1
|
Yu J, Yuan J, Liu Z, Ye H, Lin M, Ma L, Liu R, Ding W, Li L, Ma T, Tang S, Pang Y. Combined urine proteomics and metabolomics analysis for the diagnosis of pulmonary tuberculosis. Clin Proteomics 2024; 21:66. [PMID: 39695396 DOI: 10.1186/s12014-024-09514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) diagnostic monitoring is paramount to clinical decision-making and the host biomarkers appears to play a significant role. The currently available diagnostic technology for TB detection is inadequate. In the present study, we aimed to identify biomarkers for diagnosis of pulmonary tuberculosis (PTB) using urinary metabolomic and proteomic analysis. METHODS In the study, urine from 40 PTB, 40 lung cancer (LCA), 40 community-acquired pneumonia (CAP) patients and 40 healthy controls (HC) was collected. Biomarker panels were selected based on random forest (RF) analysis. RESULTS A total of 3,868 proteins and 1,272 annotated metabolic features were detected using pairwise comparisons. Using AUC ≥ 0.80 as a cutoff value, we picked up five protein biomarkers for PTB diagnosis. The five-protein panel yielded an AUC for PTB/HC, PTB/CAP and PTB/LCA of 0.9840, 0.9680 and 0.9310, respectively. Additionally, five metabolism biomarkers were selected for differential diagnosis purpose. By employment of the five-metabolism panel, we could differentiate PTB/HC at an AUC of 0.9940, PTB/CAP of 0.8920, and PTB/LCA of 0.8570. CONCLUSION Our data demonstrate that metabolomic and proteomic analysis can identify a novel urine biomarker panel to diagnose PTB with high sensitivity and specificity. The receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of PTB through these urine biomarkers.
Collapse
Affiliation(s)
- Jiajia Yu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhidong Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Huan Ye
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Minggui Lin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Liping Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Rongmei Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Weimin Ding
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Li Li
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Tianyu Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Shenjie Tang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
2
|
Shaik J, Pillay M, Jeena P. A Review Of Host-Specific Diagnostic And Surrogate Biomarkers In Children With Pulmonary Tuberculosis. Paediatr Respir Rev 2024; 52:44-50. [PMID: 38521643 DOI: 10.1016/j.prrv.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Tuberculosis (TB) is one of the most common causes of mortality globally with a steady rise in paediatric cases in the past decade. Laboratory methods of diagnosing TB and monitoring response to treatment have limitations. Current research focuses on interrogating host- and/or pathogen-specific biomarkers to address this problem. METHODS We reviewed the literature on host-specific biomarkers in TB to determine their value in diagnosis and treatment response in TB infected and HIV/TB co-infected children on anti-tuberculosis treatment. RESULTS AND CONCLUSION While no single host-specific biomarker has been identified for diagnosis or treatment responses in children, several studies suggest predictive biosignatures for disease activity. Alarmingly, current data on host-specific biomarkers for diagnosing and assessing anti-tuberculosis treatment in TB/HIV co-infected children is inadequate. Various factors affecting host-specific biomarker responses should be considered in interpreting findings and designing future studies within specific clinical settings.
Collapse
Affiliation(s)
- Junaid Shaik
- Department of Paediatrics and Child Health, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4000, South Africa; Faculty of Health Sciences, Durban University of Technology, Steve Biko Road, Berea, Durban, 4000, South Africa.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4000, South Africa
| | - Prakash Jeena
- Department of Paediatrics and Child Health, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4000, South Africa
| |
Collapse
|
3
|
Leo S, Narasimhan M, Rathinam S, Banerjee A. Biomarkers in diagnosing and therapeutic monitoring of tuberculosis: a review. Ann Med 2024; 56:2386030. [PMID: 39097795 PMCID: PMC11299445 DOI: 10.1080/07853890.2024.2386030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 08/05/2024] Open
Abstract
Tuberculosis (TB) continues to pose a significant health challenge worldwide, emphasizing the importance of prompt diagnosis and efficient monitoring of treatment outcomes for effective disease control. Biomarkers have become increasingly important in the realm of TB diagnoses and treatment. The objective of this comprehensive review is to examine the present state of biomarkers employed in the diagnosis of TB, monitoring the response to treatment, and predicting treatment outcomes. In this study, we undertake a comprehensive examination of the diverse biomarkers utilized in TB diagnoses, spanning molecular, immunological, and other novel methodologies. Furthermore, we examine the potential of biomarkers in the context of therapeutic monitoring, assessment of treatment effectiveness, and anticipation of drug resistance. Additionally, this paper presents future prospects regarding the utilization of biomarkers in the therapy of tuberculosis.
Collapse
Affiliation(s)
- Sneha Leo
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Meenakshi Narasimhan
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Sridhar Rathinam
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
4
|
van der Westhuizen DP, Snyders CI, Kidd M, Walzl G, Chegou NN, Smit DP. Host urinary biomarkers in HIV positive and HIV negative patients with tubercular uveitis and other uveitic diseases. Tuberculosis (Edinb) 2024; 148:102547. [PMID: 39084001 DOI: 10.1016/j.tube.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE To determine if host urinary biomarker profiles could distinguish between tubercular uveitis (TBU) and other uveitic diseases (OUD) in patients with and without HIV infection. METHODS Concentrations of 29 different host biomarkers were measured in urine samples using the Luminex platform. Data were analyzed to describe differences between patients diagnosed with and without TBU and with and without HIV co-infection. RESULTS One-hundred-and-eighteen urine samples were collected and 39% participants were diagnosed as TBU+. Mean age TBU+ was 39.3±13.6 years with 45.7% males. Anterior and panuveitis and unilateral involvement were most common. 32.6% were TBU+HIV+ (median CD4+=215) while 40.2% were OUD+HIV+ (median CD4+=234). Only sVEGF3 was decreased in TBU+ versus OUD+ (p=0.03), regardless of HIV status. Some biomarkers were significantly raised in HIV+ TBU+ compared to HIV- TBU+: sIL-6Rα, CD30, sRAGE , sTNFR I&-II, IP-10, MIP-1β, sEGFR and Ferritin. HIV+ OUD+ had increased sVEGFR3, CD30, sIL-6Rα, IP-10, sTNFR I&-II, Ferritin and Haptoglobin compared to HIV- OUD+. VEGF-A (p = 0.04) was decreased in HIV+ OUD+ versus HIV- OUD+. CONCLUSION Decreased urinary concentrations of VEGFR3 were observed in TBU+ compared to TBU-. HIV+ individuals demonstrated increased concentrations of multiple urinary analytes when compared to HIV- patients with uveitis.
Collapse
Affiliation(s)
- Dian P van der Westhuizen
- Division of Ophthalmology, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - Candice I Snyders
- South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Gerhard Walzl
- South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - Novel N Chegou
- South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - Derrick P Smit
- Division of Ophthalmology, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
5
|
Rajakumar HK, Coimbatore Sathyabal V, Palaniyandi A, Balakrishnan D. Exploring mean platelet volume and neutrophil-to-albumin ratio as surrogate markers for monitoring tuberculosis treatment: a prospective longitudinal study. BMC Pulm Med 2024; 24:406. [DOI: https:/doi.org/10.1186/s12890-024-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 10/02/2024] Open
|
6
|
Rajakumar HK, Coimbatore Sathyabal V, Palaniyandi A, Balakrishnan D. Exploring mean platelet volume and neutrophil-to-albumin ratio as surrogate markers for monitoring tuberculosis treatment: a prospective longitudinal study. BMC Pulm Med 2024; 24:406. [PMID: 39180021 PMCID: PMC11344401 DOI: 10.1186/s12890-024-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a global health challenge, with India bearing a significant burden. Despite advancements in TB diagnosis and treatment, monitoring TB treatment is challenging, particularly in resource-limited settings. This study aimed to explore the mean platelet volume (MPV) as a potential surrogate marker for monitoring TB treatment and assessing if the neutrophil-to-albumin ratio (NAR) enhances treatment monitoring. METHODS Patients diagnosed with TB following NTEP guidelines were recruited. Participants underwent routine blood tests during the six-month Anti-Tubercular therapy course at the start, end of the intensive phase, and end of the continuous phase. Statistical analyses included Spearman correlation, Friedman test, linear mixed effects (LME) models, and multiple linear regression. RESULTS 150 individuals were included for analysis. Deviations from normality were noted. Significant associations were found between CRP and sputum grade. MPV mediated between CRP and sputum grade. Significant differences were observed across the three-time points. LME models showed changes in MPV and CRP levels over time. Including NAR enhanced predictive capability. CONCLUSIONS MPV may serve as a promising surrogate marker for monitoring ATT. Personalized approaches are crucial in TB treatment monitoring. LME models revealed MPV and CRP level trends. Future research should explore MPV's treatment response mechanisms and cost-effectiveness.
Collapse
Affiliation(s)
| | | | - Arulkumaran Palaniyandi
- Department of Respiratory Medicine, Government Medical College, Omandurar Government Estate, Chennai, India
| | | |
Collapse
|
7
|
Wang J, Cao H, Xie Y, Xu Z, Li Y, Luo H. Mycobacterium tuberculosis infection induces a novel type of cell death: Ferroptosis. Biomed Pharmacother 2024; 177:117030. [PMID: 38917759 DOI: 10.1016/j.biopha.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis is a lipid peroxidation-driven and iron-dependent form of programmed cell death, which is involved in a variety of physical processes and multiple diseases. Numerous reports have demonstrated that ferroptosis is closely related to the pathophysiological processes of Mycobacterium tuberculosis (M. tuberculosis) infection and is characterized by the accumulation of excess lipid peroxides on the cell membrane. In this study, the various functions of ferroptosis, and the therapeutic strategies and diagnostic biomarkers of tuberculosis, were summarized. Notably, this review provides insights into the molecular mechanisms and functions of M. tuberculosis-induced ferroptosis, suggesting potential future therapeutic and diagnostic markers for tuberculosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, PR China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Zi Xu
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China.
| |
Collapse
|
8
|
Maulina N, Hayati Z, Hasballah K, Zulkarnain Z. Tryptophan and Its Derived Metabolites as Biomarkers for Tuberculosis Disease: A Systematic Review. IRANIAN BIOMEDICAL JOURNAL 2024; 28:140-7. [PMID: 39034495 PMCID: PMC11444479 DOI: 10.61186/ibj.4174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Feasible diagnostic assays are required to detect new tuberculosis (TB) cases and monitor treatment. This study aimed to evaluate evidence on tryptophan (Trp) and its metabolites as proposed biomarkers for TB. Through specific keyword searches, we identified 170 relevant literature sources and included seven publications (from 2013 to 2023). The biomarker used in these studies were indoleamine 2, 3-dioxygenase (IDO) activity, IDO-1 gene expression, and plasma IDO protein, measured using ELISA, liquid chromatography-mass spectrometry, ultraperformance liquid chromatography mass spectrometry, and transcriptional profiling. The studies encompassed a pediatric case-control and six studies involving adults, pregnant women with TB-HIV, and individuals with multidrug-resistant tuberculosis, active TB, and latent TB. The assessment of IDO activity and IDO protein level demonstrated promising performance in distinguishing active TB from controls and in evaluating treatment failure and recurrent cases to controls. Trp and its metabolites fulfilled nearly all of target product profile criteria for detecting active TB. This study highlights the potential of utilizing host Trp and its metabolites as non-sputum-based biomarker for TB infection.
