1
|
Bessiatti Fava Oliveira AP, Resende LM, da Silva MS, de Azevedo Dos Santos L, Carvalho AO, Chaves RP, Nagano CS, Moreira FF, Seabra SH, Da Cunha M, de Oliveira Mello É, Taveira GB, Rodrigues R, Gomes VM. Lipid Transfer Proteins (LTPs) Partially Purified from Capsicum chinense Jacq. Seeds: Antifungal Properties and α-amylase Inhibitory Activity. Protein J 2025:10.1007/s10930-025-10256-x. [PMID: 39924634 DOI: 10.1007/s10930-025-10256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
In this study, we identified and partially purified antimicrobial peptides belonging to the family of lipid transfer proteins (LTPs) from Capsicum chinense seeds (UENF 1751 accession). Fractions rich in LTPs were obtained via ion exchange chromatography and subsequently purified via reverse-phase chromatography in an HPLC system. Therefore, two fractions were revealed: C1 (the nonretained fraction) and C2 (the retained fraction in ion-exchange chromatography). Fraction C1 was subjected to reverse-phase chromatography via a C18 column on an HPLC system, and ten fractions were obtained (P1-P10), all of which significantly inhibited the growth of Candida albicans, except for P4 and P9. The viability analysis of the active fractions at a concentration of 100 µg.mL-1 against C. albicans revealed that they did not exhibit fungicidal activity but rather exhibited fungistatic activity. The peptide is considered fungicidal when it results in the total loss of viable yeast cells, that is, when it causes the complete death of the fungi. When the substance only inhibits cell growth, but does not eliminate them completely, the effect is classified as fungistatic. Fractions P3, P4, P7, and P10 inhibited Tenebrio molitor larvae α-amylase. The P10 fraction presented protein bands in its electrophoretic profile with a molecular mass between 6.5 kDa and 14.2 kDa and reacted positively to an antibody produced against a protein from the LTP family bywestern blotting. The results of the analysis of amino acid residues from the P10 fraction revealed similarity between type I LTPs and type II LTPs. The ultrastructural aspects of C. albicans cells exposed to the P10 fraction were evaluated via transmission electron microscopy (TEM), with significant differences in their morphology being evident compared with those of the control. In summary, our results demonstrated the presence of LTPs in C. chinense seeds with inhibitory effects on the growth of yeasts of the genus Candida, which exhibited fungistatic effects and structural changes in C. albicans cells, in addition to exhibiting inhibitory effects on the larval insect T. molitor α-amylase.
Collapse
Affiliation(s)
- Arielle Pinheiro Bessiatti Fava Oliveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Larissa Maximiano Resende
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Layrana de Azevedo Dos Santos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - André Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Renata Pinheiro Chaves
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Felipe Figueirôa Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sérgio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Campos dos Goytacazes, RJ, 28015-602, Brazil.
| |
Collapse
|
2
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Taheri MN, Seyedjavadi SS, Goudarzi M, Ebrahimipour G, Hashemi A. Cliotide U1, a Novel Antimicrobial Peptide Isolated From Urtica Dioica Leaves. Bioinform Biol Insights 2025; 19:11779322251315291. [PMID: 39886350 PMCID: PMC11780632 DOI: 10.1177/11779322251315291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
Aims Antibiotic resistance is currently a major challenge to scientists. Thus, attempts have been made to develop new compounds with antimicrobial activity. In this research, a new antimicrobial peptide with antibacterial activity was isolated from the plant Urtica dioica. Methods A new antimicrobial peptide, named cliotide U1, was purified through precipitation with ammonium sulfate and reverse-phase high-performance liquid chromatography. In silico methods analyzed the physicochemical properties of cliotide U1. The properties of the peptide, including antibacterial activity, pH stability, heat stability, cytotoxicity, and hemolytic activity, were also examined. Findings The purified peptide was composed of 35 amino acids with a hydrophobicity ratio of 63% and a net charge of + 5. The antibacterial activity of cliotide U1 was observed against gram-negative and gram-positive bacteria with a minimum inhibitory concentration (MIC) of 1 to 4 µM. Cliotide U1 had less than 2% cytotoxic activity at the MIC range against the human embryonic kidney cell line 293 with no clear hemolytic activity. The stability of cliotide U1 was preserved at various temperatures (10-60°C) and pH (6-9). Conclusion Our results demonstrated that cliotide U1 had potent antibacterial potential against gram-negative and gram-positive bacteria. Considering its properties, cliotide U1 can be introduced as a novel antibacterial candidate for expanding new therapeutic drugs.
