate, poxtA was found in three Enterococcus faecium isolates and two Enterococcus hirae isolates, and cfr was not found. Two of the three poxtA-carrying E. faecium isolates and the two E. hirae isolates showed related pulsed-field gel electrophoresis (PFGE) profiles. Two E. faecium isolates belonged to the new sequence type 1710, which clustered in clonal complex 94, encompassing nosocomial strains. S1 PFGE/hybridization assays showed a double (chromosome and plasmid) location of poxtA and a plasmid location of optrA Whole-genome sequencing revealed that poxtA was contained in a Tn6657-like element carried by two plasmids (pEfm-EF3 and pEh-GE2) of similar size, found in different species, and that poxtA was flanked by two copies of IS1216 in both plasmids. In mating experiments, all but one strain (E. faecalis EN3) were able to transfer the poxtA gene to E. faecium 64/3. The occurrence of linezolid resistance genes in enterococci from marine samples is of great concern and highlights the need to improve practices aimed at limiting the transmission of linezolid-resistant strains to humans from environmental reservoirs.IMPORTANCE Linezolid is one of the few antimicrobials available to treat severe infections due to drug-resistant Gram-positive bacteria; therefore, the emergence of linezolid-resistant enterococci carrying transferable resistance determinants is of great concern for public health. Linezolid resistance genes (cfr, optrA, and poxtA), often plasmid located, can be transmitted via horizontal gene transfer and have the potential to spread globally. This study highlights the detection of enterococci carrying linezolid resistance genes from sediment and zooplankton samples from two coastal urban areas in Italy. The presence of clinically relevant resistant bacteria, such as linezolid-resistant enterococci, in marine environments could reflect their spillover from human and/or animal reservoirs and could indicate that coastal seawaters also might represent a source of these resistance genes.
Collapse
|
24
|
Turner AM, Lee JYH, Gorrie CL, Howden BP, Carter GP. Genomic Insights Into Last-Line Antimicrobial Resistance in Multidrug-Resistant Staphylococcus and Vancomycin-Resistant Enterococcus. Front Microbiol 2021; 12:637656. [PMID: 33796088 PMCID: PMC8007764 DOI: 10.3389/fmicb.2021.637656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug-resistant Staphylococcus and vancomycin-resistant Enterococcus (VRE) are important human pathogens that are resistant to most clinical antibiotics. Treatment options are limited and often require the use of 'last-line' antimicrobials such as linezolid, daptomycin, and in the case of Staphylococcus, also vancomycin. The emergence of resistance to these last-line antimicrobial agents is therefore of considerable clinical concern. This mini-review provides an overview of resistance to last-line antimicrobial agents in Staphylococcus and VRE, with a particular focus on how genomics has provided critical insights into the emergence of resistant clones, the molecular mechanisms of resistance, and the importance of mobile genetic elements in the global spread of resistance to linezolid.
Collapse
Affiliation(s)
- Adrianna M Turner
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Claire L Gorrie
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Kazi TA, Mitra S, Mukhopadhyay BC, Mandal S, Ranjan Biswas S. Characterization of a novel theta-type plasmid pSM409 of Enterococcus faecium RME isolated from raw milk. Gene 2021; 777:145459. [PMID: 33515726 DOI: 10.1016/j.gene.2021.145459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/02/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Enterococcal plasmids have generated renewed interest for their indispensable role in pathogenesis and dissemination of multidrug-resistance. Recently, a novel plasmid pSM409 (4303-bp, GC% = 33.6%), devoid of antibiotic-resistance and virulence genes, has been identified in Enterococcus faecium RME, isolated from raw milk by us. pSM409 contains six open reading frames encoding a replication initiator protein (RepB) and five accessory proteins: antitoxin epsilon, bacteriocin immunity protein, HsdS, and two hypothetical proteins. Comparative sequence analysis of pSM409 reveals a mosaic pattern of similarity with different loci obtained from different theta plasmids, which dictates the plasmid to be heterogeneous or mosaic, possibly due to recombination. The pSM409 comprised of a typical theta-type origin of replication with four and a half direct repeats (iterons) of 22 nucleotides. The pSM409-RepB shared 76-82% homology with the RepB of reported theta plasmids from different genera, with dissimilarities mostly in its DNA-binding and C-terminal domain. The RepB sequence-based phylogenetic tree revealed its distinct position relative to the reported ones. The RepB grouped in the same clade has identical DNA-binding domains and their cognate iterons, possibly due to their sequence-specific interaction to initiate plasmid replication. Comparative analysis of the pSM409-iteron reveals that the repeats markedly differed from their closest homologues. This clade-specific relationship provides a new concept of classifying theta plasmids. The theta-type replicon identified in pSM409 has been found to be unique to E. faecium RME, prompting us to further investigate its utility as a vector for genetic manipulation of enterococci for health and industry.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Suranjita Mitra
