1
|
Zhou Y, Li HG, Huang Q, Liang S, Huang Q, Zuo M, Bao M, He B. Toosendanin inhibits the growth of Spodoptera litura by inducing metabolic dysfunction in the midgut. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106249. [PMID: 40015845 DOI: 10.1016/j.pestbp.2024.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
The Spodoptera litura, a crucial polyphagous pest, has emerged as a major threat to the agricultural sector. Regrettably, despite ongoing efforts, scientists have yet to uncover a safe and efficient control medication to tackle this pressing issue. Toosendanin (TSN), a commercial insecticidal active ingredient used to manage various pests in the field, has adverse effects on Spodoptera litura. However, the effects of TSN on the midgut of S. litura larvae remain unclear. This study explored the mechanism of TSN-induced toxicity and its inhibitory effects on larval growth and development using intestinal pathology, intestinal digestive enzyme activity determination, and intestinal transcriptome sequencing. The results indicated that TSN treatment led to pathological changes in the midgut structure. Analysis of digestive enzyme activity revealed that TSN inhibited the activities of acetyl CoA carboxylase, lipase, α-amylase, and trypsin. Simultaneously, it upregulated superoxide dismutase and reduced malondialdehyde content. Transcriptome analysis revealed that 2151 genes were significantly differentially expressed in the midgut after TSN exposure; the analysis highlighted significant enrichment of DEGs in areas such as hydrolase activity, carbohydrate metabolism, and peptide metabolism. Notably, some key enzymes involved in lipid metabolism, protein metabolism, and carbohydrate metabolism, such as pancreatic triacylglycerol lipase-like, pancreatic lipid-related protein 2-like, lipase3, alpha-amylase, trypsin, and chymotrypsin were downregulated following TSN treatment. This study's findings suggest that TSN causes midgut damage and inhibits larval growth by inducing metabolic dysfunction in the midgut.
Collapse
Affiliation(s)
- Yi Zhou
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; College of Pharmacy, Changsha Medical University, Hunan 410219, China
| | - Hai Gang Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China; College of Pharmacy, Changsha Medical University, Hunan 410219, China
| | - Qiao Huang
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China
| | - ShangJin Liang
- College of Pharmacy, Changsha Medical University, Hunan 410219, China
| | - QiYan Huang
- College of Pharmacy, Changsha Medical University, Hunan 410219, China
| | - MengTing Zuo
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China.
| | - MeiHua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China.
| | - BinSheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China.
| |
Collapse
|
2
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Enzymatic, cellular breakdown and lysis in treatment of Beauveria Brongniartii on Spodoptera litura (Fabricius, 1775). Sci Rep 2025; 15:7175. [PMID: 40021686 DOI: 10.1038/s41598-024-78151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 03/03/2025] Open
Abstract
The current study aimed to isolate Beauveria brongniartii conidia from forest soils, identify the fungus, and evaluate its effectiveness on the eggs, larvae, pupae, and adults of Spodoptera litura. Insect mortality rates were recorded every 3, 6, 9, and 12 days. The identification of entomopathogenic fungi was carried out using molecular techniques, including PCR, DNA sequencing, and molecular markers, to detect species-specific 18 S rDNA genetic sequences, all performed under aseptic conditions. The results indicated that higher conidia concentrations (2.7 × 109 conidia/mL) exhibited greater virulence, with eggs showing a mortality rate of 98.66%, followed by larvae 96%, adults 90.66%, and pupae 77.33% after 12 days. Probit analysis revealed minimal LC50 and LC90 values: eggs (5.5 × 102; 1.0 × 106 spores/mL), larvae (8.2 × 102; 1.2 × 107 spores/mL), pupae (9.6 × 104; 7.3 × 1010 spores/mL), and adults (1.0 × 103; 2.0 × 108 spores/mL). The total hemocyte counts and detailed observational results revealed that B. brongniartii induces cellular breakdown and cell lysis in S. litura larvae by producing enzymes that degrade the cuticle and cell membranes. Earthworm bioindicator studies showed minimal effects from B. brongniartii conidia compared to controls, while chemical treatments resulted in 96% mortality at 100 ppm. Histopathological examinations revealed no significant differences in gut tissue between earthworms treated with fungal conidia and those in the control group, unlike the substantial damage caused by chemical treatments. Biochemical analysis revealed significant alterations in enzyme activity, including reduced levels of phosphatase and catalase, as well as increased levels of lipid peroxides and superoxide dismutase. This study highlights the effectiveness of B. brongniartii in controlling S. litura, demonstrating its potential as a viable biocontrol agent and promoting eco-friendly alternatives to chemical pesticides, with no risk to non-target species or the environment.