1
|
Han XY, Guo P, Fan QR, Zhou QB, Xu MD, Long XZ, Cui LY, Tong Q. Synergistic toxicity of cadmium and triadimefon on the microbiota and health of Rana dybowskii tadpoles. Comp Biochem Physiol C Toxicol Pharmacol 2024; 289:110092. [PMID: 39617313 DOI: 10.1016/j.cbpc.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The skin and gut microbiota are crucial to amphibians. Triadimefon (TF), a widely used triazole fungicide, controls crop diseases and regulates growth, with uncertain effects on amphibian microbiota. Contamination, typically involving mixed chemicals at low concentrations, including cadmium (Cd) and TF, may detrimentally affect amphibian growth, survival, and microbiota health in both the skin and gut, but few research has examined these consequences. This research examines the impact of Cd and TF on Rana dybowskii tadpoles, focusing on survival, body mass, and microbiome changes over 28 days across four groups: control, Cd, TF, and Cd + TF groups. Results showed significant reductions in survival and body mass in Cd and TF-treated groups, with the combination group being the most affected. Microbiota analysis revealed significant dysbiosis in both gut and skin microbiomes under pollutant stress, with a marked microbiota and a shift in dominant microbial communities. Function prediction analysis based on the microbiome composition highlighted significant differences across various biological pathways, including metabolism, immune system, environmental adaptation, and disease resistance. These alterations suggest that pollutant exposure compromises the tadpoles' ability to maintain homeostasis and resist pathogens. In conclusion, this study reveals the detrimental effects of Cd and TF on the survival, growth, and microbiomes of R. dybowskii tadpoles, indicating significant environmental and health risks.
Collapse
Affiliation(s)
- Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Peng Guo
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qiu-Ru Fan
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing-Bo Zhou
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Korneev A, Peshkova M, Koteneva P, Gundogdu A, Timashev P. Modulation of the skin and gut microbiome by psoriasis treatment: a comprehensive systematic review. Arch Dermatol Res 2024; 316:374. [PMID: 38850443 DOI: 10.1007/s00403-024-03024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
The microbiome is intricately linked to the development of psoriasis, serving as both a potential cause and consequence of the psoriatic process. In recent years, there has been growing interest among psoriasis researchers in exploring how psoriasis treatments affect the skin and gut microbiome. However, a comprehensive evaluation of the impact of modern treatment approaches on the microbiome has yet to be conducted. In this systematic review, we analyze studies investigating alterations in the skin and gut microbiome resulting from psoriasis treatment, aiming to understand how current therapies influence the role of the microbiome in psoriasis development. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed and Scopus databases were searched for eligible studies from the inception dates until July 5, 2023. Study selection, data extraction, and risk of bias assessment were carried out by three overlapping pairs of reviewers, resolving any disagreements through consensus. Our analysis of various treatments, including biologics, conventional medications, phototherapy, and probiotics, reveals significant shifts in microbial diversity and abundance. Importantly, favorable treatment outcomes are associated with microbiota alterations that approach those observed in healthy individuals. While the studies reviewed exhibit varying degrees of bias, underscoring the need for further research, this review supports the potential of microbiome modulation as both a preventive and therapeutic strategy for psoriasis patients. The findings underscore the importance of personalized therapeutic approaches, recognizing the profound impact of treatment on the microbiome. They also highlight the promise of probiotics, prebiotics, and dietary interventions in psoriasis management.
Collapse
Affiliation(s)
- Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991.
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991.
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia, 119991.
| | - Maria Peshkova
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
| | - Polina Koteneva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Design Center "Biofactory", Sechenov University, Moscow, Russia, 119991
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Metagenomics Laboratory, Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
4
|
Dong WJ, Xu MD, Yang XW, Yang XM, Long XZ, Han XY, Cui LY, Tong Q. Rice straw ash and amphibian health: A deep dive into microbiota changes and potential ecological consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171651. [PMID: 38490417 DOI: 10.1016/j.scitotenv.2024.171651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.
Collapse
Affiliation(s)
- Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xue-Wen Yang
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiu-Mei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Dey S, Vieyra-Garcia PA, Joshi AA, Trajanoski S, Wolf P. Modulation of the skin microbiome in cutaneous T-cell lymphoma delays tumour growth and increases survival in the murine EL4 model. Front Immunol 2024; 15:1255859. [PMID: 38646524 PMCID: PMC11026597 DOI: 10.3389/fimmu.2024.1255859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a group of lymphoproliferative disorders of skin-homing T cells causing chronic inflammation. These disorders cause impairment of the immune environment, which leads to severe infections and/or sepsis due to dysbiosis. In this study, we elucidated the host-microbial interaction in CTCL that occurs during the phototherapeutic treatment regime and determined whether modulation of the skin microbiota could beneficially affect the course of CTCL. EL4 T-cell lymphoma cells were intradermally grafted on the back of C57BL/6 mice. Animals were treated with conventional therapeutics such as psoralen + UVA (PUVA) or UVB in the presence or absence of topical antibiotic treatment (neomycin, bacitracin, and polymyxin B sulphate) as an adjuvant. Microbial colonisation of the skin was assessed to correlate with disease severity and tumour growth. Triple antibiotic treatment significantly delayed tumour occurrence (p = 0.026), which prolonged the survival of the mice (p = 0.033). Allocation to phototherapeutic agents PUVA, UVB, or none of these, along with antibiotic intervention, reduced the tumour growth significantly (p = 0.0327, p ≤ 0.0001, p ≤ 0.0001 respectively). The beta diversity indices calculated using the Bray-Curtis model showed that the microbial population significantly differed after antibiotic treatment (p = 0.001). Upon modulating the skin microbiome by antibiotic treatment, we saw an increase in commensal Clostridium species, e.g., Lachnospiraceae sp. (p = 0.0008), Ruminococcaceae sp. (p = 0.0001)., Blautia sp. (p = 0.007) and a significant reduction in facultative pathogens Corynebacterium sp. (p = 0.0009), Pelomonas sp. (p = 0.0306), Streptococcus sp. (p ≥ 0.0001), Pseudomonas sp. (p = 0.0358), and Cutibacterium sp. (p = 0.0237). Intriguingly, we observed a significant decrease in Staphylococcus aureus frequency (p = 0.0001) but an increase in the overall detection frequency of the Staphylococcus genus, indicating that antibiotic treatment helped regain the microbial balance and increased the number of non-pathogenic Staphylococcus populations. These study findings show that modulating microbiota by topical antibiotic treatment helps to restore microbial balance by diminishing the numbers of pathogenic microbes, which, in turn, reduces chronic inflammation, delays tumour growth, and increases survival rates in our CTCL model. These findings support the rationale to modulate the microbial milieu during the disease course of CTCL and indicate its therapeutic potential.
Collapse
MESH Headings
- Animals
- Microbiota/drug effects
- Mice
- Skin/microbiology
- Skin/pathology
- Skin/immunology
- Skin/drug effects
- Skin Neoplasms/microbiology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Lymphoma, T-Cell, Cutaneous/microbiology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/therapy
- Mice, Inbred C57BL
- Disease Models, Animal
- Anti-Bacterial Agents/therapeutic use
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/administration & dosage
- Cell Line, Tumor
- Female
- Humans
Collapse
Affiliation(s)
- Saptaswa Dey
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | | | - Aaroh Anand Joshi
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
6
|
Wang S, Chen W, Liu F, Li R. Comparison of dermoscopic characteristics on toenail onychomycosis in psoriatic and non-psoriatic patients: A prospective study. Mycoses 2024; 67:e13721. [PMID: 38570912 DOI: 10.1111/myc.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Psoriatic patients may experience the coexistence of onychomycosis (OM). However, the evaluation of OM in psoriatics has been hindered by potential clinical differences from OM in non-psoriatics. OBJECTIVE To assess and compare dermoscopic features between toenail OM in psoriatic and in non-psoriatic patients. PATIENTS AND METHODS Between September 2020 and September 2023, dermoscopy was conducted on 183 affected toenails by OM in psoriatics and 232 affected toenails by OM in non-psoriatics in two centres. The dermoscopic characteristics were compared using the Chi-squared test. RESULTS Among toenail OM cases in psoriatic subjects, the most prevalent dermoscopic features included pitting (147/183, 80.33%) and subungual hyperkeratosis (118/183, 64.48%). Conversely, toenail OM in non-psoriatics was characterized by subungual hyperkeratosis (175/232, 75.43%) and nail spikes (139/232, 59.91%). Comparative analysis revealed a significantly higher occurrence of pitting (80.33% vs. 15.96%, p < .001), periungual telangiectasis (22.40% vs. 4.74%, p < .001), oil patches (12.57% vs. 0.43%,p < .001) and transverse grooves (43.72% vs. 28.45%,p < .01) in toenail OM in psoriatics. Furthermore, toenail OM in psoriatics exhibited a significantly lower frequency of yellow structureless area (13.11% vs. 42.67%, p < .001), nail spikes (43.17% vs. 59.91%, p < .01), ruin appearance of sulphur nugget (8.20% vs. 31.03%, p < .001), dotted/blocky haemorrhage (6.01% vs. 20.69%,p < .001) and partial onycholysis (32.79% vs. 46.98%, p < .01). CONCLUSIONS Dermoscopic features of toenail OM in psoriatic and non-psoriatic patients exhibit notable differences. OM in psoriatics shows a higher frequency of pitting and periungual telangiectasis, while a lower frequency of yellow structureless areas and nail spikes under dermoscopy.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Fang Liu
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
7
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
8
|
Myers T, Bouslimani A, Huang S, Hansen ST, Clavaud C, Azouaoui A, Ott A, Gueniche A, Bouez C, Zheng Q, Aguilar L, Knight R, Moreau M, Song SJ. A multi-study analysis enables identification of potential microbial features associated with skin aging signs. FRONTIERS IN AGING 2024; 4:1304705. [PMID: 38362046 PMCID: PMC10868648 DOI: 10.3389/fragi.2023.1304705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/12/2023] [Indexed: 02/17/2024]
Abstract
Introduction: During adulthood, the skin microbiota can be relatively stable if environmental conditions are also stable, yet physiological changes of the skin with age may affect the skin microbiome and its function. The microbiome is an important factor to consider in aging since it constitutes most of the genes that are expressed on the human body. However, severity of specific aging signs (one of the parameters used to measure "apparent" age) and skin surface quality (e.g., texture, hydration, pH, sebum, etc.) may not be indicative of chronological age. For example, older individuals can have young looking skin (young apparent age) and young individuals can be of older apparent age. Methods: Here we aim to identify microbial taxa of interest associated to skin quality/aging signs using a multi-study analysis of 13 microbiome datasets consisting of 16S rRNA amplicon sequence data and paired skin clinical data from the face. Results: We show that there is a negative relationship between microbiome diversity and transepidermal water loss, and a positive association between microbiome diversity and age. Aligned with a tight link between age and wrinkles, we report a global positive association between microbiome diversity and Crow's feet wrinkles, but with this relationship varying significantly by sub-study. Finally, we identify taxa potentially associated with wrinkles, TEWL and corneometer measures. Discussion: These findings represent a key step towards understanding the implication of the skin microbiota in skin aging signs.