Collapse
Affiliation(s)
- Novi Maulina
- Doctorate Student of Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
- Microbiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Zinatul Hayati
- Microbiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Kartini Hasballah
- Pharmacology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Zulkarnain Zulkarnain
- Physiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| |
Collapse
|
9
|
Feng Q, Lin Q, Yao F, Liao Y, Zhang H, Sun Y, Liu W, Zhang R, Rao W, Zhang G, Xu Y. Discovering novel biomarkers for diagnosis and treatment monitoring of active pulmonary tuberculosis by ion metabolism analysis. Microbiol Res 2024; 283:127670. [PMID: 38479231 DOI: 10.1016/j.micres.2024.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Tuberculosis (TB) is a highly lethal infectious disease that poses a global threat. Timely and accurate biomarker for TB diagnosis and treatment monitoring remains a pressing need. Ions, the crucial trace element for humans, may be potential targets for TB diagnosis and the forecasting of TB development. To explore the potential of ions as biomarkers, we measured and compared the levels of various ions in whole blood and plasma samples from healthy control (HC), pulmonary TB patients (TB), cured pulmonary TB patients (RxTB), and other non-TB pneumonia patients (PN) by using ultra-high performance liquid chromatography-tandem mass spectrometry. Our study demonstrated that Cu (AUC = 0.670), Pb (AUC = 0.660), and Zn (AUC = 0.701) in whole blood exhibited promising diagnostic performance for TB. Then we used a neural network (NNET) for TB prediction, the AUC values used to differentiate definite TB from HC or PN in plasma were 0.867 and 0.864, respectively. The AUC values used to differentiate definite TB from HC or PN in whole blood were 0.818 and 0.660, respectively. Our correlation analysis showed that Zn (r= 0.356, p=0.001) and Cu (r= 0.361, p=0.0004) in plasma are most closely related to disease severity. Additionally, six ions (Cu, Sb, V, Mn, Fe, Sr) in plasma and whole blood were altered following anti-TB therapy. These results showed that ions could be diagnostic biomarkers for TB. Furthermore, the level of particular ions can forecast the degree of lung damage and the success of the TB treatment. In conclusion, this study highlights the possibility of using ions from blood samples to enable rapid tuberculosis diagnosis.
Collapse
Affiliation(s)
- Qishun Feng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Qiao Lin
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Fusheng Yao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yunli Liao
- Department of Mass Spectrometry, BGI-Shenzhen, Shenzhen 518083, China
| | - Huihua Zhang
- Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen 518037, China
| | - Yunmei Sun
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Wenfeng Liu
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Ruiqi Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Weiqiao Rao
- Department of Mass Spectrometry, BGI-Shenzhen, Shenzhen 518083, China.
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Yuzhong Xu
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China.
| |
Collapse
|
10
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
11
|
Karrabi M, Baghani Z, Atarbashi-Moghadam F. Effect of adjunctive photodynamic therapy on gingival crevicular fluid interleukin-1β in Stage III and IV periodontitis: A systematic review and meta-analysis. J Indian Soc Periodontol 2024; 28:156-175. [PMID: 39411741 PMCID: PMC11472970 DOI: 10.4103/jisp.jisp_494_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024] Open
Abstract
Interleukin-1β (IL-1β) is a main pro-inflammatory cytokine that is used for the assessment of treatment efficacy in periodontitis. This meta-analysis aimed to assess the effect of antimicrobial photodynamic therapy (aPDT) on Stage III-IV (severe) periodontitis-induced local IL-1β. This review study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement and registered in PROSPERO (CRD42024522546). Electronic and manual search of the literature was conducted in four databases for English articles from the first record up until June 30, 2022 comparing the effects of aPDT versus conventional scaling and root planing on IL-1β levels at different follow-up times. The mean gingival crevicular fluid level of IL-1β with 95% confidence interval (CI) was pooled using the random effect model. The I 2 statistics were applied to analyze the heterogeneity of the findings. The risk of bias (RoB) was analyzed using the revised Cochrane RoB. Analysis of 11 retrieved studies revealed that after the application of aPDT, a significant reduction in IL-1β level occurred at 1-2 (standardized mean difference [SMD]: 0.29, 95% CI: -0.57-1.15; P = 0.0002), 4-6 (SMD: 0.53; 95% CI: -0.36-1.42; P < 00001), and 12-13 (SMD: 1.04; 95% CI: -0.22-2.3; P < 0.00001) follow-up weeks. The application of aPDT can serve as an effective adjunctive therapy for the treatment of Stage III-IV periodontitis. Although the results of this meta-analysis showed that increasing the session frequency of aPDT had a higher effect size, further studies without the limitations of the existing studies are required to confirm the present results.
Collapse
Affiliation(s)
- Malihe Karrabi
- Department of Prosthodontics, Faculty of Dentistry, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Baghani
- Department of Periodontics, Faculty of Dentistry, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fazele Atarbashi-Moghadam
- Department of Periodontics, Dental School of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Shekarkar Azgomi M, Badami GD, Lo Pizzo M, Tamburini B, Dieli C, La Manna MP, Dieli F, Caccamo N. Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data Reveals Memory-like NK Cell Subset Associated with Mycobacterium tuberculosis Latency. Cells 2024; 13:293. [PMID: 38391906 PMCID: PMC10886487 DOI: 10.3390/cells13040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Natural killer (NK) cells are innate-like lymphocytes that belong to the family of type-1 innate lymphoid cells and rapidly respond to virus-infected and tumor cells. In this study, we have combined scRNA-seq data and bulk RNA-seq data to define the phenotypic and molecular characteristics of peripheral blood NK cells. While the role of NK cells in immune surveillance against virus infections and tumors has been well established, their contribution to protective responses to other intracellular microorganisms, such as Mycobacterium tuberculosis (Mtb), is still poorly understood. In this study, we have combined scRNA-seq data and bulk RNA-seq data to illuminate the molecular characteristics of circulating NK cells in patients with active tuberculosis (TB) disease and subjects with latent Mtb infection (LTBI) and compared these characteristics with those of healthy donors (HDs) and patients with non-TB other pulmonary infectious diseases (ODs). We show here that the NK cell cluster was significantly increased in LTBI subjects, as compared to patients with active TB or other non-TB pulmonary diseases and HD, and this was mostly attributable to the expansion of an NK cell population expressing KLRC2, CD52, CCL5 and HLA-DRB1, which most likely corresponds to memory-like NK2.1 cells. These data were validated by flow cytometry analysis in a small cohort of samples, showing that LTBI subjects have a significant expansion of NK cells characterized by the prevalence of memory-like CD52+ NKG2C+ NK cells. Altogether, our results provide some new information on the role of NK cells in protective immune responses to Mtb.
Collapse
Affiliation(s)
- Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Marianna Lo Pizzo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
13
|
Zhuang L, Yang L, Li L, Ye Z, Gong W. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (Beijing) 2024; 5:e419. [PMID: 38188605 PMCID: PMC10771061 DOI: 10.1002/mco2.419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 01/09/2024] Open
Abstract
Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Ling Yang
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Linsheng Li
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Zhaoyang Ye
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
14
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Kazemi S, Mirzaei R, Karampoor S, Hosseini-Fard SR, Ahmadyousefi Y, Soltanian AR, Keramat F, Saidijam M, Alikhani MY. Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microb Pathog 2023; 185:106459. [PMID: 37995882 DOI: 10.1016/j.micpath.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.
Collapse
Affiliation(s)
- Sima Kazemi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Iran
| | - Fariba Keramat
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Zhang F, Zhang F, Dong Y, Li L, Pang Y. New Insights into Biomarkers for Evaluating Therapy Efficacy in Pulmonary Tuberculosis: A Narrative Review. Infect Dis Ther 2023; 12:2665-2689. [PMID: 37938418 PMCID: PMC10746651 DOI: 10.1007/s40121-023-00887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Evaluating therapy efficacy is crucial for patients with tuberculosis (TB), especially those with drug-resistant tuberculosis (DR-TB). The World Health Organization currently recommends sputum smear and culture as the standard methods for evaluating pulmonary tuberculosis (PTB) therapy efficacy. However, these approaches have limitations including low sensitivity, lengthy culture periods, and susceptibility to contamination. There is an urgent need for dependable biomarkers to evaluate therapy efficacy in patients with PTB. Numerous new biomarkers of Mycobacterium tuberculosis (MTB) and the host have been used in recent studies to evaluate PTB therapy efficacy. A systematic review and update of these biomarkers can facilitate the discovery of novel biomarkers and assessment models, as well as provide a solid scientific basis for alternative indicators of evaluating therapy efficacy. In this review we summarize the recent advancements and limitations of biomarkers used to monitor therapy efficacy, highlighting the importance of utilizing a combination of biomarkers. Although some biomarkers have potential in evaluating the efficacy of therapy in patients with PTB, they also have some limitations. Further research, validation, and optimization are required to identify the most reliable and effective alternative biomarkers and apply them to clinical practice.