Collapse
Affiliation(s)
- Mahnaz Nasre Taheri
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | | | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zare-Zardini H, Saberian E, Jenča A, Ghanipour-Meybodi R, Jenča A, Petrášová A, Jenčová J. From defense to offense: antimicrobial peptides as promising therapeutics for cancer. Front Oncol 2024; 14:1463088. [PMID: 39445062 PMCID: PMC11496142 DOI: 10.3389/fonc.2024.1463088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial peptides (AMPs), naturally occurring components of innate immunity, are emerging as a promising new class of anticancer agents. This review explores the potential of AMPs as a novel class of anticancer agents. AMPs, naturally occurring peptides with broad-spectrum antimicrobial activity, exhibit several characteristics that make them attractive candidates for cancer therapy, including selectivity for cancer cells, broad-spectrum activity, and immunomodulatory effects. Analysis of a dataset of AMPs with anticancer activity reveals that their effectiveness is influenced by various structural properties, including net charge, length, Boman index, and hydrophobicity. These properties contribute to their ability to target and disrupt cancer cell membranes, interfere with intracellular processes, and modulate the immune response. The review highlights the promising potential of AMPs as a new frontier in cancer treatment, offering hope for more effective and less toxic therapies. AMPs demonstrate promising potential in cancer therapy through multiple mechanisms, including direct cytotoxicity, immune response modulation, and targeting of the tumor microenvironment, as evidenced by extensive preclinical studies in animal models showing tumor regression, metastasis inhibition, and improved survival rates. AMPs show significant potential as cancer therapeutics through their direct cytotoxicity, immune response modulation, and tumor microenvironment targeting, with promising results from preclinical studies and early-phase clinical trials. Future research should focus on optimizing AMP properties, developing novel delivery strategies, and exploring synergistic combination therapies to fully realize their potential as effective cancer treatments, while addressing challenges related to stability, delivery, and potential toxicity.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | | | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| |
Collapse
|
5
|
Jia G, Kim SH, Min J, Zamora NV, Montero SS, Kim SY, Oh SK. Cestrum tomentosum L.f. Extracts against Colletotrichum scovillei by Altering Cell Membrane Permeability and Inducing ROS Accumulation. THE PLANT PATHOLOGY JOURNAL 2024; 40:475-485. [PMID: 39397302 PMCID: PMC11471931 DOI: 10.5423/ppj.oa.07.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
Chili pepper anthracnose, caused by Colletotrichum spp., is a significant biotic stress affecting chili fruits globally. While fungicide application is commonly used for disease management due to its efficiency and costeffectiveness, excessive use poses risks to human health and the environment. Botanical fungicides offer advantages such as rapid degradation and low toxicity to mammals, making them increasingly popular for sustainable plant disease control. This study investigated the antifungal properties of Cestrum tomentosum L.f. crude extracts (CTCE) against Colletotrichum scovillei. The results demonstrated that CTCE effectively inhibited conidia germination and germ tube elongation at 40 µg/ml concentrations. Moreover, CTCE exhibited strong antifungal activity against C. scovillei mycelial growth, with an EC50 value of 18.81 µg/ml. In vivo experiments confirmed the protective and curative effects of CTCE on chili pepper fruits infected with C. scovillei. XTT analysis showed that the CTCE could significantly inhibit the cell viability of C. scovillei. Mechanistic studies revealed that CTCE disrupted the plasma membrane integrity of C. scovillei and induced the accumulation of reactive oxygen species in hyphal cells. These findings highlight CTCE as a promising eco-friendly botanical fungicide for managing C. scovillei infections in chili peppers.
Collapse
Affiliation(s)
- Guogeng Jia
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sun Ha Kim
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyoung Min
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | | | - Silvia Soto Montero
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, 22-3100, Costa Rica
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Vargas-Casanova Y, Bravo-Chaucanés CP, Fuentes SDLC, Martinez-Lopez R, Monteoliva L, Gil C, Rivera-Monroy ZJ, Costa GM, Castañeda JEG, Parra-Giraldo CM. Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics. Int J Mol Sci 2024; 25:8938. [PMID: 39201622 PMCID: PMC11354716 DOI: 10.3390/ijms25168938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Previous reports have demonstrated that the peptide derived from LfcinB, R-1-R, exhibits anti-Candida activity, which is enhanced when combined with an extract from the Bidens pilosa plant. However, the mechanism of action remains unexplored. In this research, a proteomic study was carried out, followed by a bioinformatic analysis and biological assays in both the SC5314 strain and a fluconazole-resistant isolate of Candida albicans after incubation with R-1-R. The proteomic data revealed that treatment with R-1-R led to the up-regulation of most differentially expressed proteins compared to the controls in both strains. These proteins are primarily involved in membrane and cell wall biosynthesis, membrane transport, oxidative stress response, the mitochondrial respiratory chain, and DNA damage response. Additionally, proteomic analysis of the C. albicans parental strain SC5314 treated with R-1-R combined with an ethanolic extract of B. pilosa was performed. The differentially expressed proteins following this combined treatment were involved in similar functional processes as those treated with the R-1-R peptide alone but were mostly down-regulated (data are available through ProteomeXchange with identifier PXD053558). Biological assays validated the proteomic results, evidencing cell surface damage, reactive oxygen species generation, and decreased mitochondrial membrane potential. These findings provide insights into the complex antifungal mechanisms of the R-1-R peptide and its combination with the B. pilosa extract, potentially informing future studies on natural product derivatives.
Collapse
Affiliation(s)
- Yerly Vargas-Casanova
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
| | | | | | - Raquel Martinez-Lopez
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| | - Lucía Monteoliva
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| | - Concha Gil
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| | - Zuly Jenny Rivera-Monroy
- Faculty of Sciences, Universidad Nacional of Colombia, Bogotá 111321, Colombia; (Z.J.R.-M.); (J.E.G.C.)
| | - Geison Modesti Costa
- Chemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | | | - Claudia Marcela Parra-Giraldo
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| |
Collapse
|
9
|