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Zhou Y, Huang Q, Li HG, Liang S, He B, Bao M. Arecoline inhibits the growth of Spodoptera litura by inducing intestinal metabolic dysfunction. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106044. [PMID: 39277371 DOI: 10.1016/j.pestbp.2024.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Arecoline (ACL), an active constituent derived from Areca catechu L., exerts various pharmacological effects and serves as a potential plant-based insecticide. However, the effects of ACL on Spodoptera litura, an important and widely distributed agricultural pest, remain unknown. This study aimed to elucidate the mechanism underlying ACL-induced toxicity and its inhibitory effects on larval growth and development through intestinal pathology observations, intestinal transcriptome sequencing, intestinal digestive enzyme activity analysis. The results indicated that ACL exposure leads to pathological alterations in the S. litura midgut. Furthermore, the detection of digestive enzyme activity revealed that ACL inhibits the activities of acetyl CoA carboxylase, lipase, α-amylase, and trypsin. Simultaneously, upregulation of superoxide dismutase activity and downregulation of malondialdehyde levels were observed after ACL exposure. Transcriptome analysis identified 1118 genes that were significantly differentially expressed in the midgut after ACL exposure, potentially related to ACL toxic effects. Notably, ACL treatment downregulated key enzymes involved in lipid metabolism, such as fatty acid binding protein 2-like, pancreatic triacylglycerol lipase-like, pancreatic lipid-related protein 2-like, and fatty acid binding protein 1-like. Taken together, these results suggest that ACL induces midgut damage and impedes larval growth by suppressing digestive enzyme activity in the intestine. These findings can aid in the development of environmentally friendly plant-derived insecticides, utilizing ACL to effectively combat S. litura proliferation.
Collapse
Affiliation(s)
- Yi Zhou
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - Qiao Huang
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China
| | - Hai Gang Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China; School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - ShangJin Liang
- School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - BingSheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China.
| | - MeiHua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China.
| |
Collapse
|
4
|
Apirajkamol NB, Hogarty TM, Mainali B, Taylor PW, Walsh TK, Tay WT. Virulence of Beauveria sp. and Metarhizium sp. fungi towards fall armyworm (Spodoptera frugiperda). Arch Microbiol 2023; 205:328. [PMID: 37676308 PMCID: PMC10495518 DOI: 10.1007/s00203-023-03669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
The development of effective pest management strategies for Spodoptera frugiperda is a high priority for crop protection across its invasive ranges. Here, we examined six Beauveria and five Metarhizium fungal isolates against this pest. Two Beauveria isolates (B-0571, B-1311) induced high mortality toward 3rd and 6th instar caterpillars and adults. For B-0571 mortality was 82.81 ± 5.75%, 61.46 ± 6.83%, and 93.75 ± 3.61%, and 73.72 ± 2.51%, 71.88 ± 5.41%, and 97.92 ± 2.08% for B-1311, with deaths in caterpillars largely occurring under 24 h (3rd instar control 0.74 ± 0.33%, B-0571 73.96 ± 7.85% and B-1311 62.08 ± 3.67%; 6th instar control 0%, B-0571 66.67% ± 11.02% and B-1311 62.5% ± 9.55%). Infection from both Beauveria isolates fully prevented reproduction in surviving S. frugiperda females. In contrast, all five Metarhizium isolates tested and the remaining four Beauveria isolates exhibited lower virulence. The discovery of two highly virulent Beauveria fungal isolates to S. frugiperda opens avenues to develop novel biological control tools against this highly invasive pest.
Collapse
Affiliation(s)
- Nonthakorn Beatrice Apirajkamol
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia.