Collapse
Affiliation(s)
- Fuzhen Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 97, Machang, Tongzhou District, Beijing, 101149, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Fan Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Yu Dong
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 97, Machang, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Liang Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 97, Machang, Tongzhou District, Beijing, 101149, People's Republic of China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 97, Machang, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
17
|
Selvavinayagam ST, Aswathy B, Yong YK, Frederick A, Murali L, Kalaivani V, Karishma SJ, Rajeshkumar M, Anusree A, Kannan M, Gopalan N, Vignesh R, Murugesan A, Tan HY, Zhang Y, Chandramathi S, Sivasankaran MP, Balakrishnan P, Govindaraj S, Byrareddy SN, Velu V, Larsson M, Shankar EM, Raju S. Plasma CXCL8 and MCP-1 as surrogate plasma biomarkers of latent tuberculosis infection among household contacts-A cross-sectional study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002327. [PMID: 37992019 PMCID: PMC10664947 DOI: 10.1371/journal.pgph.0002327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Early detection of latent tuberculosis infection (LTBI) is critical to TB elimination in the current WHO vision of End Tuberculosis Strategy. The study investigates whether detecting plasma cytokines could aid in diagnosing LTBI across household contacts (HHCs) positive for IGRA, HHCs negative for IGRA, and healthy controls. The plasma cytokines were measured using a commercial Bio-Plex Pro Human Cytokine 17-plex assay. Increased plasma CXCL8 and decreased MCP-1, TNF-α, and IFN-γ were associated with LTBI. Regression analysis showed that a combination of CXCL8 and MCP-1 increased the risk of LTBI among HHCs to 14-fold. Our study suggests that CXCL-8 and MCP-1 could serve as the surrogate biomarkers of LTBI, particularly in resource-limited settings. Further laboratory investigations are warranted before extrapolating CXCL8 and MCP-1 for their usefulness as surrogate biomarkers of LTBI in resource-limited settings.
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Bijulal Aswathy
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Asha Frederick
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Lakshmi Murali
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Vasudevan Kalaivani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Sree J. Karishma
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Adukkadukkam Anusree
- Department of Life Sciences, Blood and Vascular Biology, Central University of Tamil Nadu, Thiruvarur, India
| | - Meganathan Kannan
- Department of Life Sciences, Blood and Vascular Biology, Central University of Tamil Nadu, Thiruvarur, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, India
| | - Ramachandran Vignesh
- Pre-clinical Department, Royal College of Medicine, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | - Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Ying Zhang
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Pachamuthu Balakrishnan
- Department of Microbiology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Centre for Infectious Diseases, Velappanchavadi, Chennai, India
| | - Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Division of Microbiology and Immunology, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, United States of America
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Division of Microbiology and Immunology, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, United States of America
| | - Marie Larsson
- Department of Biomedicine and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Esaki M. Shankar
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Gadama Y, Du Preez M, Carr J, Theron S, Albertyn C, Ssebambulidde K, Saylor D, Brey N, Henning F. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and Human Immunodeficiency virus infection: dilemmas in diagnosis and management: a case series. J Med Case Rep 2023; 17:457. [PMID: 37845760 PMCID: PMC10580653 DOI: 10.1186/s13256-023-04191-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently described autoimmune inflammatory disorder of the central nervous system (CNS). There is limited data on the association between Human Immunodeficiency virus (HIV) infection and MOGAD. We report three patients with HIV infection and myelin oligodendrocyte glycoprotein (MOG) antibodies in the setting of other central nervous system infections. CASE DESCRIPTIONS The first patient, a 44-year-old black African man, presented with acute disseminated encephalomyelitis (ADEM) with positive serum MOG antibodies. He made a significant recovery with corticosteroids but had a quick relapse and died from sepsis. The second patient, an 18-year-old black woman, presented with paraplegia and imaging revealed a longitudinally extensive transverse myelitis and had positive serum MOG antibodies. She remained paraplegic after methylprednisone and plasmapheresis treatments. Her rehabilitation was complicated by development of pulmonary embolism and tuberculosis. The third patient, a 43-year-old mixed-race woman, presented with bilateral painless visual loss. Her investigations were notable for positive MOG antibodies, positive Varicella Zoster Virus on cerebral spinal fluid (CSF) and hyperintense optic nerves on magnetic resonance imaging (MRI). Her vision did not improve with immunosuppression and eventually died from sepsis. CONCLUSION Our cases illustrate the diagnostic and management challenges of MOGAD in the setting of advanced HIV infection, where the risk of CNS opportunistic infections is high even without the use of immunosuppression. The atypical clinical progression and the dilemmas in the diagnosis and treatment of these cases highlight gaps in the current knowledge of MOGAD among people with HIV that need further exploration.
Collapse
Affiliation(s)
- Yohane Gadama
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
| | - Marié Du Preez
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sarel Theron
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Christine Albertyn
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kenneth Ssebambulidde
- Research Department, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Deanna Saylor
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Naeem Brey
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Franclo Henning
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
20
|
Selvavinayagam ST, Aswathy B, Yong YK, Frederick A, Murali L, Kalaivani V, Jith KS, Rajeshkumar M, Anusree A, Kannan M, Gopalan N, Vignesh R, Murugesan A, Tan HY, Zhang Y, Chandramathi S, Sivasankaran MP, Govindaraj S, Byrareddy SN, Velu V, Larsson M, Shankar EM, Raju S. Plasma CXCL8 and MCP-1 as biomarkers of latent tuberculosis infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.07.23293767. [PMID: 37609153 PMCID: PMC10441491 DOI: 10.1101/2023.08.07.23293767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Early detection of latent tuberculosis infection (LTBI) is critical to TB elimination in the current WHO vision of End Tuberculosis Strategy. Methods We investigated whether detecting plasma cytokines could aid in diagnosing LTBI across household contacts (HHCs) positive for IGRA, HHCs negative for IGRA, and healthy controls. We also measured the plasma cytokines using a commercial Bio-Plex Pro Human Cytokine 17-plex assay. Results Increased plasma CXCL8 and decreased MCP-1, TNF-α, and IFN-γ were associated with LTBI. Regression analysis showed that a combination of CXCL8 and MCP-1 increased the risk of LTBI among HHCs to 14-fold. Conclusions We postulated that CXCL8 and MCP-1 could be the surrogate biomarkers of LTBI, especially in resource-limited settings.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Bijulal Aswathy
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Yean K Yong
- Laboratory Centre, Xiamen University Malaysia, 43 900 Sepang, Selangor, Malaysia
| | - Asha Frederick
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Lakshmi Murali
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Vasudevan Kalaivani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Karishma S Jith
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Adukkadukkam Anusree
- Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Ramachandran Vignesh
- Pre-clinical Department, Royal College of Medicine, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | - Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, 43 900 Sepang, Selangor, Malaysia
| | - Ying Zhang
- Laboratory Centre, Xiamen University Malaysia, 43 900 Sepang, Selangor, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Marie Larsson
- Department of Biomedicine and Clinical Sciences, Linkoping University, 58 185 Linköping, Sweden
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Alipoor SD. Editorial: Exosomes and exosomal miRNAs as biomarkers in infection with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 13:1239739. [PMID: 37565065 PMCID: PMC10411351 DOI: 10.3389/fcimb.2023.1239739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Shamila D. Alipoor
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
22
|
Sitoe N, Chelene I, Ligeiro S, Castiano C, Ahmed MIM, Held K, Nhassengo P, Khosa C, Matavele-Chissumba R, Hoelscher M, Rachow A, Geldmacher C. Effect of TB Treatment on Neutrophil-Derived Soluble Inflammatory Mediators in TB Patients with and without HIV Coinfection. Pathogens 2023; 12:794. [PMID: 37375484 DOI: 10.3390/pathogens12060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The mycobacteriological analysis of sputum samples is the gold standard for tuberculosis diagnosis and treatment monitoring. However, sputum production can be challenging after the initiation of TB treatment. As a possible alternative, we therefore investigated the dynamics of neutrophil-derived soluble inflammatory mediators during TB treatment in relation to HIV ART status and the severity of lung impairment. Plasma samples of TB patients with (N = 47) and without HIV (N = 21) were analyzed at baseline, month 2, month 6 (end of TB treatment) and month 12. Plasma levels of MMP-1, MMP-8, MPO and S100A8 markedly decreased over the course of TB treatment and remained at similar levels thereafter. Post-TB treatment initiation, significantly elevated plasma levels of MMP-8 were detected in TB patients living with HIV, especially if they were not receiving ART treatment at baseline. Our data confirm that the plasma levels of neutrophil-based biomarkers can be used as candidate surrogate markers for TB treatment outcome and HIV-infection influenced MMP-8 and S100A8 levels. Future studies to validate our results and to understand the dynamics of neutrophils-based biomarkers post-TB treatment are needed.
Collapse
Affiliation(s)
- Nádia Sitoe
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
- CIH LMU Center for International Health, Ludwig-Maximilians University, 80802 Munich, Germany
| | - Imelda Chelene
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Sofia Ligeiro
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Celso Castiano
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Mohamed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | | | - Celso Khosa
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | | | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| |
Collapse
|
23
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
24
|
Seele PP, Dyan B, Skepu A, Maserumule C, Sibuyi NRS. Development of Gold-Nanoparticle-Based Lateral Flow Immunoassays for Rapid Detection of TB ESAT-6 and CFP-10. BIOSENSORS 2023; 13:354. [PMID: 36979566 PMCID: PMC10046134 DOI: 10.3390/bios13030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The current study reports on the development of a rapid and cost-effective TB-antigen diagnostic test for the detection of Mycobacterium biomarkers from non-sputum-based samples. Two gold nanoparticle (AuNP)-based rapid diagnostic tests (RDTs) in the form of lateral flow immunoassays (LFIAs) were developed for detection of immunodominant TB antigens, the 6 kDa early secreted antigen target EsxA (ESAT-6) and the 10 kDa culture filtrate protein EsxB (CFP-10). AuNPs were synthesized using the Turkevich method and characterized by UV-vis spectrophotometer and transmission electron microscope (TEM). The AuNP-detection probe conjugation conditions were determined by comparing the stability of 14 nm AuNPs at different pH conditions, following salt challenge. Thereafter, ESAT-6 and CFP-10 antibodies were conjugated to the AuNPs and used for the colorimetric detection of TB antigens. Selection of the best detection and capture antibody pairs was determined by Dot spotting. The limits of detection (LODs) for the LFIAs were evaluated by dry testing. TEM results showed that the 14 nm AuNPs were mostly spherical and well dispersed. The ESAT-6 LFIA prototype had an LOD of 0.0625 ng/mL versus the CFP-10 with an LOD of 7.69 ng/mL. Compared to other studies in the literature, the LOD was either similar or lower, outperforming them. Moreover, in some of the previous studies, an enrichment/extraction step was required to improve on the LOD. In this study, the LFIAs produced results within 15 min and could be suitable for use at PoCs either in clinics, mobile clinics, hospitals or at home by the end user. However, further studies need to be conducted to validate their use in clinical samples.