Collapse
Affiliation(s)
- Tyler Myers
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| | | | - Shi Huang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Shalisa T. Hansen
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | - Alban Ott
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | - Charbel Bouez
- L’Oréal Research and Innovation, Clark, NJ, United States
| | - Qian Zheng
- L’Oréal Research and Innovation, Clark, NJ, United States
| | - Luc Aguilar
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | - Rob Knight
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, United States
- Shu Chien-Gene Lay Department of Engineering, University of California San Diego, La Jolla, CA, United States
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, United States
| | - Magali Moreau
- L’Oréal Research and Innovation, Clark, NJ, United States
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
El Mahi Y, Varin A, Vetter M, Dal Zuffo L, Mazzeo L, Pais De Barros JP, Aubin F, Saas P, Gallais Sérézal I. Resolved Psoriasis with Abundant Oleic Acid in Stratum Corneum Exhibits Lower T-Cell-Driven IL-17 Signature. J Invest Dermatol 2023; 143:2145-2152.e6. [PMID: 37207807 DOI: 10.1016/j.jid.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Relapses of psoriasis involve T cells that stem and survive in the skin. Inherited from previous flares, the tissue-resident memory T cells are epidermal IL-17-producing CD8+ and IL-22-producing CD4+ T cells. Because the capacity of resident memory T cells to take in fatty acids is essential for their residence and function, the surface composition of fatty acids may affect underlying T-cell populations. In patients treated with biologics, we used gas chromatography/mass spectrometry to decipher the fatty acid composition in both resolved and nonlesional sites. Skin T cells were activated by OKT-3 in explants from the same body sites to perform bulk transcriptomic analysis (Nanostring). The fatty acid composition differed between skin from healthy donors and normal-looking skin of patients with psoriasis but not further between nonlesional and resolved skin. Patients in whom the resolved skin was rich in oleic acid had lower T-cell-driven IL-17 epidermal transcriptomic signature upon activation of T cells in skin explants. The skin lipid composition is linked with the functions of the underlying epidermal T cells. Testing the modulating effect of custom fatty acids on skin resident T cells could help with coming closer to disease oblivion in inflammatory skin diseases.
Collapse
Affiliation(s)
- Yasmin El Mahi
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Alexis Varin
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Lipidomic platform, LipSTIC Labex, Burgundy University, Dijon, France
| | - Mathieu Vetter
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Ludivine Dal Zuffo
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Loïc Mazzeo
- Lipidomic platform, LipSTIC Labex, Burgundy University, Dijon, France; INSERM UMR1098, Burgundy University, Dijon, France
| | - Jean-Paul Pais De Barros
- INSERM UMR1098, Burgundy University, Dijon, France; Department of Dermatology, Besançon University Hospital, Besançon, France
| | - François Aubin
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Department of Dermatology, Besançon University Hospital, Besançon, France
| | - Philippe Saas
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Lipidomic platform, LipSTIC Labex, Burgundy University, Dijon, France
| | - Irène Gallais Sérézal
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Department of Dermatology, Besançon University Hospital, Besançon, France.
| |
Collapse
|
10
|
Molina-Menor E, Carlotto N, Vidal-Verdú À, Pérez-Ferriols A, Pérez-Pastor G, Porcar M. Ecology and resistance to UV light and antibiotics of microbial communities on UV cabins in the dermatology service of a Spanish hospital. Sci Rep 2023; 13:14547. [PMID: 37666842 PMCID: PMC10477284 DOI: 10.1038/s41598-023-40996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023] Open
Abstract
Microorganisms colonize all possible ecological habitats, including those subjected to harsh stressors such as UV radiation. Hospitals, in particular the UV cabins used in phototherapy units, constitute an environment in which microbes are intermittently subjected to UV irradiation. This selective pressure, in addition to the frequent use of antibiotics by patients, may represent a threat in the context of the increasing problem of antimicrobial resistance. In this work, a collection of microorganisms has been established in order to study the microbiota associated to the inner and outer surfaces of UV cabins and to assess their resistance to UV light and the antibiotics frequently used in the Dermatology Service of a Spanish hospital. Our results show that UV cabins harbor a relatively diverse biocenosis dominated by typically UV-resistant microorganisms commonly found in sun-irradiated environments, such as Kocuria, Micrococcus or Deinococcus spp., but also clinically relevant taxa, such as Staphylococcus or Pseudomonas spp. The UV-radiation assays revealed that, although some isolates displayed some resistance, UV is not a major factor shaping the biocenosis living on the cabins, since a similar pool of resistant microorganisms was identified on the external surface of the cabins. Interestingly, some Staphylococcus spp. displayed resistance to one or more antibiotics, although the hospital reported no cases of antibiotic-resistance infections of the patients using the cabins. Finally, no association between UV and antibiotic resistances was found.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Nicolás Carlotto
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | | | - Gemma Pérez-Pastor
- Servicio de Dermatología, Consorcio Hospital General de Valencia, Valencia, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain.
- Darwin Bioprospecting Excellence SL (Parc Científic Universitat de València, C/ Catedràtic Agustín Escardino Benlloch 9, Paterna, Spain.
| |
Collapse
|
11
|
Li M, Mao J, Diaz I, Kopylova E, Melnik AV, Aksenov AA, Tipton CD, Soliman N, Morgan AM, Boyd T. Multi-omic approach to decipher the impact of skincare products with pre/postbiotics on skin microbiome and metabolome. Front Med (Lausanne) 2023; 10:1165980. [PMID: 37534320 PMCID: PMC10392128 DOI: 10.3389/fmed.2023.1165980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Although pre/pro/postbiotics have become more prevalent in dermatologic and cosmetic fields, the mode of action when topically applied is largely unknown. A multi-omic approach was applied to decipher the impact of the skincare products with pre/postbiotics on skin microbiome and metabolome. Methods Subjects with dry skin applied a body wash and body lotion with or without pre/postbiotics for 6 weeks. Skin hydration was measured at baseline, 3 and 6 weeks. Skin swabs were collected for 16S rRNA gene sequencing, metagenomics and metabolomics analysis. Results Skin hydration significantly increased in both groups. The prebiotic group significantly reduced opportunistic pathogens, e.g., Pseudomonas stutzeri and Sphingomonas anadarae, and increased the commensals, e.g., Staphylococcus equorum, Streptococcus mitis, Halomonas desiderata. Bacterial sugar degradation pathways were enriched in the prebiotic group, while fatty acid biosynthesis pathways were reduced in control. The changes on skin metabolome profiles by the products were more prominent. The prebiotic group performed greater modulation on many clinically-relevant metabolites compared to control. Correlation analysis showed H. desiderata and S. mitis positively correlated with skin hydration, P. stutzeri and S. anadarae negatively correlated with the metabolites that are positively associated with skin hydration improvement. Conclusion This holistic study supported a hypothesis that the pre/postbiotics increased skin hydration through the modulation of skin microbiome, metabolic pathways and metabolome.
Collapse
Affiliation(s)
- Min Li
- Colgate−Palmolive Company, Piscataway, NJ, United States
| | - Junhong Mao
- Colgate−Palmolive Company, Piscataway, NJ, United States
| | - Isabel Diaz
- Colgate−Palmolive Company, Piscataway, NJ, United States
| | - Evguenia Kopylova
- Clarity Genomics Inc., San Diego, CA, United States
- Arome Science Inc., Farmington, CT, United States
| | - Alexey V. Melnik
- Clarity Genomics Inc., San Diego, CA, United States
- Arome Science Inc., Farmington, CT, United States
| | - Alexander A. Aksenov
- Clarity Genomics Inc., San Diego, CA, United States
- Arome Science Inc., Farmington, CT, United States
| | | | - Nadia Soliman
- Colgate−Palmolive Company, Piscataway, NJ, United States
| | | | - Thomas Boyd
- Colgate−Palmolive Company, Piscataway, NJ, United States
| |
Collapse
|
12
|
Carvalho MJ, S Oliveira AL, Santos Pedrosa S, Pintado M, Pinto-Ribeiro I, Madureira AR. Skin Microbiota and the Cosmetic Industry. MICROBIAL ECOLOGY 2023; 86:86-96. [PMID: 35809121 DOI: 10.1007/s00248-022-02070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Skin harbors an important microbial ecosystem - the skin microbiota that is in homeostasis with its host and is beneficial for human health. Cosmetic products have the potential to interfere with this microbial community; therefore their impact should be assessed. The aim of this review is to highlight the importance of skin microbiota in the cosmetic industry. Several studies determined that cosmetic ingredients have the potential to disrupt the skin microbiota equilibrium leading to the development of skin diseases and dysregulation of immune response. These studies led their investigation by using different methodologies and models, concluding that methods must be chosen according to the aim of the study, the skin site to be evaluated, and the target population of the cosmetics. Overall, it is crucial to test the impact of cosmetics in the skin microbiota and to stablish standard procedures, as well as specific criteria that allow to classify a cosmetic product as skin microbiota friendly.