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Timothy Michael Hogarty
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Bishwo Mainali
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Thomas Kieran Walsh
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Wee Tek Tay
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Alam MZ. A review on plant-based remedies for the treatment of multiple sclerosis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:775-789. [PMID: 36963654 DOI: 10.1016/j.pharma.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system, which is degenerative in nature usually appears between 20-40years of age. The exact cause of MS is still not clearly known. Loss of myelin sheath and axonal damage are the main features of MS that causes induction of inflammatory process and blocks free conduction of impulses. Till date FDA has approved 18 drugs to treat or modify MS symptoms. These medicines are disease-modifying in nature directed to prevent relapses or slow down the progression of disease. The use of the synthetic drug over an extended period causes undesirable effects that prompt us to look at Mother Nature. Complementary and alternative medicine involves the use of medicinal plants as an alternative to the existing modern medical treatment. However, modern drugs cannot be replaced completely with medicinal plants, but the two types of drugs can be used harmoniously with later one can be added as an adjuvant to the existing treatment. These medicinal plants have the potential to prevent progression and improve the symptoms of MS. Various plants such like Nigella sativa, ginger, saffron, pomegranate, curcumin, resveratrol, ginsenoside have been tested as therapeutics for many neurodegenerative diseases. The purpose of this write-up is to make information available about medicinal plants in their potential to treat or modify the symptoms of MS. Chronically ill patients tend to seek medicinal plants as they are easily available and there is a general perception about these medicines of having fewer undesirable effects.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Cheng X, Dong F, Li J, Zou Q, Liu X, He H, Zhang H, Lv X, Wu Y, Jiang X, Qin X. Synthesis, and biological evaluation of pyrazole matrine derivatives as an insecticide against Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105489. [PMID: 37532351 DOI: 10.1016/j.pestbp.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023]
Abstract
As one of the major threats to global food security, Spodoptera frugiperda (S. frugiperda) is highly gaining consideration due to its severe damage. Matrine is a widely and effectively used botanical insecticide in controlling S.frugiperda but lacks a rapidly available effect. To further improved the insecticidal activity of matrine based on combination principles, this work synthesized five new pyrazole matrine derivatives (PMDs) using Michael addition and investigated insecticidal activity against 2nd instar larvae of S. frugiperda(in vivo) and its isolated cell(in vitro). Our result demonstrated that PMDs show higher pesticidal activity than that matrine in both in vitro and in vivo assays. The most toxic derivatives in vitro and in vivo are PMD-3 and PMD-1, with IC50 of 2.49 mM and LC50 of 22.76 mg/L respectively. This research also investigates the anti-proliferation mechanism of PMDs based on isolated cells. PMDs decrease mitochondria membrane potential, arrested cell cycle at the G2/M phase, and upregulated Caspase 3, Caspase 9, and Apaf-1 to induce Caspase-dependent apoptosis. For Caspase-independent apoptosis, AIF and Endo G were found to be upregulated. Besides, pro-apoptotic factors like p53, IBM-1, and anti-apoptotic factors like IAP were upregulated. Moreover, we supposed that there was a linkage between lysosomes and PMD-induced apoptosis according to increased apoptosis rate, activated lysosomes, and upregulated Cathepsin B. This research provides new ideas for the synthesis of matrine derivatives and further demonstrated the anti-proliferation mechanism of PMDs.
Collapse
Affiliation(s)
- Xingan Cheng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Fangyun Dong
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Junjie Li
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qiwen Zou
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xin Liu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Huiqing He
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hanhui Zhang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojing Lv
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuehua Wu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xuhong Jiang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou 510301, China.
| |
Collapse
|
7
|
Zhu B, Chen Y, Zhou C, Li H, Ali S, Wu J. Gut Bacterial Diversity of Insecticide-Susceptible and Insecticide-Resistant Megalurothrips usitatus (Thysanoptera: Thripidae) and Elucidation of Their Putative Functional Roles. INSECTS 2023; 14:669. [PMID: 37623379 PMCID: PMC10455865 DOI: 10.3390/insects14080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The gut bacterial microbiota of insects plays a crucial role in physiological, metabolic, and innate immune processes. In the current study, the gut bacterial communities of an insecticide-susceptible (IS), and a resistant (IR) population of a major legume pest, Megalurothrips usitatus (Bagnall), were evaluated. The 16S rDNA V3 + V4 regions of M. usitatus infected with Beauveria brongniartii along with the intestinal flora of both populations were sequenced based on a High-throughput sequencing platform. Toxicological bioassays revealed that the IR population exhibited resistance to acetamiprid and B. brongniartii isolate SB010 at levels of 138.0-fold and 55.6-fold higher, respectively, compared to the IS population. Through 16S High-throughput sequencing, the results indicate that both resistant populations, as well as B. brongniartii infestation, reduce the number of species of M. usitatus gut microbes. Using KEGG function prediction, it was found that most intestinal bacteria were involved in various metabolic activities, and the abundance of resistant populations was higher than that of sensitive populations. The bacteria in the gut of M. usitatus are mainly involved in various metabolic activities to achieve the degradation of B. brongniartii. This study provides valuable insights into the interaction between gut bacteria, insecticide resistance, and Beauveria. brongniartii infection in Megalurothrips usitatus, which can help inform future pest control strategies.