Collapse
Affiliation(s)
- Palesa Pamela Seele
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Busiswa Dyan
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Amanda Skepu
- Advanced Chemistry and Life Sciences Division, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| | - Charlotte Maserumule
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| |
Collapse
|
25
|
Thu VTA, Dat LD, Jayanti RP, Trinh HKT, Hung TM, Cho YS, Long NP, Shin JG. Advancing personalized medicine for tuberculosis through the application of immune profiling. Front Cell Infect Microbiol 2023; 13:1108155. [PMID: 36844400 PMCID: PMC9950414 DOI: 10.3389/fcimb.2023.1108155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
While early and precise diagnosis is the key to eliminating tuberculosis (TB), conventional methods using culture conversion or sputum smear microscopy have failed to meet demand. This is especially true in high-epidemic developing countries and during pandemic-associated social restrictions. Suboptimal biomarkers have restricted the improvement of TB management and eradication strategies. Therefore, the research and development of new affordable and accessible methods are required. Following the emergence of many high-throughput quantification TB studies, immunomics has the advantages of directly targeting responsive immune molecules and significantly simplifying workloads. In particular, immune profiling has been demonstrated to be a versatile tool that potentially unlocks many options for application in TB management. Herein, we review the current approaches for TB control with regard to the potentials and limitations of immunomics. Multiple directions are also proposed to hopefully unleash immunomics' potential in TB research, not least in revealing representative immune biomarkers to correctly diagnose TB. The immune profiles of patients can be valuable covariates for model-informed precision dosing-based treatment monitoring, prediction of outcome, and the optimal dose prediction of anti-TB drugs.
Collapse
Affiliation(s)
- Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Ly Da Dat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Rannissa Puspita Jayanti
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Hoang Kim Tu Trinh
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh, Ho Chi Minh City, Vietnam
| | - Tran Minh Hung
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea,*Correspondence: Jae-Gook Shin, ; Nguyen Phuoc Long,
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea,*Correspondence: Jae-Gook Shin, ; Nguyen Phuoc Long,
| |
Collapse
|
26
|
Identification of host biomarkers from dried blood spots for monitoring treatment response in extrapulmonary tuberculosis. Sci Rep 2023; 13:599. [PMID: 36635313 PMCID: PMC9837114 DOI: 10.1038/s41598-022-26823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
There is a lack of objective tools for monitoring treatment response in extrapulmonary tuberculosis (EPTB). This study aimed to explore the utility of inflammatory biomarkers from the dry blood spots (DBS) as a tool for monitoring treatment response in EPTB. In a prospective cohort study, 40 inflammatory biomarkers were investigated in DBS samples from 105 EPTB cases using a Luminex platform. The samples were taken before, and, at the end of the 2nd and 6th months of treatment. A total of 11 inflammatory host biomarkers changed significantly with treatment in all EPTB patients. CXCL9/MIG, CCL20, CCL23, CXCL10/IP-10, CXCL1, CXCL2, and CXCL8 significantly declined in our cohort of EPTB (48 TB pleuritis and 57 TB lymphadenitis) patients at both time points. A biosignature consisting of MIG, CCL23, and CXCL2, corresponded with the treatment response in 81% of patients in the 2nd month and 79% of patients at the end of treatment. MIG, CCL23, IP-10, and CXCL2 changed significantly with treatment in all patients including those showing partial clinical response at the 2nd month of treatment. The changes in the levels of inflammatory biomarkers in the DBS correspond with the treatment success and can be developed as a routine test in low-resource settings.
Collapse
|
27
|
Kumar NP, Nancy A, Viswanathan V, Sivakumar S, Thiruvengadam K, Ahamed SF, Hissar S, Kornfeld H, Babu S. Chitinase and indoleamine 2, 3-dioxygenase are prognostic biomarkers for unfavorable treatment outcomes in pulmonary tuberculosis. Front Immunol 2023; 14:1093640. [PMID: 36814914 PMCID: PMC9939892 DOI: 10.3389/fimmu.2023.1093640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Chitinase, Indoleamine 2,3-dioxygenesae-1 (IDO-1) and heme oxygenase-1 (HO-1) are candidate diagnostic biomarkers for tuberculosis (TB). Whether these immune markers could also serve as predictive biomarkers of unfavorable treatment outcomes in pulmonary TB (PTB) is not known. Methods A cohort of newly diagnosed, sputum culture-positive adults with drug-sensitive PTB were recruited. Plasma chitinase protein, IDO protein and HO-1 levels measured before treatment initiation were compared between 68 cases with unfavorable outcomes (treatment failure, death, or recurrence) and 108 control individuals who had recurrence-free cure. Results Plasma chitinase and IDO protein levels but not HO-1 levels were lower in cases compared to controls. The low chitinase and IDO protein levels were associated with increased risk of unfavourable outcomes in unadjusted and adjusted analyses. Receiver operating characteristic analysis revealed that chitinase and IDO proteins exhibited high sensitivity and specificity in differentiating cases vs controls as well as in differentiating treatment failure vs controls and recurrence vs controls, respectively. Classification and regression trees (CART) were used to determine threshold values for these two immune markers. Discussion Our study revealed a plasma chitinase and IDO protein signature that may be used as a tool for predicting adverse treatment outcomes in PTB.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- Department of Immunology, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Arul Nancy
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India
| | - Vijay Viswanathan
- Diabetology, Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | - Shanmugam Sivakumar
- Department of Bacteriology, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Kannan Thiruvengadam
- Epidemiology Statistics, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Shaik Fayaz Ahamed
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India
| | - Syed Hissar
- Clinical Research, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Subash Babu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
28
|
Ludi Z, Sule AA, Samy RP, Putera I, Schrijver B, Hutchinson PE, Gunaratne J, Verma I, Singhal A, Nora RLD, van Hagen PM, Dik WA, Gupta V, Agrawal R. Diagnosis and biomarkers for ocular tuberculosis: From the present into the future. Theranostics 2023; 13:2088-2113. [PMID: 37153734 PMCID: PMC10157737 DOI: 10.7150/thno.81488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/19/2023] [Indexed: 05/10/2023] Open
Abstract
Tuberculosis is an airborne disease caused by Mycobacterium tuberculosis (Mtb) and can manifest both pulmonary and extrapulmonary disease, including ocular tuberculosis (OTB). Accurate diagnosis and swift optimal treatment initiation for OTB is faced by many challenges combined with the lack of standardized treatment regimens this results in uncertain OTB outcomes. The purpose of this study is to summarize existing diagnostic approaches and recently discovered biomarkers that may contribute to establishing OTB diagnosis, choice of anti-tubercular therapy (ATT) regimen, and treatment monitoring. The keywords ocular tuberculosis, tuberculosis, Mycobacterium, biomarkers, molecular diagnosis, multi-omics, proteomics, genomics, transcriptomics, metabolomics, T-lymphocytes profiling were searched on PubMed and MEDLINE databases. Articles and books published with at least one of the keywords were included and screened for relevance. There was no time limit for study inclusion. More emphasis was placed on recent publications that contributed new information about the pathogenesis, diagnosis, or treatment of OTB. We excluded abstracts and articles that were not written in the English language. References cited within the identified articles were used to further supplement the search. We found 10 studies evaluating the sensitivity and specificity of interferon-gamma release assay (IGRA), and 6 studies evaluating that of tuberculin skin test (TST) in OTB patients. IGRA (Sp = 71-100%, Se = 36-100%) achieves overall better sensitivity and specificity than TST (Sp = 51.1-85.7%; Se = 70.9-98.5%). For nuclear acid amplification tests (NAAT), we found 7 studies on uniplex polymerase chain reaction (PCR) with different Mtb targets, 7 studies on DNA-based multiplex PCR, 1 study on mRNA-based multiplex PCR, 4 studies on loop-mediated isothermal amplification (LAMP) assay with different Mtb targets, 3 studies on GeneXpert assay, 1 study on GeneXpert Ultra assay and 1 study for MTBDRplus assay for OTB. Specificity is overall improved but sensitivity is highly variable for NAATs (excluding uniplex PCR, Sp = 50-100%; Se = 10.5-98%) as compared to IGRA. We also found 3 transcriptomic studies, 6 proteomic studies, 2 studies on stimulation assays, 1 study on intraocular protein analysis and 1 study on T-lymphocyte profiling in OTB patients. All except 1 study evaluated novel, previously undiscovered biomarkers. Only 1 study has been externally validated by a large independent cohort. Future theranostic marker discovery by a multi-omics approach is essential to deepen pathophysiological understanding of OTB. Combined these might result in swift, optimal and personalized treatment regimens to modulate the heterogeneous mechanisms of OTB. Eventually, these studies could improve the current cumbersome diagnosis and management of OTB.
