1
|
Bahrami M, Bostanghadiri N, Goudarzi M, Khodaei N, Hashemi A. Antibiotic Resistance and Virulence Factors in Clinical Isolates of Stenotrophomonas maltophilia from Hospitalized Patients in Tehran, Iran. Int J Microbiol 2024; 2024:8224242. [PMID: 39380784 PMCID: PMC11461076 DOI: 10.1155/2024/8224242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/05/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Stenotrophomonas maltophilia causes challenging infections in immunocompromised patients, exhibiting increasing resistance to multiple antimicrobials and possessing various virulence genes, including emerging resistance to trimethoprim-sulfamethoxazole. A total of 80 clinical isolates of S. maltophilia were collected from multiple hospitals in Tehran, Iran. This study conducted an analysis of antibiotic susceptibility by disc diffusion method and E-test assay, resistance and virulence gene frequencies were examined by PCR-sequencing, and multilocus sequencing typing (MLST) was performed for strain typing. Across the tested isolates, we observed notably high resistance rates for imipenem 80 (100%), meropenem 78(97.5%), and ceftazidime 72 (90%), while trimethoprim-sulfamethoxazole (SXT) showed a lower resistance rate of 2 (2.5%). Minocycline and levofloxacin demonstrated the highest susceptibility rates, with 70 (87.5%) and 80 (100%), respectively. The prevalence of antibiotic resistance genes bla L1, and bla L2 was 71 (88.75%) and 76 (95%), respectively. Additionally, the PCR analysis revealed that the frequency of virulence genes (fliC, virB, papD, pilU, hlyIII, stmPr1, and stmPr2) was 78 (97.5%), 77 (96.25%), 58 (72.5%), 77 (96.2%), 76 (95%), 31 (38.75%), and 80 (100%), respectively. Resistance to SXT isolate belong to the sequence type (ST15) and exhibits allelic profiles of (10, 29, 21, 21, 32, 32, and 10). The data obtained from our investigation have indicated that SXT remains an efficacious antibiotic and also highlighted the importance of effective management, identification of resistant isolates, and typing methods to address the global prevalence of antibiotic resistance in S. maltophilia.
Collapse
Affiliation(s)
- Mahrokh Bahrami
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of MicrobiologySchool of MedicineIran University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Khodaei
- Department of MicrobiologySchool of MedicineIran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang L, Wang Y, Ye K, Qiu X, Zhao Q, Ye L, Yang J. Molecular epidemiology, genetic diversity, antibiotic resistance and pathogenicity of Stenotrophomonas maltophilia complex from bacteremia patients in a tertiary hospital in China for nine years. Front Microbiol 2024; 15:1424241. [PMID: 38946894 PMCID: PMC11211261 DOI: 10.3389/fmicb.2024.1424241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Background The Stenotrophomonas maltophilia complex (Smc) has emerged as a significant nosocomial pathogen contributing to increased mortality rates, particularly in case of bloodstream infections. Methods This study employed whole-genome sequencing (WGS) to assess the genetic diversity, antimicrobial resistance profiles, molecular epidemiology and frequencies of virulence genes among 55 S. maltophilia isolates obtained from bacteremic cases over a 9-year period. Results Based on the threshold of 95% average nucleotide identity (ANI) and 70% digital DNA-DNA hybridization (dDDH) for genospecies delineation, we classified 37 isolates into 6 known species, all belonging to the Smc. The remaining 18 isolates sequenced in this study were assigned to 6 new genomospecies. Among the 55 isolates, we identified 44 different sequence types (STs), comprising 22 known and 22 novel allele combinations. The resistance rate of Smc against trimethoprim-sulfamethoxazole (TMP/SMX) was found to be 3.6%, with the sul1 and class one integron integrase genes (intI) detected in these isolates. All Smc isolates were susceptible to minocycline. Furthermore, all Smc strains harbored the motA, pilU, smf-1 and Stmpr2 genes. Genomospecies 1 (100%, n = 9), Stenotrophomonas maltophilia (84.21%, n = 19) and Stenotrophomonas sepilia (71.43%, n = 7) demonstrated a higher percentage of the afaD gene, which was also associated with a higher separation rate. In addition to motA, pilU, smf-1, and Stmpr2 genes, all S. maltophilia strains (100%) contained entA, gspD, KatA, and stmPr1 genes, while all genomospecies 1 strains (100%) contained afaD, entA, gspD, and KatA genes. Conclusion Our study highlights the genetic diversity among Smc isolates from patients with bacteremia, revealing 22 novel ST types, 58 new alleles and 6 new genomospecies. S. maltophilia and S. pavanii were found to carry more virulence factors, emphasizing the importance of accurate strain identification. Minocycline emerged as a promising alternative antibiotic for patients who were resistant to TMP/SMX.
Collapse
Affiliation(s)
- Lifeng Wang
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Wang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Ye
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuemei Qiu
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Zhao
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - LiYan Ye
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiyong Yang
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Gajdács M, Matuz M, Ria B, Pető Z, Hajdú E. Correlation between Stenotrophomonas maltophilia incidence and systemic antibiotic use: A 10-year retrospective, observational study in Hungary. Eur J Microbiol Immunol (Bp) 2024; 14:185-194. [PMID: 38441614 PMCID: PMC11097780 DOI: 10.1556/1886.2024.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 05/16/2024] Open
Abstract
Extensive use of carbapenems may lead to selection pressure for Stenotrophomonas maltophilia (SM) in hospital environments. The aim of our study was to assess the possible association between systemic antibiotic use and the incidence of SM. A retrospective, observational study was carried out in a tertiary-care hospital in Hungary, between January 1st 2010 and December 31st 2019. Incidence-density for SM and SM resistant to trimethoprim-sulfamethoxazole (SXT) was standardized for 1000 patient-days, while systemic antibiotic use was expressed as defined daily doses (DDDs) per 100 patient-days. Mean incidence density for SM infections was 0.42/1000 patient-days; 11.08% were were resistant to SXT, the mean incidence density for SXT-resistant SM was 0.047/1000 patient-days. Consumption rate for colistin, glycopeptides and carbapenems increased by 258.82, 278.94 and 372.72% from 2010 to 2019, respectively. Strong and significant positive correlations were observed with the consumption of carbapenems (r: 0.8759; P < 0.001 and r: 0.8968; P < 0.001), SXT (r: 0.7552; P = 0.011 and r: 0.7004; P = 0.024), and glycopeptides (r: 0.7542; P = 0.012 and r: 0.8138; P < 0.001) with SM and SXT-resistant SM incidence-density/1000 patient-days, respectively. Implementation of institutional carbapenem-sparing strategies are critical in preserving these life-saving drugs, and may affect the microbial spectrum of infections in clinical settings.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Tisza Lajos krt. 64-66., Hungary
| | - Mária Matuz
- Central Pharmacy Department, Albert Szent-Györgyi Medical Center, University of Szeged, 6725 Szeged, Semmelweis utca 6., Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Szikra utca 8., Hungary
| | - Benkő Ria
- Central Pharmacy Department, Albert Szent-Györgyi Medical Center, University of Szeged, 6725 Szeged, Semmelweis utca 6., Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Szikra utca 8., Hungary
- Department of Emergency Medicine, Albert Szent-Györgyi Medical Center, University of Szeged, 6725 Szeged, Semmelweis utca 6., Hungary
| | - Zoltán Pető
- Department of Emergency Medicine, Albert Szent-Györgyi Medical Center, University of Szeged, 6725 Szeged, Semmelweis utca 6., Hungary
| | - Edit Hajdú
- Department of Internal Medicine Infectiology Unit, Albert Szent-Györgyi Clinical Centre, University of Szeged, 6725 Szeged, Állomás Street 1–3, Hungary
| |
Collapse
|
4
|
Mokhtari Bibalan M, Mojtahedi A, Mahdieh N, Jafari A, Atrkar Roushan Z, Arya MJ. Evaluation of the presence of integrons, sul and smqnr genes and the prevalence of antibiotic resistance in Stenotrophomonas maltophilia clinical isolates. Indian J Med Microbiol 2024; 49:100612. [PMID: 38750966 DOI: 10.1016/j.ijmmb.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/26/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVES The objective of this investigation was to examine the mechanisms associated with antibiotic resistance in Stenotrophomonas maltophilia clinical isolates retrieved from hospitalized patients undergoing open heart surgery in a Heart Center located in Tehran, Iran. MATERIALS AND METHODS This investigation encompassed a cross-sectional study of 60 S. maltophilia isolates, which were procured from diverse clinical specimens. Primary identification of the isolates was conducted through conventional microbiologic methods and subsequently verified by means of PCR primers. The E-test was utilized to establish the minimum inhibitory concentrations (MICs). PCR was then employed to ascertain the antibiotic resistance genes (sul1, sul2, Smqnr and intl1 - intl3). RESULTS In this study, a total of sixty clinical isolates of S. maltophilia were collected, with the majority of them being obtained from Intensive Care Units (ICU) (n = 54; 90%). The disk diffusion method yielded results indicating that 55% of the isolates were sensitive to minocycline, whereas 30% were intermediate and 15% were found to be resistant. Additionally, the MIC results revealed that the resistant rates of the isolates towards ceftazidime, cotrimoxazole and levofloxacin were 46.7%, 1.7% and 5%, respectively. The PCR amplification of three classes of integrons genes indicated that fifteen (25%) of the isolates carried int1, while no detection for intl2 and intl3 was reported. Furthermore, the prevalence of antibiotic resistance genes (sul1, sul2, and Smqnr) was identified in 15 (25%), 6 (10%), and 28 (46.7%) isolates, respectively. CONCLUSION The reported increasing rate of antibiotic resistance and mobile genetic elements that could extend the resistance genes to other strains in the hospital, finally it could be an alarming issue for healthcare settings that need special attention to this strain and the epidemiological study on this issue.
Collapse
Affiliation(s)
- Maryam Mokhtari Bibalan
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Jafari
- Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Zahra Atrkar Roushan
- Department of Biostatistics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
5
|
Bostanghadiri N, Sholeh M, Navidifar T, Dadgar-Zankbar L, Elahi Z, van Belkum A, Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2024; 23:26. [PMID: 38504262 PMCID: PMC10953290 DOI: 10.1186/s12941-024-00685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, BaseClear, Leiden, Netherlands
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Shahid S, Abid R, Ajmal W, Almuqbil M, Almadani ME, Khan Y, Ansari AA, Rani R, Alshehri A, Alghamdi A, Asdaq SMB, Ghazanfar S. Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. J Infect Public Health 2024; 17:236-244. [PMID: 38128408 DOI: 10.1016/j.jiph.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.
Collapse
Affiliation(s)
- Sara Shahid
- Department of Life Sciences, Abasyn University Islamabad Campus Pakistan, Pakistan
| | - Rameesha Abid
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad 44100, Pakistan
| | - Wajya Ajmal
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan.