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
26
|
Fioriti S, Morroni G, Coccitto SN, Brenciani A, Antonelli A, Di Pilato V, Baccani I, Pollini S, Cucco L, Morelli A, Paniccià M, Magistrali CF, Rossolini GM, Giovanetti E. Detection of Oxazolidinone Resistance Genes and Characterization of Genetic Environments in Enterococci of Swine Origin, Italy. Microorganisms 2020; 8:E2021. [PMID: 33348682 PMCID: PMC7766396 DOI: 10.3390/microorganisms8122021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
One hundred forty-five florfenicol-resistant enterococci, isolated from swine fecal samples collected from 76 pig farms, were investigated for the presence of optrA, cfr, and poxtA genes by PCR. Thirty florfenicol-resistant Enterococcus isolates had at least one linezolid resistance gene. optrA was found to be the most widespread linezolid resistance gene (23/30), while cfr and poxtA were detected in 6/30 and 7/30 enterococcal isolates, respectively. WGS analysis also showed the presence of the cfr(D) gene in Enterococcus faecalis (n = 2 isolates) and in Enterococcus avium (n = 1 isolate). The linezolid resistance genes hybridized both on chromosome and plasmids ranging from ~25 to ~240 kb. Twelve isolates were able to transfer linezolid resistance genes to enterococci recipient. WGS analysis displayed a great variability of optrA genetic contexts identical or related to transposons (Tn6628 and Tn6674), plasmids (pE035 and pWo27-9), and chromosomal regions. cfr environments showed identities with Tn6644-like transposon and a region from p12-2300 plasmid; cfr(D) genetic contexts were related to the corresponding region of the plasmid 4 of Enterococcus faecium E8014; poxtA was always found on Tn6657. Circular forms were obtained only for optrA- and poxtA-carrying genetic contexts. Clonality analysis revealed the presence of E. faecalis (ST16, ST27, ST476, and ST585) and E. faecium (ST21) clones previously isolated from humans. These results demonstrate a dissemination of linezolid resistance genes in enterococci of swine origin in Central Italy and confirm the spread of linezolid resistance in animal settings.
Collapse
Affiliation(s)
- Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy; (S.F.); (G.M.); (S.N.C.)
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy; (S.F.); (G.M.); (S.N.C.)
| | - Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy; (S.F.); (G.M.); (S.N.C.)
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy; (S.F.); (G.M.); (S.N.C.)
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (A.A.); (I.B.); (S.P.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50139 Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16126 Genoa, Italy;
| | - Ilaria Baccani
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (A.A.); (I.B.); (S.P.); (G.M.R.)
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (A.A.); (I.B.); (S.P.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50139 Florence, Italy
| | - Lucilla Cucco
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (L.C.); (A.M.); (M.P.); (C.F.M.)
| | - Alessandra Morelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (L.C.); (A.M.); (M.P.); (C.F.M.)
| | - Marta Paniccià
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (L.C.); (A.M.); (M.P.); (C.F.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (L.C.); (A.M.); (M.P.); (C.F.M.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (A.A.); (I.B.); (S.P.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50139 Florence, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy;
| |
Collapse
|
27
|
Yoon S, Son SH, Kim YB, Seo KW, Lee YJ. Molecular characteristics of optrA-carrying Enterococcus faecalis from chicken meat in South Korea. Poult Sci 2020; 99:6990-6996. [PMID: 33248615 PMCID: PMC7704738 DOI: 10.1016/j.psj.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to identify the genetic environment of optrA gene in linezolid (LZD)-resistant Enterococcus faecalis from chicken meat and to describe the probable mechanism of dissemination of the optrA gene through plasmid or chromosomal integration. Whole genome sequencing and analysis revealed that all 3 E. faecalis isolates confirmed as LZD- and chloramphenicol-resistant carried fexA adjacent to the optrA gene as well as a variety of resistance genes for macrolides, tetracyclines, and aminoglycosides, simultaneously. But, the other genes conferring LZD resistance, cfr and poxtA, were not detected in those strains. Two isolates harboring the optrA gene in their chromosomal DNA showed >99% similarity in arrangement to the transposon Tn6674 and the transposase genes, tnpA, tnpB, and tnpC and were located in the first open reading frame for transposase. One isolate harboring an optrA-carrying plasmid also showed >99% similarity with the previously reported pE439 plasmid but had 2 amino acid changes (Thr96Lys and Tyr160Asp) and a higher minimum inhibitory concentration against LZD of 16 mg/L than that of pE439 (8 mg/L). Mobile genetic elements such as transposons or plasmids flanking the optrA gene conduct a crucial role in the dissemination of antimicrobial resistance genes. Further investigations are required to identify the way by which optrA is integrated into chromosomal DNA and plasmids.