Collapse
Affiliation(s)
- Zhang Ludi
- Lee Kong Chian School of Medicine, Nanyang Technological University of Singapore, Singapore
| | - Ashita Ashish Sule
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ramar Perumal Samy
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ikhwanuliman Putera
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - CiptoMangunkusmoKirana Eye Hospital, Jakarta, Indonesia
- Laboratory Medical Immunology, Department of Immunology, ErasmusMC, UniversityMedical Centre, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, ErasmusMC, UniversityMedical Centre, Rotterdam, the Netherlands
| | - Paul Edward Hutchinson
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Singhal
- Lee Kong Chian School of Medicine, Nanyang Technological University of Singapore, Singapore
- A*SATR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - CiptoMangunkusmoKirana Eye Hospital, Jakarta, Indonesia
- Laboratory Medical Immunology, Department of Immunology, ErasmusMC, UniversityMedical Centre, Rotterdam, the Netherlands
- University of Indonesia Hospital (RSUI), Depok, West Java, Indonesia
| | - P. Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, ErasmusMC, UniversityMedical Centre, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, ErasmusMC, UniversityMedical Centre, Rotterdam, the Netherlands
| | - Vishali Gupta
- Advanced Eye Centre, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rupesh Agrawal
- Lee Kong Chian School of Medicine, Nanyang Technological University of Singapore, Singapore
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- School of Pharmacy, Nantong University, Nantong, P. R. China
- Department of Mechanical Engineering, University College London, London, United Kingdom
- ✉ Corresponding author: A/Prof (Dr) Rupesh Agrawal, Senior Consultant, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore 308433,
| |
Collapse
|
29
|
Nogueira BMF, Krishnan S, Barreto‐Duarte B, Araújo‐Pereira M, Queiroz ATL, Ellner JJ, Salgame P, Scriba TJ, Sterling TR, Gupta A, Andrade BB. Diagnostic biomarkers for active tuberculosis: progress and challenges. EMBO Mol Med 2022; 14:e14088. [PMID: 36314872 PMCID: PMC9728055 DOI: 10.15252/emmm.202114088] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality from a single infectious agent, despite being preventable and curable. Early and accurate diagnosis of active TB is critical to both enhance patient care, improve patient outcomes, and break Mycobacterium tuberculosis (Mtb) transmission cycles. In 2020 an estimated 9.9 million people fell ill from Mtb, but only a little over half (5.8 million) received an active TB diagnosis and treatment. The World Health Organization has proposed target product profiles for biomarker- or biosignature-based diagnostics using point-of-care tests from easily accessible specimens such as urine or blood. Here we review and summarize progress made in the development of pathogen- and host-based biomarkers for active TB diagnosis. We describe several unique patient populations that have posed challenges to development of a universal diagnostic TB biomarker, such as people living with HIV, extrapulmonary TB, and children. We also review additional limitations to widespread validation and utilization of published biomarkers. We conclude with proposed solutions to enhance TB diagnostic biomarker validation and uptake.
Collapse
Affiliation(s)
- Betânia M F Nogueira
- Programa de Pós‐graduação em Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil,Instituto Couto MaiaSalvadorBrazil,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) InitiativeSalvadorBrazil
| | - Sonya Krishnan
- Division of Infectious Diseases, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Beatriz Barreto‐Duarte
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) InitiativeSalvadorBrazil,Curso de MedicinaUniversidade Salvador (UNIFACS)SalvadorBrazil,Programa de Pós‐Graduação em Clínica MédicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil,Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo MonizFundação Oswaldo CruzSalvadorBrazil
| | - Mariana Araújo‐Pereira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) InitiativeSalvadorBrazil,Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo MonizFundação Oswaldo CruzSalvadorBrazil,Faculdade de MedicinaUniversidade Federal da BahiaSalvadorBrazil
| | - Artur T L Queiroz
- Instituto Couto MaiaSalvadorBrazil,Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo MonizFundação Oswaldo CruzSalvadorBrazil
| | - Jerrold J Ellner
- Department of Medicine, Centre for Emerging PathogensRutgers‐New Jersey Medical SchoolNewarkNJUSA
| | - Padmini Salgame
- Department of Medicine, Centre for Emerging PathogensRutgers‐New Jersey Medical SchoolNewarkNJUSA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of PathologyUniversity of Cape TownCape TownSouth Africa
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Amita Gupta
- Division of Infectious Diseases, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) InitiativeSalvadorBrazil,Curso de MedicinaUniversidade Salvador (UNIFACS)SalvadorBrazil,Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo MonizFundação Oswaldo CruzSalvadorBrazil,Faculdade de MedicinaUniversidade Federal da BahiaSalvadorBrazil,Curso de MedicinaFaculdade de Tecnologia e Ciências (FTC)SalvadorBrazil,Curso de MedicinaEscola Bahiana de Medicina e Saúde Pública (EBMSP)SalvadorBrazil
| |
Collapse
|
30
|
Daniel EA, Sathiyamani B, Thiruvengadam K, Vivekanandan S, Vembuli H, Hanna LE. MicroRNAs as diagnostic biomarkers for Tuberculosis: A systematic review and meta- analysis. Front Immunol 2022; 13:954396. [PMID: 36238288 PMCID: PMC9551313 DOI: 10.3389/fimmu.2022.954396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe early diagnosis of tuberculosis using novel non-sputum-based biomarkers is of high priority in the End TB strategy. MicroRNAs (miRNAs) are significant regulators of TB pathogenesis and their differential expression pattern among healthy, latent, and active TB population has revealed their potentiality as biomarkers in recent studies. Thus, we systematically reviewed and performed a meta-analysis on the role of host miRNAs in TB diagnosis. We also reviewed the involvement of miRNAs in the immune response to Mycobacterium tuberculosis (Mtb).MethodsPubmed, Ovid and Cochrane databases were searched to retrieve published literature from 2000 to 2020 using predefined keywords. We screened relevant studies based on inclusion and exclusion criteria and the included studies were assessed for their quality using STARD guidelines and QUADAS-2 tool. Funnel plots were constructed to assess the publication bias. The heterogeneity of studies and overall pooled results of sensitivity, specificity and DOR were determined using forest plots.ResultsWe retrieved a total of 447 studies collectively from all the databases, out of which 21 studies were included for qualitative analysis. In these studies, miR-29, miR-31, miR-125b, miR146a and miR-155 were consistently reported. The overall sensitivity, specificity and DOR of these miRNAs were found to be 87.9% (81.7-92.2), 81.2% (74.5-86.5) and 43.1(20.3-91.3) respectively. Among these, miR-31 had the maximum diagnostic accuracy, with a sensitivity of 96% (89.7-98.5), specificity of 89% (81.2-93.8) and DOR of 345.9 (90.2-1326.3), meeting the minimal target product profile (TPP) for TB diagnostics.ConclusionmiRNAs can thus be exploited as potential biomarkers for rapid detection of tuberculosis as evident from their diagnostic performance. Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021226559 PROSPERO (CRD42021226559).
Collapse
Affiliation(s)
- Evangeline Ann Daniel
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Balakumaran Sathiyamani
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Kannan Thiruvengadam
- Department of Statistics, Epidemiology Unit, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Sandhya Vivekanandan
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Hemanathan Vembuli
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
| | - Luke Elizabeth Hanna
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- *Correspondence: Luke Elizabeth Hanna,
| |
Collapse
|
31
|
Ma C, Wu X, Zhang X, Liu X, Deng G. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol 2022; 12:1004148. [PMID: 36211962 PMCID: PMC9539760 DOI: 10.3389/fcimb.2022.1004148] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophages are the host cells and the frontline defense against Mycobacterium tuberculosis (Mtb) infection, and the form of death of infected macrophages plays a pivotal role in the outcome of Mtb infections. Ferroptosis, a programmed necrotic cell death induced by overwhelming lipid peroxidation, was confirmed as one of the mechanisms of Mtb spread following infection and the pathogenesis of tuberculosis (TB). However, the mechanism underlying the macrophage ferroptosis induced by Mtb infection has not yet been fully understood. In the present study, transcriptome analysis revealed the upregulation of heme oxygenase-1 (HMOX1) and pro-ferroptosis cytokines, but downregulation of glutathione peroxidase 4 (GPX4) and other key anti-lipid peroxidation factors in the peripheral blood of both patients with extra-pulmonary tuberculosis (EPTB) and pulmonary tuberculosis (PTB). This finding was further corroborated in mice and RAW264.7 murine macrophage-like cells infected with Bacillus Calmette-Guerin (BCG). A mechanistic study further demonstrated that heme oxygenase-1 protein (HO-1) regulated the production of reactive oxygen species (ROS) and iron metabolism, and ferroptosis in BCG-infected murine macrophages. The knockdown of Hmox1 by siRNA resulted in a significant increase of intracellular ROS, Fe2+, and iron autophagy-mediated factor Ncoa4, along with the reduction of antioxidant factors Gpx4 and Fsp1 in macrophages infected with BCG. The siRNA-mediated knockdown of Hmox1 also reduced cell survival rate and increased the release of intracellular bacteria in BCG-infected macrophages. By contrast, scavenging ROS by N-acetyl cysteine led to the reduction of intracellular ROS, Fe2+, and Hmox1 concentrations, and subsequently inhibited ferroptosis and the release of intracellular BCG in RAW264.7 cells infected with BCG. These findings suggest that HO-1 is an essential regulator of Mtb-induced ferroptosis, which regulates ROS production and iron accretion to alter macrophage death against Mtb infections.
Collapse
Affiliation(s)
- Chenjie Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xu Zhang
- Department of Beijing National Biochip Research Center sub-center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
- Analysis and Testing Center, Ningxia University, Yinchuan, China
| |
Collapse
|
32
|
Heyckendorf J, Georghiou SB, Frahm N, Heinrich N, Kontsevaya I, Reimann M, Holtzman D, Imperial M, Cirillo DM, Gillespie SH, Ruhwald M. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clin Microbiol Rev 2022; 35:e0022721. [PMID: 35311552 PMCID: PMC9491169 DOI: 10.1128/cmr.00227-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the advent of new diagnostics, drugs and regimens, tuberculosis (TB) remains a global public health threat. A significant challenge for TB control efforts has been the monitoring of TB therapy and determination of TB treatment success. Current recommendations for TB treatment monitoring rely on sputum and culture conversion, which have low sensitivity and long turnaround times, present biohazard risk, and are prone to contamination, undermining their usefulness as clinical treatment monitoring tools and for drug development. We review the pipeline of molecular technologies and assays that serve as suitable substitutes for current culture-based readouts for treatment response and outcome with the potential to change TB therapy monitoring and accelerate drug development.