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Moneer E Almadani
- Department of Clinical Medicine, College of Medicine, AlMaarefa University, Dariyah, 13713 Riyadh, Saudi Arabia
| | - Yasir Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan
| | - Adnan Ahmad Ansari
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 44100, Pakistan
| | - Rehana Rani
- Department of Life Sciences, Abasyn University Islamabad Campus Pakistan, Pakistan.
| | - Ahmed Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, P.O. Box 1988, Al-Baha, Saudi Arabia
| | | | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
7
|
de Miranda RVDSL, Monteiro GM, da Costa LV, Dos Santos MCS, Dos Reis CMF, Braga LMPDS, Forsythe SJ, Villas Bôas MHS, Brandão MLL. Evaluation of phenotypical and genotypical methods for the identification and typing of Stenotrophomonas maltophilia isolated from a pharmaceutical facility. J Appl Microbiol 2023; 134:lxad236. [PMID: 37838475 DOI: 10.1093/jambio/lxad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023]
Abstract
AIMS Evaluate methods for identification and typing of Stenotrophomonas maltophilia isolated from a pharmaceutical facility. METHODS AND RESULTS From 270 S. maltophilia strains identified by VITEK®2, 40 were selected and submitted to MALDI TOF-MS, 16S and 23S rRNA gene analysis, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and an antimicrobial susceptibility profile. 16S rRNA sequencing was able to identify 39 (97.5%) strains as Stenotrophomonas spp. and one (2.5%) as Luteimonas huabeiensis. MALDI TOF-MS identified 37 (92.5%) strains as S. maltophilia, and three (7.5%) were not identified. PCR targeting 23S rRNA yielded a positive result for 39 (97.5%) strains. However, after sequencing, two strains were identified as Stenotrophomonas rhizophila, showing false-positive results. The confirmed S. maltophilia strains (n = 37) showed 35 distinct ERIC-PCR profiles and exhibited sensitivity to minocycline and levofloxacin, and six (16.3%) showed intermediate resistance to sulfamethoxazole-trimethoprim. CONCLUSION Matrix-assisted laser desorption lonization-time of flight mass spectrometry (MALDI-TOF MS) was a satisfactory methodology for the identification of S. maltophilia, but expansion of the database is necessary for the identification of other species. 16S rDNA sequencing showed low resolution for Stenotrophomonas species differentiation. PCR targeting 23S rRNA could not differentiate S. maltophilia from S. rhizophila. ERIC-PCR was shown to be a useful tool for the microbial source tracking of S. maltophilia.
Collapse
Affiliation(s)
- Rebeca Vitória da Silva Lage de Miranda
- Laboratory of Microbiological Control, Bio-Manguinhos/Fiocruz, CEP 21040-900, Rio de Janeiro, Brazil
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, CEP 21040-900, Rio de Janeiro, Brazil
| | | | - Luciana Veloso da Costa
- Laboratory of Microbiological Control, Bio-Manguinhos/Fiocruz, CEP 21040-900, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Marcelo Luiz Lima Brandão
- Laboratory of Microbiological Control, Bio-Manguinhos/Fiocruz, CEP 21040-900, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Deilamani MO, Nikkhahi F, Bakht M, Ali Alizadeh S, Fardsanei F, Javadi A, Marashi SMA, Aslanimehr M, Peymani A. Evaluation of ethanol and EDTA concentrations in the expression of biofilm-producing smf-1, rpfF genes in XDR clinical isolates of Stenotrophomonas maltophilia. BMC Microbiol 2023; 23:277. [PMID: 37775770 PMCID: PMC10542227 DOI: 10.1186/s12866-023-03008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is able to cause infections in immunocompromised patients, and the treatment of this opportunistic pathogen is complicated due to its virulence factors, antibiotic resistance, and the ability of the bacteria to produce biofilm. The main goals of this study were to assess the susceptibility of extensively drug-resistant (XDR) isolates to ethanol and EDTA, and evaluating the synergistic effect of these disinfectants, and also survey the effect of exposure to sub-inhibitory concentrations of ethanol and EDTA on the expression of biofilm-producing smf-1, rpfF genes. RESULTS The results showed that EDTA significantly increased the effectiveness of the ethanol and have a synergistic effect. All of the 10 XDR isolates included in the current study harbored smf-1 and rpfF genes and produced biofilm. After exposure to MIC, sub-MIC, synergism, and sub-synergism of ethanol and EDTA, the expression of smf-1 and rpfF genes was repressed significantly. CONCLUSION In the current study, it was indicated that the expression of biofilm-producing genes was repressed when bacteria are exposed to different concentrations of ethanol and EDTA. Future studies should include more complex microbial communities residing in the hospitals, and more disinfectants use in hospitals. Expression of other virulence genes in different conditions is suggested.
Collapse
Affiliation(s)
- Mohadeseh Ostovari Deilamani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran.
| | - Amir Javadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
| | - Seyed Mahmoud Amin Marashi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
| | - Masoumeh Aslanimehr
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, PO Box: 34199-15315, Qazvin, Iran
| |
Collapse
|
9
|
Dadashi M, Hajikhani B, Nazarinejad N, Noorisepehr N, Yazdani S, Hashemi A, Hashemizadeh Z, Goudarzi M, Fatemeh S. Global prevalence and distribution of antibiotic resistance among clinical isolates of Stenotrophomonas maltophilia: A systematic review and meta-analysis. J Glob Antimicrob Resist 2023; 34:253-267. [PMID: 36906172 DOI: 10.1016/j.jgar.2023.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVES Stenotrophomonas maltophilia (S. maltophilia), an opportunistic pathogen, causes infection in patients undergoing immunosuppressive therapy, mechanical ventilation, or catheters and in long-term hospitalized patients. Due to its extensive resistance to various antibiotics and chemotherapeutic agents, S. maltophilia is challenging to treat. Using case reports, case series, and prevalence studies, the current study provides a systematic review and meta-analysis of antibiotic resistance profiles across clinical isolates of S. maltophilia. METHODS A systematic literature search was performed for original research articles published in Medline, Web of Science, and Embase databases from 2000 to 2022. Statistical analysis was performed using STATA 14 software to report antibiotic resistance of S. maltophilia clinical isolates worldwide. RESULTS 223 studies (39 case reports/case series and 184 prevalence studies) were collected for analysis. A meta-analysis of prevalence studies demonstrated that the most antibiotic resistance worldwide was to levofloxacin, trimethoprim-sulfamethoxazole (TMP/SMX), and minocycline (14.4%, 9.2%, and 1.4%, respectively). Resistance to TMP/SMX (36.84%), levofloxacin (19.29%), and minocycline (1.75%) were the most prevalent antibiotic resistance types found in evaluated case reports/case series studies. The highest resistance rate to TMP/SMX was reported in Asia (19.29%), Europe (10.52%), and America (7.01%), respectively. CONCLUSION Considering the high resistance to TMP/SMX, more attention should be paid to patients' drug regimens to prevent the emergence of multidrug-resistant S. maltophilia isolates.
Collapse
Affiliation(s)
- Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nooshin Nazarinejad
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Negin Noorisepehr
- Department of Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahrooz Yazdani
- Department of Cardiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Cardiovascular Research Center, Shahid Rajaei Educational and Medical Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sameni Fatemeh
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
Shao L, Liu X, Liu Y, Shen J, Liu R, Chen P. Dissemination and characterization of Stenotrophomonas maltophilia isolates from Dairy Cows in Northeast China. Pol J Microbiol 2023; 72:319-323. [PMID: 37725894 PMCID: PMC10508971 DOI: 10.33073/pjm-2023-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023] Open
Abstract
This work investigated the genetic relationship among Stenotrophomonas maltophilia strains in fecal samples from dairy cows in northeast China and identified the dominant β-lactamase genotype. One hundred and six samples were collected from two randomly selected cow farms in northeast China, and the isolates were identified with MALDI-TOF/MS. Whole-genome sequencing was conducted using Illumina HiSeq 4000-PE150 platform (Illumina, Inc., USA). The antimicrobial resistance genes were detected using CGE services. The phylogenetic analysis of S. maltophilia strains was performed by Roary and MEGA X. In total, 24 S. maltophilia isolates were isolated. The results of resistome analysis showed all S. maltophilia strains carrying bla L1 gene, which was the only β-lactamase genotype. In addition, the aminoglycoside resistance genes aac(6')-Iz and aph(3')-IIc were found. The phylogenetic tree indicated the clonal diversity of S. maltophilia in these two regions and the clonal relatedness of the strains from these regions. This study first investigated the dissemination and characterization of S. maltophilia isolates from dairy cows in northeast China and provided evidence of the potential transmission between two provinces. Furthermore, it indicated bla L1 was the most prevalent genotype of β-lactamase in these regions.
Collapse
Affiliation(s)
- Lanjun Shao
- Health Management Center, The Third Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou, China
| | - Xiaojing Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yi Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Pingnan Chen
- Department of Laboratory Medicine, Pingguo People's Hospital, Baise, China
| |
Collapse
|
11
|
Meng W, Qiao K, Liu F, Gao X, Hu X, Liu J, Gao Y, Zhu J. Construction and application of a new CRISPR/Cas12a system in Stenotrophomonas AGS-1 from aerobic granular sludge. Biotechnol J 2023; 18:e2200596. [PMID: 37288647 DOI: 10.1002/biot.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Aerobic granular sludge (AGS) is a microbial aggregate with a biofilm structure. Thus, investigating AGS in the aspect of biofilm and microbial attachment at the genetic level would help to reveal the mechanism of granule biofilm formation. In this work, a two-plasmid clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas)12a genome editing system was constructed to identify attachment genes for the first time in Stenotrophomonas AGS-1 from AGS. One plasmid contained a Cas12a cassette driven by an arabinose-inducible promoter, and another contained the specific crRNA and homologous arms (HAs). Acidaminococcus sp. Cas12a (AsCas12a) was adopted and proven to have mild toxicity (compared to Cas9) and strong cleavage activity for AGS-1. CRISPR/Cas12a-mediated rmlA knockout decreased attachment ability by 38.26%. Overexpression of rmlA in AGS-1 resulted in an increase of 30.33% in attachment ability. These results showed that the modulation of rmlA was an important factor for the biofilm formation of AGS-1. Moreover, two other genes (xanB and rpfF) were knocked out by CRISPR/Cas12a and identified as attachment-related genes in AGS-1. Also, this system could achieve point mutations. These data indicated that the CRISPR/Cas12a system could be an effective molecular platform for attachment gene function identification, which would be useful for the development of AGS in wastewater treatment.