Collapse
Affiliation(s)
- Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Hyun Son
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
28
|
Chen Q, Yin D, Li P, Guo Y, Ming D, Lin Y, Yan X, Zhang Z, Hu F. First Report Cfr and Optr A Co-harboring Linezolid-Resistant Enterococcus faecalis in China. Infect Drug Resist 2020; 13:3919-3922. [PMID: 33173316 PMCID: PMC7646505 DOI: 10.2147/idr.s270701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
A linezolid-resistant E.faecalis strain harboring optrA and cfr resistance genes were isolated from a patient in china, which had no mutations in rplC, rplD, rplV, and 23S rRNA gene. Transformation indicated that optrA and cfr were located on two different plasmids and both could be transferred to recipient strain, resulting in the increase of MICs of linezolid and chloramphenicol. Cfr, carried by an 11,872-bp plasmid, was enclosed with an IS110 transposase in upstream and an IS3-like transposase in downstream, while optrA was on an 8357-bp plasmid. As far as we know, this is the first report of an E.faecalis clinical strain co-harboring optrA and cfr in China.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Pei Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Desong Ming
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Yuling Lin
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Xiaoli Yan
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Zhishan Zhang
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Almeida LM, Gaca A, Bispo PM, Lebreton F, Saavedra JT, Silva RA, Basílio-Júnior ID, Zorzi FM, Filsner PH, Moreno AM, Gilmore MS. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front Public Health 2020; 8:518. [PMID: 33102417 PMCID: PMC7546817 DOI: 10.3389/fpubh.2020.00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid—the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration—and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance.
Collapse
Affiliation(s)
- Lara M Almeida
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil.,Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anthony Gaca
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Paulo M Bispo
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Jose T Saavedra
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Rafael A Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | | | - Felipe M Zorzi
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro H Filsner
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andrea M Moreno
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Michael S Gilmore
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Hao W, Shan X, Li D, Schwarz S, Zhang SM, Li XS, Du XD. Analysis of a poxtA- and optrA-co-carrying conjugative multiresistance plasmid from Enterococcus faecalis. J Antimicrob Chemother 2020; 74:1771-1775. [PMID: 30891598 DOI: 10.1093/jac/dkz109] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the presence and transferability of the poxtA gene and identify the genetic context of poxtA in two enterococcal plasmids from swine. METHODS MICs were determined by broth microdilution. A total of 114 porcine enterococci with florfenicol MICs of ≥16 mg/L were screened for the presence of the poxtA gene by PCR. Transferability of poxtA was investigated by conjugation and transformation. The poxtA-carrying plasmids were completely sequenced using the Illumina Miseq and PacBio RSII platform. The presence of circular intermediates was examined by inverse PCR. RESULTS The poxtA gene was present in 57.9% (66/114) of the florfenicol-resistant porcine enterococci. Two poxtA-carrying plasmids, pE035 and pE076, were identified. The conjugative 121524 bp plasmid pE035 carried poxtA and optrA along with the resistance genes erm(A), erm(B), aac(A)-aph(D), lnu(G), fexB, dfrG and bcrABDR. Three mobile elements, comprising a mobile dfrG locus, a mobile bcrABDR locus and an unconventional circularizable structure containing aac(A)-aph(D), were located on this plasmid and all proved to be active by inverse PCR. The non-conjugative 19832 bp plasmid pE076 only carried poxtA and fexB. After transfer, both the transconjugant and the transformant displayed elevated MICs of the respective antimicrobial agents. CONCLUSIONS To the best of our knowledge, this is the first report of the co-location of the oxazolidinone resistance genes poxtA and optrA on a conjugative multiresistance plasmid from a porcine enterococcal strain. In addition, the presence of three mobile elements in such a plasmid will aid in the persistence and dissemination of poxtA and optrA among enterococci.