Farvardin A, González-Hernández AI, Llorens E, Camañes G, Scalschi L, Vicedo B. The Dual Role of Antimicrobial Proteins and Peptides: Exploring Their Direct Impact and Plant Defense-Enhancing Abilities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2059. [PMID: 39124177 PMCID: PMC11314357 DOI: 10.3390/plants13152059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Plants face numerous environmental stresses that hinder their growth and productivity, including biotic agents, such as herbivores and parasitic microorganisms, as well as abiotic factors, such as cold, drought, salinity, and high temperature. To counter these challenges, plants have developed a range of defense strategies. Among these, plant antimicrobial proteins and peptides (APPs) have emerged as a promising solution. Due to their broad-spectrum activity, structural stability, and diverse mechanisms of action, APPs serve as powerful tools to complement and enhance conventional agricultural methods, significantly boosting plant defense and productivity. This review focuses on different studies on APPs, emphasizing their crucial role in combating plant pathogens and enhancing plant resilience against both biotic and abiotic stresses. Beginning with in vitro studies, we explore how APPs combat various plant pathogens. We then delve into the defense mechanisms triggered by APPs against biotic stress, showcasing their effectiveness against bacterial and fungal diseases. Additionally, we highlight the role of APPs in mitigating the abiotic challenges associated with climatic change. Finally, we discuss the current applications of APPs in agriculture, emphasizing their potential for sustainable agricultural practices and the need for future research in this area.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | | | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Gemma Camañes
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Loredana Scalschi
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Begonya Vicedo
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| |
Collapse
|
10
|
Resende LM, de Oliveira Mello É, Zeraik AE, Oliveira APBF, Souza TAM, Taveira GB, Moreira FF, Seabra SH, Ferreira AT, Perales J, de Oliveira Carvalho A, Rodrigues R, Gomes VM. Defensin-like peptides from Capsicum chinense induce increased ROS, loss of mitochondrial functionality, and reduced growth of the fungus Colletotrichum scovillei. PEST MANAGEMENT SCIENCE 2024; 80:3567-3577. [PMID: 38459870 DOI: 10.1002/ps.8061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
In the present study, we identified and characterized two defensin-like peptides in an antifungal fraction obtained from Capsicum chinense pepper fruits and inhibited the growth of Colletotrichum scovillei, which causes anthracnose. AMPs were extracted from the pericarp of C. chinense peppers and subjected to ion exchange, molecular exclusion, and reversed-phase in a high-performance liquid chromatography system. We investigated the endogenous increase in reactive oxygen species (ROS), the loss of mitochondrial functioning, and the ultrastructure of hyphae. The peptides obtained from the G3 fraction through molecular exclusion chromatography were subsequently fractionated using reverse-phase chromatography, resulting in the isolation of fractions F1, F2, F3, F4, and F5. The F1-Fraction suppressed C. scovillei growth by 90, 70.4, and 44% at 100, 50, and 25 μg mL-1, respectively. At 24 h, the IC50 and minimum inhibitory concentration were 21.5 μg mL-1 and 200 μg mL-1, respectively. We found an increase in ROS, which may have resulted in an oxidative burst, loss of mitochondrial functioning, and cytoplasm retraction, as well as an increase in autophagic vacuoles. MS/MS analysis of the F1-Fraction indicated the presence of two defensin-like proteins, and we were able to identify the expression of three defensin sequences in our C. chinense fruit extract. The F1-Fraction was also found to inhibit the activity of insect α-amylases. In summary, the F1-Fraction of C. chinense exhibits antifungal activity against a major pepper pathogen that causes anthracnose. These defensin-like compounds are promising prospects for further research into antifungal and insecticide biotechnology applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Larissa Maximano Resende
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteinas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Arielle Pinheiro Bessiati Fava Oliveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thaynã Amanda Melo Souza
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Felipe Figueiroa Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Sérgio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Jonas Perales
- Laboratório de Toxinologia, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
11
|
Yue D, Zheng D, Bai Y, Yang L, Yong J, Li Y. Insights into the anti-Candida albicans properties of natural phytochemicals: An in vitro and in vivo investigation. Phytother Res 2024; 38:2518-2538. [PMID: 38450815 DOI: 10.1002/ptr.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Invasive candidiasis, attributed to Candida albicans, has long been a formidable threat to human health. Despite the advent of effective therapeutics in recent decades, the mortality rate in affected patient populations remains discouraging. This is exacerbated by the emergence of multidrug resistance, significantly limiting the utility of conventional antifungals. Consequently, researchers are compelled to continuously explore novel solutions. Natural phytochemicals present a potential adjunct to the existing arsenal of agents. Previous studies have substantiated the efficacy of phytochemicals against C. albicans. Emerging evidence also underscores the promising application of phytochemicals in the realm of antifungal treatment. This review systematically delineates the inhibitory activity of phytochemicals, both in monotherapy and combination therapy, against C. albicans in both in vivo and in vitro settings. Moreover, it elucidates the mechanisms underpinning the antifungal properties, encompassing (i) cell wall and plasma membrane damage, (ii) inhibition of efflux pumps, (iii) induction of mitochondrial dysfunction, and (iv) inhibition of virulence factors. Subsequently, the review introduces the substantial potential of nanotechnology and photodynamic technology in enhancing the bioavailability of phytochemicals. Lastly, it discusses current limitations and outlines future research priorities, emphasizing the need for high-quality research to comprehensively establish the clinical efficacy and safety of phytochemicals in treating fungal infections. This review aims to inspire further contemplation and recommendations for the effective integration of natural phytochemicals in the development of new medicines for patients afflicted with C. albicans.
Collapse
Affiliation(s)
- Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Souza T, Mello E, Taveira G, Moreira F, Seabra S, Carvalho A, Gomes V. Synergistic action of synthetic peptides and amphotericin B causes disruption of the plasma membrane and cell wall in Candida albicans. Biosci Rep 2024; 44:BSR20232075. [PMID: 38563086 PMCID: PMC11016531 DOI: 10.1042/bsr20232075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The objective of this work was to evaluate the combination of synthetic peptides based on the γ-core motif of defensin PvD1 with amphotericin B (AmB) at different concentrations against Candida albicans. We applied the checkerboard assay using different concentrations of the commercial drug AmB and the synthetic peptides γ31-45PvD1++ and γ33-41PvD1++ against C. albicans, aiming to find combinations with synergistic interactions. Between these two interactions involving γ31-45PvD1++ and AmB, an additive effect was observed. One such interaction occurred at concentrations of 0.009 µM of peptide γ31-45PvD1++ and 13.23 µM of AmB and another condition of 0.019 µM of peptide γ31-45PvD1++ and 6.61 µM of AmB. The other two concentrations of the interaction showed a synergistic effect in the combination of synthetic peptide γ31-45PvD1++ and AmB, where the concentrations were 1.40 µM peptide γ31-45PvD1++ and 0.004 µM AmB and 0.70 µM γ31-45PvD1++ peptide and 0.002 µM AmB. We proceeded with analysis of the mechanism of action involving synergistic effects. This examination unveiled a range of impactful outcomes, including the impairment of mitochondrial functionality, compromise of cell wall integrity, DNA degradation, and a consequential decline in cell viability. We also observed that both synergistic combinations were capable of causing damage to the plasma membrane and cell wall, causing leakage of intracellular components. This discovery demonstrates for the first time that the synergistic combinations found between the synthetic peptide γ31-45PvD1++ and AmB have an antifungal effect against C. albicans, acting on the integrity of the plasma membrane and cell wall.
