1
|
M B B, Tiwari AK, N S M, Mohan M, C M L. Source apportionment of major ions and trace metals in the lacustrine systems of Schirmacher Hills, East Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174189. [PMID: 38936712 DOI: 10.1016/j.scitotenv.2024.174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The fabric of the Antarctic lacustrine system has a crucial role in assimilating the anthropogenic inputs and mitigating their long time impacts on climate change. Here, we present the changes in the concentrations of major ions and trace metals in the surface water of the lacustrine system to understand the extent of anthropogenic impacts from the adjacent Schirmacher Hills, East Antarctica. The results show that the land-locked lakes (closed-basin lakes surrounded by topographical barriers such as mountains or bedrock formations) in the region have a moderate enrichment in elemental concentrations compared to the pro-glacial lakes (marginal freshwater bodies that form at the terminus of a glacier or ice sheet). The water quality index (WQI: 7.58-12.63) and pollution evaluation index (PEI: 1.36-2.35) remained normal, indicating that the water in these lake are of good quality. However, a significant correlation between lithogenic elements (Al, Fe) and potentially toxic elements (Cd, Cr, and Ba), suggests an increase in the anthropogenic impacts. Based on the principal component analysis (PCA), the source of trace metals to the lacustrine systems appears to be the surrounding environment, followed by aerosol dust particles. Hierarchical cluster analysis (HCA) revealed that regional topography significantly impacts the supply of major ions/trace metals to these lakes. The present study provides baseline data and can be used to estimate and forecast future local and/or global anthropogenic contaminations in the lacustrine system of Schirmacher Hills, East Antarctica. Moreover, the presence of research stations (Maitri and Novolazarevskaya), tourist activities, and the potential for anthropogenic stressors necessitate continued monitoring and impact assessment programs within the Schirmacher Hills lacustrine systems. These programs are crucial for safeguarding this pristine ecosystem from future environmental disturbances under a changing Antarctic climate, as mandated by the Antarctic Treaty System and the Indian Antarctic Act.
Collapse
Affiliation(s)
- Binish M B
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| | - A K Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| | - Magesh N S
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India; Centre for Water Resources Development and Management, Kozhikode, Kerala 673571, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Laluraj C M
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
2
|
Hassan S, Mushtaq M, Ganiee SA, Zaman M, Yaseen A, Shah AJ, Ganai BA. Microbial oases in the ice: A state-of-the-art review on cryoconite holes as diversity hotspots and their scientific connotations. ENVIRONMENTAL RESEARCH 2024; 252:118963. [PMID: 38640991 DOI: 10.1016/j.envres.2024.118963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cryoconite holes, small meltwater pools on the surface of glaciers and ice sheets, represent extremely cold ecosystems teeming with diverse microbial life. Cryoconite holes exhibit greater susceptibility to the impacts of climate change, underlining the imperative nature of investigating microbial communities as an essential module of polar and alpine ecosystem monitoring efforts. Microbes in cryoconite holes play a critical role in nutrient cycling and can produce bioactive compounds, holding promise for industrial and pharmaceutical innovation. Understanding microbial diversity in these delicate ecosystems is essential for effective conservation strategies. Therefore, this review discusses the microbial diversity in these extreme environments, aiming to unveil the complexity of their microbial communities. The current study envisages that cryoconite holes as distinctive ecosystems encompass a multitude of taxonomically diverse and functionally adaptable microorganisms that exhibit a rich microbial diversity and possess intricate ecological functions. By investigating microbial diversity and ecological functions of cryoconite holes, this study aims to contribute valuable insights into the broader field of environmental microbiology and enhance further understanding of these ecosystems. This review seeks to provide a holistic overview regarding the formation, evolution, characterization, and molecular adaptations