Collapse
Affiliation(s)
- Bifeng Zhu
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (B.Z.); (C.Z.); (H.L.)
| | - Yueyin Chen
- Meizhou Depot of Guangdong Grain Reserve Management Group Co., Ltd., Meizhou 514071, China;
| | - Chenyan Zhou
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (B.Z.); (C.Z.); (H.L.)
| | - Haolong Li
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (B.Z.); (C.Z.); (H.L.)
| | - Shaukat Ali
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (B.Z.); (C.Z.); (H.L.)
| | - Jianhui Wu
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (B.Z.); (C.Z.); (H.L.)
| |
Collapse
|
8
|
Zhou HR, Lin LW, Li ZR, Peng XR, Qiu MH. Four undescribed pyrethrins from seeds of Pyrethrum cinerariifolium and their aphidicidal activity. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:22. [PMID: 37415012 DOI: 10.1007/s13659-023-00385-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Four undescribed pyrethrins C-F (1-4) as well as four known pyrethrins (5-8) were isolated from seeds of Pyrethrum cinerariifolium Trev. The structures of compounds 1-4 were elucidated by UV, HRESIMS, and NMR (1H and 13C NMR, 1H-1H COSY, HSQC, HMBC and ROESY), among which the stereostructure of compound 4 was determined by calculated ECD. Furthermore, compounds 1-4 were evaluated for their aphidicidal activities. The insecticidal assay results showed that 1-4 exhibited moderate aphidicidal activities at the concentration of 0.1 mg/mL with the 24 h mortality rates ranging from 10.58 to 52.98%. Among them, pyrethrin D (2) showed the highest aphidicidal activity, with the 24 h mortality rate of 52.98%, which was slightly lower than the positive control (pyrethrin II, 83.52%).
Collapse
Affiliation(s)
- Hao-Ran Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Li-Wu Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhong-Rong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
9
|
Qian C, Ma T, Qiu H, Lyu H, Liang S, Shao Y, Yuan P, Shen L, Wen X, Wang C. Lethal, transmission, behavioral, and physiological effects of Metarhizium anisopliae against gregarious larvae of Heortia vitessoides and synergistic effects between Metarhizium anisopliae and insecticides. PEST MANAGEMENT SCIENCE 2023; 79:2191-2205. [PMID: 36746852 DOI: 10.1002/ps.7398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Heortia vitessoides Moore is a severe pest of Aquilaria sinensis (Lour.) Gilg, an important source of agarwood. In recent years, large amounts of chemical insecticides have been applied in A. sinensis plantations to deal with the outbreak of H. vitessoides, causing residue problems that reduce the quality and price of agarwood. Herein, we hypothesize that the widely applied biocontrol agent, Metarhizium anisopliae (Metschn.) Sorokin, can effectively kill the gregarious larvae of H. vitessoides through direct contact and horizontal transmission. RESULTS At the concentration of 1 × 109 conidia/mL, the three M. anisopliae strains caused 100% mortality of H. vitessoides larvae. In addition, mixing donor larvae (previously treated with M. anisopliae conidia) with receptor larvae (which did not directly contact M. anisopliae conidia) caused significantly higher mortality of receptor larvae than the control receptors. This is due to the horizontal transmission of M. anisopliae conidia among live larvae, which was proven by pictures taken by scanning electron microscopy and induced activities of immunity-related enzymes of donor and receptor larvae. Behavioral bioassays showed that M. anisopliae conidia had little effect on the aggregation tendency of H. vitessoides larvae but may trigger feeding-avoidance behavior depending on M. anisopliae strains and concentrations. Interestingly, joint use of sublethal concentrations of M. anisopliae and chemical insecticides significantly increased larval mortality than each agent alone, indicating synergistic effects between M. anisopliae and insecticide against H. vitessoides. CONCLUSION This study may provide a new strategy to suppress H. vitessoides population and reduce the use of chemical insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyu Qian
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tao Ma
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hualong Qiu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
| | - Hailong Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shiping Liang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuhe Shao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Pengyu Yuan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Liming Shen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiujun Wen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Ang S, Liang J, Zheng W, Zhang Z, Li J, Yan Z, Wong WL, Zhang K, Chen M, Wu P. Novel Matrine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, and Mechanistic Analysis. Molecules 2023; 28:molecules28073035. [PMID: 37049799 PMCID: PMC10096473 DOI: 10.3390/molecules28073035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
A large number of studies have shown that matrine (MA) possesses various pharmacological activities and is one of the few natural, plant-derived pesticides with the highest prospects for promotion and application. Fifty-eight MA derivatives were prepared, including 10 intermediates and 48 target compounds in 3 series, to develop novel mosquitocidal agents. Compounds 4b, 4e, 4f, 4m, 4n, 6e, 6k, 6m, and 6o showed good larvicidal activity against Aedes albopictus, which is both a highly aggressive mosquito and an important viral vector that can transmit a wide range of pathogens. Dipping methods and a bottle bioassay were used for insecticidal activity evaluation. The LC50 values of 4e, 4m, and 6m reached 147.65, 140.08, and 205.79 μg/mL, respectively, whereas the LC50 value of MA was 659.34 μg/mL. Structure–activity relationship analysis demonstrated that larvicidal activity could be improved by the unsaturated heterocyclic groups introduced into the carboxyl group after opening the D ring. The MA derivatives with oxidized N-1 lost their mosquitocidal activities, indicating that the bareness of N-1 is crucial to maintain their anti-mosquito activity. However, the activity was not greatly influenced by introducing a cyan group at C-6 or a benzene sulfonyl group at N-16. Additionally, compounds 4e and 4m exhibited good inhibitory activities against acetylcholinesterase with inhibitory rates of 59.12% and 54.30%, respectively, at a concentration of 250 μg/mL, whereas the inhibitory rate of MA was 9.88%. Therefore, the structural modification and mosquitocidal activity of MA and its derivatives obtained here pave the way for those seeking strong mosquitocidal agents of plant origin.