Collapse
Affiliation(s)
- Thayna A.M. Souza
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CEP: 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Erica O. Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CEP: 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel B. Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CEP: 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Felipe F. Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sergio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - André O. Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CEP: 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene M. Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CEP: 28013-602, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
13
|
Zhang S, Yang N, Mao R, Hao Y, Teng D, Wang J. In Vitro/Vivo Mechanisms of Antibacterial Peptide NZ2114 against Staphylococcus pseudintermedius and Its Biofilms. Antibiotics (Basel) 2024; 13:341. [PMID: 38667017 PMCID: PMC11047522 DOI: 10.3390/antibiotics13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen commonly found in canines, and has garnered escalating interest due to its potential for zoonotic transmission and increasing antimicrobial resistance. However, the excessive use of antibiotics and the characteristic of S. pseudintermedius forming biofilms make treatment challenging. In this study, the in vivo and in vitro antimicrobial activity and mechanisms of action of NZ2114, a plectasin-derived peptide, against S. pseudintermedius were investigated. NZ2114 exhibited potent antibacterial activity towards S. pseudintermedius (minimum inhibitory concentration, MIC = 0.23 μM) with a lower probability of inducing drug-resistant mutations and efficient bactericidal action, which was superior to those of mopirucin (MIC = 0.25-0.5 μM) and lincomycin (MIC = 4.34-69.41 μM). The results of electron microscopy and flow cytometry showed that NZ2114 disrupted S. pseudintermedius' cell membrane, resulting in cellular content leakage, cytoplasmic membrane shrinkage, and, eventually, cell death. The intracellular ROS activity and Alamar Blue detection showed that NZ2114 interferes with intracellular metabolic processes. In addition, NZ2114 effectively inhibits biofilm formation, and confocal laser scanning microscopy further revealed its antibacterial and anti-biofilm activity (biofilm thickness reduced to 6.90-17.70 μm). The in vivo therapy of NZ2114 in a mouse pyoderma model showed that it was better than lincomycin in effectively decreasing the number of skin bacteria, alleviating histological damage, and reducing the skin damage area. These results demonstrated that NZ2114 may be a promising antibacterial candidate against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Shuang Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
14
|
Park J, Kim H, Kang DD, Park Y. Exploring the Therapeutic Potential of Scorpion-Derived Css54 Peptide Against Candida albicans. J Microbiol 2024; 62:101-112. [PMID: 38589765 PMCID: PMC11021323 DOI: 10.1007/s12275-024-00113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Candida albicans (C. albicans) is one of the most common opportunistic fungi worldwide, which is associated with a high mortality rate. Despite treatment, C. albicans remains the leading cause of life-threatening invasive infections. Consequently, antimicrobial peptides (AMPs) are potential alternatives as antifungal agents with excellent antifungal activity. We previously reported that Css54, found in the venom of Centrurodies suffusus suffusus (C. s. suffusus) showed antibacterial activity against zoonotic bacteria. However, the antifungal activity of Css54 has not yet been elucidated. The objective of this study was to identify the antifungal activity of Css54 against C. albicans and analyze its mechanism. Css54 showed high antifungal activity against C. albicans. Css54 also inhibited biofilm formation in fluconazole-resistant fungi. The antifungal mechanism of action of Css54 was investigated using membrane-related assays, including the membrane depolarization assay and analysis of the membrane integrity of C. albicans after treatment with Css54. Css54 induced reactive oxygen species (ROS) production in C. albicans, which affected its antifungal activity. Our results indicate that Css54 causes membrane damage in C. albicans, highlighting its value as a potential therapeutic agent against C. albicans infection.
Collapse
Affiliation(s)
- Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Hyeongsun Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Da Dam Kang
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
15
|
Ramesh S, Roy U, Roy S, Rudramurthy SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action. Appl Microbiol Biotechnol 2024; 108:161. [PMID: 38252130 DOI: 10.1007/s00253-023-12976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Emerging resistance of fungal pathogens and challenges faced in drug development have prompted renewed investigations into novel antifungal lipopeptides. The antifungal lipopeptide AF3 reported here is a natural lipopeptide isolated and purified from Bacillus subtilis. The AF3 lipopeptide's secondary structure, functional groups, and the presence of amino acid residues typical of lipopeptides were determined by circular dichroism, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The lipopeptide's low minimum inhibitory concentrations (MICs) of 4-8 mg/L against several fungal strains demonstrate its strong antifungal activity. Biocompatibility assays showed that ~ 80% of mammalian cells remained viable at a 2 × MIC concentration of AF3. The treated Candida albicans cells examined by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy clearly showed ultrastructural alterations such as the loss of the cell shape and cell membrane integrity. The antifungal effect of AF3 resulted in membrane permeabilization facilitating the uptake of the fluorescent dyes-acridine orange (AO)/propidium iodide (PI) and FUN-1. Using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 4-(2-[6-(dioctylamino)-2-naphthalenyl] ethenyl)-1-(3-sulfopropyl) pyridinium inner salt (di-8-ANEPPS), we observed that the binding of AF3 to the membrane bilayer results in membrane disruption and depolarization. Flow cytometry analyses revealed a direct correlation between lipopeptide activity, membrane permeabilization (~ 75% PI uptake), and reduced cell viability. An increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence demonstrates endogenous reactive oxygen species production. Lipopeptide treatment appears to induce late-stage apoptosis and alterations to nuclear morphology, suggesting that AF3-induced membrane damage may lead to a cellular stress response. Taken together, this study illustrates antifungal lipopeptide's potential as an antifungal drug candidate. KEY POINTS: • The studied lipopeptide variant AF3 displayed potent antifungal activity against C. albicans • Its biological activity was stable to proteolysis • Analytical studies demonstrated that the lipopeptide is essentially membranotropic and able to cause membrane dysfunction, elevated ROS levels, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India.