of cryoconite holes. Furthermore, future research directions and challenges underlining the need for long-term monitoring, and ethical considerations in preserving these pristine environments are also provided. Addressing these challenges and resolutely pursuing future research directions promises to enrich our comprehension of microbial diversity within cryoconite holes, revealing the broader ecological and biogeochemical implications. The inferences derived from the present study will provide researchers, ecologists, and policymakers with a profound understanding of the significance and utility of cryoconite holes in unveiling the microbial diversity and its potential applications.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Misba Mushtaq
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
3
|
Tytgat B, Verleyen E, Sweetlove M, Van den Berge K, Pinseel E, Hodgson DA, Chown SL, Sabbe K, Wilmotte A, Willems A, Vyverman W. Polar lake microbiomes have distinct evolutionary histories. SCIENCE ADVANCES 2023; 9:eade7130. [PMID: 37976353 PMCID: PMC10656066 DOI: 10.1126/sciadv.ade7130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Toward the poles, life on land is increasingly dominated by microorganisms, yet the evolutionary origin of polar microbiomes remains poorly understood. Here, we use metabarcoding of Arctic, sub-Antarctic, and Antarctic lacustrine benthic microbial communities to test the hypothesis that high-latitude microbiomes are recruited from a globally dispersing species pool through environmental selection. We demonstrate that taxonomic overlap between the regions is limited within most phyla, even at higher-order taxonomic levels, with unique deep-branching phylogenetic clades being present in each region. We show that local and regional taxon richness and net diversification rate of regionally restricted taxa differ substantially between polar regions in both microeukaryotic and bacterial biota. This suggests that long-term evolutionary divergence resulting from low interhemispheric dispersal and diversification in isolation has been a prominent process shaping present-day polar lake microbiomes. Our findings illuminate the distinctive biogeography of polar lake ecosystems and underscore that conservation efforts should include their unique microbiota.
Collapse
Affiliation(s)
- Bjorn Tytgat
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Koen Van den Berge
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - Eveline Pinseel
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Dominic A. Hodgson
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Department of Geography, Durham University, Durham, UK
| | - Steven L. Chown
- Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Annick Wilmotte
- InBio-Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Ghent University, Gent, Belgium
| | | | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| |
Collapse
|
4
|
Girard C, Vincent WF, Culley AI. Arctic bacterial diversity and connectivity in the coastal margin of the Last Ice Area. ISME COMMUNICATIONS 2023; 3:105. [PMID: 37752298 PMCID: PMC10522646 DOI: 10.1038/s43705-023-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Arctic climate change is leading to sea-ice attrition in the Last Ice Area along the northern coast of Canada and Greenland, but less attention has been given to the associated land-based ecosystems. Here we evaluated bacterial community structure in a hydrologically coupled cryo-ecosystem in the region: Thores Glacier, proglacial Thores Lake, and its outlet to the sea. Deep amplicon sequencing revealed that Polaromonas was ubiquitous, but differed genetically among diverse niches. Surface glacier-ice was dominated by Cyanobacteria, while the perennially ice-capped, well-mixed water column of Thores Lake had a unique assemblage of Chloroflexi, Actinobacteriota, and Planctomycetota. Species richness increased downstream, but glacier microbes were little detected in the lake, suggesting strong taxonomic sorting. Ongoing climate change and the retreat of Thores Glacier would lead to complete drainage and loss of the lake microbial ecosystem, indicating the extreme vulnerability of diverse cryohabitats and unique microbiomes in the Last Ice coastal margin.
Collapse
Affiliation(s)
- Catherine Girard
- Département de biochimie, de microbiologie et de bio-informatique & Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Québec, QC, Canada.
- Groupe de recherche interuniversitaire en limnologie et en écologie aquatique (GRIL), Montréal, QC, Canada.