Collapse
Affiliation(s)
- Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | | | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Norbert Heinrich
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Maja Reimann
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - David Holtzman
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Marjorie Imperial
- University of California San Francisco, San Francisco, California, USA, United States
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephen H. Gillespie
- School of Medicine, University of St Andrewsgrid.11914.3c, St Andrews, Fife, Scotland
| | - Morten Ruhwald
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | | |
Collapse
|
33
|
Gumbo R, Sylvester TT, Parsons SDC, Buss PE, Warren RM, van Helden PD, Miller MA, Kerr TJ. Comparison of interferon gamma release assay and CXCL9 gene expression assay for the detection of Mycobacterium bovis infection in African lions (Panthera leo). Front Cell Infect Microbiol 2022; 12:989209. [PMID: 36189358 PMCID: PMC9523132 DOI: 10.3389/fcimb.2022.989209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium bovis (M. bovis) infection has been identified in both domestic and wild animals and may threaten the conservation of vulnerable species including African lions (Panthera leo). There is a need to develop accurate ante-mortem tools for detection of M. bovis infection in African big cat populations for wildlife management and disease surveillance. The aim of this study was to compare the performances of two immunological assays, the QuantiFERON®-TB Gold Plus (QFT) Mabtech Cat interferon gamma release assay (IGRA) and QFT CXCL9 gene expression assay (GEA), which have both shown diagnostic potential for M. bovis detection in African lions. Lion whole blood (n=47), stimulated using the QFT platform, was used for measuring antigen-specific CXCL9 expression and IFN-γ production and to assign M. bovis infection status. A subset (n=12) of mycobacterial culture-confirmed M. bovis infected and uninfected African lions was used to compare the agreement between the immunological diagnostic assays. There was no statistical difference between the proportions of test positive African lions tested by the QFT Mabtech Cat IGRA compared to the QFT CXCL9 GEA. There was also a moderate association between immunological diagnostic assays when numerical results were compared. The majority of lions had the same diagnostic outcome using the paired assays. Although the QFT Mabtech Cat IGRA provides a more standardized, commercially available, and cost-effective test compared to QFT CXCL9 GEA, using both assays to categorize M. bovis infection status in lions will increase confidence in results.
Collapse
Affiliation(s)
- Rachiel Gumbo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tashnica T. Sylvester
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sven D. C. Parsons
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Afrivet Business Management, Newmark Estate Office Park, Pretoria, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Michele A. Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- *Correspondence: Michele A. Miller,
| | - Tanya J. Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
34
|
Pediatric Tuberculosis Management: A Global Challenge or Breakthrough? CHILDREN 2022; 9:children9081120. [PMID: 36010011 PMCID: PMC9406656 DOI: 10.3390/children9081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/17/2022]
Abstract
Managing pediatric tuberculosis (TB) remains a public health problem requiring urgent and long-lasting solutions as TB is one of the top ten causes of ill health and death in children as well as adolescents universally. Minors are particularly susceptible to this severe illness that can be fatal post-infection or even serve as reservoirs for future disease outbreaks. However, pediatric TB is the least prioritized in most health programs and optimal infection/disease control has been quite neglected for this specialized patient category, as most scientific and clinical research efforts focus on developing novel management strategies for adults. Moreover, the ongoing coronavirus pandemic has meaningfully hindered the gains and progress achieved with TB prophylaxis, therapy, diagnosis, and global eradication goals for all affected persons of varying age bands. Thus, the opening of novel research activities and opportunities that can provide more insight and create new knowledge specifically geared towards managing TB disease in this specialized group will significantly improve their well-being and longevity.
Collapse
|
35
|
Tomov G, Voynov P, Bachurska S. Granulomatous Cheilitis or Tuberculid? Antibiotics (Basel) 2022; 11:antibiotics11040522. [PMID: 35453273 PMCID: PMC9031045 DOI: 10.3390/antibiotics11040522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
The granulomatous cheilitis (GC) presents a heterogeneous group of disorders characterised by a granulomatous inflammation/reaction of the lips to various stimuli. Numerous etiologies have been proposed, including genetic, immunologic, allergic and infectious. Among the secondary causes of GC, an infection by Mycobacterium tuberculosis (MBT) should be considered. In such cases, the GC could be the clinical presentation of a tuberculid resulting from a hypersensitivity reaction to an underlying focus of active (ATBI) or latent tuberculosis infection (LTBI). This communication describes an immunocompetent patient diagnosed with GC resulting from tuberculid, who responded well to Isoniazid monotherapy.
Collapse
Affiliation(s)
- Georgi Tomov
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Dental Medicine, Medical University of Plovdiv, 15-A “Vasil Aprilov” Blvd, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-896-742-065
| | - Parvan Voynov
- Plastic and Reconstructive Surgery Division, UNI Hospital, 100 Georgi Benkovski Str., 4500 Panagyurishte, Bulgaria;
| | - Svitlana Bachurska
- Department of Pathology, National Oncology Hospital, 6 Plovdivsko Pole Str., 1756 Sofia, Bulgaria;
| |
Collapse
|
36
|
Nathella PK, Moideen K, Viswanathan V, Sivakumar S, Ahamed SF, Ponnuraja C, Hissar S, Kornfeld H, Babu S. Heightened microbial translocation is a prognostic biomarker of recurrent tuberculosis. Clin Infect Dis 2022; 75:1820-1826. [PMID: 35352112 PMCID: PMC9662171 DOI: 10.1093/cid/ciac236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Microbial translocation is a known characteristic of pulmonary tuberculosis (PTB). Whether microbial translocation is also a biomarker of recurrence in PTB is not known. METHODS We examined the presence of microbial translocation in a cohort of newly diagnosed, sputum smear and culture positive individuals with drug-sensitive PTB. Participants were followed up for a year following the end of anti-tuberculosis treatment. They were classified as cases (in the event of recurrence, n=30) and compared to age and gender matched controls (in the event of successful, recurrence free cure; n=51). Plasma samples were used to measure the circulating microbial translocation markers. All the enrolled study participants were treatment naïve, HIV negative and with or without diabetes mellitus. RESULTS Baseline levels of lipopolysaccharide (LPS) (p=0.0002), sCD14 (p=0.0191) and LPS-binding protein (LBP) (p<0.0001) were significantly higher in recurrence than controls and were associated with increased risk for recurrence, while Intestinal fatty acid binding protein (I-FABP) and Endocab showed no association. ROC curve analysis demonstrated the utility of these individual microbial markers in discriminating recurrence from cure with high sensitivity, specificity and AUC. CONCLUSION Recurrence following microbiological cure in PTB is characterized by heightened baseline microbial translocation. These markers can be used as a rapid prognostic tool for predicting recurrence in PTB.
Collapse
Affiliation(s)
| | - Kadar Moideen
- National Institutes of Health-NIRT- International Center for Excellence in Research, Chennai, India
| | | | | | | | - C Ponnuraja
- National Institute for Research in Tuberculosis, Chennai, India
| | - Syed Hissar
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Subash Babu
- National Institute for Research in Tuberculosis, Chennai, India.,LPD, NIAID, NIH, MD, USA
| |
Collapse
|
37
|
Serena NN, Boschero RA, Santiani MH, Pacce VD, Costa JMDV, Magalhães FBD, Wiedmar C, Alban SM, Soccol CR, Soccol VT. High-performance immune diagnosis of tuberculosis: Use of phage display and synthetic peptide in an optimized experimental design. J Immunol Methods 2022; 503:113242. [PMID: 35182576 DOI: 10.1016/j.jim.2022.113242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Immunoassays are practical and cost-effective approaches suitable for large-scale tuberculosis (TB) screening. This study identified new peptide mimotopes of Mycobacterium tuberculosis and applied them in the serodiagnosis of TB. Thereby, linear (X15, X8CX8) and constrained (LX-4 and LX-8) phage display peptide libraries were screened with purified Immunoglobulin G antibodies from TB-positive patients, and eight mimotopes were selected. The mimotope peptides were screened using the SPOT-synthesis technique followed by immunoblotting. Peptides P.Mt.PD.4 and P.Mt.PD.7 demonstrated the highest binding affinity and were chemically synthesized and used as antigens for enzyme-linked immunosorbent assay (ELISA) assays. Experimental designs were used to optimize the assays and to assess each variable's influence. Peptide P.Mt.PD.7 was differentiated between positive and negative samples and achieved 100% sensitivity and specificity when tested on a 100-sera panel. Therefore, the selected peptide was applied to the ELISA assay as a screening method for diagnosing TB represents a potential tool for helping to combat the disease.
Collapse
Affiliation(s)
- Natália Notto Serena
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Raphael Aparecido Boschero
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Manuel Hospinal Santiani
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Violetta Dias Pacce
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | - Silvana Maria Alban
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Vanete Thomaz Soccol
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
38
|
Ivaturi N, Sashindran VK, Singh A, Aggarwal V. Cytokine response to antitubercular therapy in patients with human immunodeficiency virus and tuberculosis coinfection with respect to CD4 count and viral load − A pilot study. JOURNAL OF MARINE MEDICAL SOCIETY 2022. [DOI: 10.4103/jmms.jmms_153_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
39
|
Carranza C, Herrera MT, Guzmán-Beltrán S, Salgado-Cantú MG, Salido-Guadarrama I, Santiago E, Chávez-Galán L, Gutiérrez-González LH, González Y. A Dual Marker for Monitoring MDR-TB Treatment: Host-Derived miRNAs and M. tuberculosis-Derived RNA Sequences in Serum. Front Immunol 2021; 12:760468. [PMID: 34804048 PMCID: PMC8600136 DOI: 10.3389/fimmu.2021.760468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background In the absence of a late marker of treatment failure or relapse in MDR-TB patients, biomarkers based on host-miRNAs coupled with M. tuberculosis-RNAs evaluated in extracellular vesicles (EVs) are an alternative follow-up for MDR-TB disease. Characterization of EVs cargo to identify differentially expressed miRNAs before and after treatment, and to identify M. tuberculosis-derived RNA in serum EVs from resistant TB patients. Methods EVs were isolated from serum of 26 drug-resistant TB (DR-TB) patients and 16 healthy subjects. Differential expression of miRNAs in pooled exosomes from both untreated and treated patients was assessed and individually validated at different time points during treatment. In addition, M. tuberculosis RNA was amplified in the same samples by qPCR. Results A multivariate analysis using miR-let-7e-5p, -197-3p and -223-3p were found to be a more sensitive discriminator between healthy individuals and those with TB for both DR-TB (AUC= 0.96, 95%, CI=0.907-1) and MDR-TB groups (AUC= 0.95, 95%, CI= 0.89-1). Upregulation of miR-let-7e-5p were observed at the time of M. tuberculosis negative culture T(3-5) for MDR-TB group or for long-term T(9-15) for MDR-TB group without diabetes (T2DM). A second pathogen-based marker based on 30kDa and 5KST sequences was detected in 33% of the MDR-TB patients after the intensive phase of treatment. The miR-let7e-5p is a candidate biomarker for long-term monitoring of treatment for the group of MDR-TB without T2DM. A dual marker of host-derived miR-let7e-5p and M. tuberculosis-derived RNA for monitoring-TB treatment based in serum EVs. Conclusion A dual marker consisting of host-derived miR-let7e-5p and M. tuberculosis-derived RNA, could be an indicator of treatment failure or relapse time after treatment was completed.