Collapse
Affiliation(s)
- Wenbo Hao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xinxin Shan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Su-Mei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
31
|
D'Andrea MM, Antonelli A, Brenciani A, Di Pilato V, Morroni G, Pollini S, Fioriti S, Giovanetti E, Rossolini GM. Characterization of Tn6349, a novel mosaic transposon carrying poxtA, cfr and other resistance determinants, inserted in the chromosome of an ST5-MRSA-II strain of clinical origin. J Antimicrob Chemother 2020; 74:2870-2875. [PMID: 31355850 DOI: 10.1093/jac/dkz278] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To characterize the genetic element carrying the poxtA oxazolidinone resistance gene found in the poxtA index strain Staphylococcus aureus AOUC-0915 isolated from a cystic fibrosis patient. METHODS The genetic context of poxtA was investigated by bioinformatics analysis of WGS data of strain AOUC-0915, followed by PCR and confirmatory Sanger sequencing for repetitive regions. Conjugation and electrotransformation experiments were carried out to assess horizontal transferability using S. aureus and Enterococcus faecalis recipients. Production of phage particles was evaluated by PCR using DNA preparations obtained after phage induction. Excision of the transposon carrying poxtA was evaluated by inverse PCR experiments for detection of circular intermediates. RESULTS poxtA was found to be associated with a 48 kb composite transposon of original structure, named Tn6349, inserted into a φN315-like prophage. The transposon was bounded by two IS1216 insertion sequences, carried several resistance genes [erm(B), cfr, poxtA and fexB] and exhibited a mosaic structure made by a derivative of plasmid pE35048-oc (previously described in an Enterococcus faecium clinical isolate) and Tn6657, a novel composite transposon carrying the poxtA and fexB genes. Excision ability of Tn6349 as a circular intermediate was demonstrated. Transferability of Tn6349 or modules thereof to S. aureus or E. faecalis by either conjugation or electrotransformation was not detected. Induction of the φN315-like prophage carrying Tn6349 was not observed. CONCLUSIONS This study describes the structure of Tn6349, a novel composite transposon carrying several resistance determinants to anti-ribosomal drugs, including cfr and poxtA, from an oxazolidinone-resistant MRSA strain. Analysis of Tn6349 revealed a modular structure that could favour the mobilization of its resistance determinants.
Collapse
Affiliation(s)
- Marco Maria D'Andrea
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Biology, University of Tor Vergata, Rome, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Morroni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Microbiology Unit, Polytechnic University of Marche, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| |
Collapse
|
32
|
Shang Y, Li D, Hao W, Schwarz S, Shan X, Liu B, Zhang SM, Li XS, Du XD. A prophage and two ICESa2603-family integrative and conjugative elements (ICEs) carrying optrA in Streptococcus suis. J Antimicrob Chemother 2020; 74:2876-2879. [PMID: 31314095 DOI: 10.1093/jac/dkz309] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To investigate the presence and transfer of the oxazolidinone/phenicol resistance gene optrA and identify the genetic elements involved in the horizontal transfer of the optrA gene in Streptococcus suis. METHODS A total of 237 S. suis isolates were screened for the presence of the optrA gene by PCR. Whole-genome DNA of three optrA-positive strains was completely sequenced using the Illumina MiSeq and Pacbio RSII platforms. MICs were determined by broth microdilution. Transferability of the optrA gene in S. suis was investigated by conjugation. The presence of circular intermediates was examined by inverse PCR. RESULTS The optrA gene was present in 11.8% (28/237) of the S. suis strains. In three strains, the optrA gene was flanked by two copies of IS1216 elements in the same orientation, located either on a prophage or on ICESa2603-family integrative and conjugative elements (ICEs), including one tandem ICE. In one isolate, the optrA-carrying ICE transferred with a frequency of 2.1 × 10-8. After the transfer, the transconjugant displayed elevated MICs of the respective antimicrobial agents. Inverse PCRs revealed that circular intermediates of different sizes were formed in the three optrA-carrying strains, containing one copy of the IS1216E element and the optrA gene alone or in combination with other resistance genes. CONCLUSIONS A prophage and two ICESa2603-family ICEs (including one tandem ICE) associated with the optrA gene were identified in S. suis. The association of the optrA gene with the IS1216E elements and its location on either a prophage or ICEs will aid its horizontal transfer.