Collapse
Affiliation(s)
- Wei Meng
- School of Environment, Beijing Normal University, Beijing, China
- R & D Centre of Aerobic Granule Technology, Beijing, China
| | - Kai Qiao
- School of Environment, Beijing Normal University, Beijing, China
- State Key Laboratory of Water Simulation, Beijing, China
| | - Fan Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Xu Gao
- School of Environment, Beijing Normal University, Beijing, China
| | - Xuan Hu
- School of Environment, Beijing Normal University, Beijing, China
- State Key Laboratory of Water Simulation, Beijing, China
| | - Jia Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Yiyun Gao
- School of Environment, Beijing Normal University, Beijing, China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing, China
- R & D Centre of Aerobic Granule Technology, Beijing, China
| |
Collapse
|
12
|
Sameni F, Hajikhani B, Hashemi A, Owlia P, Niakan M, Dadashi M. The Relationship between the Biofilm Genes and Antibiotic Resistance in Stenotrophomonas maltophilia. Int J Microbiol 2023; 2023:8873948. [PMID: 37692920 PMCID: PMC10484654 DOI: 10.1155/2023/8873948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Today, Stenotrophomonas maltophilia (S. maltophilia) is a major opportunistic pathogen among hospitalized or immunocompromised patients. Antibiotic-resistant clinical isolates are increasing in several parts of the world. Various antibiotic-resistance and biofilm-forming genes are identified in this bacterium. Its capacity to form biofilms is an important virulence factor that may impact antibiotic-resistance patterns. In the current study, we evaluated the biofilm-formation capacity, antibiotic-resistance profile, and prevalence of biofilm-forming genes as well as antibiotic resistance genes among S. maltophilia isolates. Materials and Methods In this cross-sectional study, 94 clinical S. maltophilia isolates were recovered from four tertiary-care hospitals in Iran between 2021 and 2022. The presence of the selected antibiotic-resistance genes and biofilm-forming genes was examined by polymerase chain reaction (PCR). The ability of biofilm formation was examined by microtiter plate assay. The Kirby-Bauer disc diffusion method was used to evaluate the trimethoprim-sulfamethoxazole (TMP-SMX), levofloxacin, and minocycline resistance. Results S. maltophilia is mainly isolated from bloodstream infections. Notably, 98.93% of isolates were biofilm producers, of which 19.35%, 60.22%, and 20.43% produced strong, moderate, and weak biofilm, respectively. The frequency of biofilm genes was 100%, 97.88%, 96.80%, and 75.53% for spgM, rmlA, smf-1, and rpfF, respectively. Isolates with the genotype of smf-1+/rmlA+/spgM+/rpfF+ were mostly strong biofilm producers. Among the antibiotic-resistance genes, the Smqnr, L1, and sul1 had the highest prevalence (76.59%, 72.34%, and 64.89), respectively. Antimicrobial susceptibility evaluation showed 1.06%, 3.19%, and 6.3% resistance to minocycline, TMP-SMX, and levofloxacin. Conclusion The results of the current study demonstrated that S. maltophilia isolates differ in biofilm-forming ability. Moreover, smf-1, rmlA, and spgM genes were presented in all strong biofilm producers. Although the overall resistance rate to the evaluated antibiotics was high, there was no statistically significant relation between antibiotic resistance and the type of biofilm.
Collapse
Affiliation(s)
- Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Owlia
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mohammad Niakan
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
13
|
Su BA, Chen CC, Chen HJ, Lai HY, Tsai CH, Lai CC, Tang HJ, Chao CM. In vitro activities of antimicrobial combinations against planktonic and biofilm forms of Stenotrophomonas maltophilia. Front Microbiol 2023; 14:1186669. [PMID: 37408643 PMCID: PMC10319008 DOI: 10.3389/fmicb.2023.1186669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Objectives To investigate the in vitro activity of antibiotic combinations against Stenotrophomonas maltophilia isolates and their associated biofilms. Methods Thirty-two S. maltophilia clinical isolates with at least twenty-five different pulsotypes were tested. The antibacterial activity of various antibiotic combinations against seven randomly selected planktonic and biofilm-embedded S. maltophilia strains with strong biofilm formation was assessed using broth methods. Extraction of bacterial genomic DNA and PCR detection of antibiotic resistance and biofilm-related genes were also performed. Results The susceptibility rates of levofloxacin (LVX), fosfomycin (FOS), tigecycline (TGC) and sulfamethoxazole-trimethoprim (SXT) against 32 S. maltophilia isolates were 56.3, 71.9, 71.9 and 90.6%, respectively. Twenty-eight isolates were detected with strong biofilm formation. Antibiotic combinations, including aztreonam-clavulanic (ATM-CLA) with LVX, ceftazidime-avibactam (CZA) with LVX and SXT with TGC, exhibited potent inhibitory activity against these isolates with strong biofilm formation. The antibiotic resistance phenotype might not be fully caused by the common antibiotic-resistance or biofilm-formation gene. Conclusion S. maltophilia remained resistant to most antibiotics, including LVX and β-lactam/β-lactamases; however, TGC, FOS and SXT still exhibited potent activity. Although all tested S. maltophilia isolates exhibited moderate-to-strong biofilm formation, combination therapies, especially ATM-CLA with LVX, CZA with LVX and SXT with TGC, exhibited a higher inhibitory activity for these isolates.
Collapse
Affiliation(s)
- Bo-An Su
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | - Hung-Jui Chen
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsin-Yu Lai
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Hung Tsai
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Taiwan
| |
Collapse
|
14
|
Banar M, Sattari-Maraji A, Bayatinejad G, Ebrahimi E, Jabalameli L, Beigverdi R, Emaneini M, Jabalameli F. Global prevalence and antibiotic resistance in clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1163439. [PMID: 37215718 PMCID: PMC10196134 DOI: 10.3389/fmed.2023.1163439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Stenotrophomonas maltophilia is a little-known environmental opportunistic bacterium that can cause broad-spectrum infections. Despite the importance of this bacterium as an emerging drug-resistant opportunistic pathogen, a comprehensive analysis of its prevalence and resistance to antibiotics has not yet been conducted. Methods A systematic search was performed using four electronic databases (MEDLINE via PubMed, Embase, Scopus, and Web of Science) up to October 2019. Out of 6,770 records, 179 were documented in the current meta-analysis according to our inclusion and exclusion criteria, and 95 studies were enrolled in the meta-analysis. Results Present analysis revealed that the global pooled prevalence of S. maltophilia was 5.3 % [95% CI, 4.1-6.7%], with a higher prevalence in the Western Pacific Region [10.5%; 95% CI, 5.7-18.6%] and a lower prevalence in the American regions [4.3%; 95% CI, 3.2-5.7%]. Based on our meta-analysis, the highest antibiotic resistance rate was against cefuroxime [99.1%; 95% CI, 97.3-99.7%], while the lowest resistance was correlated with minocycline [4·8%; 95% CI, 2.6-8.8%]. Discussion The results of this study indicated that the prevalence of S. maltophilia infections has been increasing over time. A comparison of the antibiotic resistance of S. maltophilia before and after 2010 suggested there was an increasing trend in the resistance to some antibiotics, such as tigecycline and ticarcillin-clavulanic acid. However, trimethoprim-sulfamethoxazole is still considered an effective antibiotic for treating S. maltophilia infections.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Sattari-Maraji
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Bayatinejad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Ebrahimi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Leila Jabalameli
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Genotypic Diversity, Antibiotic Resistance, and Virulence Phenotypes of Stenotrophomonas maltophilia Clinical Isolates from a Thai University Hospital Setting. Antibiotics (Basel) 2023; 12:antibiotics12020410. [PMID: 36830320 PMCID: PMC9951947 DOI: 10.3390/antibiotics12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant organism that is emerging as an important opportunistic pathogen. Despite this, information on the epidemiology and characteristics of this bacterium, especially in Thailand, is rarely found. This study aimed to determine the demographic, genotypic, and phenotypic characteristics of S. maltophilia isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand. A total of 200 S. maltophilia isolates were collected from four types of clinical specimens from 2015 to 2016 and most of the isolates were from sputum. In terms of clinical characteristics, male and aged patients were more susceptible to an S. maltophilia infection. The majority of included patients had underlying diseases and were hospitalized with associated invasive procedures. The antimicrobial resistance profiles of S. maltophilia isolates showed the highest frequency of resistance to ceftazidime and the lower frequency of resistance to chloramphenicol, levofloxacin, trimethoprim/sulfamethoxazole (TMP/SMX), and no resistance to minocycline. The predominant antibiotic resistance genes among the 200 isolates were the smeF gene (91.5%), followed by blaL1 and blaL2 genes (43% and 10%), respectively. Other antibiotic resistance genes detected were floR (8.5%), intI1 (7%), sul1 (6%), mfsA (4%) and sul2 (2%). Most S. maltophilia isolates could produce biofilm and could swim in a semisolid medium, however, none of the isolates could swarm. All isolates were positive for hemolysin production, whereas 91.5% and 22.5% of isolates could release protease and lipase enzymes, respectively. In MLST analysis, a high degree of genetic diversity was observed among the 200 S. maltophilia isolates. One hundred and forty-one sequence types (STs), including 130 novel STs, were identified and categorized into six different clonal complex groups. The differences in drug resistance patterns and genetic profiles exhibited various phenotypes of biofilm formation, motility, toxin, and enzymes production which support this bacterium in its virulence and pathogenicity. This study reviewed the characteristics of genotypes and phenotypes of S. maltophilia from Thailand which is necessary for the control and prevention of S. maltophilia local spreading.
Collapse
|
16
|
Efficacy in Galleria mellonella Larvae and Application Potential Assessment of a New Bacteriophage BUCT700 Extensively Lyse Stenotrophomonas maltophilia. Microbiol Spectr 2023; 11:e0403022. [PMID: 36700630 PMCID: PMC9927281 DOI: 10.1128/spectrum.04030-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In recent years, Stenotrophomonas maltophilia (S. maltophilia) has become an important pathogen of clinically acquired infections accompanied by high pathogenicity and high mortality. Moreover, infections caused by multidrug-resistant S. maltophilia have emerged as a serious challenge in clinical practice. Bacteriophages are considered a promising alternative for the treatment of S. maltophilia infections due to their unique antibacterial mechanism and superior bactericidal ability compared with traditional antibiotic agents. Here, we reported a new phage BUCT700 that has a double-stranded DNA genome of 43,214 bp with 70% GC content. A total of 55 ORFs and no virulence or antimicrobial resistance genes were annotated in the genome of phage BUCT700. Phage BUCT700 has a broad host range (28/43) and can lyse multiple ST types of clinical S. maltophilia (21/33). Furthermore, bacteriophage BUCT700 used the Type IV fimbrial biogenesis protein PilX as an adsorption receptor. In the stability test, phage BUCT700 showed excellent thermal stability (4 to 60°C) and pH tolerance (pH = 4 to 12). Moreover, phage BUCT700 was able to maintain a high titer during long-term storage. The adsorption curve and one-step growth curve showed that phage BUCT700 could rapidly adsorb to the surface of S. maltophilia and produce a significant number of phage virions. In vivo, BUCT700 significantly increased the survival rate of S. maltophilia-infected Galleria mellonella (G. mellonella) larvae from 0% to 100% within 72 h, especially in the prophylactic model. In conclusion, these findings indicate that phage BUCT700 has promising potential for clinical application either as a prophylactic or therapeutic agent. IMPORTANCE The risk of Stenotrophomonas maltophilia infections mediated by the medical devices is exacerbated with an increase in the number of ICU patients during the Corona Virus Disease 2019 (COVID-19) epidemic. Complications caused by S. maltophilia infections could complicate the state of an illness, greatly extending the length of hospitalization and increasing the financial burden. Phage therapy might be a potential and promising alternative for clinical treatment of multidrug-resistant bacterial infections. Here, we investigated the protective effects of phage BUCT700 as prophylactic and therapeutic agents in Galleria mellonella models of infection, respectively. This study demonstrates that phage therapy can provide protection in targeting S. maltophilia-related infection, especially as prophylaxis.
