1
|
Holmes KE, VanInsberghe D, Ferreri LM, Elie B, Ganti K, Lee CY, Lowen AC. Viral expansion after transfer is a primary driver of influenza A virus transmission bottlenecks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567585. [PMID: 38014182 PMCID: PMC10680852 DOI: 10.1101/2023.11.19.567585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
For many viruses, narrow bottlenecks acting during transmission sharply reduce genetic diversity in a recipient host relative to the donor. Since genetic diversity represents adaptive potential, such losses of diversity are though to limit the opportunity for viral populations to undergo antigenic change and other adaptive processes. Thus, a detailed picture of evolutionary dynamics during transmission is critical to understanding the forces driving viral evolution at an epidemiologic scale. To advance this understanding, we used a novel barcoded virus library and a guinea pig model of transmission to decipher where in the transmission process diversity is lost for influenza A viruses. In inoculated guinea pigs, we show that a high level of viral genetic diversity is maintained across time. Continuity in the barcodes detected furthermore indicates that stochastic effects are not pronounced within inoculated hosts. Importantly, in both aerosol-exposed and direct contact-exposed animals, we observed many barcodes at the earliest time point(s) positive for infectious virus, indicating robust transfer of diversity through the environment. This high viral diversity is short-lived, however, with a sharp decline seen 1-2 days after initiation of infection. Although major losses of diversity at transmission are well described for influenza A virus, our data indicate that events that occur following viral transfer and during the earliest stages of natural infection have a predominant role in this process. This finding suggests that immune selection may have greater opportunity to operate during influenza A transmission than previously recognized.
Collapse
Affiliation(s)
- Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Baptiste Elie
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta, GA, USA
| |
Collapse
|
2
|
Hickerson BT, Huang BK, Petrovskaya SN, Ilyushina NA. Genomic Analysis of Influenza A and B Viruses Carrying Baloxavir Resistance-Associated Substitutions Serially Passaged in Human Epithelial Cells. Viruses 2023; 15:2446. [PMID: 38140689 PMCID: PMC10748225 DOI: 10.3390/v15122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Baloxavir marboxil (baloxavir) is an FDA-approved inhibitor of the influenza virus polymerase acidic (PA) protein. Here, we used next-generation sequencing to compare the genomic mutational profiles of IAV H1N1 and H3N2, and IBV wild type (WT) and mutants (MUT) viruses carrying baloxavir resistance-associated substitutions (H1N1-PA I38L, I38T, and E199D; H3N2-PA I38T; and IBV-PA I38T) during passaging in normal human bronchial epithelial (NHBE) cells. We determined the ratio of nonsynonymous to synonymous nucleotide mutations (dN/dS) and identified the location and type of amino acid (AA) substitutions that occurred at a frequency of ≥30%. We observed that IAV H1N1 WT and MUT viruses remained relatively stable during passaging. While the mutational profiles for IAV H1N1 I38L, I38T, and E199D, and IBV I38T MUTs were relatively similar after each passage compared to the respective WTs, the mutational profile of the IAV H3N2 I38T MUT was significantly different for most genes compared to H3N2 WT. Our work provides insight into how baloxavir resistance-associated substitutions may impact influenza virus evolution in natural settings. Further characterization of the potentially adaptive mutations identified in this study is needed.
Collapse
Affiliation(s)
- Brady T. Hickerson
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bruce K. Huang
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Svetlana N. Petrovskaya
- Division of Biotechnology Review and Research III, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
3
|
RT-LAMP as Diagnostic Tool for Influenza—A Virus Detection in Swine. Vet Sci 2023; 10:vetsci10030220. [PMID: 36977259 PMCID: PMC10051247 DOI: 10.3390/vetsci10030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Point-of-care diagnostic technologies are becoming more widely available for production species. Here, we describe the application of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect the matrix (M) gene of influenza A virus in swine (IAV-S). M-specific LAMP primers were designed based on M gene sequences from IAV-S isolated in the USA between 2017 and 2020. The LAMP assay was incubated at 65 °C for 30 min, with the fluorescent signal read every 20 s. The assay’s limit of detection (LOD) was 20 M gene copies for direct LAMP of the matrix gene standard, and 100 M gene copies when using spiked extraction kits. The LOD was 1000 M genes when using cell culture samples. Detection in clinical samples showed a sensitivity of 94.3% and a specificity of 94.9%. These results show that the influenza M gene RT-LAMP assay can detect the presence of IAV in research laboratory conditions. With the appropriate fluorescent reader and heat block, the assay could be quickly validated as a low-cost, rapid, IAV-S screening tool for use on farms or in clinical diagnostic labs.