Collapse
Affiliation(s)
- Maria João Carvalho
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana L S Oliveira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sílvia Santos Pedrosa
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Inês Pinto-Ribeiro
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Amyris Bio Products Portugal Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Raquel Madureira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
13
|
Zaidi S, Ali K, Khan AU. It's all relative: analyzing microbiome compositions, its significance, pathogenesis and microbiota derived biofilms: Challenges and opportunities for disease intervention. Arch Microbiol 2023; 205:257. [PMID: 37280443 DOI: 10.1007/s00203-023-03589-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Concept of microorganisms has largely been perceived from their pathogenic view point. Nevertheless, it is being gradually revisited in terms of its significance to human health and now appears to be the most dominant force that shapes the immune system of the human body and also determines an individual's predisposition to diseases. Human inhabits bacterial diversity (which is predominant among all microbial communities in human body) occupying 0.3% of body mass, known as microbiota. On birth, a part of microbiota that child obtains is essentially a mother's legacy. So, the review was initiated with this critical topic of microbiotal inheritance. Since, each body site has distinct physiological specifications; therefore, they contain discrete microbiome composition that has been separately discussed along with dysbiosis-induced pathologies originating in different body organs. Factors affecting microbiome composition and may cause dysbiosis like antibiotics, delivery, feeding method etc. as well as the strategies that immune system adopts to prevent dysbiosis have been highlighted. We also tried to bring into attention the topic of dysbiosis induced biofilms, that enables cohort to survive stresses, evolve, disseminate and infection resurgence that is still in dormancy. Eventually, we put spotlight on microbiome significance in medical therapeutics. We didn't merely confine article to gut microbiota, that is being studied more extensively. Numerous community forms at diverse body sites are inter-related, and being exposed to awfully variable perturbations appear to be challenging to evaluate perturbation risks holistically. All aspects have been elaborately discussed to achieve a global depiction of human microbiota in order to meet urgent necessity for protocol standardisation. Demonstrates that environmental challenges (antibiotic use, alterations in diet, stress, smoking etc.) might cause dysbiosis i.e. transition of healthy microbiome composition to the one in which pathogenic microorganisms become more abundant, and eventually results in an infected state.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Khursheed Ali
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
14
|
Boix-Amorós A, Badri MH, Manasson J, Blank RB, Haberman RH, Neimann AL, Girija PV, Jimenez Hernandez A, Heguy A, Koralov SB, Bonneau R, Clemente JC, Scher JU. Alterations in the cutaneous microbiome of patients with psoriasis and psoriatic arthritis reveal similarities between non-lesional and lesional skin. Ann Rheum Dis 2023; 82:507-514. [PMID: 36600182 PMCID: PMC11131958 DOI: 10.1136/ard-2022-223389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the cutaneous microbiome spanning the entire psoriatic disease spectrum, and to evaluate distinguishing features of psoriasis (PsO) and psoriatic arthritis (PsA). METHODS Skin swabs were collected from upper and lower extremities of healthy individuals and patients with PsO and PsA. Psoriatic patients contributed both lesional (L) and contralateral non-lesional (NL) samples. Microbiota were analysed using 16S rRNA sequencing. RESULTS Compared with healthy skin, alpha diversity in psoriatic NL and L skin was significantly reduced (p<0.05) and samples clustered separately in plots of beta diversity (p<0.05). Kocuria and Cutibacterium were enriched in healthy subjects, while Staphylococcus was enriched in psoriatic disease. Microbe-microbe association networks revealed a higher degree of similarity between psoriatic NL and L skin compared with healthy skin despite the absence of clinically evident inflammation. Moreover, the relative abundance of Corynebacterium was higher in NL PsA samples compared with NL PsO samples (p<0.05), potentially serving as a biomarker for disease progression. CONCLUSIONS These findings show differences in diversity, bacterial composition and microbe-microbe interactions between healthy and psoriatic skin, both L and NL. We further identified bacterial biomarkers that differentiate disease phenotypes, which could potentially aid in predicting the transition from PsO to PsA.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle H Badri
- Department of Biology, New York University, New York, New York, USA
| | - Julia Manasson
- Division of Rheumatology, Department of Medicine and Psoriatic Arthritis Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Rebecca B Blank
- Division of Rheumatology, Department of Medicine and Psoriatic Arthritis Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Rebecca H Haberman
- Division of Rheumatology, Department of Medicine and Psoriatic Arthritis Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Andrea L Neimann
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York, USA
| | - Parvathy V Girija
- Division of Rheumatology, Department of Medicine and Psoriatic Arthritis Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Anthony Jimenez Hernandez
- Division of Rheumatology, Department of Medicine and Psoriatic Arthritis Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Adriana Heguy
- NYU Langone Health Genome Technology Center, Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, New York, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Jose C Clemente
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jose U Scher
- Division of Rheumatology, Department of Medicine and Psoriatic Arthritis Center, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
15
|
Paradoxical Reactions to Anti-TNFα and Anti-IL-17 Treatment in Psoriasis Patients: Are Skin and/or Gut Microbiota Involved? Dermatol Ther (Heidelb) 2023; 13:911-933. [PMID: 36929119 DOI: 10.1007/s13555-023-00904-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated, inflammatory disease primarily affecting the skin. It is currently coming to light that patients with psoriasis have disrupted intestinal barrier and often suffer from comorbidities associated with the gastrointestinal tract. Moreover, there is growing evidence of both cutaneous and intestinal paradoxical reactions during biologic treatment in patients with psoriasis. This review focuses on barrier defects and changes in immune responses in patients with psoriasis, which play an important role in the development of the disease but are also influenced by modern biological treatments targeting IL-17 and TNFα cytokines. Here, we highlight the relationship between the gut-skin axis, microbiota, psoriasis treatment, and the incidence of paradoxical reactions, such as inflammatory bowel disease in patients with psoriasis. A better understanding of the interconnection of these mechanisms could lead to a more personalized therapy and lower the incidence of treatment side effects, thereby improving the quality of life of the affected patients.
Collapse
|
16
|
Orozco-Molina G, Casillas-Santana M, Flores-Ledesma A, Martínez-Arroniz F, Castañeda-Saucedo E, Martínez-Aguilar V, Diaz-Zuñiga A, León-Dorantes G, Arreguin-Cano JA. Subgingival Microbiota and Periodontal Clinical Status in Patients with Plaque Psoriasis: A Cross-Sectional Study. Indian J Dermatol 2023; 68:161-169. [PMID: 37275812 PMCID: PMC10238986 DOI: 10.4103/ijd.ijd_394_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Plaque Psoriasis (PP) and periodontitis are inflammatory disorders with a bidirectional association. They both have a qualitatively similar immune-modulatory cascade, cytokine profile, and a recently described dysbiosis. Different oral bacterial species compositions in the periodontal pocket might play a role in the development of PP. To describe the subgingival microbiota of the Mexican population with PP and the periodontal conditions. Subjects were divided into two groups: periodontal health (PH) (PH-non-PP, PH-PP) and periodontitis (PD) (P-non-PP, PD-PP). Following clinical examination, the patients were classified into three groups according to the degree of psoriasis as measured by the Psoriasis Area Severity Index (PASI) and the periodontal status according to the parameters of the American Academy of Periodontology (AAP). Subgingival microbiota samples of each patient were used to determine 40 species of periodontal bacteria by checkerboard DNA-DNA hybridization. IL-2 and IL-6 were measured by ELISA. Of the forty-eight patients with PP, 21 patients had PH and 27 patients had PD. PD-PP group has a significant increase in the percentage of plaque, gingival redness, pocket probing depth, and clinical attachment loss (P<0.001) compared to PH-PP group. Microbiologically PD-PP exhibited significantly higher mean counts for A. georgiae, A. israelii, A. naeslundii from blue complex (P<0.001) than PD-non-PP. Moreover, the counts of these Actinomyces in PD-PP increased according to the severity of index PASI. The concentration of IL-2 and IL-6 were increased in saliva from PH-PP and PD-PP patients compared to PH non-PP. PP individuals harbored a particular sub-gingival microbiota profile different from non-PP. The severity of psoriasis was related to dysbiosis of microbiota -PASI > 5 related to periodontitis with the predominance of Actinomyces periodontal, irrespective of their periodontal condition. Finally, the severity of psoriasis could be unbalanced in subgingival microbiota and increase the risk to develop periodontitis.
Collapse
Affiliation(s)
- Grissel Orozco-Molina
- From the Universidad del Valle de Guerrero, Chilpancingo de los Bravo, Guerrero México. 39047, México
| | - Miguel Casillas-Santana
- Maestría en Estomatología con opción terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, México
| | | | | | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico- Bioloìgicas, Universidad Autónoma de Guerrero, Av. Laìzaro Caìrdenas s/n Chilpancingo, Guerrero, México
| | - Víctor Martínez-Aguilar
- Departamento de Especialización en Periodoncia, Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida, PD. 97000, México
| | - Andrés Diaz-Zuñiga
- Laboratorio de Biologia Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Gladys León-Dorantes
- Secretaria Salud del Estado de Guerrero, Chilpancingo de los Bravo. Guerrero México. 39047, México
| | | |
Collapse
|
17
|
de Aguiar Cordeiro R, Reis AT, Lima XTV, de Andrade ARC, Aguiar ALR, Portela FVM, Pereira LMG, Moura SGB, da Silva BN, de Lima-Neto RG, Maia DCBSC, Rocha MFG, Sidrim JJC. Malassezia spp. and Candida spp. from patients with psoriasis exhibit reduced susceptibility to antifungals. Braz J Microbiol 2023; 54:169-177. [PMID: 36480120 PMCID: PMC9944151 DOI: 10.1007/s42770-022-00883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory disease that affects over 125 million people worldwide. Many studies have shown the importance of the microbiome for psoriasis exacerbation. AIM Explore the fungal load and species composition of cultivable yeasts on the skin of psoriatic patients (PP) and healthy volunteers living in a tropical area and evaluate the susceptibility to antifungals. METHODOLOGY A cross-sectional study with 61 participants (35 patients and 26 healthy controls) was performed during August 2018 and May 2019. Clinical data were collected from patient interviewing and/or medical records review. Samples were collected by swabbing in up to five anatomic sites. Suggestive yeast colonies were counted and further identified by phenotypical tests, PCR-REA, and/or MALDI-TOF. Susceptibility of Malassezia spp. and Candida spp. to azoles, terbinafine, and amphotericin B was evaluated by broth microdilution. RESULTS Nearly 50% of the patients had moderate to severe psoriasis, and plaque-type psoriasis was the most common clinical form. Yeast colonies count was significantly more abundant among PP than healthy controls. Malassezia and Candida were the most abundant genus detected in all participants. Higher MIC values for ketoconazole and terbinafine were observed in Malassezia strains obtained from PP. Approximately 42% of Candida isolates from PP showed resistance to itraconazole in contrast to 12.5% of isolates from healthy controls. MIC values for fluconazole and amphotericin B were significantly different among Candida isolates from PP and healthy individuals. CONCLUSION This study showed that Malassezia and Candida strains from PP presented higher MIC values to widespread antifungal drugs than healthy individuals.
Collapse
|
18
|
Bacteriophages and the Microbiome in Dermatology: The Role of the Phageome and a Potential Therapeutic Strategy. Int J Mol Sci 2023; 24:ijms24032695. [PMID: 36769020 PMCID: PMC9916943 DOI: 10.3390/ijms24032695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Bacteriophages, also known as phages, are viruses that selectively target and infect bacteria. In addition to bacterial dysbiosis, dermatologic conditions such as acne, psoriasis, and atopic dermatitis are characterized by a relative reduction in the abundance of phages and the overgrowth of the corresponding bacteria. Phages often exhibit high specificity for their targeted bacteria, making phage-replacement therapy a promising therapeutic strategy for the control of pathogenic bacteria in dermatologic disease. Novel therapeutic strategies regulating pathogenic bacteria are especially necessary in light of growing antibiotic resistance. In this review, we aimed to review the medical literature assessing phage dysbiosis and therapeutic trials in dermatology. Ultimately, studies have depicted promising results for the treatment of acne, psoriasis, and atopic dermatitis but are limited by low sample sizes and the omission of control groups in some trials. Additional work is necessary to validate the efficacy depicted in proof-of-concept trials and to further determine optimal treatment vehicles, administration mechanisms, and dosing schedules. This review provides the necessary framework for the assessment of phage efficacy in future trials.