Collapse
Affiliation(s)
- Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinfeng Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| |
Collapse
|
11
|
Wu J, Sun T, Bashir MH, Qiu B, Wang X, Ali S. Comparative transcriptome analysis reveals differences in gene expression in whitefly following individual or combined applications of Akanthomyces attenuatus (Zare & Gams) and matrine. BMC Genomics 2022; 23:808. [PMID: 36474158 PMCID: PMC9727895 DOI: 10.1186/s12864-022-09048-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a serious pest of crops in different regions of the world. Our recent studies on the joint application of Akanthomyces attenuatus (a pathogenic insect fungus) and matrine (a botanical insecticide) against B. tabaci have shown promising results. Using RNA sequencing (RNA-Seq), we identified differentially expressed genes involved in whitefly responses to single or mixed applications of A. attenuatus and matrine. METHODS In this study, we compared the transcriptome profiles of B. tabaci treated with individual and combined treatments of A. attenuatus and matrine to determine variations in gene expression among whiteflies in response to different treatments. RESULTS Transcriptomic data analysis showed differential expression of 71, 1194, and 51 genes in response to A. attenuatus (BtA), matrine (BtM), and A. attenuatus + matrine (BtAM) treatment, respectively. A total of 65 common differentially expressed genes (DEGs) were identified between whiteflies treated with A. attenuatus (BtA) and matrine (BtM). A comparison of DEGs across the three treatments (BtA, BtM, and BtAM) revealed two common DEGs. The results also revealed that AMPK signaling, apoptosis, and drug metabolism pathways are likely involved in whitefly defense responses against A. attenuatus and matrine infection. Furthermore, a notable suppression of general metabolism and immune response genes was observed in whiteflies treated with A. attenuatus + matrine (BtAM) compared to whiteflies treated with individual A. attenuatus (BtA) or matrine (BtM) treatments. CONCLUSION Dynamic changes in the number of differentially expressed genes were observed in B. tabaci subjected to different treatments (BtA, BtM, and BtAM). To the best of our knowledge, this is the first report on the molecular interactions between whitefly and individual or combined treatments of A. attenuatus and matrine. These results will further improve our knowledge of the infection mechanism and complex biochemical processes involved in the synergistic action of A. attenuatus and matrine against B. tabaci.
Collapse
Affiliation(s)
- Jianhui Wu
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| | - Tingfei Sun
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Hamid Bashir
- grid.413016.10000 0004 0607 1563Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Baoli Qiu
- grid.411575.30000 0001 0345 927XChongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Xingmin Wang
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| | - Shaukat Ali
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
12
|
Zhang Y, Zhang X, Tian Q, Ali S, Tang L, Wu J. Toxicological and Biochemical Description of Synergism of Beauveria bassiana and Emamectin Benzoate against Megalurothrips usitatus (Bagrall). J Fungi (Basel) 2022; 8:jof8090916. [PMID: 36135641 PMCID: PMC9503021 DOI: 10.3390/jof8090916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The prophylactic application of synthetic insecticides to manage Megalurothrips usitatus (Bagrall) has resulted in insecticide resistance and negative impacts upon natural ecosystems. This has driven the need for developing alternative pest control strategies. In the present study, we investigated the synergistic interaction between the entomopathogenic fungus Beauveria bassiana and the insecticide emamectin benzoate on M. usitatus. The results of our research exhibited that higher doses of emamectin benzoate inhibited the germination rate and colony growth of B. bassiana. The percentage of M. usitatus mortality following B. bassiana and emamectin benzoate treatment indicated a dose–mortality effect. All concentrations of emamectin benzoate combined with different concentrations of B. bassiana demonstrated a synergistic effect five days post-treatment. When B. bassiana and emamectin benzoate were applied alone or in combination, antioxidant enzyme activities, including acetylcholinesterase, catalase, superoxide dismutase, and peroxidase, were significantly lower in M. usiatus than in the controls at the end of the experimental period. The findings of our study confirm the synergistic effect of B. bassiana and emamectin benzoate on M. usitatus, as well as the biochemical process that might be involved in the regulation of the synergistic effect.