Collapse
Affiliation(s)
- Yanhong Shang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wenbo Hao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Xinxin Shan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bianzhi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Su-Mei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
33
|
Krawczyk B, Wysocka M, Kotłowski R, Bronk M, Michalik M, Samet A. Linezolid-resistant Enterococcus faecium strains isolated from one hospital in Poland -commensals or hospital-adapted pathogens? PLoS One 2020; 15:e0233504. [PMID: 32453777 PMCID: PMC7250452 DOI: 10.1371/journal.pone.0233504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 12/30/2022] Open
Abstract
One of the most pressing problems of enterococci infections is occurring resistance to linezolid, which is an antibiotic used in the treatment of infections caused by vancomycin-resistant strains (VRE). The main objective of our research was to investigate the relationship of 19 linezolid-resistant E. faecium isolates from 18 patients hospitalized at Clinical Hospital in Gdansk (Poland). One of the LZDREF was isolated in 2003 (K2003), and another 18 were collected from 2013 to 2017. Genotyping with PCR MP method indicated 14 main unrelated genetic profiles and no association with K2003 strain. Two isolates with the same genotype and genetically closely related two sub-types (2 isolates for each sub-type) were hospital-derived colonizations of patients. The other unrelated genotypes were discussed in the context of colonization, nosocomial infections, and commensal origin, taking into account prior exposure to linezolid. We determined the presence of a point mutation G2576T in six loci of 23S rDNA. There was also a significant correlation (p<0.0015) between the presence of MIC>32 value and the presence of G2576T point mutation on the sixth rrn. We also detected 5 virulence genes for all isolates: gelE, cylA, asa1, hyl, esp. Correlation (p≤0.0001) was observed between the presence of gelE gene encoding gelatinase and two other genes: cylA and asa1 encoding cytolysin and collagen binding protein responsible for aggregation of bacterial cells, respectively. Significant correlation was also observed between asa1 and cfr genes encoding 23S rRNA rybonuclease responsible for resistance to PhLOPSA antibiotics (p = 0.0004). The multidimensional analysis has also shown the correlation between cfr gene and GI-tract (p = 0, 0491), which suggests horizontal gene transfer inside the gut microbiota and the risk of colonization with linezolid-resistant strains without previously being treated with the antibiotic. The patient could have been colonized with LZDRVREF strains which in the absence of competitive microbiota quickly settle in ecological niches favourable for them and pose a risk for the patient.
Collapse
Affiliation(s)
- Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Magdalena Wysocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Roman Kotłowski
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Marek Bronk
- Department of Clinical Microbiology, Clinical Hospital No 1, Medical University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
34
|
Transferable Resistance Gene optrA in Enterococcus faecalis from Swine in Brazil. Antimicrob Agents Chemother 2020; 64:AAC.00142-20. [PMID: 32253215 DOI: 10.1128/aac.00142-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
OptrA is an ATP-binding cassette (ABC)-F protein that confers resistance to oxazolidinones and phenicols and can be either plasmid-encoded or chromosomally encoded. Here, we isolated 13 Enterococcus faecalis strains possessing a linezolid MIC of ≥4 mg/liter from nursery pigs in swine herds located across Brazil. Genome sequence comparison showed that these strains possess optrA in different genetic contexts occurring in 5 different E. faecalis sequence type backgrounds. The optrA gene invariably occurred in association with an araC regulator and a gene encoding a hypothetical protein. In some contexts, this genetic island was able to excise and form a covalently closed circle within the cell; this circle appeared to occur in high abundance and to be transmissible by coresident plasmids.
Collapse
|
35
|
Moure Z, Lara N, Marín M, Sola-Campoy PJ, Bautista V, Gómez-Bertomeu F, Gómez-Dominguez C, Pérez-Vázquez M, Aracil B, Campos J, Cercenado E, Oteo-Iglesias J. Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes. Int J Antimicrob Agents 2020; 55:105977. [PMID: 32330583 DOI: 10.1016/j.ijantimicag.2020.105977] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
The emergence of linezolid-resistant Enterococcus spp. (LRE) due to transferable resistance determinants is a matter of concern. To understand the contribution of the plasmid-encoded optrA and poxtA genes to the emergence of LRE, clinical isolates from different Spanish hospitals submitted to the Spanish Reference Laboratory from 2015-2018 were analysed. Linezolid resistance mechanisms were screened in all isolates by PCR and sequencing. Genetic relatedness of Enterococcus spp. carrying optrA and poxtA was studied by PFGE and MLST. Antimicrobial susceptibility was tested by broth microdilution using EUCAST standards. A total of 97 LRE isolates were studied, in 94 (96.9%) of which at least one resistance determinant was detected; 84/97 isolates (86.6%) presented a single resistance mechanism as follows: 45/84 (53.6%) carried the optrA gene, 38/84 (45.2%) carried the G2576T mutation and 1/84 (1.2%) carried the poxtA gene. In addition, 5/97 isolates (5.2%) carried both optrA and the G2576T mutation and 5/97 (5.2%) carried both optrA and poxtA. The optrA gene was more frequent in Enterococcus faecalis (83.6%) than Enterococcus faecium (11.1%) and was mainly associated with community-acquired urinary tract infections. Carriage of the poxtA gene was more frequent in E. faecium (13.9%) than E. faecalis (1.6%). Among the optrA-positive E. faecalis isolates, two main clusters were detected by PFGE. These two clusters belonged to ST585 and ST480 and were distributed throughout 11 and 6 Spanish provinces, respectively. This is the first description of LRE carrying the poxtA gene in Spain, including the co-existence of optrA and poxtA in five isolates.