Collapse
|
4
|
Gaudino M, Chiapponi C, Moreno A, Zohari S, O’Donovan T, Quinless E, Sausy A, Oliva J, Salem E, Fusade-Boyer M, Meyer G, Hübschen JM, Saegerman C, Ducatez MF, Snoeck CJ. Evolutionary and temporal dynamics of emerging influenza D virus in Europe (2009-22). Virus Evol 2022; 8:veac081. [PMID: 36533151 PMCID: PMC9752663 DOI: 10.1093/ve/veac081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 07/30/2023] Open
Abstract
Influenza D virus (IDV) is an emerging influenza virus that was isolated for the first time in 2011 in the USA from swine with respiratory illness. Since then, IDV has been detected worldwide in different animal species, and it was also reported in humans. Molecular epidemiological studies revealed the circulation of two major clades, named D/OK and D/660. Additional divergent clades have been described but have been limited to specific geographic areas (i.e. Japan and California). In Europe, IDV was detected for the first time in France in 2012 and subsequently also in Italy, Luxembourg, Ireland, the UK, Switzerland, and Denmark. To understand the time of introduction and the evolutionary dynamics of IDV on the continent, molecular screening of bovine and swine clinical samples was carried out in different European countries, and phylogenetic analyses were performed on all available and newly generated sequences. Until recently, D/OK was the only clade detected in this area. Starting from 2019, an increase in D/660 clade detections was observed, accompanied by an increase in the overall viral genetic diversity and genetic reassortments. The time to the most recent common ancestor (tMRCA) of all existing IDV sequences was estimated as 1995-16 years before its discovery, indicating that the virus could have started its global spread in this time frame. Despite the D/OK and D/660 clades having a similar mean tMRCA (2007), the mean tMRCA for European D/OK sequences was estimated as January 2013 compared to July 2014 for European D/660 sequences. This indicated that the two clades were likely introduced on the European continent at different time points, as confirmed by virological screening findings. The mean nucleotide substitution rate of the hemagglutinin-esterase-fusion (HEF) glycoprotein segment was estimated as 1.403 × 10-3 substitutions/site/year, which is significantly higher than the one of the HEF of human influenza C virus (P < 0.0001). IDV genetic drift, the introduction of new clades on the continent, and multiple reassortment patterns shape the increasing viral diversity observed in the last years. Its elevated substitution rate, diffusion in various animal species, and the growing evidence pointing towards zoonotic potential justify continuous surveillance of this emerging influenza virus.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Chiara Chiapponi
- Department of Virology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘Bruno Ubertini’, Brescia 25124, Italy
| | - Ana Moreno
- Department of Virology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘Bruno Ubertini’, Brescia 25124, Italy
| | - Siamak Zohari
- Department of microbiology, National Veterinary Institute, Uppsala SE-751 89, Sweden
| | - Tom O’Donovan
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - Emma Quinless
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - Aurélie Sausy
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Justine Oliva
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Elias Salem
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Judith M Hübschen
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | | | | | | |
Collapse
|
5
|
Galli C, Ebranati E, Pellegrinelli L, Airoldi M, Veo C, Della Ventura C, Seiti A, Binda S, Galli M, Zehender G, Pariani E. From Clinical Specimen to Whole Genome Sequencing of A(H3N2) Influenza Viruses: A Fast and Reliable High-Throughput Protocol. Vaccines (Basel) 2022; 10:1359. [PMID: 36016246 PMCID: PMC9412868 DOI: 10.3390/vaccines10081359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: Over the last few years, there has been growing interest in the whole genome sequencing (WGS) of rapidly mutating pathogens, such as influenza viruses (IVs), which has led us to carry out in-depth studies on viral evolution in both research and diagnostic settings. We aimed at describing and determining the validity of a WGS protocol that can obtain the complete genome sequence of A(H3N2) IVs directly from clinical specimens. (2) Methods: RNA was extracted from 80 A(H3N2)-positive respiratory specimens. A one-step RT-PCR assay, based on the use of a single set of specific primers, was used to retro-transcribe and amplify the entire IV type A genome in a single reaction, thus avoiding additional enrichment approaches and host genome removal treatments. Purified DNA was quantified; genomic libraries were prepared and sequenced by using Illumina MiSeq platform. The obtained reads were evaluated for sequence quality and read-pair length. (3) Results: All of the study specimens were successfully amplified, and the purified DNA concentration proved to be suitable for NGS (at least 0.2 ng/µL). An acceptable coverage depth for all eight genes of influenza A(H3N2) virus was obtained for 90% (72/80) of the clinical samples with viral loads >105 genome copies/mL. The mean depth of sequencing ranged from 105 to 200 reads per position, with the majority of the mean depth values being above 103 reads per position. The total turnaround time per set of 20 samples was four working days, including sequence analysis. (4) Conclusions: This fast and reliable high-throughput sequencing protocol should be used for influenza surveillance and outbreak investigation.