Collapse
Affiliation(s)
- Youdan Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochen Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Qingheng Tian
- Taiqian County Agriculture and Rural Affairs Bureau, Puyang 457600, China
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Liangde Tang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- Correspondence: (L.T.); (J.W.)
| | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.T.); (J.W.)
| |
Collapse
|
13
|
Spaceflight Changes the Production and Bioactivity of Secondary Metabolites in Beauveria bassiana. Toxins (Basel) 2022; 14:toxins14080555. [PMID: 36006216 PMCID: PMC9416017 DOI: 10.3390/toxins14080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on microorganism response spaceflight date back to 1960. However, nothing conclusive is known concerning the effects of spaceflight on virulence and environmental tolerance of entomopathogenic fungi; thus, this area of research remains open to further exploration. In this study, the entomopathogenic fungus Beauveria bassiana (strain SB010) was exposed to spaceflight (ChangZheng 5 space shuttle during 5 May 2020 to 8 May 2020) as a part of the Key Research and Development Program of Guangdong Province, China, in collaboration with the China Space Program. The study revealed significant differences between the secondary metabolite profiles of the wild isolate (SB010) and the spaceflight-exposed isolate (BHT021, BH030, BHT098) of B. bassiana. Some of the secondary metabolites/toxins, including enniatin A2, brevianamide F, macrosporin, aphidicolin, and diacetoxyscirpenol, were only produced by the spaceflight-exposed isolate (BHT021, BHT030). The study revealed increased insecticidal activities for of crude protein extracts of B. bassiana spaceflight mutants (BHT021 and BH030, respectively) against Megalurothrips usitatus 5 days post application when compared crude protein extracts of the wild isolate (SB010). The data obtained support the idea of using space mutation as a tool for development/screening of fungal strains producing higher quantities of secondary metabolites, ultimately leading to increased toxicity/virulence against the target insect host.
Collapse
|
14
|
Synergistic Interaction between the Entomopathogenic Fungus Akanthomyces attenuatus (Zare & Gams) and the Botanical Insecticide Matrine against Megalurothrips usitatus (Bagrall). J Fungi (Basel) 2021; 7:jof7070536. [PMID: 34356915 PMCID: PMC8303672 DOI: 10.3390/jof7070536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
The excessive use of synthetic chemicals for Megalurothrips usitatus (Bagrall) management has resulted in the development of insecticide resistance as well as adverse effects to the natural ecosystem. This has driven the need to develop alternative pest control strategies. This study reports a synergistic interaction between the entomopathogenic fungus Akanthomyces attenuatus (Zare & Gams) and the botanical insecticide matrine against M. usitatus. The results revealed that the germination rate and colony growth of A. attenuatus were inhibited by higher matrine concentrations. Percentage mortalities of M. usitatus following application of A. attenuatus and matrine showed a dose mortality effect. After five days of treatment, all concentrations of matrine combined with different concentrations of A. attenuatus, except one combination (matrine 0.25 mg/mL + 1 × 107 conidia/mL), showed synergistic effect. The activities of acetylcholinesterase and antioxidant enzymes (superoxide dismutase, catalase and peroxidase) in M. usitatus, in response to individual or combined application of A. attenuatus and matrine at the end of the experimental period, were significantly lower than controls. The findings confirm the synergistic action of A. attenuatus and matrine against M. usitatus along with the biochemical phenomenon possibly regulating the synergistic effect.