Collapse
Affiliation(s)
- Zaira Moure
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mercedes Marín
- Microbiology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - Pedro J Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Cristina Gómez-Dominguez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - José Campos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilia Cercenado
- Microbiology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
36
|
Freitas AR, Tedim AP, Novais C, Lanza VF, Peixe L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb Genom 2020; 6. [PMID: 32149599 PMCID: PMC7371108 DOI: 10.1099/mgen.0.000350] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Linezolid-resistant Enterococcus faecalis (LREfs) carrying optrA are increasingly reported globally from multiple sources, but we lack a comprehensive analysis of human and animal optrA-LREfs strains. To assess if optrA is dispersed in isolates with varied genetic backgrounds or with common genetic features, we investigated the phylogenetic structure, genetic content [antimicrobial resistance (AMR), virulence, prophages, plasmidome] and optrA-containing platforms of 27 publicly available optrA-positive E. faecalis genomes from different hosts in seven countries. At the genome-level analysis, an in-house database with 64 virulence genes was tested for the first time. Our analysis showed a diversity of clones and adaptive gene sequences related to a wide range of genera from Firmicutes. Phylogenies of core and accessory genomes were not congruent, and at least PAI-associated and prophage genes contribute to such differences. Epidemiologically unrelated clones (ST21, ST476-like and ST489) obtained from human clinical and animal hosts in different continents over eight years (2010–2017) could be phylogenetically related (3–126 SNPs difference). optrA was located on the chromosome within a Tn6674-like element (n=10) or on medium-size plasmids (30–60 kb; n=14) belonging to main plasmid families (RepA_N/Inc18/Rep_3). In most cases, the immediate gene vicinity of optrA was generally identical in chromosomal (Tn6674) or plasmid (impB-fexA-optrA) backbones. Tn6674 was always inserted into the same ∆radC integration site and embedded in a 32 kb chromosomal platform common to strains from different origins (patients, healthy humans, and animals) in Europe, Africa, and Asia during 2012–2017. This platform is conserved among hundreds of E. faecalis genomes and proposed as a chromosomal hotspot for optrA integration. The finding of optrA in strains sharing common adaptive features and genetic backgrounds across different hosts and countries suggests the occurrence of common and independent genetic events occurring in distant regions and might explain the easy de novo generation of optrA-positive strains. It also anticipates a dramatic increase of optrA carriage and spread with a serious impact on the efficacy of linezolid for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Ana P Tedim
- Grupo de Investigación Biomédica en Sepsis - BioSepsis. Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Carla Novais
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Val F Lanza
- Departamento de Bioinformática. Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| |
Collapse
|
37
|
Tn 6674 Is a Novel Enterococcal optrA-Carrying Multiresistance Transposon of the Tn 554 Family. Antimicrob Agents Chemother 2019; 63:AAC.00809-19. [PMID: 31209008 DOI: 10.1128/aac.00809-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
The novel 12,932-bp nonconjugative multiresistance transposon Tn6674 was identified in the chromosomal DNA of a porcine Enterococcus faecalis strain. Tn6674 belongs to the Tn554 family of transposons. It shares the same arrangement of the transposase genes tnpA, tnpB, and tnpC with Tn554 However, in addition to the Tn554-associated resistance genes spc and erm(A), Tn6674 harbored the resistance genes fexA and optrA Circular forms of Tn6674 were detected and suggest the functional activity of this transposon.