Collapse
Affiliation(s)
- Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Martina Airoldi
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Carla Veo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Carla Della Ventura
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Arlinda Seiti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
6
|
Chauhan RP, Gordon ML. Review of genome sequencing technologies in molecular characterization of influenza A viruses in swine. J Vet Diagn Invest 2022; 34:177-189. [PMID: 35037523 PMCID: PMC8921814 DOI: 10.1177/10406387211068023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The rapidly evolving antigenic diversity of influenza A virus (IAV) genomes in swine makes it imperative to detect emerging novel strains and track their circulation. We analyzed in our review the sequencing technologies used for subtyping and characterizing swine IAV genomes. Google Scholar, PubMed, and International Nucleotide Sequence Database Collaboration (INSDC) database searches identified 216 studies that have utilized Sanger, second-, and third-generation sequencing techniques to subtype and characterize swine IAV genomes up to 31 March 2021. Sanger dideoxy sequencing was by far the most widely used sequencing technique for generating either full-length (43.0%) or partial (31.0%) IAV genomes in swine globally; however, in the last decade, other sequencing platforms such as Illumina have emerged as serious competitors for the generation of whole-genome sequences of swine IAVs. Although partial HA and NA gene sequences were sufficient to determine swine IAV subtypes, whole-genome sequences were critical for determining reassortments and identifying unusual or less frequently occurring IAV subtypes. The combination of Sanger and second-generation sequencing technologies also greatly improved swine IAV characterization. In addition, the rapidly evolving third-generation sequencing platform, MinION, appears promising for on-site, real-time sequencing of complete swine IAV genomes. With a higher raw read accuracy, the use of the MinION could enhance the scalability of swine IAV testing in the field and strengthen the swine IAV disease outbreak response.
Collapse
Affiliation(s)
| | - Michelle L. Gordon
- Michelle L. Gordon, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Rd, Durban 4001, South Africa.
| |
Collapse
|
7
|
Lin P, Jin T, Yu X, Liang L, Liu G, Jovic D, Sun Z, Yu Z, Pan J, Fan G. Composition and Dynamics of H1N1 and H7N9 Influenza A Virus Quasispecies in a Co-infected Patient Analyzed by Single Molecule Sequencing Technology. Front Genet 2021; 12:754445. [PMID: 34804122 PMCID: PMC8595946 DOI: 10.3389/fgene.2021.754445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a complex infectious disease. The identification of molecular-level variations in composition and dynamics of IAV quasispecies will help to understand the pathogenesis and provide guidance for precision medicine treatment. In this study, using single-molecule real-time sequencing (SMRT) technology, we successfully acquired full-length IAV genomic sequences and quantified their genotypes abundance in serial samples from an 81-year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity nucleotide loci was detected, in which the A-G base transversion was the most abundant substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes from the eight samples based on combining high-diversity nucleotide loci, which provided a more concise overview of viral quasispecies composition and dynamics. Our approach promotes the popularization of viral quasispecies analysis in a complex infectious disease, which will boost the understanding of viral infections, pathogenesis, evolution, and precision medicine.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | | | - Guang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhe Yu
- BGI-Shenzhen, Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
8
|
Fiorino S, Tateo F, Biase DD, Gallo CG, Orlandi PE, Corazza I, Budriesi R, Micucci M, Visani M, Loggi E, Hong W, Pica R, Lari F, Zippi M. SARS-CoV-2: lessons from both the history of medicine and from the biological behavior of other well-known viruses. Future Microbiol 2021; 16:1105-1133. [PMID: 34468163 PMCID: PMC8412036 DOI: 10.2217/fmb-2021-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is the etiological agent of the current pandemic worldwide and its associated disease COVID-19. In this review, we have analyzed SARS-CoV-2 characteristics and those ones of other well-known RNA viruses viz. HIV, HCV and Influenza viruses, collecting their historical data, clinical manifestations and pathogenetic mechanisms. The aim of the work is obtaining useful insights and lessons for a better understanding of SARS-CoV-2. These pathogens present a distinct mode of transmission, as SARS-CoV-2 and Influenza viruses are airborne, whereas HIV and HCV are bloodborne. However, these viruses exhibit some potential similar clinical manifestations and pathogenetic mechanisms and their understanding may contribute to establishing preventive measures and new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, 40054, Italy
| | - Fabio Tateo
- Institute of Geosciences & Earth Resources, CNR, c/o Department of Geosciences, Padova University, 35127, Italy
| | - Dario De Biase
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Claudio G Gallo
- Fisiolaserterapico Emiliano, Castel San Pietro Terme, Bologna, 40024, Italy
| | | | - Ivan Corazza
- Department of Experimental, Diagnostic & Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Roberta Budriesi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, 40126, Italy
| | - Matteo Micucci
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, 40126, Italy
| | - Michela Visani
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Elisabetta Loggi
- Hepatology Unit, Department of Medical & Surgical Sciences, University of Bologna, Bologna, 40126, Italy
| | - Wandong Hong
- Department of Gastroenterology & Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, 325035, PR China
| | - Roberta Pica
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, 00157, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, 40054, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, 00157, Italy
| |
Collapse
|
9
|
Full Genomic Sequences of H5N1 Highly Pathogenic Avian Influenza Virus in Human Autopsy Specimens Reveal Genetic Variability and Adaptive Changes for Growth in MDCK Cell Cultures. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3890681. [PMID: 34337007 PMCID: PMC8323515 DOI: 10.1155/2021/3890681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