Collapse
|
19
|
Reiss Z, Rob F, Kolar M, Schierova D, Kreisinger J, Jackova Z, Roubalova R, Coufal S, Mihula M, Thon T, Bajer L, Novakova M, Vasatko M, Kostovcikova K, Galanova N, Lukas M, Kverka M, Tresnak Hercogova J, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Skin microbiota signature distinguishes IBD patients and reflects skin adverse events during anti-TNF therapy. Front Cell Infect Microbiol 2023; 12:1064537. [PMID: 36704107 PMCID: PMC9872723 DOI: 10.3389/fcimb.2022.1064537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are two forms of inflammatory bowel disease (IBD), where the role of gut but not skin dysbiosis is well recognized. Inhibitors of TNF have been successful in IBD treatment, but up to a quarter of patients suffer from unpredictable skin adverse events (SkAE). For this purpose, we analyzed temporal dynamics of skin microbiota and serum markers of inflammation and epithelial barrier integrity during anti-TNF therapy and SkAE manifestation in IBD patients. We observed that the skin microbiota signature of IBD patients differs markedly from healthy subjects. In particular, the skin microbiota of CD patients differs significantly from that of UC patients and healthy subjects, mainly in the retroauricular crease. In addition, we showed that anti-TNF-related SkAE are associated with specific shifts in skin microbiota profile and with a decrease in serum levels of L-FABP and I-FABP in IBD patients. For the first time, we showed that shifts in microbial composition in IBD patients are not limited to the gut and that skin microbiota and serum markers of the epithelium barrier may be suitable markers of SkAE during anti-TNF therapy.
Collapse
Affiliation(s)
- Zuzana Reiss
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Filip Rob
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Kolar
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Dagmar Schierova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Jackova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Mihula
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Bajer
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,Department of Gastroenterology and Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Michaela Novakova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Vasatko
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Klara Kostovcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Natalie Galanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Lukas
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia,Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czechia
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Tresnak Hercogova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia,Prof. Hercogova Dermatology, Prague, Czechia
| | | | - Zuzana Jiraskova Zakostelska
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Zuzana Jiraskova Zakostelska,
| |
Collapse
|
20
|
Wang Y, Li X, Gu S, Fu J. Characterization of dysbiosis of the conjunctival microbiome and nasal microbiome associated with allergic rhinoconjunctivitis and allergic rhinitis. Front Immunol 2023; 14:1079154. [PMID: 37020561 PMCID: PMC10068870 DOI: 10.3389/fimmu.2023.1079154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Background Allergic rhinoconjunctivitis (ARC) and allergic rhinitis (AR) are prevalent allergic diseases. People are becoming increasingly aware of the impact of microbial disorders on host immunity and allergic diseases. Studies have demonstrated an association between allergic diseases and the microbiome, but much remains unknown. We assessed changes in the conjunctival microbiome and nasal microbiome in patients with ARC or AR. Methods Conjunctival swabs and nasal swabs were collected from each participant for 16S rRNA amplicon sequencing. Bacterial communities were analyzed. Results Forty patients with ARC, 20 patients suffering from AR, and 34 healthy controls (HCs) were recruited. This study found the abundance of conjunctival microbiome in patients with ARC or AR was significantly lower than that in HCs. The diversity of conjunctival microbiome in patients with AR was significantly lower than those in the other two groups. There is no significant difference in abundance of nasal microbiome between the three groups. The diversities of nasal microbiome in patients with ARC or AR were significantly lower than that in HCs. We found significant differences in microbiota compositions in patients with ARC or AR compared with those in HCs. However, no significant difference in microbiota compositions was found between patients with ARC and patients with AR. Microbiome functions in the ARC group and AR group were also altered compared with HCs. Conclusions We revealed changes in the composition and function of the conjunctival microbiome and nasal microbiome of patients with ARC or AR, which suggests that there is a relationship between allergic conditions and the local microbiome.
Collapse
Affiliation(s)
- Yuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Department of Otolaryngology-Head & Neck Surgery, Tianjin TEDA Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
- *Correspondence: Xuan Li,
| | - Shuntong Gu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Junhong Fu
- Department of Ophthalmology, Tianjin TEDA Hospital, Tianjin, China
| |
Collapse
|
21
|
Campbell AC, Fei T, Baik JE, Park HJ, Shin J, Kuonqui K, Brown S, Sarker A, Kataru RP, Mehrara BJ. Skin microbiome alterations in upper extremity secondary lymphedema. PLoS One 2023; 18:e0283609. [PMID: 37196005 DOI: 10.1371/journal.pone.0283609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/13/2023] [Indexed: 05/19/2023] Open
Abstract
Lymphedema is a chronic condition that commonly occur from lymphatic injury following surgical resection of solid malignancies. While many studies have centered on the molecular and immune pathways that perpetuate lymphatic dysfunction, the role of the skin microbiome in lymphedema development remains unclear. In this study, skin swabs collected from normal and lymphedema forearms of 30 patients with unilateral upper extremity lymphedema were analyzed by 16S ribosomal RNA sequencing. Statistical models for microbiome data were utilized to correlate clinical variables with microbial profiles. Overall, 872 bacterial taxa were identified. There were no significant differences in microbial alpha diversity of the colonizing bacteria between normal and lymphedema skin samples (p = 0.25). Notably, for patients without a history of infection, a one-fold change in relative limb volume was significantly associated with a 0.58-unit increase in Bray-Curtis microbial distance between paired limbs (95%CI = 0.11,1.05, p = 0.02). Additionally, several genera, including Propionibacterium and Streptococcus, demonstrated high variability between paired samples. In summary, we demonstrate high compositional heterogeneity in the skin microbiome in upper extremity secondary lymphedema, supporting future studies into the role of host-microbe interactions on lymphedema pathophysiology.
Collapse
Affiliation(s)
- Adana-Christine Campbell
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Jung Eun Baik
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Hyeung Ju Park
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Jinyeon Shin
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Kevin Kuonqui
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Stav Brown
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Ananta Sarker
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY, United States of America
| |
Collapse
|
22
|
Lu YW, Chen YJ, Shi N, Yang LH, Wang HM, Dong RJ, Kuang YQ, Li YY. L36G is associated with cutaneous antiviral competence in psoriasis. Front Immunol 2022; 13:971071. [PMID: 36172384 PMCID: PMC9510771 DOI: 10.3389/fimmu.2022.971071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Psoriasis is a common inflammatory skin disease that has a great impact on patients’ physical and mental health. However, the causes and underlying molecular mechanisms of psoriasis are still largely unknown. Methods The expression profiles of genes from psoriatic lesion samples and skin samples from healthy controls were integrated via the sva software package, and differentially expressed genes (DEGs) between psoriasis and healthy skin were screened by the limma package. Furthermore, GO and KEGG pathway enrichments for the DEGs were performed using the Clusterprofiler package. Protein–protein interaction (PPI) networks for the DEGs were then constructed to identify hub genes. scGESA analysis was performed on a single-cell RNA sequencing dataset via irGSEA. In order to find the cytokines correlated with the hub genes expression, single cell weighted gene co-expression network analyses (scWGCNA) were utilized to build a gene co-expression network. Furthermore, the featured genes of psoriasis found in suprabasal keratinocytes were intersected with hub genes. We then analyzed the expression of the intersection genes and cytokines in the integrated dataset. After that, we used other datasets to reveal the changes in the intersection genes’ expression levels during biological therapy. The relationship between intersection genes and PASI scores was also explored. Results We identified 148 DEGs between psoriatic and healthy samples. GO and KEGG pathway enrichment analysis suggested that DEGs are mainly involved in the defense response to other organisms. The PPI network showed that 11 antiviral proteins (AVPs) were hub genes. scGSEA analysis in the single-cell transcriptome dataset showed that those hub genes are highly expressed in keratinocytes, especially in suprabasal keratinocytes. ISG15, MX1, IFI44L, and IFI27 were the characteristic genes of psoriasis in suprabasal keratinocytes. scWGCNA showed that three cytokines—IL36G, MIF, and IL17RA—were co-expressed in the turquoise module. Only interleukin-36 gamma (IL36G) was positively correlated with AVPs in the integrated dataset. IL36G and AVPs were found co-expressed in a substantial number of suprabasal keratinocytes. Furthermore, we found that the expression levels of IL36G and the 4 AVPs showed positive correlation with PASI score in patients with psoriasis, and that these levels decreased significantly during treatment with biological therapies, but not with methotrexate. Conclusion IL36G and antiviral proteins may be closely related with the pathogenesis of psoriasis, and they may represent new candidate molecular markers for the occurrence and severity of psoriasis.
Collapse
Affiliation(s)
- You-Wang Lu
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Yong-Jun Chen
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Nian Shi
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong-Mei Wang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
- *Correspondence: Rong-Jing Dong, ; Yi-Qun Kuang, ; Yu-Ye Li,
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Rong-Jing Dong, ; Yi-Qun Kuang, ; Yu-Ye Li,
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Rong-Jing Dong, ; Yi-Qun Kuang, ; Yu-Ye Li,
| |
Collapse
|
23
|
Kapoor B, Gulati M, Rani P, Gupta R. Psoriasis: Interplay between dysbiosis and host immune system. Clin Exp Rheumatol 2022; 21:103169. [PMID: 35964945 DOI: 10.1016/j.autrev.2022.103169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of both gut and skin microbiota in the pathogenesis of psoriasis. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts, have been identified as possible triggers for recurrent episodes of psoriasis. Mechanistically, gut dysbiosis leads to "leaky gut syndrome" via disruption of epithelial bilayer, thereby, resulting in translocation of bacteria and other endotoxins to systemic circulation, which in turn, results in inflammatory response. Similarly, skin dysbiosis disrupts the cutaneous homeostasis, leading to invasion of bacteria and other pathogens to deeper layers of skin or even systemic circulation further enhanced by injury caused by pruritus-induced scratching, and elicit innate and adaptive inflammation. The present review explores the correlation of both skin and gut microbiota dysbiosis with psoriasis. Also, the studies highlighting the potential of bacteriotherapeutic approaches including probiotics, prebiotics, metabiotics, and fecal microbiota transplantation for the management of psoriasis have been discussed.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
24
|
Zarzuela JC, Reinoso R, Armentia A, Enríquez-de-Salamanca A, Corell A. Conjunctival Intraepithelial Lymphocytes, Lacrimal Cytokines and Ocular Commensal Microbiota: Analysis of the Three Main Players in Allergic Conjunctivitis. Front Immunol 2022; 13:911022. [PMID: 35935953 PMCID: PMC9351602 DOI: 10.3389/fimmu.2022.911022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Conjunctival intraepithelial lymphocytes, tear soluble molecules and commensal microbiota have important roles in the ocular mucosal immune response in healthy and diseased subjects. For the purpose of this study, the cellular and microbial populations of the conjunctiva and the lacrimal soluble molecules were analyzed to find the main biomarkers in allergic conjunctivitis. A total of 35 healthy subjects, 28 subjects with seasonal allergic conjunctivitis and 32 subjects with perennial allergic conjunctivitis were recruited to obtain peripheral blood, conjunctival brush cytology, tear fluid and microbiota samples. Flow cytometry for lymphocytes, multiplex bead assays for cytokines and high-throughput DNA sequencing for microbiome analysis were used. For perennial allergic conjunctivitis, an increased proportion of Th2 and NKT lymphocytes was found, while CD3+TCRγδ+ lymphocytes and double negative MAIT cells were decreased. In contrast, seasonal allergic conjunctivitis was distinguished by an increase in Th17 and Th22 cell proportions, while the Th1 cell proportion decreased. Among tear fluid, the vast majority of pro-inflammatory cytokines (especially Th2 and Th17 cytokines) in perennial allergies and MMP-9 together with IgA in seasonal allergies were increased. In contrast, TGF-β2 was decreased in both forms of conjunctivitis. Finally, fungal (Malassezia species) and bacterial (Kocuria and Propionobacterium acnes species) colonization were observed in the perennial allergic conjunctivitis group. These results provide the basis for the development of a disease profile for perennial allergic conjunctivitis and open the door to new therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
| | - Roberto Reinoso
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Alicia Armentia
- Department of Allergy, Hospital Universitario Río Hortega, University of Valladolid, Valladolid, Spain
| | - Amalia Enríquez-de-Salamanca
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Alfredo Corell
- Department of Immunology, University of Valladolid, Valladolid, Spain
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- *Correspondence: Alfredo Corell,
| |
Collapse
|
25
|
Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022; 11:pathogens11020121. [PMID: 35215065 PMCID: PMC8879973 DOI: 10.3390/pathogens11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.