Collapse
|
15
|
Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113682. [PMID: 33307055 DOI: 10.1016/j.jep.2020.113682] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Dogel ebs" was known as Sophora flavescens Ait., which has been widely utilized in the clinical practice of traditional Chinese Mongolian herbal medicine for thousands of years. Shen Nong's Materia Medica (Shen Nong Ben Cao Jing in Chinese pinyin) recorded that it is bitter in taste and cold in nature with the effect of clearing heat and eliminating dampness, insecticide, diuresis. Due to its extensive application in the fields of ethnopharmacological utilization, the pharmaceutical researches of Sophora flavescens Ait.s keeps deepening. Modern pharmacological studies have exhibited that matrine, which is rich in this traditional herbal medicine, mediates its main biological properties. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of matrine on the pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches to explore the therapeutic potential of this natural ingredient. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning matrine was gathered from the internet database of Google scholar, Pubmed, ResearchGate, Web of Science and Wiley Online Library with the keywords including "matrine", "pharmacology", "toxicology" and "pharmacokinetics", "clinical application", etc. RESULTS: Based on literatures, matrine has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, anti-microbial, detoxification and so on. Nevertheless, there are still some doubts about it due to the toxicity and questionable bioavailability that does exist. CONCLUSIONS Future researches directions probably include elucidate the mechanism of its toxicity and accurately tracing the in vivo behavior of its drug delivery system. Without doubt, integration of toxicity and efficiency and structure modification based on it are also pivotal methods to enhance pharmacological activity and bioavailability.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Beibei Traditional Chinese Medical Hospital, Chongqing, 400700, China
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cen Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Chang JC, Wu SS, Liu YC, Yang YH, Tsai YF, Li YH, Tseng CT, Tang LC, Nai YS. Construction and Selection of an Entomopathogenic Fungal Library From Soil Samples for Controlling Spodoptera litura. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.596316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemical pesticides have been used for pest control for many decades, but they cause serious problems, including insecticide resistance, secondary pest resurgence, and negative environmental impacts. Therefore, sustainable alternatives to chemical pesticides are necessary for pest control. Entomopathogenic fungi (EPF) are natural epizootic pathogens of insects, and some of them have been used as microbial biocontrol agents. Herein, we attempted to construct an entomopathogenic fungal library (EFLib) via the “Tenebrio molitor pathogenicity-based fungal collection method (TmPC)” to select EPF for control of the serious agricultural pest Spodoptera litura. A total of 172 soil samples were collected in northern and central Taiwan for the EFLib construction. The isolation efficiency of TmPC was 64.02%. The EFLib consisted of 101 isolates and was designated as the National Chung Hsing University (NCHU) EFLib. Among these isolates, 26 showed high virulence (mortality = 100%) to T. molitor larvae. Based on the results of molecular identification, the highly virulent isolates belonged to seven genera, including Beauveria, Clonostachys, Fusarium, Cordyceps, Penicillium, Purpureocillium, and Metarhizium. To evaluate the potential of these isolates for Spodoptera litura control, 12 isolates were selected for pathogenicity screening against S. litura larvae. A total of six EPF isolates belonging to the genera Beauveria and Metarhizium showed rapid eradication of the S. litura larvae. To rank the potential of these fungal strains for pest management, the six isolates were subjected to thermotolerance and conidial production assays, and a novel effective conidia number (ECN) formula was applied. The results indicated that the ECN index of Beauveria australis (NCHU-113) was much higher than that of Metarhizium isolates. However, among the Metarhizium isolates, NCHU-95 showed the highest ECN index. Altogether, NCHU-69 and NCHU-113 should be further tested in field trials. To our knowledge, this is the first attempt to integrate pathogenicity or virulence and ECN data into EPF screening and ranking, providing a baseline for mass selection of potential EPF strains for further applications.
Collapse
|
17
|
Dai LS, Tian HF, Hang Y, Wen CW, Huang YH, Wang BF, Hu JW, Xu JP, Deng MJ. 1 H NMR-based metabonomic evaluation of the pesticides camptothecin and matrine against larvae of Spodoptera litura. PEST MANAGEMENT SCIENCE 2021; 77:208-216. [PMID: 32677739 DOI: 10.1002/ps.6009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Camptothecin (CPT) and matrine (MAT) have potential as botanical pesticides against several pest species. However, the mechanisms of metabolic and physiological changes in pests induced by CPT and MAT are unknown. In this study, a toxicological test, an NMR-based metabolomic study, an enzymatic test, and an RT quantitative PCR (RT-qPCR) experiment were all conducted to examine the effect of CPT and MAT on Spodoptera litura. RESULTS CPT (0.5-1%) exerted high toxicity against larvae of S. litura and caused growth stagnation and high mortality of larvae. A variety of metabolites were significantly influenced by 0.5% CPT, including several energy-related metabolites such as trehalose, lactate, succinate, citrate, malate, and fumarate. In contrast, MAT showed low toxicity against larvae and induced almost no changes in hemolymph metabolites of S. litura. Enzymatic tests showed that trehalase activity was significantly decreased in larvae after feeding with 0.5% CPT. RT-qPCR showed that the transcription levels of alanine aminotransferase, malate dehydrogenase, and isocitrate dehydrogenase were decreased while lactate dehydrogenase was increased in the 0.5% CPT-treated group. CONCLUSIONS These data indicate that one of the important mechanisms of CPT against S. litura larvae is via the inhibition of trehalose hydrolysis and glycolysis. Our findings also suggest that CPT exhibits a stronger toxicological effect than MAT against S. litura, which provides basic information for the application of CPT in the control of S. litura or other lepidoptera pests.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui-Fei Tian