The entire H5N1 highly pathogenic avian influenza viral genomes were identified in the frozen autopsy specimens: the trachea, lung, colon, and intestinal feces from a patient who died of the disease in 2006. Phylogenetic analysis of the viral genomes showed that these viruses belonged to clade 1 and were the reassortants generated from the reassortment of the viruses within the same clade. The sequencing data from the autopsy specimens revealed at least 8 quasispecies of the H5N1 viruses across all 4 specimen types. These sequences were compared to those derived from the virus isolates grown in Madin Darby canine kidney (MDCK) cells. The virus isolates from the trachea, lung, and fecal specimens showed 27 nucleotide substitutions, leading to the changes of 18 amino acid residues. However, there was no change in the amino acid residues that determined the viral virulence. The changes were more commonly observed in the lung, particularly in the HA and NA genes. Our study suggested that the adaptation changes for the viral fitness to survive in a new host species (MDCK cells) might involve many genes, for example, the amino acid substitution 177G or 177W adjacent to the receptor-binding residues in the HA1 globular head and the substitution M315I in PB2. However, a mutation changes near the receptor binding domain may play an important role in determining the cell tropism and is needed to be further explored.
Collapse
|
10
|
Honda S, Minagawa Y, Noji H, Tabata KV. Multidimensional Digital Bioassay Platform Based on an Air-Sealed Femtoliter Reactor Array Device. Anal Chem 2021; 93:5494-5502. [PMID: 33706506 DOI: 10.1021/acs.analchem.0c05360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Single-molecule experiments have been helping us to get deeper inside biological phenomena by illuminating how individual molecules actually work. Digital bioassay, in which analyte molecules are individually confined in small compartments to be analyzed, is an emerging technology in single-molecule biology and applies to various biological entities (e.g., cells and virus particles). However, digital bioassay is not compatible with multiconditional and multiparametric assays, hindering in-depth understanding of analytes. This is because current digital bioassay lacks a repeatable solution-exchange system that keeps analytes inside compartments. To address this challenge, we developed a digital bioassay platform with easy solution exchanges, called multidimensional (MD) digital bioassay. We immobilized single analytes in arrayed femtoliter (10-15 L) reactors and sealed them with airflow. The solution in each reactor was stable and showed no cross-talk via solution leakage for more than 2 h, and over 30 rounds of perfect solution exchanges were successfully performed. With multiconditional assays based on our system, we could quantitatively determine inhibitor sensitivities of single influenza A virus particles and single alkaline phosphatase (ALP) molecules, which has never been achieved with conventional digital bioassays. Further, we demonstrated that ALPs from two origins can be precisely distinguished by a single-molecule multiparametric assay with our system, which was also difficult with conventional digital bioassays. Thus, MD digital bioassay is a versatile platform to gain in-depth insight into biological entities in unprecedented resolution.
Collapse
|
11
|
Sapoval N, Mahmoud M, Jochum MD, Liu Y, Elworth RAL, Wang Q, Albin D, Ogilvie HA, Lee MD, Villapol S, Hernandez KM, Maljkovic Berry I, Foox J, Beheshti A, Ternus K, Aagaard KM, Posada D, Mason CE, Sedlazeck FJ, Treangen TJ. SARS-CoV-2 genomic diversity and the implications for qRT-PCR diagnostics and transmission. Genome Res 2021; 31:635-644. [PMID: 33602693 PMCID: PMC8015855 DOI: 10.1101/gr.268961.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymorphisms (SNPs) that differentiate the main SARS-CoV-2 lineages that have spread throughout the world. In this study, we investigated 129 RNA-seq data sets and 6928 consensus genomes to contrast the intra-host and inter-host diversity of SARS-CoV-2. Our analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights intra-host single nucleotide variant (iSNV) and SNP similarity, albeit with differences in C > U changes. Second, iSNV and SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of insertions and deletions contribute to the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael D Jochum
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | - Yunxi Liu
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - R A Leo Elworth
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Qi Wang
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Dreycey Albin
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, California 94043, USA
- Blue Marble Space Institute of Science, Seattle, Washington 98104, USA
| | - Sonia Villapol
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Kyle M Hernandez
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
- Center for Translational Data Science, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | | | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
12
|
Chepur SV, Pluzhnikov NN, Chubar OV, Bakulina LS, Litvinenko IV, Makarov VA, Gogolevsky AS, Myasnikov VA, Myasnikova IA, Al-Shehadat RI. Respiratory RNA Viruses: How to Be Prepared for an Encounter with New Pandemic Virus Strains. BIOLOGY BULLETIN REVIEWS 2021; 11. [PMCID: PMC8078390 DOI: 10.1134/s207908642102002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characteristics of the biology of influenza viruses and coronavirus that determine the implementation of the infectious process are presented. With provision for pathogenesis of infection possible effects of serine proteinase inhibitors, heparin, and inhibitors of heparan sulfate receptors in the prevention of cell contamination by viruses are examined. It has been determined that chelators of metals of variable valency and antioxidants should be used for the reduction of replicative activity of viruses and anti-inflammatory therapy. The possibility of a pH-dependent impairment of glycosylation of cellular and viral proteins was traced for chloroquine and its derivatives. The use of low-toxicity drugs as part of adjunct therapy increases the effectiveness of synthetic antiviral drugs and interferons and ensures the safety of baseline therapy.