Collapse
|
26
|
Phuna ZX, Madhavan P. A CLOSER LOOK AT THE MYCOBIOME IN ALZHEIMER'S DISEASE: FUNGAL SPECIES, PATHOGENESIS AND TRANSMISSION. Eur J Neurosci 2022; 55:1291-1321. [DOI: 10.1111/ejn.15599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| |
Collapse
|
27
|
Wang S, Wang R, Song Y, Wan Z, Chen W, Li H, Li R. FOCUS THEME ISSUE: CONCISE COMMUNICATION Dysbiosis of nail microbiome in patients with psoriasis. Exp Dermatol 2022; 31:800-806. [PMID: 35028964 DOI: 10.1111/exd.14528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Shifts in skin microbiome are considered to be involved in the pathogenesis of psoriasis. However, data on the microbial dysbiosis of nail psoriasis is scarce. In this study, we aim to investigate and characterize the nail bacterial and fungal microbiome in patients with psoriasis. Nail samples were collected prospectively from 36 subjects with nail psoriasis, 24 psoriatic subjects without nail involvement, and 32 healthy controls. Amplicon sequencing was performed to evaluate the bacterial and fungal community compositions. Significant alterations in the bacterial microbiome were found in the nail samples of psoriatic patients. The unaffected nails in psoriatic patients were associated with higher bacterial diversity, and a higher relative abundance of Enhydrobacter, whereas nail psoriasis was correlated with a decreased relative abundance of Anaerococcus. Shifts in fungal community composition was reflected by a higher proportion of Malassezia in the unaffected nails of psoriatic patients and an increased proportion of Candida in psoriatic nails. Shifts in the nail microbiome in psoriasis suggest a potential role of microbes in the development of nail psoriasis. Future researches focusing on these microorganisms may help to explain the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruojun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Wei Chen
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Hang Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
28
|
Sanad EMK, Nazmy NN, Abd-El Hamid El Sayed R, Hamed AM. Interleukin-17A gene single nucleotide polymorphism and its relation to fungal growth in psoriatic patients: A preliminary study. J Cosmet Dermatol 2021; 21:3059-3067. [PMID: 34741574 DOI: 10.1111/jocd.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although dysbiosis and the role of the microbiome in the pathogenesis of inflammatory skin diseases have been intensively investigated, fungal colonization or infection has received minimal attention. AIMS To isolate and identify different fungal species namely Candida, Dermatophytes, Malassezia, and Aspergillus from plaque psoriasis patients, evaluate the association of IL-17A gene single nucleotide polymorphisms (SNPs) with psoriasis, and to reveal the relation between IL-17A gene SNPs and the fungal presence within the psoriatic plaques. PATIENTS/METHODS Fifty plaque psoriasis patients and fifty healthy age and sex volunteers as controls were enrolled in this study. From psoriatic plaques, mycological isolation was done by direct microscopic examination (10% KOH mount), culture onto the three sets of media then species identification by phenotypic procedures. Genomic DNA extraction and genotyping for IL-17A (rs10484879) SNPs using polymerase chain reaction and restriction fragment length polymorphism were also done. RESULTS Psoriasis cases showed higher frequency of fungal growth 86% vs. 14% in controls; (p < 0.001). The frequency of IL-17A GA, AA, and total polymorphism (GA+AA) genotypes in psoriasis cases was significantly higher than in controls. There was non-significant association between different IL-17A genotypes and fungal growth except Aspergillus flavus, which decreased gradually with GG, GA, and AA (37.5%, 20.8%, and 0%, respectively). CONCLUSIONS Psoriasis cases are significantly associated with fungal growth, which may be a contributing factor in its pathogenesis. SNPs of IL-17A (rs10484879) G/A gene led to increased susceptibility toward pathogenesis of psoriasis. Fungal growth and IL-17A GA+AA genotypes are suggested to be independent predictors of psoriasis susceptibility.
Collapse
Affiliation(s)
- Eman M K Sanad
- Faculty of Medicine, Department of Dermatology, Benha University, Benha, Egypt
| | - Nader N Nazmy
- Faculty of Medicine, Department of Dermatology, Benha University, Benha, Egypt
| | | | - Ahmed M Hamed
- Faculty of Medicine, Department of Dermatology, Benha University, Benha, Egypt
| |
Collapse
|
29
|
Chronic Diseases Associated with Malassezia Yeast. J Fungi (Basel) 2021; 7:jof7100855. [PMID: 34682276 PMCID: PMC8540640 DOI: 10.3390/jof7100855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023] Open
Abstract
Malassezia are a lipid-dependent basidiomycetous yeast of the normal skin microbiome, although Malassezia DNA has been recently detected in other body sites and has been associated with certain chronic human diseases. This new perspective raises many questions. Are these yeasts truly present in the investigated body site or were they contaminated by other body sites, adjacent or not? Does this DNA contamination come from living or dead yeast? If these yeasts are alive, do they belong to the resident mycobiota or are they transient colonizers which are not permanently established within these niches? Finally, are these yeasts associated with certain chronic diseases or not? In an attempt to shed light on this knowledge gap, we critically reviewed the 31 published studies focusing on the association of Malassezia spp. with chronic human diseases, including psoriasis, atopic dermatitis (AD), chronic rhinosinusitis (CRS), asthma, cystic fibrosis (CF), HIV infection, inflammatory bowel disease (IBD), colorectal cancer (CRC), and neurodegenerative diseases.
Collapse
|
30
|
Bolinger H, Tran D, Harary K, Paoli GC, Guron GKP, Namazi H, Khaksar R. Utilizing the Microbiota and Machine Learning Algorithms To Assess Risk of Salmonella Contamination in Poultry Rinsate. J Food Prot 2021; 84:1648-1657. [PMID: 34015130 DOI: 10.4315/jfp-20-367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/16/2021] [Indexed: 01/21/2023]
Abstract
ABSTRACT Traditional microbiological testing methods are slow, and many molecular-based techniques rely on culture-based enrichment to overcome low limits of detection. Recent advancements in sequencing technologies may make it possible to utilize machine learning to identify patterns in microbiome data to potentially predict the presence or absence of pathogens. In this study, 299 poultry rinsate samples from various points in the processing chain were analyzed to determine if microbiota could inform about a sample's risk for containing Salmonella. Samples were culture confirmed as Salmonella positive or negative following modified U.S. Department of Agriculture Microbiological Laboratory Guidebook protocols. The culture confirmation result was used as a reference to compare with 16S sequencing data. Prechill samples tested positive (71 of 82) at a higher frequency than postchill samples (30 of 217) and contained greater microbial diversity. Due to the larger sample size, postchill samples were analyzed more thoroughly. Analysis of variance identified a significant effect of chilling on the number of genera (P < 0.001), but analysis of similarities failed to provide evidence for microbial dissimilarity between pre- and postchill samples (P = 0.001, R = 0.443). Various machine learning models were trained by using postchill samples to predict if a sample contained Salmonella on the basis of the samples' microbiota preenrichment. The optimal model was a random forest-based model with a performance as follows: accuracy (88%), sensitivity (85%), and specificity (90%). Although the algorithms described in this article are prototypes, these risk-based algorithms demonstrate the potential and need for further studies to provide insight alongside diagnostic tests. Combining risk-based information with diagnostic tools can help poultry processors make informed decisions to help identify and prevent the spread of Salmonella. These data add to the growing body of literature exploring novel ways to utilize microbiome data for predictive food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Hannah Bolinger
- Clear Labs, 1559 Industrial Road, San Carlos, California 94070
| | - David Tran
- Clear Labs, 1559 Industrial Road, San Carlos, California 94070
| | - Kenneth Harary
- Clear Labs, 1559 Industrial Road, San Carlos, California 94070
| | - George C Paoli
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Giselle K P Guron
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Hossein Namazi
- Clear Labs, 1559 Industrial Road, San Carlos, California 94070
| | - Ramin Khaksar
- Clear Labs, 1559 Industrial Road, San Carlos, California 94070
| |
Collapse
|
31
|
Vella JL, Molodtsov A, Angeles CV, Branchini BR, Turk MJ, Huang YH. Dendritic cells maintain anti-tumor immunity by positioning CD8 skin-resident memory T cells. Life Sci Alliance 2021; 4:4/10/e202101056. [PMID: 34362825 PMCID: PMC8356251 DOI: 10.26508/lsa.202101056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident memory (TRM) T cells are emerging as critical components of the immune response to cancer; yet, requirements for their ongoing function and maintenance remain unclear. APCs promote TRM cell differentiation and re-activation but have not been implicated in sustaining TRM cell responses. Here, we identified a novel role for dendritic cells in supporting TRM to melanoma. We showed that CD8 TRM cells remain in close proximity to dendritic cells in the skin. Depletion of CD11c+ cells results in rapid disaggregation and eventual loss of melanoma-specific TRM cells. In addition, we determined that TRM migration and/or persistence requires chemotaxis and adhesion mediated by the CXCR6/CXCL16 axis. The interaction between CXCR6-expressing TRM cells and CXCL16-expressing APCs was found to be critical for sustaining TRM cell-mediated tumor protection. These findings substantially expand our knowledge of APC functions in TRM T-cell homeostasis and longevity.