Collapse
|
38
|
Shang Y, Li D, Shan X, Schwarz S, Zhang SM, Chen YX, Ouyang W, Du XD. Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis. Infect Drug Resist 2019; 12:2355-2362. [PMID: 31534352 PMCID: PMC6682170 DOI: 10.2147/idr.s206295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The acquired optrA gene, which encodes a ribosomal protection protein of the ABC-F family, can confer cross-resistance to linezolid and florfenicol, posing a serious therapeutic challenge to both human and veterinary medicine. Purpose: The objective of this study was to investigate the two Enterococcus faecalis (E. faecalis) plasmids for their fine structure, their transferability and the presence of mobile antimicrobial resistance loci. Methods: To elucidate their fine structure, the two plasmids were completely sequenced and the sequences analysed. Besides conjugation experiments, inverse PCR assays were conducted to see whether minicircles are produced from the mobile antimicrobial resistance loci. Results: Two pheromone-responsive conjugative optrA-carrying plasmids from E. faecalis, pE211 and pE508 were identified, which can transfer with frequencies of 2.6 ×10−2 and 3.7 ×10−2 (transconjugant per donor), respectively. In both plasmids, optrA was located on the novel mobile optrA locus with different sizes (12,834 bp in pE211 and 7,561 bp in pE508, respectively), flanked by two copies of IS1216 genes in the same orientation. Inverse PCR revealed that circular forms can be generated, consisting of optrA and one copy of IS1216, indicating they are all active. The 77,562 bp plasmid pE211 also carried Tn558 and a mobile bcrABDR locus, and the 84,468 bp plasmid pE508 also harbored the genes fexA, tet(L), tet(O/W/32/O) and a mobile aac(A)-aph(D) locus. Conclusion: The presence of mobile genetic elements in these plasmids renders them flexible and these elements will aid to the persistence and dissemination of these plasmids among enterococci and potentially also other gram-positive bacteria.
Collapse
Affiliation(s)
- Yanhong Shang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi 712100, People's Republic of China.,Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Dexi Li
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Xinxin Shan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Su-Mei Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Yu-Xia Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Wuqing Ouyang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi 712100, People's Republic of China
| | - Xiang-Dang Du
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
39
|
Gumkowski JD, Martinie RJ, Corrigan PS, Pan J, Bauerle MR, Almarei M, Booker SJ, Silakov A, Krebs C, Boal AK. Analysis of RNA Methylation by Phylogenetically Diverse Cfr Radical S-Adenosylmethionine Enzymes Reveals an Iron-Binding Accessory Domain in a Clostridial Enzyme. Biochemistry 2019; 58:3169-3184. [PMID: 31246421 DOI: 10.1021/acs.biochem.9b00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cfr is a radical S-adenosylmethionine (SAM) RNA methylase linked to multidrug antibiotic resistance in bacterial pathogens. It catalyzes a chemically challenging C-C bond-forming reaction to methylate C8 of A2503 (Escherichia coli numbering) of 23S rRNA during ribosome assembly. The cfr gene has been identified as a mobile genetic element in diverse bacteria and in the genome of select Bacillales and Clostridiales species. Despite the importance of Cfr, few representatives have been purified and characterized in vitro. Here we show that Cfr homologues from Bacillus amyloliquefaciens, Enterococcus faecalis, Paenibacillus lautus, and Clostridioides difficile act as C8 adenine RNA methylases in biochemical assays. C. difficile Cfr contains an additional Cys-rich C-terminal domain that binds a mononuclear Fe2+ ion in a rubredoxin-type Cys4 motif. The C-terminal domain can be truncated with minimal impact on C. difficile Cfr activity, but the rate of turnover is decreased upon disruption of the Fe2+-binding site by Zn2+ substitution or ligand mutation. These findings indicate an important purpose for the observed C-terminal iron in the native fusion protein. Bioinformatic analysis of the C. difficile Cfr Cys-rich domain shows that it is widespread (∼1400 homologues) as a stand-alone gene in pathogenic or commensal Bacilli and Clostridia, with >10% encoded adjacent to a predicted radical SAM RNA methylase. Although the domain is not essential for in vitro C. difficile Cfr activity, the genomic co-occurrence and high abundance in the human microbiome suggest a possible functional role for a specialized rubredoxin in certain radical SAM RNA methylases that are relevant to human health.