Collapse
Affiliation(s)
- S. V. Chepur
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - N. N. Pluzhnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - O. V. Chubar
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - L. S. Bakulina
- Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - V. A. Makarov
- Fundamentals of Biotechnology Federal Research Center, 119071 Moscow, Russia
| | - A. S. Gogolevsky
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - V. A. Myasnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - I. A. Myasnikova
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - R. I. Al-Shehadat
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| |
Collapse
|
13
|
Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discov Today 2020; 26:503-510. [PMID: 33220433 DOI: 10.1016/j.drudis.2020.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022]
Abstract
Since the discovery of the anti-influenza drugs oseltamivir and zanamivir using computer-aided drug design methods, there have been significant applications of molecular modelling methodologies applied to influenza A virus drug discovery, such as molecular dynamics (MD) simulation, molecular docking, and virtual screening (VS). In this review, we provide a brief general introduction to molecular modelling in the context of drug discovery and then focus on the advances and impact of integrating these methods with specific reference to potential influenza A antiviral drug targets.
Collapse
|
14
|
Molecular evolution and characterization of hemagglutinin and neuraminidase of influenza A(H1N1)pdm09 viruses isolated in Beijing, China, during the 2017-2018 and 2018-2019 influenza seasons. Arch Virol 2020; 166:179-189. [PMID: 33145635 DOI: 10.1007/s00705-020-04869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
We investigated and analysed the molecular evolution of hemagglutinin (HA) and neuraminidase (NA) of influenza A(H1N1)pdm09 virus during the 2017-2018 and 2018-2019 influenza seasons in Beijing, China. We collected and extracted RNA from influenza A(H1N1)pdm09 strains from Peking University People's Hospital and analyzed their HA and NA genes by RT-PCR and sequencing. Phylogenetic analysis of HA and NA sequences was used to compare the amino acid sequences of 51 strains with those of reference strains. All strains belonged to subclade 6B.1, with S162N and I216T substitutions (H1 numbering). Our strains differed from strain A/Michigan/45/2015, with the substitutions S91R, S181T and I312V in the HA antigenic epitope. An E189G mutation was detected in the 190 helix of the receptor binding region of HA. A new potential glycosylation site, 179 (NQT), which was not detected before the 2015 influenza season, was identified. Two strains were mutated at I223, the NA inhibitor resistance site. During 2012-2019, amino acids of HA and NA mutated over time. Co-occurrence mutations N146D, S200P, S202I and A273T in HA appeared along with Q51K, F74S and D416N in NA in six strains during two influenza seasons. Our work reveals the molecular changes and phylogenetic characteristics of influenza A(H1N1)pdm09 virus and suggests that a vaccine probably provides suboptimal protection. The biological characteristics of the new glycosylation and drug-resistance sites detected in this work need to be studied further. The co-occurrence of mutations in HA and NA might affect the characteristics of the virus and need to be given more attention.
Collapse
|
15
|
Makarov V, Riabova O, Ekins S, Pluzhnikov N, Chepur S. The past, present and future of RNA respiratory viruses: influenza and coronaviruses. Pathog Dis 2020; 78:ftaa046. [PMID: 32860686 PMCID: PMC7499567 DOI: 10.1093/femspd/ftaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.