| | - Subhasish Roy
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
16
|
Saraswat J, Firoz A, Kamli MR, Patel R. Improved Antibacterial Activity of Peptide Nisin with Pyrrole-Based Ionic Liquids Having Bis(trifluoromethylsulfonyl)imide as a Counterion: A Synergistic Approach to Combat Bacterial Infections. ACS OMEGA 2024; 9:2758-2769. [PMID: 38250392 PMCID: PMC10795159 DOI: 10.1021/acsomega.3c07824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Bacterial resistance against antimicrobial drugs is a forthcoming threat to the prevention and treatment of developing bacterial infections. Hence, the development of new antimicrobial therapy or therapeutic drugs is desperately needed. A combination of antibiotics exhibits synergistic antibacterial effects. As the combination approach of antibiotics has always shown better results against pathogens compared to monotherapy with an antibiotic, we focused on creating a new combination that may reduce the chances of strains attaining resistance, consequently lowering the toxicity factor associated with the consumption of high amounts of antibiotics. Nisin, a food preservative and potential antibiotic, shows antibacterial activity against Gram-positive strains. Since the past decade, ionic liquids (ILs) have proven to be an important class of potential antibacterial agents. In our study, we studied the effect of pyrrolidinium-based ILs and arrived at a noncovalent conjugate formed by combining nisin with ILs. The conjugates were tested against a couple of clinically relevant microorganisms, namely, Escherichia coli and Staphylococcus aureus. We reached a novel discovery that the combination of sodium/iodide symporter (NIS) and IL exhibited inhibitory effects against Gram-negative bacteria, which was not observed with NIS alone. The results showed remarkable improvement in the minimum inhibitory concentration (MIC) value of NIS in the presence of ILs targeted against both microorganisms. Further, flow cytometry and confocal microscopy results revealed the membrane disruption efficiency of the best combination obtained, leading to cell death. Additionally, the complexation of nisin and ILs was studied using various techniques, such as surface tension, dynamic light scattering, absorption spectroscopy, and molecular docking.
Collapse
Affiliation(s)
- Juhi Saraswat
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ahmad Firoz
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess
Dr. Najla Bint Saud Al-Saud Centre for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majid Rasool Kamli
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
17
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
18
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
19
|
Jothi R, Hong ST, Enkhtsatsral M, Pandian SK, Gowrishankar S. ROS mediated anticandidal efficacy of 3-Bromopyruvate prevents vulvovaginal candidiasis in mice model. PLoS One 2023; 18:e0295922. [PMID: 38153954 PMCID: PMC10754460 DOI: 10.1371/journal.pone.0295922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Candidal infections, particularly vulvovaginal candidiasis (VVC), necessitate effective therapeutic interventions in clinical settings owing to their intricate clinical nature and elusive understanding of their etiological mechanisms. Given the challenges in developing effective antifungal therapies, the strategy of repurposing existing pharmaceuticals has emerged as a promising approach to combat drug-resistant fungi. In this regard, the current study investigates molecular insights on the anti-candidal efficacy of a well-proven anticancer small molecule -3-bromopyruvate (3BP) against three clinically significant VVC causing Candida species viz., C. albicans, C. tropicalis and C. glabrata. Furthermore, the study validates 3BP's therapeutic application by developing it as a vaginal cream for the treatment of VVC. 3BP exhibited phenomenal antifungal efficacy (killing >99%) with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) of 256 μg/mL against all tested Candida spp. Time killing kinetics experiment revealed 20 min as the minimum time required for 3BP at 2XMIC to achieve complete-killing (99.9%) in all Candida strains. Moreover, the ergosterol or sorbitol experiment explicated that the antifungal activity of 3BP does not stem from targeting the cell wall or the membrane component ergosterol. Instead, 3BP was observed to instigate a sequence of pre-apoptotic cascade events, such as phosphatidylserine (PS) externalization, nuclear condensation and ROS accumulations, as evidenced by PI, DAPI and DCFH-DA staining methods. Furthermore, 3BP demonstrated a remarkable efficacy in eradicating mature biofilms of Candida spp., achieving a maximum eradication level of 90%. Toxicity/safety profiling in both in vitro erythrocyte lysis and in vivo Galleria mellonella survival assay authenticated the non-toxic nature of 3BP up to 512 μg/mL. Finally, a vaginal cream formulated with 3BP was found to be effective in VVC-induced female mice model, as it significantly decreasing fungal load and protecting vaginal mucosa. Concomitantly, the present study serves as a clear demonstration of antifungal mechanistic action of anticancer drug -3BP, against Candida species. This finding holds significant potential for mitigating candidal infections, particularly VVC, within healthcare environments.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Munkhtur Enkhtsatsral
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | | | | |
Collapse
|
20
|
Ramesh S, Roy U, Roy S. The elucidation of the multimodal action of the investigational anti- Candida lipopeptide (AF 4) lead from Bacillus subtilis. Front Mol Biosci 2023; 10:1248444. [PMID: 38131013 PMCID: PMC10736182 DOI: 10.3389/fmolb.2023.1248444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Candida species are the main etiological agents for candidiasis, and Candida albicans are the most common infectious species. Candida species' growing resistance to conventional therapies necessitates more research into novel antifungal agents. Antifungal peptides isolated from microorganisms have potential applications as novel therapeutics. AF4 a Bacillus-derived lipopeptide demonstrating broad-spectrum antifungal activity has been investigated for its ability to cause cell death in Candida species via membrane damage and oxidative stress. Methods: Using biophysical techniques, the secondary structure of the AF4 lipopeptide was identified. Scanning electron microscopy and confocal microscopy with fluorescent dyes were performed to visualise the effect of the lipopeptide. The membrane disruption and permeabilization were assessed using the 1,6-diphenyl hexatriene (DPH) fluorescence assay and flow cytometric (FC) assessment of propidium iodide (PI) uptake, respectively. The reactive oxygen species levels were estimated using the FC assessment. The induction of apoptosis and DNA damage were studied using Annexin V-FITC/PI and DAPI. Results: Bacillus-derived antifungal variant AF4 was found to have structural features typical of lipopeptides. Microscopy imaging revealed that AF4 damages the surface of treated cells and results in membrane permeabilization, facilitating the uptake of the fluorescent dyes. A loss of membrane integrity was observed in cells treated with AF4 due to a decrease in DPH fluorescence and a dose-dependent increase in PI uptake. Cell damage was also determined from the log reduction of viable cells treated with AF4. AF4 treatment also caused elevated ROS levels, induced phosphatidylserine externalisation, late-stage apoptosis, and alterations to nuclear morphology revealed by DAPI fluorescence. Conclusion: Collectively, the mode of action studies revealed that AF4 acts primarily on the cell membrane of C. albicans and has the potential to act as an antifungal drug candidate.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Utpal Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Subhashis Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