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Chicoutimi, QC, Canada.
| | - Warwick F Vincent
- Centre d'études nordiques (CEN), Québec, QC, Canada
- Département de biologie & Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| | - Alexander I Culley
- Département de biochimie, de microbiologie et de bio-informatique & Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Doytchinov VV, Dimov SG. Microbial Community Composition of the Antarctic Ecosystems: Review of the Bacteria, Fungi, and Archaea Identified through an NGS-Based Metagenomics Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060916. [PMID: 35743947 PMCID: PMC9228076 DOI: 10.3390/life12060916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Antarctica represents a unique environment, both due to the extreme meteorological and geological conditions that govern it and the relative isolation from human influences that have kept its environment largely undisturbed. However, recent trends in climate change dictate an unavoidable change in the global biodiversity as a whole, and pristine environments, such as Antarctica, allow us to study and monitor more closely the effects of the human impact. Additionally, due to its inaccessibility, Antarctica contains a plethora of yet uncultured and unidentified microorganisms with great potential for useful biological activities and production of metabolites, such as novel antibiotics, proteins, pigments, etc. In recent years, amplicon-based next-generation sequencing (NGS) has allowed for a fast and thorough examination of microbial communities to accelerate the efforts of unknown species identification. For these reasons, in this review, we present an overview of the archaea, bacteria, and fungi present on the Antarctic continent and the surrounding area (maritime Antarctica, sub-Antarctica, Southern Sea, etc.) that have recently been identified using amplicon-based NGS methods.
Collapse
|
6
|
Survival strategies of an anoxic microbial ecosystem in Lake Untersee, a potential analog for Enceladus. Sci Rep 2022; 12:7376. [PMID: 35513542 PMCID: PMC9070616 DOI: 10.1038/s41598-022-10876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Lake Untersee located in Eastern Antarctica, is a perennially ice-covered lake. At the bottom of its southern basin lies 20 m of anoxic, methane rich, stratified water, making it a good analog for Enceladus, a moon of Saturn. Here we present the first metagenomic study of this basin and detail the community composition and functional potential of the microbial communities at 92 m, 99 m depths and within the anoxic sediment. A diverse and well-populated microbial community was found, presenting the potential for Enceladus to have a diverse and abundant community. We also explored methanogenesis, sulfur metabolism, and nitrogen metabolism, given the potential presence of these compounds on Enceladus. We found an abundance of these pathways offering a variety of metabolic strategies. Additionally, the extreme conditions of the anoxic basin make it optimal for testing spaceflight technology and life detection methods for future Enceladus exploration.
Collapse
|
7
|
Abstract
Remote sensing is a very powerful tool that has been used to identify, map and monitor Antarctic features and processes for nearly one century. Satellite remote sensing plays the main role for about the last five decades, as it is the only way to provide multitemporal views at continental scale. But the emergence of small consumer-grade unoccupied aerial vehicles (UAVs) over the past two decades has paved the way for data in unprecedented detail. This has been also verified by an increasing noticeable interest in Antarctica by the incorporation of UAVs in the field activities in diversified research topics. This paper presents a comprehensive review about the use of UAVs in scientific activities in Antarctica. It is based on the analysis of 190 scientific publications published in peer-reviewed journals and proceedings of conferences which are organised into six main application topics: Terrestrial, Ice and Snow, Fauna, Technology, Atmosphere and Others. The analysis encompasses a detailed overview of the activities, identifying advantages and difficulties, also evaluating future possibilities and challenges for expanding the use of UAV in the field activities. The relevance of using UAVs to support numerous and diverse scientific activities in Antarctica becomes very clear after analysing this set of scientific publications, as it is revolutionising the remote acquisition of new data with much higher detail, from inaccessible or difficult to access regions, in faster and cheaper ways. Many of the advances can be seen in the terrestrial areas (detailed 3D mapping; vegetation mapping, discrimination and health assessment; periglacial forms characterisation), ice and snow (more detailed topography, depth and features of ice-sheets, glaciers and sea-ice), fauna (counting penguins, seals and flying birds and detailed morphometrics) and in atmosphere studies (more detailed meteorological measurements and air-surface couplings). This review has also shown that despite the low environmental impact of UAV-based surveys, the increasing number of applications and use, may lead to impacts in the most sensitive Antarctic ecosystems. Hence, we call for an internationally coordinated effort to for planning and sharing UAV data in Antarctica, which would reduce environmental impacts, while extending research outcomes.