Collapse
Affiliation(s)
- Claudia Carranza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - María Teresa Herrera
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico, Mexico
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico, Mexico
| | | | - Ivan Salido-Guadarrama
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico, Mexico
| | - Elizabeth Santiago
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | | | - Yolanda González
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico, Mexico
| |
Collapse
|
40
|
Januarie KC, Uhuo OV, Iwuoha E, Feleni U. Recent advances in the detection of interferon-gamma as a TB biomarker. Anal Bioanal Chem 2021; 414:907-921. [PMID: 34665279 PMCID: PMC8523729 DOI: 10.1007/s00216-021-03702-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is one of the main infectious diseases worldwide and accounts for many deaths. It is caused by Mycobacterium tuberculosis usually affecting the lungs of patients. Early diagnosis and treatment are essential to control the TB epidemic. Interferon-gamma (IFN-γ) is a cytokine that plays a part in the body’s immune response when fighting infection. Current conventional antibody-based TB sensing techniques which are commonly used include enzyme-linked immunosorbent assay (ELISA) and interferon-gamma release assays (IGRAs). However, these methods have major drawbacks, such as being time-consuming, low sensitivity, and inability to distinguish between the different stages of the TB disease. Several electrochemical biosensor systems have been reported for the detection of interferon-gamma with high sensitivity and selectivity. Microfluidic techniques coupled with multiplex analysis in regular format and as lab-on-chip platforms have also been reported for the detection of IFN-γ. This article is a review of the techniques for detection of interferon-gamma as a TB disease biomarker. The objective is to provide a concise assessment of the available IFN-γ detection techniques (including conventional assays, biosensors, microfluidics, and multiplex analysis) and their ability to distinguish the different stages of the TB disease.
Collapse
Affiliation(s)
- Kaylin Cleo Januarie
- SensorLab (University of the Western Cape Sensor Laboratories), University of the Western Cape, 4th Floor Chemical Sciences Building, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa.
| | - Onyinyechi V Uhuo
- SensorLab (University of the Western Cape Sensor Laboratories), University of the Western Cape, 4th Floor Chemical Sciences Building, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), University of the Western Cape, 4th Floor Chemical Sciences Building, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park, Johannesburg, 1710, South Africa.
| |
Collapse
|
41
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
43
|
Kim HW, Myong JP, Kim JS. Estimating the burden of nosocomial exposure to tuberculosis in South Korea, a nationwide population based cross-sectional study. Korean J Intern Med 2021; 36:1134-1145. [PMID: 33327686 PMCID: PMC8435488 DOI: 10.3904/kjim.2020.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIMS The aim of the study was to investigate the current nationwide burden of nosocomial exposure to tuberculosis (TB) using national health insurance claims data. METHODS All patients who had claims for drug susceptibility testing for TB from 2012 to 2016, which indicated culture-proven TB, were included. The first day of the infectious period was defined as 3 months before a doctor's suspicion of TB in patients with respiratory symptoms and 1 month before in patients without symptoms. The last day of the infectious period was defined as one day before the prescription of anti-TB medications. Patients hospitalized during infectious periods were investigated and their hospitalization days were calculated. Records of medical procedures which increased the risk of nosocomial transmission by generating aerosols were also investigated. RESULTS A total of 7,186 cases with 94,636 person-days of hospitalization with unrecognized active TB were found. Patients above 60 years of age accounted for 63.99% of the total number and 69.70% of the total duration of hospitalization. TB patients in the older age group showed a trend toward higher risks for hospitalization with unrecognized active TB. Patients in their 80s showed the highest risk (12.65%). Bronchoscopy (28.86%), nebulizer therapy (28.48%), and endotracheal intubation (13.02%) were common procedures performed in these patients during hospitalization. CONCLUSION The burden of nosocomial exposure to TB in South Korea is still substantial. Hospitalization with unrecognized active TB, especially among the elderly TB patients could be a serious public health issue in South Korea.
Collapse
Affiliation(s)
- Hyung Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Ju Sang Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
44
|
CCL1 and IL-2Ra differentiate Tuberculosis disease from latent infection Irrespective of HIV infection in low TB burden countries. J Infect 2021; 83:433-443. [PMID: 34333033 DOI: 10.1016/j.jinf.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To evaluate the performance of selected host immunological biomarkers in differentiating tuberculosis (TB) disease from latent TB infection (LTBI) in HIV uninfected and infected individuals enrolled in TB low-burden countries. DESIGN Participants with TB disease (N = 85) and LTBI (N = 150) were recruited from prospective cohorts at hospitals in Norway and Denmark. Plasma concentrations of 54 host markers were assessed by Luminex multiplex immunoassays. Using receiver operator characteristic curves and general discriminant analysis, we determined the abilities of individual and combined biomarkers to discriminate between TB disease and LTBI including when patients were stratified according to HIV infection status. RESULTS Regardless of the groups compared, CCL1 and IL-2Ra were the most accurate single biomarkers in differentiating TB disease from LTBI. Regardless of HIV status, a 4-marker signature (CCL1+RANTES+CRP+MIP-1α) derived from a training set (n = 155) differentiated TB disease from LTBI in the test set (n = 67) with a sensitivity of 56.0% (95% CI, 34.9-75.6) and a specificity of 85.7% (95% CI, 71.5-94.6). A 5-marker signature derived from the HIV uninfected group (CCL1+RANTES+MIP-1α+procalcitonin+IP-10) performed in HIV-infected individuals with a sensitivity of 75.0% and a specificity of 96.7% after leave-one-out cross validation. A 2-marker signature (CCL1+TNF-α) identified in HIV-infected persons performed in HIV-uninfected with a sensitivity and specificity of 66.7% and 100% respectively in the test set. CONCLUSIONS Plasma CCL1 and IL-2Ra have potential as biomarkers for differentiating TB disease from LTBI in low TB burden settings unaffected by HIV infection. Combinations between these and other biomarkers in bio-signatures for global use warrant further exploration.
Collapse
|
45
|
Kim HW, Shin AY, Ha JH, Ahn JH, Kang HS, Kim JS. Effect of serum isoniazid level on treatment outcomes among tuberculosis patients with slow response - A retrospective cohort study. J Infect Chemother 2021; 27:1555-1561. [PMID: 34238662 DOI: 10.1016/j.jiac.2021.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND In this study, we investigate the effects of low serum TB drug level on treatment outcome among TB patients with slow response in South Korea, where the prevalence of rapid acetylator is relatively high. METHODS Among the pulmonary TB patients whose treatment outcomes were reported between 2014 and 2018 at Incheon St. Mary hospital, those who underwent TDM because of delayed culture conversion or reversion were included. Primary outcome was microbiological failure defined as (1) positive sputum culture after 120 days of treatment, or (2) culture-confirmed relapse within one year after treatment completion. Patients with culture conversion within 120 days and no relapse were classified as the final conversion group. Clinical characteristics and serum drug concentration at 2 h after administration (C2hr) were compared between those two groups. RESULTS A total of 55 pulmonary TB patients were included. Prevalence of subtherapeutic range of C2hr for isoniazid and rifampin was 78.2% and 21.8%, respectively. With one year of follow-up, 21 cases were classified as the microbiological failure group, and 34 cases as the final conversion group. In a multivariable logistic regression model for predicting microbiological failure, C2hr of isoniazid was the most significant predictor after adjusting for the effects of age and sex (adjusted odds ratio, 0.29; p = 0.009). In a tree-based classification model, C2hr of isoniazid with cutoff level 2.5 μg/ml was the most important variable for predicting microbiological failure. CONCLUSIONS Low serum isoniazid level was related to poor treatment outcomes among the TB patients with slow response.
Collapse
Affiliation(s)
- Hyung Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ah Young Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jick Hwan Ha
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong Hyun Ahn
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Seon Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ju Sang Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Uno S, Nishimura T, Nishio K, Kohsaka A, Tamizu E, Nakano Y, Kagyo J, Nakajima Y, Arai R, Hasegawa H, Arakawa K, Kashimura S, Ishii R, Miyazaki N, Uwamino Y, Hasegawa N. Potential biomarker enhancing the activity of tuberculosis, hsa-miR-346. Tuberculosis (Edinb) 2021; 129:102101. [PMID: 34144376 DOI: 10.1016/j.tube.2021.102101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/27/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine the usefulness of hsa-miR-346, a potential biomarker enhancing the activity of non-tuberculous mycobacterial diseases, as a biomarker of tuberculosis activity. METHODS We investigated whether hsa-miR-346 is secreted by human macrophages infected with Mycobacterium tuberculosis (M. tuberculosis) in an in vitro study. In addition, a cross-sectional study was conducted first to evaluate whether serum hsa-miR-346 is elevated in patients with tuberculosis compared with that in healthy individuals. Second, we conducted a retrospective study to evaluate whether anti-tuberculosis treatment reduces serum hsa-miR-346 levels. RESULTS Log hsa-miR-346 levels were significantly elevated in the supernatant of human macrophages infected with M. tuberculosis in a dose-dependent manner. The mean serum log hsa-miR-346 levels were -15.48 (-15.76 to -15.21) in patients with tuberculosis and -16.12 (-16.29 to -15.95) in healthy volunteers, which significantly differed. In addition, hsa-miR-346 significantly decreased at 2 months from starting an anti-tuberculosis treatment. CONCLUSIONS We consider hsa-miR-346 as a potential biomarker enhancing the tuberculosis activity.