Collapse
Affiliation(s)
- Jennifer L Vella
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aleksey Molodtsov
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina V Angeles
- Department of Surgery, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA .,Norris Cotton Cancer Center, Lebanon, NH, USA.,Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
32
|
Ma X, Li G, Yang C, He M, Wang C, Gu Y, Ling S, Cao S, Yan Q, Han X, Wen Y, Zhao Q, Wu R, Deng J, Zuo Z, Yu S, Hu Y, Zhong Z, Peng G. Skin Microbiota of the Captive Giant Panda ( Ailuropoda Melanoleuca) and the Distribution of Opportunistic Skin Disease-Associated Bacteria in Different Seasons. Front Vet Sci 2021; 8:666486. [PMID: 34291099 PMCID: PMC8286994 DOI: 10.3389/fvets.2021.666486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
The giant panda is one of the rarest animals in the world. Skin diseases seriously endanger the health of giant panda and are considered the second major cause of its morbidity. Skin microbiota is a complex ecosystem, and the community structure and the pathogenic potential of bacteria on giant panda skin remain largely unclear. In order to understand the skin bacterial flora of captive giant pandas, the microbiota in giant panda skin samples collected during different seasons was profiled via 16S rRNA gene sequencing. In total, 522 genera from 53 bacterial phyla were detected, with Proteobacteria (40.5%), Actinobacteria (23.1%), Firmicutes (21.1%), Bacteroidetes (9.5%), Cyanobacteria (2.1%), and Thermi (1.2%) as the predominant phyla and Streptococcus (13.9%), Acinetobacter (9.2%), Staphylococcus (2.9%), Pseudomonas (5.9%), Dermacoccus (4.8%), Brachybacterium (2.9%), Escherichia (2.7%), Chryseobacterium (2.1%), Arthrobacter (1.6%), Kocuria (1.5%), Psychrobacter (1.2%), Deinococcus (1.1%), and Flavobacterium (1.1%) as the predominant genera. The results indicated that the diversity was lower in winter than in other seasons and higher in autumn than in other seasons, and the abundance in spring was significantly higher than that in other seasons. Several skin disease-associated bacteria were detected as opportunists in the skin microbiota of healthy giant pandas. In this study, the results indicated that the high diversity and abundance of the skin bacteria may have enhanced the occurrence of skin disease in autumn and spring and that skin disease-associated bacteria are the normal components of the skin microbiota.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gen Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Bioengineering Department, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Berthelot JM, Darrieutort-Laffite C, Trang C, Maugars Y, Le Goff B. Contribution of mycobiota to the pathogenesis of spondyloarthritis. Joint Bone Spine 2021; 88:105245. [PMID: 34166798 DOI: 10.1016/j.jbspin.2021.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
This review lists current evidences for a contribution of gut mycobiota to the pathogenesis of SpA and related conditions. Gut mycobiota has a small size as compared to bacterial microbiota, but an even greater inter- and intra-individual variability. Although most fungi (brought by food or air) are only transitory present, a core mycobiota of gut resident fungi exists, and interplays with bacteria in a complex manner. A dysbiosis of this gut mycobiota has been observed in Crohn's disease and sclerosing cholangitis, with decreased proportion of Saccharomyces cerevisiae and outgrowth of more pathogenic gut fungi. Fungal-induced lower number of commensal gut bacteria can promote translocation of some bacterial/fungal antigens through mucosae, and live fungi can also cross the epithelial border in Crohn's disease. This dysbiosis also lower the ability of bacteria to metabolize tryptophan into regulatory metabolites, consequently enhancing tryptophan metabolism within human cells, which might contribute to fatigue. Translocation of mycobiotal antigens like curdlan (beta-glucan), which plays a major role in the pathogenesis of SpA in the SGK mice, has been observed in humans. This translocation of fungal antigens in human SpA might account for the anti-Saccharomyces antibodies found in this setting. Contribution of fungal antigens to psoriasis and hidradenitis suppurativa would fit with the preferential homing of fungi in the skin area most involved in those conditions. Fungal antigens also possess autoimmune uveitis-promoting function. As genes associated with SpA (CARD9 and IL23R) strongly regulate the innate immune response against fungi, further studies on fungi contribution to SpA are needed.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France.
| | | | - Caroline Trang
- Service de gastro-entérologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| | - Yves Maugars
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| | - Benoît Le Goff
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| |
Collapse
|
34
|
Boxberger M, Cenizo V, Cassir N, La Scola B. Challenges in exploring and manipulating the human skin microbiome. MICROBIOME 2021; 9:125. [PMID: 34053468 PMCID: PMC8166136 DOI: 10.1186/s40168-021-01062-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/25/2021] [Indexed: 05/08/2023]
Abstract
The skin is the exterior interface of the human body with the environment. Despite its harsh physical landscape, the skin is colonized by diverse commensal microbes. In this review, we discuss recent insights into skin microbial populations, including their composition and role in health and disease and their modulation by intrinsic and extrinsic factors, with a focus on the pathobiological basis of skin aging. We also describe the most recent tools for investigating the skin microbiota composition and microbe-skin relationships and perspectives regarding the challenges of skin microbiome manipulation. Video abstract.
Collapse
Affiliation(s)
- Manon Boxberger
- IRD, AP-HM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Valérie Cenizo
- Groupe L’Occitane, R&D Department, Zone Industrielle Saint Maurice, 4100 Manosque, Alpes-de Haute-Provence France
| | - Nadim Cassir
- IRD, AP-HM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Bernard La Scola
- IRD, AP-HM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille Université, Marseille, France
| |
Collapse
|
35
|
Moitinho-Silva L, Boraczynski N, Emmert H, Baurecht H, Szymczak S, Schulz H, Haller D, Linseisen J, Gieger C, Peters A, Tittmann L, Lieb W, Bang C, Franke A, Rodriguez E, Weidinger S. Host traits, lifestyle and environment are associated with human skin bacteria. Br J Dermatol 2021; 185:573-584. [PMID: 33733457 DOI: 10.1111/bjd.20072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human skin offers diverse ecosystems for microbial symbionts. However, the factors shaping skin-microbiome interactions are still insufficiently characterized. This contrasts with the broader knowledge about factors influencing gut microbiota. OBJECTIVES We aimed to investigate major patterns of association of host traits, lifestyle and environmental factors with skin bacteria in two German populations. METHODS This is a cross-sectional study with 647 participants from two population-based German cohorts, PopGen (n = 294) and KORA FF4 (n = 353), totalling 1794 skin samples. The V1-V2 regions of the 16S ribosomal RNA (rRNA) gene were sequenced. Associations were tested with two bacterial levels, community (beta diversity) and 16S rRNA gene amplicon sequence variants (ASVs). RESULTS We validated known associations of the skin microbiota with skin microenvironment, age, body mass index and sex. These factors were associated with beta diversity and abundance of ASVs in PopGen, which was largely replicated in KORA FF4. Most intriguingly, dietary macronutrients and total dietary energy were associated with several ASVs. ASVs were also associated with smoking, alcohol consumption, skin pH, skin type, transepidermal water loss, education and several environmental exposures, including hours spent outdoors. Associated ASVs included members of the genera Propionibacterium, Corynebacterium and Staphylococcus. CONCLUSIONS We expand the current understanding of factors associated with the skin bacterial community. We show the association of diet with skin bacteria. Finally, we hypothesize that the skin microenvironment and host physiology would shape the skin bacterial community to a greater extent compared with a single skin physiological feature, lifestyle and environmental exposure.
Collapse
Affiliation(s)
- L Moitinho-Silva
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.,Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - N Boraczynski
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - H Emmert
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - H Baurecht
- Department for Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - S Szymczak
- Institute of Medical Informatics and Statistics, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - H Schulz
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - D Haller
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany
| | - J Linseisen
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany.,Clinical Epidemiology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T Augsburg, Augsburg, Germany
| | - C Gieger
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - A Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - L Tittmann
- Biobank PopGen and Institute of Epidemiology, Kiel University, Kiel, Germany
| | - W Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - C Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - A Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - E Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - S Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
36
|
Łoś-Rycharska E, Gołębiewski M, Sikora M, Grzybowski T, Gorzkiewicz M, Popielarz M, Gawryjołek J, Krogulska A. A Combined Analysis of Gut and Skin Microbiota in Infants with Food Allergy and Atopic Dermatitis: A Pilot Study. Nutrients 2021; 13:nu13051682. [PMID: 34063398 PMCID: PMC8156695 DOI: 10.3390/nu13051682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota in patients with food allergy, and the skin microbiota in atopic dermatitis patients differ from those of healthy people. We hypothesize that relationships may exist between gut and skin microbiota in patients with allergies. The aim of this study was to determine the possible relationship between gut and skin microbiota in patients with allergies, hence simultaneous analysis of the two compartments of microbiota was performed in infants with and without allergic symptoms. Fifty-nine infants with food allergy and/or atopic dermatitis and 28 healthy children were enrolled in the study. The skin and gut microbiota were evaluated using 16S rRNA gene amplicon sequencing. No significant differences in the α-diversity of dermal or fecal microbiota were observed between allergic and non-allergic infants; however, a significant relationship was found between bacterial community structure and allergy phenotypes, especially in the fecal samples. Certain clinical conditions were associated with characteristic bacterial taxa in the skin and gut microbiota. Positive correlations were found between skin and fecal samples in the abundance of Gemella among allergic infants, and Lactobacillus and Bacteroides among healthy infants. Although infants with allergies and healthy infants demonstrate microbiota with similar α-diversity, some differences in β-diversity and bacterial species abundance can be seen, which may depend on the phenotype of the allergy. For some organisms, their abundance in skin and feces samples may be correlated, and these correlations might serve as indicators of the host's allergic state.
Collapse
Affiliation(s)
- Ewa Łoś-Rycharska
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
- Correspondence: (E.Ł.-R.); (M.G.)
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Correspondence: (E.Ł.-R.); (M.G.)
| | - Marcin Sikora
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (T.G.); (M.G.)
| | - Marta Gorzkiewicz
- Department of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (T.G.); (M.G.)
| | - Maria Popielarz
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| | - Julia Gawryjołek
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| | - Aneta Krogulska
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| |
Collapse
|
37
|
Frequency, Distribution and Genotyping of Malassezia Species in Patients with Psoriasis vulgaris. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Malassezia species are reported to play a role in the etiology of Psoriasis vulgaris.
Objective: The aim of this study was to determine the presence, frequency, distribution, and genotyping of skin colonization of Malassezia species in Psoriasis vulgaris and to compare with healthy individuals and to investigate its relationship with the severity of the disease.
Methods: Skin samples were taken from scalp, arm, body, and leg of 34 psoriasis patients (lesional/non-lesional skin) and 30 healthy volunteers. Overall, 392 skin scraping samples were taken for the isolation of Malassezia species, which were incubated on the modified-Dixon agar. Conventional culture methods were used for Malassezia species identification. In isolates, genotyping was carried out by PCR-RFLP method.
Results: In the samples from psoriatic lesions, most frequently isolated Malassezia species were M.globosa and M.furfur. Similarly, the most frequently isolated species in healthy volunteers was M. globosa; followed by M.restricta and M.sympodialis. The M.furfur isolation rate in psoriatic scalp and leg lesions of the patients was significantly higher than in healthy volunteers. There was no relationship between the severity of the disease and the isolated species.
Conclusion: It was found that there was a difference between patients with psoriasis and healthy controls regarding presence and frequency of Malassezia species. Therefore, our study results support the view that Malessezia species may be associated with the etiopathogenesis of psoriasis. In addition, we surmise that the treatment applications for the regulation of skin microbiota of psoriasis patients will contribute positively to the treatment of psoriasis.