Collapse
Affiliation(s)
- Vadim Makarov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Olga Riabova
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Nikolay Pluzhnikov
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| | - Sergei Chepur
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| |
Collapse
|
16
|
McNee A, Smith TRF, Holzer B, Clark B, Bessell E, Guibinga G, Brown H, Schultheis K, Fisher P, Ramos S, Nunez A, Bernard M, Graham S, Martini V, Chrun T, Xiao Y, Kash JC, Taubenberger JK, Elliott S, Patel A, Beverley P, Rijal P, Weiner DB, Townsend A, Broderick KE, Tchilian E. Establishment of a Pig Influenza Challenge Model for Evaluation of Monoclonal Antibody Delivery Platforms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:648-660. [PMID: 32591390 PMCID: PMC7372317 DOI: 10.4049/jimmunol.2000429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
mAbs are a possible adjunct to vaccination and drugs in treatment of influenza virus infection. However, questions remain whether small animal models accurately predict efficacy in humans. We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing mAbs. We show that a strongly neutralizing mAb (2-12C) against the hemagglutinin head administered prophylactically at 15 mg/kg reduced viral load and lung pathology after pandemic H1N1 influenza challenge. A lower dose of 1 mg/kg of 2-12C or a DNA plasmid-encoded version of 2-12C reduced pathology and viral load in the lungs but not viral shedding in nasal swabs. We propose that the pig influenza model will be useful for testing candidate mAbs and emerging delivery platforms prior to human trials.
Collapse
Affiliation(s)
- Adam McNee
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | | | - Barbara Holzer
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Emily Bessell
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | | | | | | | | | | | - Alejandro Nunez
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Matthieu Bernard
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Simon Graham
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | | | - Tiphany Chrun
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203
| | - Sarah Elliott
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19103
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19103
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, United Kingdom; and
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19103
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | - Elma Tchilian
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom;
| |
Collapse
|
17
|
Sapoval N, Mahmoud M, Jochum MD, Liu Y, Elworth RAL, Wang Q, Albin D, Ogilvie H, Lee MD, Villapol S, Hernandez KM, Berry IM, Foox J, Beheshti A, Ternus K, Aagaard KM, Posada D, Mason CE, Sedlazeck F, Treangen TJ. Hidden genomic diversity of SARS-CoV-2: implications for qRT-PCR diagnostics and transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.02.184481. [PMID: 32637955 PMCID: PMC7337385 DOI: 10.1101/2020.07.02.184481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymorphisms (SNPs) that differentiate the main SARS-CoV-2 clades that have spread throughout the world. In this study, we investigated over 7,000 SARS-CoV-2 datasets to unveil both intrahost and interhost diversity. Our intrahost and interhost diversity analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights iSNV and SNP similarity, albeit with high variability in C>T changes. Second, iSNV and SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of small indels fuel the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Michael D. Jochum
- Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Qi Wang
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Houston, TX
| | - Dreycey Albin
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Houston, TX
| | - Huw Ogilvie
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Michael D. Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA
- Blue Marble Space Institute of Science, Seattle, WA
| | | | - Kyle M. Hernandez
- Department of Medicine, University of Chicago, Chicago, IL
- Center for Translational Data Science, University of Chicago, Chicago, IL
| | | | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA
| | - Krista Ternus
- Signature Science, LLC, 8329 North Mopac Expressway, Austin TX 78759
| | | | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology School of Biology, University of Vigo, Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Fritz Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| |
Collapse
|
18
|
Ko HY, Salem GM, Chang GJJ, Chao DY. Application of Next-Generation Sequencing to Reveal How Evolutionary Dynamics of Viral Population Shape Dengue Epidemiology. Front Microbiol 2020; 11:1371. [PMID: 32636827 PMCID: PMC7318875 DOI: 10.3389/fmicb.2020.01371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue viral (DENV) infection results in a wide spectrum of clinical manifestations from asymptomatic, mild fever to severe hemorrhage diseases upon infection. Severe dengue is the leading cause of pediatric deaths and/or hospitalizations, which are a major public health burden in dengue-endemic or hyperendemic countries. Like other RNA viruses, DENV continues to evolve. Adaptive mutations are obscured by the major consensus sequence (so-called wild-type sequences) and can only be identified once they become the dominant viruses in the virus population, a process that can take months or years. Traditional surveillance systems still rely on Sanger consensus sequencing. However, with the recent advancement of high-throughput next-generation sequencing (NGS) technologies, the genome-wide investigation of virus population within-host and between-hosts becomes achievable. Thus, viral population sequencing by NGS can increase our understanding of the changing epidemiology and evolution of viral genomics at the molecular level. This review focuses on the studies within the recent decade utilizing NGS in different experimental and epidemiological settings to understand how the adaptive evolution of dengue variants shapes the dengue epidemic and disease severity through its transmission. We propose three types of studies that can be pursued in the future to enhance our surveillance for epidemic prediction and better medical management.