Collapse
Affiliation(s)
- Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Tomoyasu Nishimura
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Keio University Health Center, Japan.
| | - Kazumi Nishio
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Asami Kohsaka
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Eiko Tamizu
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Yasushi Nakano
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Junko Kagyo
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan; Department of Respiratory Medicine, Keiyu Hospital, Japan
| | - Yukiko Nakajima
- Department of Infectious Diseases, Kawasaki Municipal Ida Hospital, Japan
| | - Ryosuke Arai
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Hanako Hasegawa
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Kenichi Arakawa
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association Fukujuji Hospital, Japan
| | - Shoko Kashimura
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Ryota Ishii
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Japan; Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoki Miyazaki
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Japan
| | - Yoshifumi Uwamino
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| |
Collapse
|
47
|
Comella-del-Barrio P, Izquierdo-Garcia JL, Gautier J, Doresca MJC, Campos-Olivas R, Santiveri CM, Muriel-Moreno B, Prat-Aymerich C, Abellana R, Pérez-Porcuna TM, Cuevas LE, Ruiz-Cabello J, Domínguez J. Urine NMR-based TB metabolic fingerprinting for the diagnosis of TB in children. Sci Rep 2021; 11:12006. [PMID: 34099838 PMCID: PMC8184981 DOI: 10.1038/s41598-021-91545-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality in children, and early diagnosis and treatment are crucial to reduce long-term morbidity and mortality. In this study, we explore whether urine nuclear magnetic resonance (NMR)-based metabolomics could be used to identify differences in the metabolic response of children with different diagnostic certainty of TB. We included 62 children with signs and symptoms of TB and 55 apparently healthy children. Six of the children with presumptive TB had bacteriologically confirmed TB, 52 children with unconfirmed TB, and 4 children with unlikely TB. Urine metabolic fingerprints were identified using high- and low-field proton NMR platforms and assessed with pattern recognition techniques such as principal components analysis and partial least squares discriminant analysis. We observed differences in the metabolic fingerprint of children with bacteriologically confirmed and unconfirmed TB compared to children with unlikely TB (p = 0.041 and p = 0.013, respectively). Moreover, children with unconfirmed TB with X-rays compatible with TB showed differences in the metabolic fingerprint compared to children with non-pathological X-rays (p = 0.009). Differences in the metabolic fingerprint in children with different diagnostic certainty of TB could contribute to a more accurate characterisation of TB in the paediatric population. The use of metabolomics could be useful to improve the prediction of TB progression and diagnosis in children.
Collapse
Affiliation(s)
- Patricia Comella-del-Barrio
- grid.7080.fInstitut d’Investigació Germans Trias i Pujol, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Izquierdo-Garcia
- grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain ,grid.4795.f0000 0001 2157 7667Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain ,grid.424269.f0000 0004 1808 1283Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia, Spain
| | - Jacqueline Gautier
- Department of Pediatrics, Division of Tuberculosis, Hôpital Saint-Damien, Nos Petits-Frères Et Sœurs, Tabarre, Haiti
| | - Mariette Jean Coute Doresca
- Department of Pediatrics, Division of Tuberculosis, Hôpital Saint-Damien, Nos Petits-Frères Et Sœurs, Tabarre, Haiti
| | - Ramón Campos-Olivas
- grid.7719.80000 0000 8700 1153Spectroscopy and Nuclear Magnetic Resonance Unit, CNIO Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Clara M. Santiveri
- grid.7719.80000 0000 8700 1153Spectroscopy and Nuclear Magnetic Resonance Unit, CNIO Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Beatriz Muriel-Moreno
- grid.7080.fInstitut d’Investigació Germans Trias i Pujol, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Cristina Prat-Aymerich
- grid.7080.fInstitut d’Investigació Germans Trias i Pujol, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain ,grid.7692.a0000000090126352Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rosa Abellana
- grid.5841.80000 0004 1937 0247Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Tomas M. Pérez-Porcuna
- grid.414875.b0000 0004 1794 4956Servei de Pediatria, Atenció Primària, Unitat de Investigació Fundació Mútua Terrassa, Hospital Universitari Mútua Terrassa, Terrassa, Spain
| | - Luis E. Cuevas
- grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Ruiz-Cabello
- grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain ,grid.4795.f0000 0001 2157 7667Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain ,grid.424269.f0000 0004 1808 1283Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - José Domínguez
- grid.7080.fInstitut d’Investigació Germans Trias i Pujol, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
Günther G, Heyckendorf J, Zellweger JP, Reimann M, Claassens M, Chesov D, van Leth F. Defining Outcomes of Tuberculosis (Treatment): From the Past to the Future. Respiration 2021; 100:843-852. [PMID: 34058739 DOI: 10.1159/000516392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
Untreated active tuberculosis (TB) has a very high long-term mortality. Treatment of TB reduces mortality dramatically and should maximize cure, preventing ongoing transmission and TB sequelae. However, predicting the risk of failure and relapse is crucial for the management of individual patients and for the evaluation of effectiveness of programs. Various outcome definitions for drug-sensitive and drug-resistant TB were developed, implemented, and endorsed since introduction of TB chemotherapy by the World Health Organization (WHO), mostly based on culture and smear results. They should be applicable for individual patient care, surveillance, and research. Definitions with focus on program evaluation differ from definitions to evaluate the efficacy and effectiveness of regimens. Lack of sputum production at the later stage of treatment reduces the easy applicability of current definitions. Definitions of failure and cure are sometimes difficult to apply. Alternative approaches suggest culture positivity at 6 months or more of treatment as an indicator for failure. New definitions for cure including a relapse-free period posttreatment and reduced number of culture and smear results are considered. Increasing variation and individualization of treatment and its duration urgently require new approaches using pathogen- or host-specific biomarkers, which indicate risk of failure and define cure. Such biomarkers are under evaluation but still far from translation in clinical routine practice.
Collapse
Affiliation(s)
- Gunar Günther
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Internal Medicine, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Jan Heyckendorf
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | | | - Maja Reimann
- Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Mareli Claassens
- Department of Internal Medicine, School of Medicine, University of Namibia, Windhoek, Namibia.,Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dumitru Chesov
- Research Center Borstel, Borstel, Germany.,State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, Moldova
| | - Frank van Leth
- Department of Health Sciences, Faculty of Science, VU Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Host biomarkers for monitoring therapeutic response in extrapulmonary tuberculosis. Cytokine 2021; 142:155499. [PMID: 33799008 DOI: 10.1016/j.cyto.2021.155499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of this study was to explore the utility of inflammatory biomarkers in the peripheral blood to predict response to treatment in extrapulmonary tuberculosis (EPTB). METHODS A Luminex xMAP-based multiplex immunoassay was used to measure 40 inflammatory biomarkers in un-stimulated plasma of 91 EPTB patients (48 lymphadenitis, and 43 pleuritis) before and at 2 and 6 months of treatment. RESULTS Overall a significant change was observed in 28 inflammatory biomarkers with treatment in EPTB patients. However, MIG/CXCL9, IP-10/CXCL10, and CCL23 decreased in all patients' groups with successful treatment at both time points. At 2 months, 29/64 (45%) patients responded partially while 35/64 (55%) showed complete regress. Among good responders, a higher number of biomarkers (16/40) reduced significantly as compared to partial responders (1/40). Almost half (14/29) of partial responders required longer treatment than 6 months to achieve satisfactory response. The levels of MIG, IP-10, MIF, CCL22 and CCL23 reduced significantly among 80, 74, 60, 71, 51% good responders, as compared to 52, 52, 52, 59, 52% partial responders, respectively. A biosignature, defined by a significant decrease in any one of these five biomarkers, corresponded with satisfactory response to treatment in 97% patients at 2 month and 99% patients at 6 months of treatment. CONCLUSION Change in inflammatory biomarkers correlates with treatment success. A five biomarker biosignature (MIG, IP-10, MIF, CCL22 and CCL23) could be used as an indicator of treatment success.
Collapse
|
50
|
Acharya MP, Pradeep SP, Murthy VS, Chikkannaiah P, Kambar V, Narayanashetty S, Burugina Nagaraja S, Niveditha D, Yoganand R, Satchidanandam V. CD38 +CD27 -TNF-α + on Mtb-specific CD4 + T is a robust biomarker for tuberculosis diagnosis. Clin Infect Dis 2021; 73:793-801. [PMID: 33606026 DOI: 10.1093/cid/ciab144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early and accurate diagnosis followed by timely treatment are the key prerequisites to fight tuberculosis (TB) and reduce its global burden. Despite scientific advances, the rapid and correct diagnosis of both pulmonary and extrapulmonary tuberculosis remains a challenge due to traditional reliance on detection of the elusive bacilli. Mycobacterium tuberculosis (Mtb)-specific host immune activation and cytokine production have shown significant promise as alternative means of detecting and distinguishing active disease from latent infection. We queried the diagnostic ability of phenotypic markers on Mtb-specific cytokine-producing immune cell subsets for identifying active tuberculosis. METHODS Subjects belonging to the following groups were recruited - pulmonary and extrapulmonary TB, latent TB, cured TB, sick controls and healthy controls. Polychromatic flow cytometry was used to identify host immune biomarkers in an exploratory cohort comprising 56 subjects using peripheral blood mononuclear cells. Clinical performance of the identified biomarker was evaluated using whole blood in a blinded validation cohort comprising 165 individuals. RESULTS Cytokine secreting frequencies of Mtb-specific CD4 + T cells with CD38 +CD27 - phenotype clearly distinguished infected individuals with active tuberculosis from those without disease. TNF-α secretion from CD38 +CD27 -CD4 + T cells upon stimulation with ESAT6/CFP10 peptides had the best diagnostic accuracy at a cut-off of 9.91% [exploratory: 96.67% specificity, 88.46% sensitivity; validation: 96.15% specificity, 90.16% sensitivity]. Additionally, this subset differentiated treatment-naive TB patients from individuals cured of TB following completion of anti-tuberculosis therapy. CONCLUSIONS Mtb-specific CD38 +CD27 -TNF-α +CD4 + T cell subset is a robust biomarker both for diagnosing tuberculosis and assessing cure.
Collapse
Affiliation(s)
- Muthya Pragun Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sai Pallavi Pradeep
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Venkataramappa Srinivasa Murthy
- Department of Pathology, Employees State Insurance Corporation Medical College & Post Graduate Institute of Medical Sciences & Research (ESIC MC & PGIMSR), Bengaluru, India
| | - Panduranga Chikkannaiah
- Department of Pathology, Employees State Insurance Corporation Medical College & Post Graduate Institute of Medical Sciences & Research (ESIC MC & PGIMSR), Bengaluru, India
| | | | | | | | - Dr Niveditha
- Department of Pharmacology, ESIC MC & PGIMSR, Bengaluru, India
| | - Raksha Yoganand
- Department of Microbiology, ESIC MC & PGIMSR, Bengaluru, India
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|