- School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yang Hang
- Biotechnology Center of Anhui Agricultural University, Anhui Agricultural University, Hefei, China
| | - Chao-Wei Wen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Hao Huang
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Bin-Feng Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jing-Wei Hu
- Biotechnology Center of Anhui Agricultural University, Anhui Agricultural University, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ming-Jie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Xu J, Zhang K, Cuthbertson AGS, Du C, Ali S. Toxicity and Biological Effects of Beauveria brongniartii Fe 0 Nanoparticles against Spodoptera litura (Fabricius). INSECTS 2020; 11:insects11120895. [PMID: 33371339 PMCID: PMC7767332 DOI: 10.3390/insects11120895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary Metal-based nanoparticles of different microbial pest control agents have been effective against several pests. This study reports the synthesis of Beauveria brongniartii based Fe0 nanoparticles (Fe0NPs) and their bio-efficacy against Spodoptera litura that was observed during this study. The median lethal concentration (LC50) of Fe0NPs against S. litura after 7 days was 59 ppm, whereas the median survival time (LT50) for 500 ppm concentrations of Fe0NPs was 2.93 days. B. brongniartii Fe0NPs caused a significant reduction in feeding and growth parameters as well as detoxifying enzyme production by S. litura at the end of the experimental period. These findings suggest that B. brongniartii Fe0NPs can potentially be used in environmentally friendly S. litura management programs. Abstract Nanotechnology has clear potential in the development of innovative insecticidal products for the biorational management of major insect pests. Metal-based nanoparticles of different microbial pest control agents have been effective against several pests. Synthesis of Beauveria brongniartii based Fe0 nanoparticles (Fe0NPs) and their bio-efficacy against Spodoptera litura was observed during this study. Beauveria brongniartii conidia were coated with Fe0NPs and characterized by applying a selection of different analytical techniques. Ultraviolet (UV) spectroscopy showed the characteristic band of surface plasmon at 430 nm; Scanning electron microscopy (SEM) images showed spherical shaped nanoparticles with a size ranging between 0.41 to 0.80 µm; Energy-dispersive X-ray (EDX) spectral analysis revealed characteristic Fe peaks at 6.5 and 7.1 Kev; the X-ray diffractogram showed three strong peaks at 2θ values of 45.72°, 64.47°, and 84.05°. The bioassay studies demonstrated that mortality of 2nd instar S. litura larvae following Fe0NPs treatment increased with increasing concentrations of Fe0NPs at different time intervals. The median lethal concentration (LC50) values of Fe0NPs against S. litura after seven days of fungal treatment was 59 ppm, whereas median survival time (LT50) values for 200 and 500 ppm concentrations of Fe0NPs against S. litura seven days post-treatment were 5.1 and 2.29 days, respectively. Beauveria brongniartii-Fe0NPs caused significant reductions in feeding and growth parameters (relative growth rate, relative consumption rate, and efficiency of conversion of ingested food) of S. litura. Beauveria brongniartii Fe0NPs induced reduction in glutathione-S-transferase activities throughout the infection period whereas activities of antioxidant enzymes decreased during later periods of infection. These findings suggest that B. brongniartii Fe0NPs can potentially be used in biorational S. litura management programs.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Kaihui Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | | | - Cailian Du
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
19
|
Wu J, Li J, Zhang C, Yu X, Cuthbertson AGS, Ali S. Biological Impact and Enzyme Activities of Spodoptera litura (Lepidoptera: Noctuidae) in Response to Synergistic Action of Matrine and Beauveria brongniartii. Front Physiol 2020; 11:584405. [PMID: 33224038 PMCID: PMC7667252 DOI: 10.3389/fphys.2020.584405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Matrine, a naturally occurring heterocyclic compound, has been shown to enhance the pathogenicity of the entomopathogenic fungus Beauveria brongniartii against Spodoptera litura. In the current study, the biological impacts and synergism activities of these two agents on nutritional efficiency and antioxidant enzymes in S. litura were explored. Our results showed a high antifeedant activity of B. brongniartii and matrine on S. litura. The S. litura larvae were unable to pupate and emerge when treated with combinations of matrine and B. brongniartii. Following on, we measured the activities of five important antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), and glutathione-S-transferase (GST)] when treated with B. brongniartii SB010 (1 × 109 spores/ml), matrine (0.5 mg/ml), and B. brongniartii SB010 (1 × 109 spores/ml) + matrine (0.5 mg/ml). The results indicated the detoxification activity of the five enzymes in the fat body and hemolymph of S. litura when facing a combined B. brongniartii and matrine challenge. The activities of the enzymes were significantly lower than that of the control group 7 days post-treatment, indicating the inhibitory effect of the two xenobiotics. Matrine had better inhibition effects than B. brongniartii in a majority of the trials. The improved detoxification activity of the five enzymes may be the internal mechanism of synergism of matrine on B. brongniartii.
Collapse
Affiliation(s)
- Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, China
| | - Jiaying Li
- Yongzhou Tobacco Company, Yongzhou, Hunan, China
| | - Can Zhang
- Department of Eco-Engineering, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Xintong Yu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, China
| | | | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|