Collapse
|
17
|
Song JE, Kim S, Kwak YG, Shin S, Um TH, Cho CR, Chang J. A 20-year trend of prevalence and susceptibility to trimethoprim/sulfamethoxazole of Stenotrophomonas maltophilia in a single secondary care hospital in Korea. Medicine (Baltimore) 2023; 102:e32704. [PMID: 36705390 PMCID: PMC9875982 DOI: 10.1097/md.0000000000032704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can cause serious infection. We aimed to analyze the prevalence and susceptibility rates to trimethoprim/sulfamethoxazole of S. maltophilia. We conducted a retrospective study of S. maltophilia isolates from a university hospital from 2001 to 2020. Clinical information, the numbers of isolates and susceptibility rates were analyzed by year. Susceptibility rates and changes in respiratory and non-respiratory samples were compared. 1805 S. maltophilia isolates were identified, of which 81.4% (1469/1805) were from respiratory samples. There was a male predominance and 52% of the isolates were from general wards. The average susceptibility rate was 87.7% and there was no significant annual trend (P = .519). The susceptibility rate was 88.7% in respiratory samples and 84.1% in non-respiratory samples (P = .018). Susceptibility analyses using clinical data over long periods can guide the choice of antimicrobials especially for pathogen whose treatment options are limited.
Collapse
Affiliation(s)
- Je Eun Song
- Inje University Ilsan Paik Hospital, Infectious Diseases, Internal Medicine, Goyang, Republic of Korea
| | - Sollip Kim
- Asan Medical Center, University of Ulsan College of Medicine, Department of Laboratory Medicine, Seoul, Republic of Korea
| | - Yee Gyung Kwak
- Inje University Ilsan Paik Hospital, Infectious Diseases, Internal Medicine, Goyang, Republic of Korea
| | - Sunghwan Shin
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Tae-Hyun Um
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Chong Rae Cho
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Jeonghyun Chang
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
- * Correspondence: Jeonghyun Chang, Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, 170, Juhwa-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10380, Republic of Korea (e-mail: )
| |
Collapse
|
18
|
Zhang S, Yang G, Jiang Y. Antibiotic and metal resistance of Stenotrophomonas maltophilia isolates from Eboling permafrost of the Tibetan Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11798-11810. [PMID: 36097311 DOI: 10.1007/s11356-022-22888-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Whole-genome sequencing of pathogenic bacteria Stenotrophomonas maltophilia from a less polluted environment of permafrost can help understand the intrinsic resistome of both antibiotics and metals. This study aimed to examine the maximum minimum inhibitory concentration (MIC) of both antibiotics and metals, as well as antibiotic resistance genes and metal resistance genes annotated from whole-genome sequences. The permafrost S. maltophilia was sensitive to ciprofloxacin, tetracycline, streptomycin, and bacitracin, and resistant to chloramphenicol, trimethoprim-sulfamethoxazole, erythromycin, Zn2+, Ni2+, Cu2+, and Cr6+, with a lower maximum MIC, compared with clinical S. maltophilia. The former strain belonged to the lower antibiotic resistance gene (ARG) and metal resistance gene (MRG) clusters compared with the latter ones. The permafrost strain contained no or only one kind of ARG or MRG on a single genomic island, which explained the aforementioned lower maximum MIC and less diversity of ARGs or MRGs. The result indicated that the co-occurrence of antibiotic and metal resistance was due to a certain innate ability of S. maltophilia. The continuous human use of antibiotics or metals induced selective pressure, resulting in higher MIC and more diverse ARGs and MRGs in human-impacted environments.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Yali Jiang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
19
|
Anari RK, Nikkhahi F, Javadi A, Bakht M, Rostamani M, Kelishomi FZ, Alizadeh SA. Evaluation of antibacterial activity of five biocides and the synergistic effect of biocide/EDTA combinations on biofilm-producing and non-producing Stenotrophomonas maltophilia strains isolated from clinical specimens in Iran. BMC Microbiol 2022; 22:257. [PMID: 36271327 PMCID: PMC9585780 DOI: 10.1186/s12866-022-02664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background The overuse of biocides in healthcare-facilities poses risk for emergence and spread of antibiotic resistance among nosocomial pathogens. Hospital-acquired infections due to S. maltophilia have been increased in the recent years and with its various resistance mechanisms contribute to patient morbidity and mortality in hospitals. The current study aimed to evaluate the susceptibility of biofilm-producing and non-producing S. maltophilia clinical isolates to five commonly used hospital biocides, alone and in combination with EDTA to examine the synergistic effect of combining EDTA on the bactericidal activity of them by microbroth dilution method. As well as the frequency of efflux genes encoding resistance to biocides among isolates. This study also intended to assess the effect of exposure of S. maltophilia isolates to sub-inhibitory concentrations of sodium hypochlorite upon the antimicrobial susceptibility patterns. Results Based on minimum inhibitory and bactericidal concentrations of biocides sodium hypochlorite 5% (w/v) and ethyl alcohol 70% (v/v) were the strongest and weakest biocides against S. maltophilia isolates, respectively. The combination of EDTA with biocides significantly increased the effectiveness of the studied biocides. Exposure to sub-inhibitory concentration of sodium hypochlorite showed a significant change in the susceptibility of isolates towards ceftazidime (p = 0.019), ticarcillin/clavulanate (p = 0.009), and chloramphenicol (p = 0.028). As well as among the isolates examined, 94 (95%) were able to produce biofilm. The frequency of sugE1 resistance genes was found in 90.7% of our clinical S. maltophilia isolates. None of the isolates carried qacE and qacEΔ1 gene. Conclusions The current study recommended that using the mixture of biocides with EDTA can be effective in reducing nosocomial infections. Also, this study demonstrated that exposure to sub-inhibitory concentrations of sodium hypochlorite leads to reduced antibiotic susceptibility and development of multidrug-resistant S. maltophilia strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02664-1.
Collapse
Affiliation(s)
- Raana Kazemzadeh Anari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Biostatics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Rostamani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Zeynali Kelishomi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
20
|
Jia J, Zhu Z, Xue X, Li X, Wang Z. Selective pressure governs the composition, antibiotic, and heavy metal resistance profiles of Aeromonas spp. isolated from Ba River in Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75841-75850. [PMID: 35657546 DOI: 10.1007/s11356-022-20678-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The selective pressure of the living surroundings is a key factor in the development of resistance profiles in pathogenic bacteria such as Aeromonas spp. In this study, Aeromonas species were isolated from the Ba River, and their composition, resistance profiles to antibiotics, and heavy metals (HMs) were investigated. The discovery revealed that selective pressure altered the diversity of Aeromonas spp., with Aeromonas veronii being more adaptable to contaminated waters. Long-term exposure to antibiotics or HMs exerts persistent selective pressure on Aeromonas species, leading to the increase in multiple antibiotic resistance (MAR) index and multidrug-resistant (MDR) strains. Furthermore, HMs could drive the co-selection of antibiotic resistance via co-resistance or cross-resistance. blaTEM, blaSHV, blaCTX-M, sul1, czcA, mexA, and mexF were detected at high frequencies in Aeromonas species. Among these resistance phenotypes conferred genes, blaTEM may be intrinsic in the genome of Aeromonas spp., while mexA and mexF may have been acquired from surrounding environments owing to selective pressure. Resistance genes evolved as a consequence of selective pressure and have been shown to be positively correlated with their prevalence. Our study suggests that the selective pressure of living surroundings significantly contributes to the composition and resistance profiles of Aeromonas spp. in the riverine ecosystem.
Collapse
Affiliation(s)
- Jia Jia
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zeliang Zhu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xue Xue
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xuening Li
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Majumdar R, Hariharan K, Vaishnavi S, Sugumar S. Review on Stenotrophomonas maltophilia: an emerging multidrug-resistant opportunistic pathogen. Recent Pat Biotechnol 2022; 16:329-354. [PMID: 35549857 DOI: 10.2174/1872208316666220512121205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that results in nosocomial infections in immunocompromised individuals. These bacteria colonize on the surface of medical devices and therapeutic equipment like urinary catheters, endoscopes, and ventilators, causing respiratory and urinary tract infections. The low outer membrane permeability of multidrug-resistance efflux systems and the two chromosomally encoded β-lactamases present in S.maltophilia are challenging for arsenal control. The cell-associated and extracellular virulence factors in S.maltophilia are involved in colonization and biofilm formation on the host surfaces. The spread of antibiotic-resistant genes in the pathogenic S.maltophilia attributes to bacterial resistance against a wide range of antibiotics, including penicillin, quinolones, and carbapenems. So far, tetracycline derivatives, fluoroquinolones, and trimethoprim-sulfamethoxazole (TMP-SMX) are considered promising antibiotics against S.maltophilia. Due to the adaptive nature of the intrinsically resistant mechanism towards the number of antibiotics and its ability to acquire new resistance via mutation and horizontal gene transfer, it is quite tricky for medicinal contribution against S.maltophilia. The current review summarizes the literary data of pathogenicity, quorum sensing, biofilm formation, virulence factors, and antibiotic resistance of S.maltophilia.
Collapse
Affiliation(s)
- Rikhia Majumdar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - K Hariharan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - S Vaishnavi
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Shobana Sugumar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| |
Collapse
|
22
|
Stenotrophomonas maltophilia: Genotypic Characterization of Virulence Genes and The Effect of Ascorbic Acid on Biofilm Formation. Curr Microbiol 2022; 79:180. [PMID: 35508743 PMCID: PMC9068641 DOI: 10.1007/s00284-022-02869-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/08/2022] [Indexed: 11/03/2022]
Abstract
Stenotrophomonas maltophilia is an environmental bacterium that has gained a lot of attention, as a nosocomial pathogen associated with significant mortality rates. Biofilm formation is considered the corner stone for establishing infections in many bacteria including S. maltophilia. The aim of this study was the genotypic characterization of the different virulence-associated genes and the investigation of the effect of ascorbic acid on S. maltophilia biofilm formation. A total of 20 S. maltophilia isolates from different sources were included in this study. Genes encoding different virulence factors were investigated genotypically. These included stmPr1, stmPr2, smlt3773 locus, smf-1, rpfF, rmlA and spgM. Biofilm formation was investigated phenotypically. The effect of ascorbic acid on biofilm formation was investigated using MIC as well as sub-inhibitory concentrations. Many of the isolates harbored both serine proteases genes stmPr-1 and stmPr-2. Fourteen (70%) of the 20 isolates carried stmPr-1 and 15 (75%) had stmPr-2. Most of the isolates (95%) possessed smlt-3773 locus. Genes linked to biofilm formation such as smf-1, rpfF, rmlA and spgM, were found in (90%), (45%), (85%) and (30%) of the isolates, respectively. Phenotypically, all S. maltophilia isolates (100%) were biofilm producers. Fifteen (75%) were strong biofilm producers and 5 (25%) were moderate biofilm producers. In attempts to seek a non-chemotherapeutic alternative that can hinder biofilm formation without provoking antimicrobial resistance, the results, herein, showed that ascorbic acid inhibits biofilm formation in a dose-dependent manner.