Collapse
|
38
|
Olejniczak-Staruch I, Ciążyńska M, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. Alterations of the Skin and Gut Microbiome in Psoriasis and Psoriatic Arthritis. Int J Mol Sci 2021; 22:ijms22083998. [PMID: 33924414 PMCID: PMC8069836 DOI: 10.3390/ijms22083998] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous scientific studies in recent years have shown significant skin and gut dysbiosis among patients with psoriasis. A significant decrease in microbiome alpha-diversity (abundance of different bacterial taxa measured in one sample) as well as beta-diversity (microbial diversity in different samples) was noted in psoriasis skin. It has been proven that the representation of Cutibacterium, Burkholderia spp., and Lactobacilli is decreased and Corynebacterium kroppenstedii, Corynebacterium simulans, Neisseria spp., and Finegoldia spp. increased in the psoriasis skin in comparison to healthy skin. Alterations in the gut microbiome in psoriasis are similar to those observed in patients with inflammatory bowel disease. In those two diseases, the F. prausnitzii, Bifidobacterium spp., Lactobacillus spp., Parabacteroides and Coprobacillus were underrepresented, while the abundance of Salmonella sp., Campylobacter sp., Helicobacter sp., Escherichia coli, Alcaligenes sp., and Mycobacterium sp. was increased. Several research studies provided evidence for the significant influence of psoriasis treatments on the skin and gut microbiome and a positive influence of orally administered probiotics on the course of this dermatosis. Further research is needed to determine the influence of the microbiome on the development of inflammatory skin diseases. The changes in microbiome under psoriasis treatment can serve as a potential biomarker of positive response to the administered therapy.
Collapse
Affiliation(s)
- Irmina Olejniczak-Staruch
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, 91-347 Lodz, Poland; (D.S.-S.); (J.N.); (M.S.); (A.L.)
- Dermoklinika Centrum Medyczne, 90-436 Lodz, Poland
- Correspondence: ; Tel.: +48-42-230-9657
| | - Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Dorota Sobolewska-Sztychny
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, 91-347 Lodz, Poland; (D.S.-S.); (J.N.); (M.S.); (A.L.)
| | - Joanna Narbutt
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, 91-347 Lodz, Poland; (D.S.-S.); (J.N.); (M.S.); (A.L.)
| | - Małgorzata Skibińska
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, 91-347 Lodz, Poland; (D.S.-S.); (J.N.); (M.S.); (A.L.)
| | - Aleksandra Lesiak
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, 91-347 Lodz, Poland; (D.S.-S.); (J.N.); (M.S.); (A.L.)
| |
Collapse
|
39
|
Miyachi H, Wakabayashi S, Sugihira T, Aoyama R, Saijo S, Koguchi-Yoshioka H, Fujimoto M, Núñez G, Matsue H, Nakamura Y. Keratinocyte IL-36 Receptor/MyD88 Signaling Mediates Malassezia-Induced IL-17-Dependent Skin Inflammation. J Infect Dis 2021; 223:1753-1765. [PMID: 33837391 DOI: 10.1093/infdis/jiab194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Among skin commensal fungi, lipophilic Malassezia species exist on nearly all human skin surfaces. The pathophysiology of Malassezia-associated skin diseases remains poorly understood due in part to the lack of appropriate animal models. Our objective was to investigate the mechanisms underlying Malassezia-induced skin inflammation using a novel murine model that physiologically recapitulates Malassezia skin infection. METHODS Mice were inoculated epicutaneously with Malassezia yeasts without barrier disruption and in the absence of external lipid supplementation. Skin inflammation, lesional fungal loads, and expression of cytokines and antimicrobial peptides were evaluated in wild-type and mutant mouse strains. RESULTS Malassezia-induced skin inflammation and epidermal thickening were observed on day 4 after inoculation in wild-type mice. High fungal burdens were detected in the cornified layer on day 2 and decreased thereafter with near complete clearance by day 7 after inoculation. Malassezia-induced skin inflammation and fungal clearance by the host were interleukin-17 (IL-17) dependent with contribution of group 3 innate lymphoid cells. Moreover, IL-17-dependent skin inflammation was mediated through IL-36 receptor and keratinocyte MyD88 signaling. CONCLUSION Using a new skin infection model, it is shown that Malassezia-induced IL-17- dependent skin inflammation and control of fungal infection are mediated via keratinocyte IL-36 receptor/MyD88 signaling.
Collapse
Affiliation(s)
- Hideaki Miyachi
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Wakabayashi
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Sugihira
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Reika Aoyama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.,Cutaneous Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hiroyuki Matsue
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.,Cutaneous Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
40
|
Analysis of Matched Skin and Gut Microbiome of Patients with Vitiligo Reveals Deep Skin Dysbiosis: Link with Mitochondrial and Immune Changes. J Invest Dermatol 2021; 141:2280-2290. [PMID: 33771527 DOI: 10.1016/j.jid.2021.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune disease characterized by patchy, white skin owing to melanocyte loss. Commensal cutaneous or gut dysbiosis has been linked to various dermatological disorders. In this study, we studied the skin and gut microbiota of patients with vitiligo compared with those of healthy controls. We obtained swabs and biopsies from both lesional and nonlesional skin as well as stool and blood samples from each individual. We detected reduced richness and diversity of microbiota in the stools of subjects with vitiligo compared with the stools of the controls (P < 0.01). Skin swabs had greater α-diversity than biopsies (P < 0.001); swabs from lesional sites were primarily depleted of Staphylococcus compared with those from nonlesional sites (P < 0.02). Sampling deeper layers from the same patients showed differences in both α- and β-diversity between samples with decreased richness and distribution of species (P < 0.01) in the lesional site. Biopsy microbiota from the lesional skin had distinct microbiota composition, which was depleted of protective Bifidobacterium and Bacteroides but was enriched in Proteobacteria, Streptococcus, Mycoplasma, and mtDNA (P < 0.001); the latter increased in the same patients with heightened innate immunity and stress markers in their blood (P < 0.05). These data describe vitiligo-specific cutaneous and gut microbiota and a link between skin dysbiosis, mitochondrial damage, and immunity in patients with vitiligo.
Collapse
|
41
|
Rozas M, Hart de Ruijter A, Fabrega MJ, Zorgani A, Guell M, Paetzold B, Brillet F. From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms 2021; 9:628. [PMID: 33803499 PMCID: PMC8003110 DOI: 10.3390/microorganisms9030628] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cutibacterium acnes is the most abundant bacterium living in human, healthy and sebum-rich skin sites, such as the face and the back. This bacterium is adapted to this specific environment and therefore could have a major role in local skin homeostasis. To assess the role of this bacterium in healthy skin, this review focused on (i) the abundance of C. acnes in the skin microbiome of healthy skin and skin disorders, (ii) its major contributions to human skin health, and (iii) skin commensals used as probiotics to alleviate skin disorders. The loss of C. acnes relative abundance and/or clonal diversity is frequently associated with skin disorders such as acne, atopic dermatitis, rosacea, and psoriasis. C. acnes, and the diversity of its clonal population, contributes actively to the normal biophysiological skin functions through, for example, lipid modulation, niche competition and oxidative stress mitigation. Compared to gut probiotics, limited dermatological studies have investigated skin probiotics with skin commensal strains, highlighting their unexplored potential.
Collapse
Affiliation(s)
- Miquel Rozas
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Astrid Hart de Ruijter
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Maria Jose Fabrega
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Amine Zorgani
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Marc Guell
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Bernhard Paetzold
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Francois Brillet
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| |
Collapse
|
42
|
Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, Kwiecińska-Piróg J, Wałecka-Zacharska E, Radtke L, Gospodarek-Komkowska E. Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 2021; 9:543. [PMID: 33808031 PMCID: PMC7998121 DOI: 10.3390/microorganisms9030543] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The skin is the largest organ of the human body and it protects the body from the external environment. It has become the topic of interest of researchers from various scientific fields. Microorganisms ensure the proper functioning of the skin. Of great importance, are the mutual relations between such microorganisms and their responses to environmental impacts, as dysbiosis may contribute to serious skin diseases. Molecular methods, used for microorganism identification, allow us to gain a better understanding of the skin microbiome. The presented article contains the latest reports on the skin microbiota in health and disease. The review discusses the relationship between a properly functioning microbiome and the body's immune system, as well as the impact of internal and external factors on the human skin microbiome.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, UTP University of Science and Technology, 85-029 Bydgoszcz, Poland;
| | - Zuzanna Kraszewska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 50-375 Wrocław, Poland;
| | - Laura Radtke
- Faculty of Civil and Environmental Engineering and Architecture, UTP University of Science and Technology in Bydgoszcz, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland;
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| |
Collapse
|
43
|
Sikora M, Stec A, Chrabaszcz M, Giebultowicz J, Samborowska E, Jazwiec R, Dadlez M, Olszewska M, Rudnicka L. Clinical Implications of Intestinal Barrier Damage in Psoriasis. J Inflamm Res 2021; 14:237-243. [PMID: 33542642 PMCID: PMC7851376 DOI: 10.2147/jir.s292544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background An increasing amount of evidence suggests an association between increased intestinal permeability and the pathogenesis of chronic inflammatory diseases. However, the clinical significance of gut barrier dysfunction in psoriasis remains to be established. Objective To evaluate whether there are differences in disease activity, the severity of gastrointestinal symptoms and the blood concentration of bacterial metabolites in psoriatic patients with a normal and altered intestinal barrier. Patients and Methods Gut barrier integrity was assessed with the serum concentrations of claudin-3, a modulator of intestinal tight junctions and an intestinal fatty acid-binding protein, a marker of enterocyte damage. Gastrointestinal symptoms were evaluated with a validated questionnaire. The concentration of trimethylamine N-oxide (TMAO), a gut microbiota-associated metabolite, was measured with high-performance liquid chromatography. Results One hundred and fourteen patients with psoriasis were finally enrolled in the study – 68 with an altered gut barrier and 46 with a properly functioning intestinal barrier. Patients with an altered gut barrier showed a significantly higher score in the Gastrointestinal Symptom Rating Scale (3.20 vs 1.46, p<0.001). Moreover, patients with psoriasis and a disrupted intestinal barrier demonstrated a higher disease activity (PASI: 19.7 vs 10.3, p<0.001) and systemic inflammatory parameters (neutrophil-to-lymphocyte ratio: 2.86 vs 1.71, p<0.001; C-reactive protein 3.76 vs 1.92; p<0.05). The marker of bacterial translocation was significantly higher in psoriatic patients with damaged gut integrity (TMAO: 375.7±51.9 vs 119.4±27.5 ng/mL; p<0.05). Conclusion The altered gut barrier in psoriasis is associated with gastrointestinal symptoms, systemic inflammatory profile and the increased blood concentration of gut microbiota-derived metabolite – TMAO. Intestinal barrier modulation represents a new promising therapeutic approach.