Collapse
|
8
|
Mondini A, Anwar MZ, Ellegaard-Jensen L, Lavin P, Jacobsen CS, Purcarea C. Heat Shock Response of the Active Microbiome From Perennial Cave Ice. Front Microbiol 2022; 12:809076. [PMID: 35360653 PMCID: PMC8960993 DOI: 10.3389/fmicb.2021.809076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ice caves constitute the newly investigated frozen and secluded model habitats for evaluating the resilience of ice-entrapped microbiomes in response to climate changes. This survey identified the total and active prokaryotic and eukaryotic communities from millennium-old ice accumulated in Scarisoara cave (Romania) using Illumina shotgun sequencing of the ribosomal RNA (rRNA) and messenger RNA (mRNA)-based functional analysis of the metatranscriptome. Also, the response of active microbiome to heat shock treatment mimicking the environmental shift during ice melting was evaluated at both the taxonomic and metabolic levels. The putatively active microbial community was dominated by bacterial taxa belonging to Proteobacteria and Bacteroidetes, which are highly resilient to thermal variations, while the scarcely present archaea belonging to Methanomicrobia was majorly affected by heat shock. Among eukaryotes, the fungal rRNA community was shared between the resilient Chytridiomycota and Blastocladiomycota, and the more sensitive Ascomycota and Basidiomycota taxa. A complex microeukaryotic community highly represented by Tardigrada and Rotifera (Metazoa), Ciliophora and Cercozoa (Protozoa), and Chlorophyta (Plantae) was evidenced for the first time in this habitat. This community showed a quick reaction to heat shock, followed by a partial recovery after prolonged incubation at 4°C due to possible predation processes on the prokaryotic cluster. Analysis of mRNA differential gene expression revealed the presence of an active microbiome in the perennial ice from the Scarisoara cave and associated molecular mechanisms for coping with temperature variations by the upregulation of genes involved in enzyme recovery, energy storage, carbon and nitrogen regulation, and cell motility. This first report on the active microbiome embedded in perennial ice from caves and its response to temperature stress provided a glimpse into the impact of glaciers melting and the resilience mechanisms in this habitat, contributing to the knowledge on the functional role of active microbes in frozen environments and their response to climatic changes.
Collapse
Affiliation(s)
- Antonio Mondini
- Department of Microbiology, Institute of Biology, Bucharest, Romania
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Paris Lavin
- Centre of Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology, Bucharest, Romania
- *Correspondence: Cristina Purcarea,
| |
Collapse
|
9
|
Mezzasoma A, Coleine C, Sannino C, Selbmann L. Endolithic Bacterial Diversity in Lichen-Dominated Communities Is Shaped by Sun Exposure in McMurdo Dry Valleys, Antarctica. MICROBIAL ECOLOGY 2022; 83:328-339. [PMID: 34081148 PMCID: PMC8891110 DOI: 10.1007/s00248-021-01769-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The diversity and composition of endolithic bacterial diversity of several locations in McMurdo Dry Valleys (Continental Antarctica) were explored using amplicon sequencing, targeting the V3 and V4 of the 16S region. Despite the increasing interest in edaphic factors that drive bacterial community composition in Antarctic rocky communities, few researchers focused attention on the direct effects of sun exposure on bacterial diversity; we herein reported significant differences in the northern and southern communities. The analysis of β-diversity showed significant differences among sampled localities. For instance, the most abundant genera found in the north-exposed rocks were Rhodococcus and Blastococcus in Knobhead Mt.; Ktedonobacter and Cyanobacteria Family I Group I in Finger Mt.; Rhodococcus and Endobacter in University Valley; and Segetibacter and Tetrasphaera in Siegfried Peak samples. In south-exposed rocks, instead, the most abundant genera were Escherichia/Shigella and Streptococcus in Knobhead Mt.; Ktedonobacter and Rhodococcus in Finger Mt.; Ktedonobacter and Roseomonas in University Valley; and Blastocatella, Cyanobacteria Family I Group I and Segetibacter in Siegfried Peak. Significant biomarkers, detected by the Linear discriminant analysis Effect Size, were also found among north- and south-exposed communities. Besides, the large number of positive significant co-occurrences may suggest a crucial role of positive associations over competitions under the harsher conditions where these rock-inhabiting microorganisms spread. Although the effect of geographic distances in these extreme environments play a significant role in shaping biodiversity, the study of an edaphic factor, such as solar exposure, adds an important contribution to the mosaic of microbial biodiversity of Antarctic bacterial cryptoendolithic communities.