Collapse
|
23
|
Multilocus Sequence Typing for Molecular Epidemiology of Stenotrophomonas maltophilia Clinical and Environmental Isolates from a Tertiary Hospital in West of Iran. IRANIAN BIOMEDICAL JOURNAL 2022; 26:142-52. [PMID: 35032967 PMCID: PMC8987417 DOI: 10.52547/ibj.26.2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Stenotrophomonas maltophilia is an opportunistic bacterium, contributing to different hospital-acquired infections and can be acquired from different hospital setting sources. Epidemiological study of S. maltophilia in the hospital also demonstrates the intrahospital distribution of certain strains of bacteria in healthcare facilities. The aim of the current study was to identify the molecular epidemiology of S. maltophilia isolates from clinical and environmental sources within a hospital. Methods A total of 400 samples (clinical and environmental) were collected from the different settings of hospital. Following the standard biochemical testing and 23S rRNA genotyping, the molecular typing of S. maltophilia isolates was determined using the multilocus sequence typing (MLST) technique. Also, the frequencies of zot and entF virulence genes among S. maltophilia isolates were examined by PCR technique. Results Based on the biochemical testes and PCRs targeting 23S rRNA gene, 22 S. maltophilia isolates were identified. The MLST analysis demonstrated that these isolates were assigned to 14 ST, and 6 out of 14 STs were common among clinical and environmental samples. All 22 isolates were identified in the PubMLST database. The PCR screening demonstrated that none of 22 S. maltophilia isolates had zot virulence gene, while the entF gene with the 59% frequency was observed in 13 out of 22 isolates. Among these 13 isolates, 6 STs were common in clinical and environmental isolates. Conclusion Our study showed the clonal relatedness between clinical and environmental sources of the S. maltophilia isolates in a hospital. Further studies are required to understand the epidemic situation of this pathogen in the clinic and the environment.
Collapse
|
24
|
Alcaraz E, Ghiglione B, Pineda MV, Mangano A, Di Conza J, Passerini de Rossi B. AmpR is a dual regulator in Stenotrophomonas maltophilia with a positive role in β-lactam resistance and a negative role in virulence, biofilm and DSF production. Res Microbiol 2021; 173:103917. [PMID: 34890712 DOI: 10.1016/j.resmic.2021.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
Stenotrophomonas maltophilia intrinsic resistance to β-lactams is mediated by two chromosomal β-lactamases, L1 and L2, whose induction depends on AmpR. Its quorum sensing (QS) signal, the diffusible signal factor (DSF), has a positive role in biofilm production, virulence and induction of β-lactamases. We hypothesized that AmpR has a role in virulence, biofilm production and QS system. Studies were done on S. maltophilia K279a, K279a ampRFS (ampR deficient mutant) and K279aM11 (constitutively active AmpR mutant). K279a ampRFS showed the highest biofilm biomass, thickness and 3D organization. Conversely, K279aM11 was the least efficient biofilm former strain. qRT-PCR showed that spgM, related to biofilm formation and virulence, was upregulated in K279a ampRFS and downregulated in K279aM11. A constitutively active AmpR led to a reduction of DSF production, while K279a ampRFS was the highest producer. Consequently, qRT-PCR showed that AmpR negatively regulated rpfF expression. K279a ampRFS presented the highest oxidative stress resistance, overexpressed sodA gene and showed the highest virulence in the Galleria mellonella killing assay. This is the first evidence of the function of AmpR as a dual regulator in S. maltophilia with a positive role in β-lactam resistance and a negative role in DSF production, biofilm formation, oxidative stress resistance and virulence.
Collapse
Affiliation(s)
- Eliana Alcaraz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Junín 956, 1113, Argentina.
| | - Barbara Ghiglione
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Junín 956, 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Verónica Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Junín 956, 1113, Argentina; Unidad de Virología y Epidemiología Molecular-CONICET- Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Combate de los Pozos 1881, 1245, Argentina.
| | - Andrea Mangano
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Junín 956, 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Unidad de Virología y Epidemiología Molecular-CONICET- Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Combate de los Pozos 1881, 1245, Argentina.
| | - José Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Junín 956, 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Beatriz Passerini de Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Junín 956, 1113, Argentina.
| |
Collapse
|
25
|
Kumwenda GP, Kasambara W, Chizani K, Phiri A, Banda A, Choonara F, Lichapa B. A multidrug-resistant Stenotrophomonas maltophilia clinical isolate from Kamuzu Central Hospital, Malawi. Malawi Med J 2021; 33:82-84. [PMID: 34777703 PMCID: PMC8560359 DOI: 10.4314/mmj.v33i2.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Stenotrophomonas maltophilia is a significant opportunistic pathogen that is associated with high mortality in immunocompromised individuals. In this study, we describe a multidrug-resistant (MDR) S. maltophilia clinical isolate from Kamuzu Central Hospital (KCH), Lilongwe, Malawi. Methods A ceftriaxone and meropenem nonsusceptible isolate (Sm-MW08), recovered in December 2017 at KCH, was referred to the National Microbiology Reference Laboratory for identification. In April 2018, we identified the isolate using MALDI Biotyper mass spectrometry and determined its antimicrobial susceptibility profile using microdilution methods. Sm-MW08 was analysed by S1-PFGE, PCR, and Sanger sequencing, in order to ascertain the genotypes that were responsible for the isolate's multidrug-resistance (MDR) phenotype. Results Sm-MW08 was identified as S. maltophilia and exhibited resistance to a range of antibiotics, including all β-lactams, aminoglycosides (except arbekacin), chloramphenicol, minocycline, fosfomycin and fluoroquinolones, but remained susceptible to colistin and trimethoprim-sulfamethoxazole. The isolate did not harbour any plasmid but did carry chromosomally-encoded blaL1 metallo-β-lactamase and blaL2 β-lactamase genes; this was consistent with the isolate's resistance profile. No other resistance determinants were detected, suggesting that the MDR phenotype exhibited by Sm-MW08 was innate. Conclusion Herein, we have described an MDR S. maltophilia from KCH in Malawi, that was resistant to almost all locally available antibiotics. We therefore recommend the practice of effective infection prevention measures to curtail spread of this organism.
Collapse
Affiliation(s)
| | - Watipaso Kasambara
- Ministry of Health, Microbiology National Reference Laboratory, Lilongwe, Malawi
| | - Kenneth Chizani
- Ministry of Health, Microbiology National Reference Laboratory, Lilongwe, Malawi
| | - Abel Phiri
- Ministry of Health, Microbiology National Reference Laboratory, Lilongwe, Malawi
| | - Alick Banda
- Ministry of Health, Microbiology National Reference Laboratory, Lilongwe, Malawi
| | - Faheema Choonara
- Ministry of Health, Kamuzu Central Hospital Laboratory, Lilongwe, Malawi
| | | |
Collapse
|
26
|
Baseri Z, Dehghan A, Yaghoubi S, Razavi S. Prevalence of resistance genes and antibiotic resistance profile among Stenotrophomonas maltophilia isolates from hospitalized patients in Iran. New Microbes New Infect 2021; 44:100943. [PMID: 34631110 PMCID: PMC8488590 DOI: 10.1016/j.nmni.2021.100943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 08/29/2021] [Indexed: 11/27/2022] Open
Abstract
Stenotrophomonas maltophilia has emerged as an important nosocomial pathogen. Treatment of S. maltophilia infections is difficult due to increasing resistance to multiple antibacterial agents. In this 12-month cross-sectional study, from 2017 to 2018, 117 isolates were obtained from different clinical sources and identified by conventional biochemical methods. Antibiotic susceptibility tests were performed according to CLSI 2018. Minocycline disk (30 μg) and E-test strips for ceftazidime, trimethoprim-sulfamethoxazole and chloramphenicol were used. PCR confirmed isolates. The frequency of different classes of integrons (I, II) and resistance gene cassettes (sul1, sul2, dfrA1, dfrA5 and aadB) were determined by PCR. The results showed the highest frequency of resistance to chloramphenicol and ceftazidime with 32 cases (27.11%). Among strains, 12 cases (10.25%) were resistant to trimethoprim-sulfamethoxazole (the lowest frequency of resistance), while 19 (16.1%) isolates were resistant to minocycline. Frequency of sul1, int1, aadB, sul2, dfrA5 genes were 64 (55.08%), 26 (22.3 %), 18 (15.25%) and 17 (14.4%), 14 (11.86%), respectively. int2 and dfrA1 were not detected. Although we have not yet reached a high level of resistance to effective antibiotics such as trimethoprim-sulfamethoxazole, as these resistances can be carried by a plasmid, greater precision should be given to the administration of these antibiotics.
Collapse
Affiliation(s)
- Z Baseri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A Dehghan
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - S Yaghoubi
- Department of Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sh Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Farhadi M, Ahanjan M, Goli HR, Haghshenas MR, Gholami M. High frequency of multidrug-resistant (MDR) Klebsiella pneumoniae harboring several β-lactamase and integron genes collected from several hospitals in the north of Iran. Ann Clin Microbiol Antimicrob 2021; 20:70. [PMID: 34583687 PMCID: PMC8479884 DOI: 10.1186/s12941-021-00476-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Klebsiella pneumoniae is one of the leading causes of hospital outbreaks worldwide. Also, antibiotic-resistant K. pneumoniae is progressively being involved in invasive infections with high morbidity and mortality. The aim of the current study was to determine antimicrobial susceptibility patterns and the incidence of resistance genes (integron types and β-lactamase-encoded genes) among clinical isolates of K. pneumoniae. Methods In this cross-sectional study, a total of 100 clinical samples were obtained from hospitalized patients in three teaching hospitals in the north of Iran, from November 2018 and October 2019. Antimicrobial susceptibility testing was performed using disk agar diffusion test in line with CLSI recommendations. For colistin, minimum inhibitory concentration (MIC) was determined using broth microdilution. Based on antibiogram, multi-drug resistant (MDR) and extensive-drug resistant (XDR) strains were detected. Finally, integron types and β-lactamase resistance genes were identified using polymerase chain reaction technique. Results The most and least clinical samples were related to the urine and bronchoalveolar lavage, respectively. Based on the antibiogram results, amikacin and gentamicin exhibited good activity against K. pneumoniae strains in vitro. The high resistance rate (93%) to ampicillin/sulbactam predicts the limited efficacy of this antibiotic, in the hospitals studied. Among all the 100 isolates, the frequency of MDR and XDR phenotypes were 58% and 13%, respectively, while no pan-drug resistant (PDR) strains were found. In the MDR K. pneumoniae strains, the prevalence of blaSHV, blaTEM, blaCTX-M-15, blaKPC, blaOXA-48, blaNDM β-lactamase genes were 91.4%, 82.7%, 79.3%, 29.3%, 36.2% and 6.9%, respectively, however 91.4% of the isolates were carrying intI gene. Class II and III integrons were not detected in any isolates. Conclusion The MDR K. pneumoniae is becoming a serious problem in hospitals, with many strains developing resistance to most available antimicrobials. Our results indicate co-presence of a series of β-lactamase and integron types on the MDR strains recovered from hospitalized patients. The increasing rate of these isolates emphasizes the importance of choosing an appropriate antimicrobial regimen based on antibiotic susceptibility pattern. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-021-00476-1.