21
|
Jayasinghe JNC, Whang I, De Zoysa M. Antifungal Efficacy of Antimicrobial Peptide Octominin II against Candida albicans. Int J Mol Sci 2023; 24:14053. [PMID: 37762357 PMCID: PMC10531694 DOI: 10.3390/ijms241814053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Most clinically isolated Candida albicans strains are drug-resistant, emphasizing the urgent need to discover alternative therapies. In this study, the previously characterized Octominin was modified into a shorter peptide with an 18 amino acid sequence (1GWLIRGAIHAGKAIHGLI18) and named Octominin II. The secondary structure of Octominin II is a random coil with a helical turn and a positive charge (+2.46) with a hydrophobic ratio of 0.46. Octominin II inhibited C. albicans, C. auris, and C. glabrata with minimum inhibitory and fungicidal concentrations against C. albicans of 80 and 120 µg/mL, respectively. Field emission scanning electron microscopy confirmed that Octominin II treatment caused ultra-structural changes in C. albicans cells. Furthermore, membrane permeability results for the fluorescent indicator propidium iodide revealed modifications in cell wall integrity in Octominin II-treated C. albicans. Octominin II treatment increases the production of reactive oxygen species (ROS) in C. albicans. Gene expression studies revealed that Octominin II suppresses virulence genes of C. albicans such as CDR1, TUP1, AGE3, GSC1, SAP2, and SAP9. In addition, a nucleic acid binding assay revealed that Octominin II degraded genomic DNA and total RNA in a concentration-dependent manner. Additionally, Octominin II inhibited and eradicated C. albicans biofilm formation. Octominin II showed relatively less cytotoxicity on raw 264.7 cells (0-200 µg/mL) and hemolysis activity on murine erythrocytes (6.25-100 µg/mL). In vivo studies confirmed that Octominin II reduced the pathogenicity of C. albicans. Overall, the data suggests that Octominin II inhibits C. albicans by employing different modes of action and can be a promising candidate for controlling multidrug-resistant Candida infections.
Collapse
Affiliation(s)
- J. N. C. Jayasinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup 33662, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
22
|
Yang L, Tian Z, Zhao W, Zhang J, Tian C, Zhou L, Jiao Z, Peng J, Guo G. Novel antimicrobial peptide DvAMP serves as a promising antifungal agent against Cryptococcus neoformans. Bioorg Chem 2023; 138:106679. [PMID: 37329812 DOI: 10.1016/j.bioorg.2023.106679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Cryptococcus neoformans is an important opportunistic human fungal pathogen that causes cryptococcosis in immunocompromised patients. However, the number of drugs for the treatment of cryptococcosis is restricted, and the development of novel antifungal drugs and innovative strategies for the treatment of cryptococcosis is urgently needed. In this study, we validated that DvAMP is a novel antimicrobial peptide with antimicrobial activity and that it was obtained by pre-screening from the UniProt database of more than three million unknown functional sequences based on the quantitative structure-activity relationships (QSARs) protocol (http://www.chemoinfolab.com/antifungal). The peptide exhibited satisfactory biosafety and physicochemical properties, and relatively rapid fungicidal activity against C. neoformans. Meanwhile, DvAMP was able to inhibit the static biofilm of C. neoformans and cause a reduction in the thickness of the capsule. In addition, DvAMP exerts antifungal effects through membrane-mediated mechanisms (membrane permeability and depolarization) and mitochondrial dysfunction, involving a hybrid multi-hit mechanism. Furthermore, by using the C. neoformans-Galleria mellonella infection model, we demonstrated that DvAMP has significant therapeutic effects in vivo and that it significantly reduces the mortality and fungal burden of infected larvae. These results suggest that DvAMP may be a potential antifungal drug candidate for the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Longbing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Zhuqing Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jin Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Chunren Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Luoxiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
23
|
Han S, Sheng B, Zhu D, Chen J, Cai H, Zhang S, Guo C. Role of FoERG3 in Ergosterol Biosynthesis by Fusarium oxysporum and the Associated Regulation by Bacillus subtilis HSY21. PLANT DISEASE 2023:PDIS05221010RE. [PMID: 36320138 DOI: 10.1094/pdis-05-22-1010-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ergosterol is an important component of the fungal cell membrane and represents an effective target of chemical pesticides. However, the current understanding of ergosterol biosynthesis in the soybean root rot pathogen Fusarium oxysporum remains limited. In addition, the regular use of fungicides that inhibit ergosterol synthesis will seriously harm the ecological environment and human health. Bacillus subtilis is gradually replacing chemical control as a safe and effective biological agent; to investigate its effect on ergosterol synthesis of F. oxysporum, we verified the biological function of the FoERG3 gene of F. oxysporum by constructing knockout mutants. The results showed that knocking out FoERG3 blocked ergosterol biosynthesis, restricted mycelial growth, and increased the sensitivity to external stressors (NaCl, D-sorbitol, Congo Red, and H2O2). The increased permeability of the cell membrane promoted increased extracellular K+ levels and decreased mitochondrial cytochrome C contents. Treatment with suspension of B. subtilis HSY21 cells resulted in similar damage as observed when treating FoERG3-knockout F. oxysporum cells with ergosterol, which was characterised by deformity and swelling of the mycelium surface; increased membrane permeability; decreased pathogenicity to soybeans; and significantly decreased activities of cellulase, β-glucosidase, amylase, and pectin-methyl galactosylase. Notably, deleting FoERG3 resulted in a significant lag in the defense-response time of soybeans. Our results suggest that FoERG3 strongly influences the virulence of F. oxysporum and may be used as a potential antimicrobial target by B. subtilis HSY21 to inhibit ergosterol synthesis, which supports the use of B. subtilis as a biological control agent for protecting against F. oxysporum infection.