Collapse
Affiliation(s)
- Hui-Ying Ko
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gwong-Jen J Chang
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Świętoń E, Tarasiuk K, Olszewska-Tomczyk M, Iwan E, Śmietanka K. A Turkey-origin H9N2 Avian Influenza Virus Shows Low Pathogenicity but Different Within-Host Diversity in Experimentally Infected Turkeys, Quail and Ducks. Viruses 2020; 12:v12030319. [PMID: 32188100 PMCID: PMC7150878 DOI: 10.3390/v12030319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Avian influenza virus (AIV) is a highly diverse and widespread poultry pathogen. Its evolution and adaptation may be affected by multiple host and ecological factors, which are still poorly understood. In the present study, a turkey-origin H9N2 AIV was used as a model to investigate the within-host diversity of the virus in turkeys, quail and ducks in conjunction with the clinical course, shedding and seroconversion. Ten birds were inoculated oculonasally with a dose of 106 EID50 of the virus and monitored for 14 days. Virus shedding, transmission and seroconversion were evaluated, and swabs collected at selected time-points were characterized in deep sequencing to assess virus diversity. In general, the virus showed low pathogenicity for the examined bird species, but differences in shedding patterns, seroconversion and clinical outcome were noted. The highest heterogeneity of the virus population as measured by the number of single nucleotide polymorphisms and Shannon entropy was found in oropharyngeal swabs from quail, followed by turkeys and ducks. This suggests a strong bottleneck was imposed on the virus during replication in ducks, which can be explained by its poor adaptation and stronger selection pressure in waterfowl. The high within-host virus diversity in quail with high level of respiratory shedding and asymptomatic course of infection may contribute to our understanding of the role of quail as an intermediate host for adaptation of AIV to other species of poultry. In contrast, low virus complexity was observed in cloacal swabs, mainly from turkeys, showing that the within-host diversity may vary between different replication sites. Consequences of these observations on the virus evolution and adaptation require further investigation.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
- Correspondence:
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| | - Monika Olszewska-Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| | - Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| |
Collapse
|
20
|
Plant EP, Manukyan H, Sanchez JL, Laassri M, Ye Z. Immune Pressure on Polymorphous Influenza B Populations Results in Diverse Hemagglutinin Escape Mutants and Lineage Switching. Vaccines (Basel) 2020; 8:vaccines8010125. [PMID: 32168968 PMCID: PMC7157493 DOI: 10.3390/vaccines8010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mutations arise in the genomes of progeny viruses during infection. Mutations that occur in epitopes targeted by host antibodies allow the progeny virus to escape the host adaptive, B-cell mediated antibody immune response. Major epitopes have been identified in influenza B virus (IBV) hemagglutinin (HA) protein. However, IBV strains maintain a seasonal presence in the human population and changes in IBV genomes in response to immune pressure are not well characterized. There are two lineages of IBV that have circulated in the human population since the 1980s, B-Victoria and B-Yamagata. It is hypothesized that early exposure to one influenza subtype leads to immunodominance. Subsequent seasonal vaccination or exposure to new subtypes may modify subsequent immune responses, which, in turn, results in selection of escape mutations in the viral genome. Here we show that while some mutations do occur in known epitopes suggesting antibody escape, many mutations occur in other parts of the HA protein. Analysis of mutations outside of the known epitopes revealed that these mutations occurred at the same amino acid position in viruses from each of the two IBV lineages. Interestingly, where the amino acid sequence differed between viruses from each lineage, reciprocal amino acid changes were observed. That is, the virus from the Yamagata lineage become more like the Victoria lineage virus and vice versa. Our results suggest that some IBV HA sequences are constrained to specific amino acid codons when viruses are cultured in the presence of antibodies. Some changes to the known antigenic regions may also be restricted in a lineage-dependent manner. Questions remain regarding the mechanisms underlying these results. The presence of amino acid residues that are constrained within the HA may provide a new target for universal vaccines for IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
- Correspondence: ; Tel.: +1-240-402-7319
| | - Hasmik Manukyan
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Jose L. Sanchez
- Armed Forces Health Surveillance Branch, Public Health Division, Assistant Director for Combat Support (AD-CS), Defense Health Agency, Silver Spring, MD 20904, USA;
| | - Majid Laassri
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| |
Collapse
|
21
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
22
|
Weger-Lucarelli J, Carrau L, Levi LI, Rezelj V, Vallet T, Blanc H, Boussier J, Megrian D, Coutermarsh-Ott S, LeRoith T, Vignuzzi M. Host nutritional status affects alphavirus virulence, transmission, and evolution. PLoS Pathog 2019; 15:e1008089. [PMID: 31710653 PMCID: PMC6872174 DOI: 10.1371/journal.ppat.1008089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/21/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Malnourishment, specifically overweight/obesity and undernourishment, affects more than 2.5 billion people worldwide, with the number affected ever-increasing. Concurrently, emerging viral diseases, particularly those that are mosquito-borne, have spread dramatically in the past several decades, culminating in outbreaks of several viruses worldwide. Both forms of malnourishment are known to lead to an aberrant immune response, which can worsen disease outcomes and reduce vaccination efficacy for viral pathogens such as influenza and measles. Given the increasing rates of malnutrition and spread of arthropod-borne viruses (arboviruses), there is an urgent need to understand the role of host nutrition on the infection, virulence, and transmission of these viruses. To address this gap in knowledge, we infected