Collapse
Affiliation(s)
- Mojgan Farhadi
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ahanjan
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Reza Haghshenas
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
28
|
Namaei MH, Yousefi M, Askari P, Roshanravan B, Hashemi A, Rezaei Y. High prevalence of multidrug-resistant non-fermentative Gram-negative bacilli harboring bla IMP-1 and bla VIM-1 metallo-beta-lactamase genes in Birjand, south-east Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:470-479. [PMID: 34557275 PMCID: PMC8421574 DOI: 10.18502/ijm.v13i4.6971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Non-fermentative Gram-negative Bacilli (NFGNB) is known as a major cause of healthcare-associated infections with high levels of antibiotic resistance. The aim of this study was to investigate the antibiotic resistance profiles and molecular characteristics of metallo-beta-lactamase (MBL)-producing NFGNB. Materials and Methods: In this cross-sectional study, the antibiotic resistance profile of 122 clinical NFGNB isolates was determined by the Kirby-Bauer disk diffusion and microdilution broth methods. Bacterial isolates were investigated for the detection of MBLs production using the combination disk diffusion Test (CDDT). The existence of blaIMP, blaVIM, and blaNDM genes in all carbapenem-resistant isolates was determined employing polymerase chain reaction (PCR) assays. Results: High resistance in Pseudomonas aeruginosa was reported to cefotaxime and minocycline, whereas Acinetobacter baumannii isolates were highly resistant to all antibiotics except colistin. Multidrug resistance (MDR)-NFGNB (66% vs. 12.5%, P=0.0004) and extensively drug resistant (XDR)-NFGNB (55.7% vs. 12.5%, P=0.001) isolates were significantly more common in hospitalized patients than in outpatients. The production of MBL was seen in 40% of P. aeruginosa and 93.3% of A. baumannii isolates. It was found that 33.3% and 46.7% of carbapenem-resistant P. aeruginosa isolates, and 13.3% and 28.9% of carbapenem-resistant A. baumannii isolates were harboring blaIMP-1 and blaVIM-1 genes, respectively. The incidence of MDR (98.2% vs. 28.3%, P<0.001) and XDR (96.4% vs. 11.7%, P<0.001) in MBL-producing NFGNB isolates was significantly higher than non-MBL-producing isolates. Conclusion: This study demonstrated a higher rate of resistance among NFGNB isolates with an additional burden of MBL production within them, warranting a need for robust microbiological surveillance and accurate detection of MBL producers among the NFGNB.
Collapse
Affiliation(s)
- Mohammad Hasan Namaei
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Yousefi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Parvin Askari
- Department of Microbiology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Rezaei
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
29
|
Elsheredy A, Elsheikh A, Ghazal A, Shawky S. Prevalence of trimethoprim/sulfamethoxazole resistance genes among Stenotrophomonas maltophilia clinical isolates in Egypt. Acta Microbiol Immunol Hung 2021; 69:56-60. [PMID: 34546967 DOI: 10.1556/030.2021.01568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Stenotrophomonas maltophilia is an important multidrug resistant nosocomial pathogen. Trimethoprim/sulfamethoxazole (TMP/SMX) is considered the drug of choice for treatment of S. maltophilia infections, thus emerging resistance to TMP/SMX poses a serious threat. In the present study we aimed to investigate the frequency of TMP/SMX resistance genes (sul1, sul2, dfrA), and to evaluate their relatedness with integron 1 (int1), and insertion sequence common regions (ISCR) among 100 S. maltophilia from different clinical isolates in Egypt. Isolates were identified biochemically and confirmed by VITEK2. Detection of sul1, sul2, and dfrA genes, int1 and ISCR elements was performed by PCR. Among the 16 TMP/SMX resistant isolates, sul1 gene was detected in all of them, and it was associated with int1 gene presence in all resistant isolates. The sul2 gene was detected in 6 out of 16 resistant isolates (37.5%), and only 2 of the 16 resistant isolates (12.5%) harboured dfrA gene. ISCR was detected in 10 of the resistant isolates (62.5%) and in 4 of them it was associated with the presence of sul2 gene. Among the 84 TMP/SMX sensitive isolates, sul1 gene was detected in 15 (17.8%), int1 in 16 (19%) and ISCR in 6 (7.1%). None of the susceptible isolates had sul2 or dfrA genes. These findings point out an increasing frequency of TMP/SMX resistance genes among S. maltophilia clinical isolates in our region, so the adoption of prudent use of S. maltophilia antimicrobial agents and the establishment of a surveillance system are desperately needed.
Collapse
Affiliation(s)
- Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Azza Elsheikh
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Abeer Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Sherine Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| |
Collapse
|
30
|
Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10091117. [PMID: 34572699 PMCID: PMC8467137 DOI: 10.3390/antibiotics10091117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.
Collapse
|
31
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
32
|
Azimi A, Rezaei F, Yaseri M, Jafari S, Rahbar M, Douraghi M. Emergence of fluoroquinolone resistance and possible mechanisms in clinical isolates of Stenotrophomonas maltophilia from Iran. Sci Rep 2021; 11:9582. [PMID: 33953262 PMCID: PMC8100118 DOI: 10.1038/s41598-021-88977-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Stenotrophomonas maltophilia exhibits wide spectrum of fluoroquinolone resistance using different mechanisms as multidrug efflux pumps and Smqnr alleles. Here, the role of smeDEF, smeVWX efflux genes and contribution of Smqnr alleles in the development of fluoroquinolone resistance was assessed. Ciprofloxacin, levofloxacin and moxifloxacin resistance were found in 10.9%, 3.5%, and 1.6% of isolates, respectively. More than four-fold differences in ciprofloxacin MICs were detected in the presence of reserpine and smeD, F, V expression was significantly associated with ciprofloxacin resistance (p = 0.017 for smeD, 0.003 for smeF, and 0.001 for smeV). Smqnr gene was found in 52% of the ciprofloxacin-resistant isolates and Smqnr8 was the most common allele detected. Fluoroquinolone resistance in S. maltophilia clinical isolates was significantly associated with active efflux pumps. There was no correlation between the Smqnr alleles and ciprofloxacin resistance; however, contribution of the Smqnr genes in low-level levofloxacin resistance was revealed.
Collapse
Affiliation(s)
- Akram Azimi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Poursina street, Enghelab-e-Eslami avenue, PO Box: 14155-6446, Tehran, Iran
| | - Farhad Rezaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirus Jafari
- Department of Infectious Diseases, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Reference Health Laboratories, Department of Microbiology, Ministry of Health, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Poursina street, Enghelab-e-Eslami avenue, PO Box: 14155-6446, Tehran, Iran. .,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Bostanghadiri N, Ardebili A, Ghalavand Z, Teymouri S, Mirzarazi M, Goudarzi M, Ghasemi E, Hashemi A. Antibiotic resistance, biofilm formation, and biofilm-associated genes among Stenotrophomonas maltophilia clinical isolates. BMC Res Notes 2021; 14:151. [PMID: 33879237 PMCID: PMC8059177 DOI: 10.1186/s13104-021-05567-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
Objective The purpose of the present study was to investigate the antimicrobial susceptibility pattern, biofilm production, and the presence of biofilm genes among the S. maltophilia clinical isolates. A total of 85 clinical isolates of S. maltophilia were collected from patients referred to several hospitals. Susceptibility to antibiotics was investigated by disc diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). By the crystal violet staining method, the capability of biofilm formation was examined. The genes associated with biofilm production were investigated by the PCR-sequencing techniques. Results All isolates were resistant to doripenem, imipenem, and meropenem. Minocycline, trimethoprim/sulfamethoxazole and levofloxacin exhibited the highest susceptibility of 100%, 97.65%, and 95.29%, respectively. The results of crystal violet staining assay showed that all isolates (100%) form biofilm. Moreover, 24 (28.23%), 32 (37.65%), and 29 (34.12%) of isolates were categorized as weak, moderate, and strong biofilm producers, respectively. Biofilm genes including rpfF, spgM and rmlA had an overall prevalence of 89.41% (76/85), 100% (85/85) and 84.71% (72/85), respectively. Rational prescribing of antibiotics and implementation of infection control protocols are necessary to prevent further infection and development of antimicrobial resistance. Combination strategies based on the appropriate antibiotics along with anti-biofilm agents can also be selected to eliminate biofilm-associated infections.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdollah Ardebili
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samane Teymouri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
The involvement of PacIRA system of Stenotrophomonas maltophilia in the uptake of Pseudomonas aeruginosa pyochelin and intraspecies competition for iron acquisition. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:273-281. [PMID: 33811013 DOI: 10.1016/j.jmii.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stenotrophomonas maltophilia, a species of highly genetic diversity, has emerged as an important nosocomial pathogen. S. maltophilia and Pseudomonas aeruginosa are often co-isolated from pneumonia patients. In our previous study, we have demonstrated that the pacIRA cluster present in some but not all clinical S. maltophilia isolates. Proteins encoded by pacIRA operon are an extracytoplasmic function (ECF) sigma factor, a transmembrane anti-sigma regulator, and a TonB-dependent receptor. This study aimed to elucidate PacIRA system function and its significance to S. maltophilia. METHODS The pacI, pacR, and pacA genes were individually or totally deleted from the chromosome of KJΔEnt, a pacIRA-positive and siderophore-null strain. Growth promotion assay was performed to examine the implication of pacIRA system in iron utilization. Gene expression was quantified by quantitative real time PCR (qRT-PCR). Growth competition assay was executed to investigate the significance of pacIRA operon to S. maltophilia. RESULTS PacIRA system contributed to utilize ferri-pyochelin of P. aeruginosa as iron sources for growth in an iron-depleted condition, but hardly utilized ferric citrate, hemin, ferri-stenobactin, and ferri-pyoverdine. PacIRA was founded to belong to Fur regulon and upregulated in response to iron-depleted stress. Growth competition assay demonstrated that pacIRA-positive S. maltophilia had a superiority over pacIRA-negative S. maltophilia in iron acquisition when they were co-cultured in P. aeruginosa ferri-pyochelin-supplemented medium. CONCLUSIONS PacIRA system of S. maltophilia is a xenosiderophore uptake implement, involving in the acquisition of pyochelin of P. aeruginosa.