Collapse
Affiliation(s)
- Mariusz Sikora
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Albert Stec
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | | | - Joanna Giebultowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Radoslaw Jazwiec
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Institute of Genetics and Biotechnology, Biology Department, Warsaw University, Warsaw, Poland
| | | | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Vijaya Chandra SH, Srinivas R, Dawson TL, Common JE. Cutaneous Malassezia: Commensal, Pathogen, or Protector? Front Cell Infect Microbiol 2021; 10:614446. [PMID: 33575223 PMCID: PMC7870721 DOI: 10.3389/fcimb.2020.614446] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
The skin microbial community is a multifunctional ecosystem aiding prevention of infections from transient pathogens, maintenance of host immune homeostasis, and skin health. A better understanding of the complex milieu of microbe-microbe and host-microbe interactions will be required to define the ecosystem's optimal function and enable rational design of microbiome targeted interventions. Malassezia, a fungal genus currently comprising 18 species and numerous functionally distinct strains, are lipid-dependent basidiomycetous yeasts and integral components of the skin microbiome. The high proportion of Malassezia in the skin microbiome makes understanding their role in healthy and diseased skin crucial to development of functional skin health knowledge and understanding of normal, healthy skin homeostasis. Over the last decade, new tools for Malassezia culture, detection, and genetic manipulation have revealed not only the ubiquity of Malassezia on skin but new pathogenic roles in seborrheic dermatitis, psoriasis, Crohn's disease, and pancreatic ductal carcinoma. Application of these tools continues to peel back the layers of Malassezia/skin interactions, including clear examples of pathogenicity, commensalism, and potential protective or beneficial activities creating mutualism. Our increased understanding of host- and microbe-specific interactions should lead to identification of key factors that maintain skin in a state of healthy mutualism or, in turn, initiate pathogenic changes. These approaches are leading toward development of new therapeutic targets and treatment options. This review discusses recent developments that have expanded our understanding of Malassezia's role in the skin microbiome, with a focus on its multiple roles in health and disease as commensal, pathogen, and protector.
Collapse
Affiliation(s)
| | - Ramasamy Srinivas
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | - John E Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
45
|
Loomis KH, Wu SK, Ernlund A, Zudock K, Reno A, Blount K, Karig DK. A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. MICROBIOME 2021; 9:22. [PMID: 33482907 PMCID: PMC7825201 DOI: 10.1186/s40168-020-00963-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/06/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions, wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these microbe-host interactions. Towards this direction, recent efforts using mouse models point to pronounced changes in the transcriptional profiles of the skin in response to the presence of a microbial community. However, there is a need to quantify the roles of microorganisms at both the individual and community-level in healthy human skin. In this study, we utilize human skin equivalents to study the effects of individual taxa and a microbial community in a precisely controlled context. Through transcriptomics analysis, we identify key genes and pathways influenced by skin microbes, and we also characterize higher-level impacts on skin processes and properties through histological analyses. RESULTS The presence of a microbiome on a 3D skin tissue model led to significantly altered patterns of gene expression, influencing genes involved in the regulation of apoptosis, proliferation, and the extracellular matrix (among others). Moreover, microbiome treatment influenced the thickness of the epidermal layer, reduced the number of actively proliferating cells, and increased filaggrin expression. Many of these findings were evident upon treatment with the mixed community, but either not detected or less pronounced in treatments by single microorganisms, underscoring the impact that a diverse skin microbiome has on the host. CONCLUSIONS This work contributes to the understanding of how microbiome constituents individually and collectively influence human skin processes and properties. The results show that, while it is important to understand the effect of individual microbes on the host, a full community of microbes has unique and pronounced effects on the skin. Thus, in its impacts on the host, the skin microbiome is more than the sum of its parts. Video abstract.
Collapse
Affiliation(s)
- Kristin H. Loomis
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Susan K. Wu
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Amanda Ernlund
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Kristina Zudock
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Allison Reno
- Department of Bioengineering, Clemson University, Clemson, SC USA
| | - Kianna Blount
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - David K. Karig
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
- Department of Bioengineering, Clemson University, Clemson, SC USA
| |
Collapse
|
46
|
Liu X, Cai Q, Yang H, Gao Z, Yang L. Distribution of Malassezia species on the skin of patients with psoriasis. J Mycol Med 2021; 31:101111. [PMID: 33454614 DOI: 10.1016/j.mycmed.2021.101111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Malassezia species can induce the expression of interleukin-17 (IL-17), which plays an important role in the inflammatory and immune response in psoriasis (PS). The purpose of this study was to investigate the Malassezia species composition in patients with PS and healthy individuals and explore the role of Malassezia species in the pathogenesis of PS. MATERIALS AND METHODS A total of 28 patients with PS and 10 age- and sex-matched healthy individuals participated in this study. Specimens collected from the lesional and non-lesional skin of patients with PS and the skin of healthy individuals were analyzed by using nested PCR. RESULTS The relative abundance of Malassezia species was 84.96% in healthy subjects, more than twice that in patients with PS (P<0.01). M. restricta (43.09%) and M. globosa (41.38%) were the main Malassezia species in patients with PS followed by M. furfur (4.84%) and M. sympodialis (2.49%). M. sympodialis accounted for 18. 81% of the Malassezia species in healthy subjects, which was nearly eight times higher than in patients with PS (P<0.01). Further, M. furfur was detected both on lesional and non-lesional psoriatic skin, but it was not found on the skin of healthy individuals. CONCLUSIONS The Malassezia species composition in patients with PS differed from that of healthy individuals. M. restricta and M. globosa were the main Malassezia species in patients with PS.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Mycology, Shanghai Dermatology Hospital, 1278 Baode Road, Shanghai, China
| | - Qing Cai
- Department of Mycology, Shanghai Dermatology Hospital, 1278 Baode Road, Shanghai, China
| | - Hong Yang
- Department of Mycology, Shanghai Dermatology Hospital, 1278 Baode Road, Shanghai, China
| | - Zhiqin Gao
- Department of Mycology, Shanghai Dermatology Hospital, 1278 Baode Road, Shanghai, China
| | - Lianjuan Yang
- Department of Mycology, Shanghai Dermatology Hospital, 1278 Baode Road, Shanghai, China.
| |
Collapse
|
47
|
Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, Chen X, Peng C. Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Front Microbiol 2020; 11:589726. [PMID: 33384669 PMCID: PMC7769758 DOI: 10.3389/fmicb.2020.589726] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Psoriasis affects the health of myriad populations around the world. The pathogenesis is multifactorial, and the exact driving factor remains unclear. This condition arises from the interaction between hyperproliferative keratinocytes and infiltrating immune cells, with poor prognosis and high recurrence. Better clinical treatments remain to be explored. There is much evidence that alterations in the skin and intestinal microbiome play an important role in the pathogenesis of psoriasis, and restoration of the microbiome is a promising preventive and therapeutic strategy for psoriasis. Herein, we have reviewed recent studies on the psoriasis-related microbiome in an attempt to confidently identify the “core” microbiome of psoriasis patients, understand the role of microbiome in the pathogenesis of psoriasis, and explore new therapeutic strategies for psoriasis through microbial intervention.
Collapse
Affiliation(s)
- Lihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Tao Liu
- Central Laboratory, Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| |
Collapse
|
48
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
49
|
Moreno-Sabater A, Autaa G, Sterlin D, Jerbi A, Villette R, Holm JB, Parizot C, Selim S, Senghor Y, Ghillani-Dalbin P, Bachmeyer C, Hennequin C, Gorochov G, Larsen M. Systemic anti-commensal response to fungi analyzed by flow cytometry is related to gut mycobiome ecology. MICROBIOME 2020; 8:159. [PMID: 33190643 PMCID: PMC7667786 DOI: 10.1186/s40168-020-00924-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Interest for the study of gut mycobiota in relation with human health and immune homeostasis has increased in the last years. From this perspective, new tools to study the immune/fungal interface are warranted. Systemic humoral immune responses could reflect the dynamic relationships between gut mycobiota and immunity. Using a novel flow cytometry technology (Fungi-Flow) to determine immunoglobulin (Ig) responses to fungi, we studied the relationships between gut mycobiota and systemic humoral anti-commensal immunity. RESULTS The Fungi-Flow method allows a sensitive and specific measurement of systemic IgG responses against 17 commensal and environmental fungi from the two main divisions; Ascomycota and Basidiomycota. IgG responses exhibited a high inter-individual variability. Anti-commensal IgG responses were contrasted with the relative abundance, alpha-diversity, and intra-genus richness of fungal species in gut mycobiota of twenty healthy donors. Categorization of gut mycobiota composition revealed two differentiated fungal ecosystems. Significant difference of anti-Saccharomyces systemic IgG responses were observed in healthy donors stratified according to the fungal ecosystem colonizing their gut. A positive and significant correlation was observed between the variety of IgG responses against fungal commensals and intestinal alpha-diversity. At the level of intra-genus species richness, intense IgG responses were associated with a low intra-genus richness for known pathobionts, but not commensals. CONCLUSIONS Fungi-Flow allows an easy and reliable measure of personalized humoral responses against commensal fungi. Combining sequencing technology with our novel Fungi-Flow immunological method, we propose that there are at least two defined ecosystems in the human gut mycobiome associated with systemic humoral responses. Fungi-Flow opens new opportunities to improve our knowledge about the impact of mycobiota in humoral anti-commensal immunity and homeostasis. Video Abstract.
Collapse
Affiliation(s)
- Alicia Moreno-Sabater
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | - Gaelle Autaa
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| | - Delphine Sterlin
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Inserm, 75015 Paris, France
| | - Amenie Jerbi
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Remy Villette
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| | - Johanna B. Holm
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Christophe Parizot
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Sameh Selim
- College of Agricultural Sciences AGHYLE Res, Unit. Institut Polytechnique UniLaSalle, 60026 Beauvais, France
| | - Yaye Senghor
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | | | | | - Christophe Hennequin
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Sorbonne Université, Inserm, 75012 Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Martin Larsen
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| |
Collapse
|
50
|
Godlewska U, Brzoza P, Kwiecień K, Kwitniewski M, Cichy J. Metagenomic Studies in Inflammatory Skin Diseases. Curr Microbiol 2020; 77:3201-3212. [PMID: 32813091 PMCID: PMC7536147 DOI: 10.1007/s00284-020-02163-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies together with an improved access to compute performance led to a cost-effective genome sequencing over the past several years. This allowed researchers to fully unleash the potential of genomic and metagenomic analyses to better elucidate two-way interactions between host cells and microbiome, both in steady-state and in pathological conditions. Experimental research involving metagenomics shows that skin resident microbes can influence the cutaneous pathophysiology. Here, we review metagenome approaches to study microbiota at this barrier site. We also describe the consequences of changes in the skin microbiota burden and composition, mostly revealed by these technologies, in the development of common inflammatory skin diseases.
Collapse
Affiliation(s)
- Urszula Godlewska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Piotr Brzoza
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamila Kwiecień
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz Kwitniewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|