Collapse
Affiliation(s)
- Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
10
|
Krucon T, Dziewit L, Drewniak L. Insight Into Ecology, Metabolic Potential, and the Taxonomic Composition of Bacterial Communities in the Periodic Water Pond on King George Island (Antarctica). Front Microbiol 2021; 12:708607. [PMID: 34690951 PMCID: PMC8531505 DOI: 10.3389/fmicb.2021.708607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Polar regions contain a wide variety of lentic ecosystems. These include periodic ponds that have a significant impact on carbon and nitrogen cycling in polar environments. This study was conducted to assess the taxonomic and metabolic diversity of bacteria found in Antarctic pond affected by penguins and sea elephants and to define their role in ongoing processes. Metabolic assays showed that of the 168 tested heterotrophic bacteria present in the Antarctic periodic pond, 96% are able to degrade lipids, 30% cellulose, 26% proteins, and 26% starch. The taxonomic classification of the obtained isolates differs from that based on the composition of the 16S rRNA relative abundances in the studied pond. The dominant Actinobacteria constituting 45% of isolates represents a low proportion of the community, around 4%. With the addition of run-off, the proportions of inhabiting bacteria changed, including a significant decrease in the abundance of Cyanobacteria, from 2.38 to 0.33%, increase of Firmicutes from 9.32 to 19.18%, and a decreasing richness (Chao1 index from 1299 to 889) and diversity (Shannon index from 4.73 to 4.20). Comparative studies of communities found in different Antarctic environments indicate a great role for penguins in shaping bacterial populations.
Collapse
Affiliation(s)
- Tomasz Krucon
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Maggiori C, Raymond-Bouchard I, Brennan L, Touchette D, Whyte L. MinION sequencing from sea ice cryoconites leads to de novo genome reconstruction from metagenomes. Sci Rep 2021; 11:21041. [PMID: 34702846 PMCID: PMC8548342 DOI: 10.1038/s41598-021-00026-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Genome reconstruction from metagenomes enables detailed study of individual community members, their metabolisms, and their survival strategies. Obtaining high quality metagenome-assembled genomes (MAGs) is particularly valuable in extreme environments like sea ice cryoconites, where the native consortia are recalcitrant to culture and strong astrobiology analogues. We evaluated three separate approaches for MAG generation from Allen Bay, Nunavut sea ice cryoconites-HiSeq-only, MinION-only, and hybrid (HiSeq + MinION)-where field MinION sequencing yielded a reliable metagenome. The hybrid assembly produced longer contigs, more coding sequences, and more total MAGs, revealing a microbial community dominated by Bacteroidetes. The hybrid MAGs also had the highest completeness, lowest contamination, and highest N50. A putatively novel species of Octadecabacter is among the hybrid MAGs produced, containing the genus's only known instances of genomic potential for nitrate reduction, denitrification, sulfate reduction, and fermentation. This study shows that the inclusion of MinION reads in traditional short read datasets leads to higher quality metagenomes and MAGs for more accurate descriptions of novel microorganisms in this extreme, transient habitat and has produced the first hybrid MAGs from an extreme environment.