Collapse
|
35
|
Montoya-Hinojosa E, Bocanegra-Ibarias P, Garza-González E, Alonso-Ambriz ÓM, Salazar-Mata GA, Villarreal-Treviño L, Pérez-Alba E, Camacho-Ortiz A, Morfín-Otero R, Rodríguez-Noriega E, Flores-Treviño S. Discrimination of biofilm-producing Stenotrophomonas maltophilia clinical strains by matrix-assisted laser desorption ionization-time of flight. PLoS One 2021; 15:e0244751. [PMID: 33382839 PMCID: PMC7775041 DOI: 10.1371/journal.pone.0244751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative drug-resistant pathogen responsible for healthcare-associated infections. The aim was to search for biomarker peaks that could rapidly detect biofilm production in S. maltophilia clinical isolates obtained from two tertiary care hospitals in Mexico. Isolates were screened for the presence of biofilm-associated genes, in which the fsnR gene was associated with biofilm production (p = 0.047), whereas the rmlA+ genotype was associated with the rpfF- genotype (p = 0.017). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra comparison yielded three potential biomarker peaks (4661, 6074, and 6102 m/z) of biofilm-producing rmlA+ and rpfF- genotypes with >90% sensitivity (p<0.001). MALDI-TOF MS analyses showed a correlation between the relative abundance of 50S ribosomal proteins (L30 and L33) and the presence of the fnsR, rmlA and rpfF-2 genes, suggested to play a role in biofilm formation. Isolates obtained in the intensive care unit showed low clonality, suggesting no transmission within the hospital ward. The detection of biomarkers peaks by MALDI-TOF MS could potentially be used to early recognize and discriminate biofilm-producing S. maltophilia strains and aid in establishing appropriate antibiotic therapy.
Collapse
Affiliation(s)
| | - Paola Bocanegra-Ibarias
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, NL, México
| | - Elvira Garza-González
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, NL, México
| | | | | | | | - Eduardo Pérez-Alba
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, NL, México
| | - Adrián Camacho-Ortiz
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, NL, México
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, JAL, México
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara Fray Antonio Alcalde e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, JAL, México
| | - Samantha Flores-Treviño
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, NL, México
- * E-mail:
| |
Collapse
|
36
|
Pompilio A, Ranalli M, Piccirilli A, Perilli M, Vukovic D, Savic B, Krutova M, Drevinek P, Jonas D, Fiscarelli EV, Tuccio Guarna Assanti V, Tavío MM, Artiles F, Di Bonaventura G. Biofilm Formation among Stenotrophomonas maltophilia Isolates Has Clinical Relevance: The ANSELM Prospective Multicenter Study. Microorganisms 2020; 9:microorganisms9010049. [PMID: 33375493 PMCID: PMC7823565 DOI: 10.3390/microorganisms9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to form biofilms is a recognized trait of Stenotrophomonas maltophilia, but the extent of its clinical relevance is still unclear. The present multicenter prospective study (ANSELM) aims at investigating the association between biofilm formation and clinical outcomes of S. maltophilia infections. One hundred and nine isolates were collected from various geographical origins and stratified according to their clinical relevance. Biofilm formation was evaluated by the microtiter plate assay and correlated with microbiological and clinical data from the associated strains. Antibiotic susceptibility of the planktonic cells was tested by the disk diffusion technique, while antibiotic activity against mature biofilms was spectrophotometrically assessed. Most strains (91.7%) were able to form biofilm, although bloodborne strains produced biofilm amounts significantly higher than strains causing hospital- rather than community-acquired infections, and those recognized as “definite” pathogens. Biofilm formation efficiency was positively correlated with mechanical ventilation (p = 0.032), whereas a negative relationship was found with antibiotic resistance (r2 = 0.107; p < 0.001), specifically in the case of the pathogenic strains. Mature S. maltophilia biofilms were markedly more resistant (up to 128 times) to cotrimoxazole and levofloxacin compared with their planktonic counterparts, especially in the case of bloodborne strains. Our findings indicate that biofilm formation by S. maltophilia is obviously a contributing factor in the pathogenesis of infections, especially in deep ones, thus warranting additional studies with larger cohort of patients and isolates.
Collapse
Affiliation(s)
- Arianna Pompilio
- Laboratory of Clinical Microbiology, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.R.); (G.D.B.)
- Operative Unit of Clinical Microbiology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-541519; Fax: +39-0871-541520
| | - Marco Ranalli
- Laboratory of Clinical Microbiology, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.R.); (G.D.B.)
- Operative Unit of Clinical Microbiology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Dragana Vukovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.V.); (B.S.)
| | - Branislava Savic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.V.); (B.S.)
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 15006 Prague, Czech Republic; (M.K.); (P.D.)
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 15006 Prague, Czech Republic; (M.K.); (P.D.)
| | - Daniel Jonas
- University Freiburg—Medical Center, Institute for Infection Prevention and Hospital Epidemiology, 79098 Freiburg, Germany;
| | - Ersilia V. Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - Vanessa Tuccio Guarna Assanti
- Laboratory of Cystic Fibrosis Microbiology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - María M. Tavío
- Microbiology, Clinical Science Department, Faculty of Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Fernando Artiles
- Microbiology & Parasitology Service, University Hospital of Gran Canaria Dr. Negrín, 35001 Las Palmas de Gran Canaria, Spain;
| | - Giovanni Di Bonaventura
- Laboratory of Clinical Microbiology, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.R.); (G.D.B.)
- Operative Unit of Clinical Microbiology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
37
|
Mohagheghzadeh N, Hashemizadeh Z, Khashei R, Kholdi S, Mohebi S, Motamedifar M. High occurrence of antibiotic resistance and biofilm-formation among Stenotrophomonas maltophilia isolated from a tertiary hospital in Southwest of Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Phenotypic and Transcriptomic Analyses of Seven Clinical Stenotrophomonas maltophilia Isolates Identify a Small Set of Shared and Commonly Regulated Genes Involved in the Biofilm Lifestyle. Appl Environ Microbiol 2020; 86:AEM.02038-20. [PMID: 33097507 DOI: 10.1128/aem.02038-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings.IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms.
Collapse
|
39
|
Kardan-Yamchi J, Hajihasani A, Talebi M, Khodaparast S, Azimi A, Rahbar M, Fallah F, Douraghi M. Intra-hospital dissemination of clinical and environmental isolates of Stenotrophomonas maltophilia from Tehran. Lett Appl Microbiol 2020; 72:325-331. [PMID: 33064916 DOI: 10.1111/lam.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
Stenotrophomonas maltophilia isolates are responsible for various hospital-acquired infections and are particularly increasing in the immunocompromised patients. The aim of this study was to determine the clonal relatedness between S. maltophilia isolates originating from the clinic and environment. A total of 150 S. maltophilia isolates from patients and 1108 environmental samples obtained in three hospitals from Tehran. Following molecular identification targeting 23S rRNA gene, the clonal relatedness of the environmental and clinical isolates was determined using pulsed field gel electrophoresis (PFGE). Of the 150 clinical and 18 environmental isolates identified using phenotypic tests, the speciation of 120 and 15 was confirmed by targeting the 23S rRNA gene. The 24 common pulsotypes (PTs) and 32 single PTs were identified by PFGE. Only a small cluster was shared among the clinic and environment within a hospital; therefore, the intra-hospital dissemination of certain isolates of S. maltophilia among the clinic and environment was demonstrated.
Collapse
Affiliation(s)
- J Kardan-Yamchi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - A Hajihasani
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Khodaparast
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - A Azimi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Rahbar
- Department of Microbiology, Reference Health Laboratories, Ministry of Health, Tehran, Iran
| | - F Fallah
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Azimi A, Aslanimehr M, Yaseri M, Shadkam M, Douraghi M. Distribution of smf-1, rmlA, spgM and rpfF genes among Stenotrophomonas maltophilia isolates in relation to biofilm-forming capacity. J Glob Antimicrob Resist 2020; 23:321-326. [PMID: 33137534 DOI: 10.1016/j.jgar.2020.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The molecular mechanisms involved in biofilm formation inStenotrophomonas maltophilia are poorly understood. Here, we examined whether the presence of smf-1, rmlA, spgM and rpfF genes is associated with biofilm formation and antibiotic resistance in S. maltophilia. METHODS A total of 150 S. maltophilia isolates were collected from three tertiary-care hospitals in Iran and were identified through PCR amplification of the 23S rRNA gene. Biofilm formation was determined by microtitre plate assay. Presence of smf-1, rmlA, spgM and rpfF genes was examined by PCR. RESULTS Among the isolates examined, 148 (98.7%) were able to produce biofilm, of which 69 (46.0%) were strong biofilm-producers, whereas 32 (21.3%) and 47 (31.3%) were moderate and weak biofilm-producers, respectively. The frequency ofsmf-1, rmlA, spgM and rpfF was 99.3%, 98.0%, 97.3% and 70.0%, respectively. Statistical analysis indicated a direct correlation between presence of the rpfF gene and biofilm formation (P < 0.001). The high prevalence of smf-1 (99.3%) among the isolates is noted and there was a significant association between smf-1 and biofilm-forming ability (P < 0.01), but lower than rpfF. Additionally, a direct association was found between resistance to ticarcillin/clavulanate, ceftazidime, ciprofloxacin and doxycycline and strong biofilm formation in the S. maltophilia isolates (P < 0.01). CONCLUSION This study demonstrated thatS. maltophilia clinical isolates significantly differ in biofilm-forming ability. Moreover, presence of rpfF and smf-1, but not spgM, could be associated with biofilm formation. This study highlights the importance of rpfF in formation of biofilm compared with the other genes involved.
Collapse
Affiliation(s)
- Akram Azimi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Aslanimehr
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shadkam
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Klimkaitė L, Armalytė J, Skerniškytė J, Sužiedėlienė E. The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas maltophilia of Environmental and Clinical Origin. Toxins (Basel) 2020; 12:E635. [PMID: 33019620 PMCID: PMC7650669 DOI: 10.3390/toxins12100635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has recently emerged as a multidrug-resistant opportunistic pathogen causing bloodstream, respiratory, and urinary tract infections. The connection between the commensal environmental S. maltophilia and the opportunistic pathogen strains is still under investigation. Bacterial toxin-antitoxin (TA) systems have been previously associated with pathogenic traits, such as biofilm formation and resistance to antibiotics, which are important in clinical settings. The same species of the bacterium can possess various sets of TAs, possibly influencing their overall stress response. While the TA systems of other important opportunistic pathogens have been researched, nothing is known about the TA systems of S. maltophilia. Here, we report the identification and characterization of S. maltophilia type II TA systems and their prevalence in the isolates of clinical and environmental origins. We found 49 putative TA systems by bioinformatic analysis in S. maltophilia genomes. Despite their even spread in sequenced S. maltophilia genomes, we observed that relBE, hicAB, and previously undescribed COG3832-ArsR operons were present solely in clinical S. maltophilia isolates collected in Lithuania, while hipBA was more frequent in the environmental ones. The kill-rescue experiments in Escherichia coli proved higBA, hicAB, and relBE systems to be functional TA modules. Together with different TA profiles, the clinical S. maltophilia isolates exhibited stronger biofilm formation, increased antibiotic, and serum resistance compared to environmental isolates. Such tendencies suggest that certain TA systems could be used as indicators of virulence traits.