Collapse
Affiliation(s)
- James D Gumkowski
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ryan J Martinie
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Patrick S Corrigan
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Juan Pan
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Matthew R Bauerle
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Mohamed Almarei
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Squire J Booker
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Howard Hughes Medical Institute , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Alexey Silakov
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Carsten Krebs
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Amie K Boal
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
40
|
Genomic Analysis of Emerging Florfenicol-Resistant Campylobacter coli Isolated from the Cecal Contents of Cattle in the United States. mSphere 2019; 4:4/3/e00367-19. [PMID: 31243079 PMCID: PMC6595150 DOI: 10.1128/msphere.00367-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Campylobacter is a leading cause of foodborne diarrheal illness worldwide, with more than one million cases each year in the United States alone. The global emergence of antimicrobial resistance in this pathogen has become a growing public health concern. Florfenicol-resistant (FFNr) Campylobacter has been very rare in the United States. In this study, we employed whole-genome sequencing to characterize 16 multidrug-resistant Campylobacter coli isolates recovered from cattle in the United States. A gene [cfr(C)] was found to be responsible for resistance not only to florfenicol but also to several other antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. The results showed that cfr(C) is located in a conjugative pTet MDR/virulence plasmid. This report highlights the power of antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies. Genomic analyses were performed on florfenicol-resistant (FFNr) Campylobacter coli isolates recovered from cattle, and the cfr(C) gene-associated multidrug resistance (MDR) plasmid was characterized. Sixteen FFNrC. coli isolates recovered between 2013 and 2018 from beef cattle were sequenced using MiSeq. Genomes and plasmids were found to be closed for three of the isolates using the PacBio system. Single nucleotide polymorphisms (SNPs) across the genome and the structures of MDR plasmids were investigated. Conjugation experiments were performed to determine the transferability of cfr(C)-associated MDR plasmids. The spectrum of resistance encoded by the cfr(C) gene was further investigated by agar dilution antimicrobial susceptibility testing. All 16 FFNr isolates were MDR and exhibited coresistance to ciprofloxacin, nalidixic acid, clindamycin, and tetracycline. All isolates shared the same resistance genotype, carrying aph (3′)-III, hph, ΔaadE (truncated), blaOXA-61, cfr(C), and tet(O) genes plus a mutation of GyrA (T86I). The cfr(C), aph (3′)-III, hph, ΔaadE, and tet(O) genes were colocated on transferable MDR plasmids ranging in size from 48 to 50 kb. These plasmids showed high sequence homology with the pTet plasmid and carried several Campylobacter virulence genes, including virB2, virB4, virB5, VirB6, virB7, virB8, virb9, virB10, virB11, and virD4. The cfr(C) gene conferred resistance to florfenicol (8 to 32 μg/ml), clindamycin (512 to 1,024 μg/ml), linezolid (128 to 512 μg/ml), and tiamulin (1,024 μg/ml). Phylogenetic analysis showed SNP differences ranging from 11 to 2,248 SNPs among the 16 isolates. The results showed that the cfr(C) gene located in the conjugative pTet MDR/virulence plasmid is present in diverse strains, where it confers high levels of resistance to several antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. This report highlights the power of genomic antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies. IMPORTANCECampylobacter is a leading cause of foodborne diarrheal illness worldwide, with more than one million cases each year in the United States alone. The global emergence of antimicrobial resistance in this pathogen has become a growing public health concern. Florfenicol-resistant (FFNr) Campylobacter has been very rare in the United States. In this study, we employed whole-genome sequencing to characterize 16 multidrug-resistant Campylobacter coli isolates recovered from cattle in the United States. A gene [cfr(C)] was found to be responsible for resistance not only to florfenicol but also to several other antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. The results showed that cfr(C) is located in a conjugative pTet MDR/virulence plasmid. This report highlights the power of antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies.
Collapse
|
41
|
Na SH, Moon DC, Choi MJ, Oh SJ, Jung DY, Kang HY, Hyun BH, Lim SK. Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses. Int J Food Microbiol 2019; 293:53-59. [DOI: 10.1016/j.ijfoodmicro.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/26/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
|
42
|
Argudín MA, Youzaga S, Dodémont M, Heinrichs A, Roisin S, Deplano A, Nonhoff C, Hallin M. Detection of optrA-positive enterococci clinical isolates in Belgium. Eur J Clin Microbiol Infect Dis 2019; 38:985-987. [PMID: 30771123 DOI: 10.1007/s10096-019-03504-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- M Angeles Argudín
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | - S Youzaga
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - M Dodémont
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - A Heinrichs
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - S Roisin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - A Deplano
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - C Nonhoff
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - M Hallin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|