Collapse
Affiliation(s)
- Songyang Han
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Boxiang Sheng
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Dan Zhu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Hongsheng Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| |
Collapse
|
24
|
Li R, Wu J, He F, Xu Q, Yin K, Li S, Li W, Wei A, Zhang L, Zhang XH, Zhang B. Rational design, synthesis, antifungal evaluation and docking studies of antifungal peptide CGA-N12 analogues based on the target CtKRE9. Bioorg Chem 2023; 132:106355. [PMID: 36669359 DOI: 10.1016/j.bioorg.2023.106355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Candida tropicalis is a major non-albicans species that causes invasive candidiasis. CGA-N12, an anti-Candida peptide found by our group, disrupted cell wall architecture by inhibiting the activity of the protein killer-resistant 9 (KRE9), a β-1,6-glucan synthase specific to Candida spp. and plants. Herein, a set of CGA-N12 analogues were rationally designed based on the interaction networks between CGA-N12 and C. tropicalis KRE9 (CtKRE9). Seven CGA-N12 analogues with significantly improved antifungal activity against C. tropicalis were screened by reducing the docking energy of CGA-N12 and CtKRE9 and increasing the number of positive charges on CGA-N12 based on a stable three-dimensional model of CtKRE9. CGA-N12 and its analogues exhibited antifungal activity against C. tropicalis and its persist cells; they also inhibited biofilm formation and eradicated preformed biofilms. Compared with fluconazole, they displayed higher activities against the growth of persister cells and more effective preformed biofilm eradication. Among them, CGA-N12-0801, CGA-N12-0902 and CGA-N12-1002 displayed much higher activity and anti-proteinase digestion stability than CGA-N12. Specifically, CGA-N12-0801 was the optimal analogue, with a minimum inhibitory concentration of 3.46 μg/mL and a therapeutic index of 158.07. The results of electronic microscopy observations and KRE9 activity inhibition assays showed that CGA-N12 and its analogues killed C. tropicalis by disrupting the architecture of the cell wall and the integrity of the cell membrane. In conclusion, for the first time, we provide a simple and reliable method for the rational design of antimicrobial peptides and ideal candidates for treating Candida infections that not effectively eliminated by azole drugs.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| | - Jiasha Wu
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Fuyang He
- School of Artificial Intelligence and Big Data, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Qingpeng Xu
- College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shang Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Weitong Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ao Wei
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lan Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Xin-Hui Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
25
|
Riboflavin Targets the Cellular Metabolic and Ribosomal Pathways of Candida albicans In Vitro and Exhibits Efficacy against Oropharyngeal Candidiasis. Microbiol Spectr 2023; 11:e0380122. [PMID: 36625571 PMCID: PMC9927497 DOI: 10.1128/spectrum.03801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), which has a high incidence in immunocompromised and denture stomatitis patients, is commonly caused by Candida albicans infection and in some cases develops into disseminated candidiasis throughout the throat and esophagus, resulting in high mortality. New drugs are needed to combat OPC because of the limited treatment options currently available and increasing resistance to existing drugs. Here, we confirmed that riboflavin (RF), a cofactor of flavin adenine mononucleotide and flavin adenine dinucleotide, has broad-spectrum anti-Candida activity. The formation of C. albicans hyphae and biofilm was inhibited by RF. Mechanistically, RF disrupted membrane and cell wall integrity, as well as promoting reactive oxygen species and pyruvate accumulation. Furthermore, RF targeted multiple essential pathways via functional disruption of thiamine and RF metabolic pathways, central carbon metabolism, and ribosome metabolism. Similar to the results in vitro, the inhibitory effect of RF on C. albicans hyphae was confirmed in a mouse model of OPC. Moreover, after 5 consecutive days of intraperitoneal injection, RF exhibited therapeutic efficacy, as demonstrated by phenotype investigation, the fungal burden, and histopathological analysis. These findings revealed that RF exerts a multifaceted anti-Candida effect and has potential benefits in the treatment of OPC. IMPORTANCE Candida species are common pathogens in fungal infections, causing mucosal infection and invasive infection in immunodeficient patients. Given the limited classes of drugs and resistance to these drugs, new antifungal agents need to be developed. Drug repurposing is a potential method for antifungal drug development. This study demonstrated that riboflavin (RF) exhibited broad-spectrum anti-Candida activity. RF affected multiple targets involving the membrane and cell wall integrity, the accumulation of reactive oxygen species and pyruvate, and the altered metabolic pathways in C. albicans. Moreover, RF exhibited efficacy in the treatment of C. albicans in an oropharyngeal candidiasis mouse model. Taken together, the antifungal activity and the promising clinical application of RF were highlighted.