Collapse
Affiliation(s)
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| | | | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| |
Collapse
|
42
|
Duan Z, Qin J, Li C, Ying C. Clinical and Molecular Epidemiology of Stenotrophomonas maltophilia in Pediatric Patients From a Chinese Teaching Hospital. Front Cell Infect Microbiol 2020; 10:411. [PMID: 32850503 PMCID: PMC7433352 DOI: 10.3389/fcimb.2020.00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: To study the molecular epidemiological characteristics of Stenotrophomonas maltophilia (SMA) isolated from patients in a pediatric teaching hospital in Shanghai so as to provide data for the prevention and treatment of SMA. Methods: Non-repetitive SMA strains were isolated from patients from January 2013 to December 2014. The cloning characteristics were analyzed using multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE), and the drug resistance was determined using the Kirby-Bauer disk method. Virulence genes and biofilm genes were detected using polymerase chain reaction (PCR). The biofilm forming ability was analyzed using the semi-quantitative biofilm formation test. Results: A total of 104 strains were collected, primarily from the pediatric intensive care unit and thoracic surgery, and these strains were isolated from sputum sources (n = 82). A majority of the patients were male (67/104), and the age range was between 6 days and 12 years old. A total of 95 patients had 1–3 baseline diseases. All of the patients had prior use of 1–4 antimicrobial agents. A total of 59 STs were detected using the MLST analysis, of which 45 were new. The sequence types of the SMA were scattered, with no trend in the clonal spread. The PFGE showed that the 104 strains could be divided into 93 clusters, with no obvious cluster aggregations. All of the strains were susceptible to levofloxacin, trimethoprim/sulfamethoxazole, and minocycline. The positive rates of the virulence genes stmPr1, stmPr2, smf-1, and smlt3773 locus were 98.1, 86.5, 100, and 91.3%, respectively. All of the strains had biofilm formation, and most of the strains had strong biofilm formation abilities. The positive rates of the three biofilm genes rmlA, spgM, and rpfF were 83.7, 100, and 45.2%, respectively. However, the point mutations of rmlA and spgM with strong biofilm formation abilities were significantly different from those with weak biofilm formation abilities. Conclusion: Most infected patients had prior use of antibiotics and underlying diseases, and the positive rate of the virulence gene was high. The strains were susceptible to three kinds of antibiotics and had strong biofilm formation abilities. The mutations of rmlA and spgM may be related to the biofilm formation ability, and no obvious clonal transmissions were found in the same clinical department.
Collapse
Affiliation(s)
- Zhongliang Duan
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Juanxiu Qin
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cui Li
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunmei Ying
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
43
|
Yero D, Huedo P, Conchillo-Solé O, Martínez-Servat S, Mamat U, Coves X, Llanas F, Roca I, Vila J, Schaible UE, Daura X, Gibert I. Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influence Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Front Microbiol 2020; 11:1160. [PMID: 32582100 PMCID: PMC7283896 DOI: 10.3389/fmicb.2020.01160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity of Stenotrophomonas maltophilia is regulated in part by its quorum sensing (QS) system. The main QS signaling molecule in S. maltophilia is known as diffusible signal factor (DSF), and the rpf gene cluster is responsible for its synthesis and perception. Two cluster variants have been previously described, rpf-1 and rpf-2, which differ basically in the conditions under which DSF is produced. Here, correlations between the rpf variant and antibiotic susceptibility, LPS electrophoretic profiles and virulence-related phenotypes were evaluated for a collection of 78 geographically and genetically diverse clinical strains of S. maltophilia. In general there were associations between previously established genogroups and the genetic variant of the rpf cluster. However, only few genotype-phenotype correlations could be observed. Resistance to the β-lactam antibiotics ceftazidime and ticarcillin was associated with strains carrying the rpf-1 variant, whereas strains of variant rpf-2, particularly those of genogroup C, showed higher resistance levels to colistin. Strains of variant rpf-2 were also significantly more virulent to Galleria mellonella larvae than those of rpf-1, most likely due to an increased ability of rpf-2 strains to form biofilms. A comparative genomic analysis revealed the presence of proteins unique to individual genogroups. In particular, the strains of genogroup C share an operon that encodes for a new virulence determinant in S. maltophilia related to the synthesis of an alternative Flp/Tad pilus. Overall, this study establishes a link between the DSF-based QS system and the virulence and resistance phenotypes in this species, and identifies potential high-risk clones circulating in European hospitals.
Collapse
Affiliation(s)
- Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ferran Llanas
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ignasi Roca
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
44
|
Activity of Potential Alternative Treatment Agents for Stenotrophomonas maltophilia Isolates Nonsusceptible to Levofloxacin and/or Trimethoprim-Sulfamethoxazole. J Clin Microbiol 2020; 58:JCM.01603-19. [PMID: 31748318 DOI: 10.1128/jcm.01603-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is difficult to treat due to the production of multiple intrinsic and acquired mechanisms of resistance. Trimethoprim-sulfamethoxazole (TMP-SMZ) and the fluoroquinolones have traditionally been considered the drugs of choice but are plagued by increasing resistance and adverse drug effects. The objective of this study was to evaluate the in vitro activities of 12 clinically relevant antimicrobials against clinical S. maltophilia isolates nonsusceptible to levofloxacin and/or TMP-SMZ. A diverse panel of 41 clinical S. maltophilia isolates collected through the SENTRY Antimicrobial Surveillance Program from 2008 to 2018 was evaluated against ceftazidime, ceftazidime-avibactam, chloramphenicol, delafloxacin, levofloxacin, moxifloxacin, eravacycline, minocycline, omadacycline, polymyxin B, and tigecycline. MICs were determined in triplicate via reference broth microdilution and interpreted according to CLSI guidelines where available. MIC distributions and susceptibilities were also compared across infection type, acquisition setting, and geographic origin. Susceptibilities to levofloxacin and TMP-SMZ were 29.3% and 36.6%, respectively. Minocycline displayed the highest susceptibility rate overall (92.7%) and the lowest MIC90 value (4 mg/liter) of any of the 12 agents tested. Only 3 isolates were resistant to levofloxacin, TMP-SMZ, and minocycline. Polymyxin B and tigecycline were the second most active agents. No significant differences were observed in MIC distributions across the 3 strata evaluated. These data demonstrate that few antimicrobials, old or new, maintain reliable activity against resistant S. maltophilia The role of minocycline in the treatment of infections due to S. maltophilia warrants further clinical investigation given its potent in vitro activity and favorable adverse effect profile.
Collapse
|
45
|
Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev Anti Infect Ther 2019; 17:877-893. [PMID: 31658838 DOI: 10.1080/14787210.2019.1685875] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Infections caused by the opportunistic Stenotrophomonas maltophilia pathogen in immunocompromised patients are complicated to treat due to antibiotic resistance and the ability of the bacteria to produce biofilm.Areas covered: A MEDLINE/PubMed search was performed of available literature to describe the role of biofilm produced by S. maltophilia in the diseases it causes, including biofilm-influencing factors, the biofilm forming process and composition. The antimicrobial resistance due to S. maltophilia biofilm production and current antibiofilm strategies is also included.Expert opinion: Through the production of biofilm, S. maltophilia strains can easily adhere to the surfaces in hospital settings and aid in its transmission. The biofilm can also cause antibiotic tolerance rendering some of the therapeutic options ineffective, causing setbacks in the selection of an appropriate treatment. Conventional susceptibility tests do not yet offer therapeutic guidelines to treat biofilm-associated infections. Current S. maltophilia biofilm control strategies include natural and synthetic compounds, chelating agents, and commonly prescribed antibiotics. As biofilm age and matrix composition affect the level of antibiotic tolerance, their characterization should be included in biofilm susceptibility testing, in addition to molecular and proteomic analyzes. As for now, several commonly recommended antibiotics can be used to treat biofilm-related S. maltophilia infections.
Collapse
Affiliation(s)
- Samantha Flores-Treviño
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Paola Bocanegra-Ibarias
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Humberto Antonio Salazar-Sesatty
- Unidad de Terapias Experimentales, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
46
|
Gajdács M, Urbán E. Prevalence and Antibiotic Resistance of Stenotrophomonas maltophilia in Respiratory Tract Samples: A 10-Year Epidemiological Snapshot. Health Serv Res Manag Epidemiol 2019; 6:2333392819870774. [PMID: 31453265 PMCID: PMC6698998 DOI: 10.1177/2333392819870774] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Since the 1980s, Stenotrophomonas maltophilia has emerged as an
important pathogen associated with significant mortality in pneumonia and bacteremia of
severely immunocompromised, hospitalized patients. The drug of choice in S
maltophilia infections is sulfamethoxazole-trimethoprim (SMX/TMP); SMX/TMP
resistance is a serious concern in clinical practice. The aim of this study was to
assess the prevalence of S maltophilia in lower respiratory tract
(LRTI) samples at a tertiary-care university hospital. Methods: This retrospective cohort study was carried out using microbiological data collected
between January 2008 and December 2017. Routine antimicrobial susceptibility testing was
performed for SMX/TMP and levofloxacin; in case of resistance, susceptibility testing
for additional antibiotics (tigecycline, amikacin, and colistin) was also performed. Results: A total of 579 individual S maltophilia isolates were identified
(2008-2012: n = 160, 2013-2017: n = 419; P = .0008). In all, 78.46% of
patients were younger than 5 or older than 50 years of age and had recent trauma,
surgery, or underlying conditions (malignancies, respiratory distress syndrome,
congenital disorders, and cystic fibrosis). In 28.16% of samples, more than 1 pathogen
was identified, and 5.35% of coisolated pathogens were multidrug resistant (MDR). In
all, 12.1% of isolates were SMX/TMP-resistant (2008-2012: 6.12%, 2013-2017: 18.06%;
P = .034), while 8.99% were resistant to levofloxacin (2008-2012:
7.86%, 2013-2017: 10.12%; P > .05). SMX/TMP resistance was detected
more frequently in samples originating from inpatients (n = 2.50 ± 2.39 vs n = 11.50 ±
3.76; P = .0002). Conclusions: In all, 5.87% of isolates were extensively drug resistant (XDR), that is, in addition
to SMX/TMP, they were resistant to levofloxacin, amikacin, colistin, and tigecycline.
The results of our study correspond to the findings in the literature.
Collapse
Affiliation(s)
- Márió Gajdács
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary.,Faculty of Medicine, Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Edit Urbán
- Faculty of Medicine, Department of Public Health, University of Szeged, Szeged, Hungary
| |
Collapse
|