Collapse
Affiliation(s)
- Catherine Maggiori
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Laura Brennan
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - David Touchette
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
12
|
Gyeong H, Hyun CU, Kim SC, Tripathi BM, Yun J, Kim J, Kang H, Kim JH, Kim S, Kim M. Contrasting early successional dynamics of bacterial and fungal communities in recently deglaciated soils of the maritime Antarctic. Mol Ecol 2021; 30:4231-4244. [PMID: 34214230 DOI: 10.1111/mec.16054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Although microorganisms are the very first colonizers of recently deglaciated soils even prior to plant colonization, the drivers and patterns of microbial community succession at early-successional stages remain poorly understood. The successional dynamics and assembly processes of bacterial and fungal communities were compared on a glacier foreland in the maritime Antarctic across the ~10-year soil-age gradient from bare soil to sparsely vegetated area. Bacterial communities shifted more rapidly than fungal communities in response to glacial retreat; species turnover (primarily the transition from glacier- to soil-favouring taxa) contributed greatly to bacterial beta diversity, but this pattern was less clear in fungi. Bacterial communities underwent more predictable (more deterministic) changes along the soil-age gradient, with compositional changes paralleling the direction of changes in soil physicochemical properties following deglaciation. In contrast, the compositional shift in fungal communities was less associated with changes in deglaciation-induced changes in soil geochemistry and most fungal taxa displayed mosaic abundance distribution across the landscape, suggesting that the successional dynamics of fungal communities are largely governed by stochastic processes. A co-occurrence network analysis revealed that biotic interactions between bacteria and fungi are very weak in early succession. Taken together, these results collectively suggest that bacterial and fungal communities in recently deglaciated soils are largely decoupled from each other during succession and exert very divergent trajectories of succession and assembly under different selective forces.
Collapse
Affiliation(s)
| | - Chang-Uk Hyun
- Department of Energy and Mineral Resources Engineering, Dong-A University, Busan, Korea
| | | | | | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Ji Hee Kim
- Korea Polar Research Institute (KOPRI), Incheon, Korea
| | - Sanghee Kim
- Korea Polar Research Institute (KOPRI), Incheon, Korea
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon, Korea
| |
Collapse
|
13
|
Howell L, LaRue M, Flanagan SP. Environmental DNA as a tool for monitoring Antarctic vertebrates. NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1900299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucy Howell
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Michelle LaRue
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
14
|
Greco C, Andersen DT, Hawes I, Bowles AMC, Yallop ML, Barker G, Jungblut AD. Microbial Diversity of Pinnacle and Conical Microbial Mats in the Perennially Ice-Covered Lake Untersee, East Antarctica. Front Microbiol 2020; 11:607251. [PMID: 33362751 PMCID: PMC7759091 DOI: 10.3389/fmicb.2020.607251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Antarctic perennially ice-covered lakes provide a stable low-disturbance environment where complex microbially mediated structures can grow. Lake Untersee, an ultra-oligotrophic lake in East Antarctica, has the lake floor covered in benthic microbial mat communities, where laminated organo-sedimentary structures form with three distinct, sympatric morphologies: small, elongated cuspate pinnacles, large complex cones and flat mats. We examined the diversity of prokaryotes and eukaryotes in pinnacles, cones and flat microbial mats using high-throughput sequencing of 16S and 18S rRNA genes and assessed how microbial composition may underpin the formation of these distinct macroscopic mat morphologies under the same environmental conditions. Our analysis identified distinct clustering of microbial communities according to mat morphology. The prokaryotic communities were dominated by Cyanobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes, and Actinobacteria. While filamentous Tychonema cyanobacteria were common in all mat types, Leptolyngbya showed an increased relative abundance in the pinnacle structures only. Our study provides the first report of the eukaryotic community structure of Lake Untersee benthic mats, which was dominated by Ciliophora, Chlorophyta, Fungi, Cercozoa, and Discicristata. The eukaryote richness was lower than for prokaryote assemblages and no distinct clustering was observed between mat morphologies. These findings suggest that cyanobacterial assemblages and potentially other bacteria and eukaryotes may influence structure morphogenesis, allowing distinct structures to form across a small spatial scale.