lean, obese, and undernourished mice with arthritogenic arboviruses from the genus Alphavirus and assessed morbidity, virus replication, transmission, and evolution. Obesity and undernourishment did not consistently influence virus replication in the blood of infected animals except for reductions in virus in obese mice late in infection. However, morbidity was increased in obese mice under all conditions. Using Mayaro virus (MAYV) as a model arthritogenic alphavirus, we determined that both obese and undernourished mice transmit virus less efficiently to mosquitoes than control (lean) mice. In addition, viral genetic diversity and replicative fitness were reduced in virus isolated from obese compared to lean controls. Taken together, nutrition appears to alter the course of alphavirus infection and should be considered as a critical environmental factor during outbreaks. Over- and undernutrition, collectively known as malnutrition, affect over 2.5 billion people worldwide. Associations between malnutrition and mosquito-borne virus infection and resulting disease have been identified in epidemiological studies but have not been explored in controlled studies. Here, we infect obese or undernourished mice with different arthritis inducing viruses in the genus Alphavirus and measure disease symptoms, viral replication, transmission, and evolution. We found that markers of disease, namely weight loss and footpad swelling, were increased in obese mice. We also found that replication differences between mice fed different diets were minimal except late in infection for obese mice when levels of virus dropped significantly. When mosquitoes were allowed to feed on mice fed different diets, we observed reduced infection and transmission rates, depending on the diet. Finally, we found reduced genetic diversity and replicative fitness of virus isolated from obese mice. This study provides insights into the influence of nutrition on alphavirus pathogenesis and evolution.
Collapse
Affiliation(s)
- James Weger-Lucarelli
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Paris, France.,Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Lucia Carrau
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Paris, France
| | - Laura I Levi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Paris, France.,Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Veronica Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Paris, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Paris, France
| | - Jérémy Boussier
- Institut Pasteur, Immunobiology of Dendritic Cells, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Daniela Megrian
- Institut Pasteur, Evolutionary Biology of the Microbial Cell, Department of Microbiology, Paris, France
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Paris, France
| |
Collapse
|
23
|
Mandary MB, Masomian M, Poh CL. Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. Int J Mol Sci 2019; 20:E4657. [PMID: 31546962 PMCID: PMC6770471 DOI: 10.3390/ijms20184657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Malihe Masomian
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
24
|
Xiao Y, Park JK, Williams S, Ramuta M, Cervantes-Medina A, Bristol T, Smith S, Czajkowski L, Han A, Kash JC, Memoli MJ, Taubenberger JK. Deep sequencing of 2009 influenza A/H1N1 virus isolated from volunteer human challenge study participants and natural infections. Virology 2019; 534:96-107. [PMID: 31226666 PMCID: PMC6652224 DOI: 10.1016/j.virol.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Nasal wash samples from 15 human volunteers challenged with GMP manufactured influenza A/California/04/2009(H1N1) and from 5 naturally infected influenza patients of the 2009 pandemic were deep sequenced using viral targeted hybridization enrichment. Ten single nucleotide polymorphism (SNP) positions were found in the challenge virus. Some of the nonsynonymous changes in the inoculant virus were maintained in some challenge participants, but not in others, indicating that virus is evolving away from the Vero cell adapted inoculant, for example SNPs in the neuraminidase. Many SNP sites in challenge patients and naturally infected patients were found, many not identified previously. The SNPs identified, and phylogenetic analyses, showed that intrahost evolution of the virus are different in challenge participants and naturally infected patients. This study, using hybridization enrichment without PCR, provided an accurate and unbiased assessment of differential intrahost viral evolution from a uniform influenza inoculant in humans and comparison to naturally infected patients.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jae-Keun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell Ramuta
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Cervantes-Medina
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Bristol
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Smith
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay Czajkowski
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Han
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Memoli
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Kleinnijenhuis AJ. Visualization of Genetic Drift Processes Using the Conserved Collagen 1α1 GXY Domain. J Mol Evol 2019; 87:106-130. [PMID: 30863881 DOI: 10.1007/s00239-019-09890-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/06/2019] [Indexed: 11/30/2022]
Abstract
Speciation proceeds by the accumulation of DNA differences in time. The genetic code changes as a result of genetic drift and by selective pressure. In variable domains, exposure to high selective pressure obscures the view on background mutations. Therefore, we characterized and visualized background mutations using the highly conserved collagen 1α1 GXY domain. Typical change routes were identified and the data set showed several indications that changes in the collagen 1α1 GXY domain have taken place randomly within a functionally restricted space. The types of nucleotide and codon group differences are similar across the vertebrate subphylum and gradually become less functionally neutral with increasing distance between species, which offers the opportunity for rapid visualization of evolutionary relations using a single domain. It was concluded that the findings and approach of the study could be important for analytical method development in authenticity research, especially when conserved domains are targeted.
Collapse
|