Collapse
Affiliation(s)
- Carla Greco
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | | | - Marian L Yallop
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary Barker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Anne D Jungblut
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| |
Collapse
|
15
|
Sources of solutes and carbon cycling in perennially ice-covered Lake Untersee, Antarctica. Sci Rep 2020; 10:12290. [PMID: 32704043 PMCID: PMC7378197 DOI: 10.1038/s41598-020-69116-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
Perennially ice-covered lakes that host benthic microbial ecosystems are present in many regions of Antarctica. Lake Untersee is an ultra-oligotrophic lake that is substantially different from any other lakes on the continent as it does not develop a seasonal moat and therefore shares similarities to sub-glacial lakes where they are sealed to the atmosphere. Here, we determine the source of major solutes and carbon to Lake Untersee, evaluate the carbon cycling and assess the metabolic functioning of microbial mats using an isotope geochemistry approach. The findings suggest that the glacial meltwater recharging the closed-basin and well-sealed Lake Untersee largely determines the major solute chemistry of the oxic water column with plagioclase and alumino-silicate weathering contributing < 5% of the Ca2+-Na+ solutes to the lake. The TIC concentration in the lake is very low and is sourced from melting of glacial ice and direct release of occluded CO2 gases into the water column. The comparison of δ13CTIC of the oxic lake waters with the δ13C in the top microbial mat layer show no fractionation due to non-discriminating photosynthetic fixation of HCO3- in the high pH and carbon-starved water. The 14C results indicate that phototrophs are also fixing respired CO2 from heterotrophic metabolism of the underlying microbial mats layers. The findings provide insights into the development of collaboration in carbon partitioning within the microbial mats to support their growth in a carbon-starved ecosystem.
Collapse
|
16
|
Weisleitner K, Perras AK, Unterberger SH, Moissl-Eichinger C, Andersen DT, Sattler B. Cryoconite Hole Location in East-Antarctic Untersee Oasis Shapes Physical and Biological Diversity. Front Microbiol 2020; 11:1165. [PMID: 32582104 PMCID: PMC7284004 DOI: 10.3389/fmicb.2020.01165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/07/2020] [Indexed: 01/04/2023] Open
Abstract
Antarctic cryoconite holes (CHs) are mostly perennially ice-lidded and sediment-filled depressions that constitute important features on glaciers and ice sheets. Once being hydrologically connected, these microbially dominated mini-ecosystems provide nutrients and biota for downstream environments. For example, the East Antarctic Anuchin Glacier gradually melts into the adjacent perennially ice-covered Lake Untersee, and CH biota from this glacier contribute up to one third of the community composition in benthic microbial mats within the lake. However, biogeochemical features of these CHs and associated spatial patterns across the glacier are still unknown. Here we hypothesized about the CH minerogenic composition between the different sources such as the medial moraine and other zones. Further, we intended to investigate if the depth of the CH mirrors the CH community composition, organic matter (OM) content and would support productivity. In this study we show that both microbial communities and biogeochemical parameters in CHs were significantly different between the zones medial moraine and the glacier terminus. Variations in microbial community composition are the result of factors such as depth, diameter, organic matter, total carbon, particle size, and mineral diversity. More than 90% of all ribosomal sequence variants (RSV) reads were classified as Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Archaea were detected in 85% of all samples and exclusively belonged to the classes Halobacteria, Methanomicrobia, and Thermoplasmata. The most abundant genus was Halorubrum (Halobacteria) and was identified in nine RSVs. The core microbiome for bacteria comprised 30 RSVs that were affiliated with Cyanobacteria, Bacteroidetes, Actinobacteria, and Proteobacteria. The archaeal fraction of the core microbiome consisted of three RSVs belonging to unknown genera of Methanomicrobiales and Thermoplasmatales and the genus Rice_Cluster_I (Methanocellales). Further, mean bacterial carbon production in cryoconite was exceptionally low and similar rates have not been reported elsewhere. However, bacterial carbon production insignificantly trended toward higher rates in shallow CHs and did not seem to be supported by accumulation of OM and nutrients, respectively, in deeper holes. OM fractions were significantly different between shallower CHs along the medial moraine and deeper CHs at the glacier terminus. Overall, our findings suggest that wind-blown material originating south and southeast of the Anuchin Glacier and deposits from a nunatak are assumed to be local inoculation sources. High sequence similarities between samples from the Untersee Oasis and other Antarctic sites further indicate long-range atmospheric transport mechanisms that complement local inoculation sources.
Collapse
Affiliation(s)
- Klemens Weisleitner
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | | | | | | | | | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
- Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|