Collapse
|
26
|
Ramesh S, Madduri M, Rudramurthy SM, Roy U. Functional Characterization of a Bacillus-Derived Novel Broad-Spectrum Antifungal Lipopeptide Variant against Candida tropicalis and Candida auris and Unravelling Its Mode of Action. Microbiol Spectr 2023; 11:e0158322. [PMID: 36744953 PMCID: PMC10100908 DOI: 10.1128/spectrum.01583-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/22/2022] [Indexed: 02/07/2023] Open
Abstract
Limited treatment options, recalcitrance, and resistance to existing therapeutics encourage the discovery of novel antifungal leads for alternative therapeutics. Antifungal lipopeptides have emerged as potential candidates for developing new and alternative antifungal therapies. In our previous studies, we isolated and identified the lipopeptide variant AF4 and purified it to homogeneity via chromatography from the cell-free supernatant of Bacillus subtilis. AF4 was found to have broad-spectrum antifungal activity against more than 110 fungal isolates. In this study, we found that clinical isolates of Candida tropicalis and Candida auris exposed to AF4 exhibited low MICs of 4 to 8 mg/L. Time-kill assays indicated the in vitro pharmacodynamic potential of AF4. Biocompatibility assays demonstrated ~75% cell viability at 8 mg/L of AF4, indicating the lipopeptide's minimally cytotoxic nature. In lipopeptide-treated C. tropicalis and C. auris cells, scanning electron microscopy revealed damage to the cell surface, while confocal microscopy with acridine orange(AO)/propidium iodide (PI) and FUN-1 indicated permeabilization of the cell membrane, and DNA damage upon DAPI (4',6-diamidino-2-phenylindole) staining. These observations were corroborated using flow cytometry (FC) in which propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and rhodamine 123 (Rh123) staining of cells treated with AF4 revealed loss of membrane integrity, increased reactive oxygen species (ROS) production, and mitochondrial membrane dysfunction, respectively. Membrane perturbation was also observed in the 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence study and the interaction with ergosterol was observed by an ergosterol binding assay. Decreased membrane dipole potential also indicated the probable binding of lipopeptide to the cell membrane. Collectively, these findings describe the mode of action of AF4 against fungal isolates by membrane disruption and ROS generation, demonstrating its antifungal potency. IMPORTANCE C. tropicalis is a major concern for candidiasis in India and C. auris has emerged as a resistant yeast causing difficult-to-treat infections. Currently, amphotericin B (AMB) and 5-flucytosine (5-FC) are the main therapeutics for systemic fungal infections; however, the nephrotoxicity of AMB and resistance to 5-FC is a serious concern. Antifungal lead molecules with low adverse effects are the need of the hour. In this study, we briefly describe the antifungal potential of the AF4 lipopeptide and its mode of action using microscopy, flow cytometry, and fluorescence-based assays. Our investigation reveals the basic mode of action of the investigated lipopeptide. This lipopeptide with broad-spectrum antifungal potency is apparently membrane-active, and there is a smaller chance that organisms exposed to such a compound will develop drug resistance. It could potentially act as a lead molecule for the development of an alternative antifungal agent to combat candidiasis.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| | - Madhuri Madduri
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
27
|
Chen X, Sun S, Huang S, Yang H, Ye Q, Lv L, Liang Y, Shan J, Xu J, Liu W, Ma T. Gold(I) selenium N-heterocyclic carbene complexes as potent antibacterial agents against multidrug-resistant gram-negative bacteria via inhibiting thioredoxin reductase. Redox Biol 2023; 60:102621. [PMID: 36758467 PMCID: PMC9939723 DOI: 10.1016/j.redox.2023.102621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria have become a global threat to human life and health, and novel antibiotics are urgently needed. The thioredoxin (Trx) system can be used as an antibacterial target to combat MDR bacteria. Here, we found that two active gold(I) selenium N-heterocyclic carbene complexes H7 and H8 show more promising antibacterial effects against MDR bacteria than auranofin. Both H7 and H8 irreversibly inhibit the bacterial TrxR activity via targeting the redox-active motif, abolishing the capacity of TrxR to quench reactive oxygen species (ROS) and finally leading to oxidative stress. The increased cellular superoxide radical levels impact a variety of functions necessary for bacterial survival, such as cellular redox balance, cell membrane integrity, amino acid metabolism, and lipid peroxidation. In vivo data present much better antibacterial activity of H7 and H8 than auranofin, promoting the wound healing and prolonging the survival time of Carbapenem-resistant Acinetobacter baumannii (CRAB) induced peritonitis. Most notably in this study, we revealed the influence of gold(I) complexes on both the Trx system and the cellular metabolic states to better understand their killing mechanism and to support further antibacterial drug design.
Collapse
Affiliation(s)
- Xiuli Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Sheng Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Han Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qing Ye
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Lv
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanshan Liang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
28
|
Guevara-Lora I, Bras G, Juszczak M, Karkowska-Kuleta J, Gorecki A, Manrique-Moreno M, Dymek J, Pyza E, Kozik A, Rapala-Kozik M. Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Front Microbiol 2023; 13:1045984. [PMID: 36713201 PMCID: PMC9880178 DOI: 10.3389/fmicb.2022.1045984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The recent progressive increase in the incidence of invasive fungal infections, especially in immunocompromised patients, makes the search for new therapies crucial in the face of the growing drug resistance of prevalent nosocomial yeast strains. The latest research focuses on the active compounds of natural origin, inhibiting fungal growth, and preventing the formation of fungal biofilms. Antimicrobial peptides are currently the subject of numerous studies concerning effective antifungal therapy. In the present study, the antifungal properties of two synthetic peptides (ΔM3, ΔM4) derived from an insect antimicrobial peptide - cecropin D - were investigated. The fungicidal activity of both compounds was demonstrated against the yeast forms of Candida albicans, Candida tropicalis, and Candida parapsilosis, reaching a MFC99.9 in the micromolar range, while Candida glabrata showed greater resistance to these peptides. The scanning electron microscopy revealed a destabilization of the yeast cell walls upon treatment with both peptides; however, their effectiveness was strongly modified by the presence of salt or plasma in the yeast environment. The transition of C. albicans cells from yeast to filamentous form, as well as the formation of biofilms, was effectively reduced by ΔM4. Mature biofilm viability was inhibited by a higher concentration of this peptide and was accompanied by increased ROS production, activation of the GPX3 and SOD5 genes, and finally, increased membrane permeability. Furthermore, both peptides showed a synergistic effect with caspofungin in inhibiting the metabolic activity of C. albicans cells, and an additive effect was also observed for the mixtures of peptides with amphotericin B. The results indicate the possible potential of the tested peptides in the prevention and treatment of candidiasis.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Gorecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Jakub Dymek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,*Correspondence: Maria Rapala-Kozik,
| |
Collapse
|
29
|
Behind the Curtain: In Silico and In Vitro Experiments Brought to Light New Insights into the Anticryptococcal Action of Synthetic Peptides. Antibiotics (Basel) 2023; 12:antibiotics12010153. [PMID: 36671354 PMCID: PMC9854638 DOI: 10.3390/antibiotics12010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cryptococcus neoformans is the pathogen responsible for cryptococcal pneumonia and meningitis, mainly affecting patients with suppressed immune systems. We have previously revealed the mechanism of anticryptococcal action of synthetic antimicrobial peptides (SAMPs). In this study, computational and experimental analyses provide new insights into the mechanisms of action of SAMPs. Computational analysis revealed that peptides interacted with the PHO36 membrane receptor of C. neoformans. Additionally, ROS (reactive oxygen species) overproduction, the enzymes of ROS metabolism, interference in the ergosterol biosynthesis pathway, and decoupling of cytochrome c mitochondrial membrane were evaluated. Three of four peptides were able to interact with the PHO36 receptor, altering its function and leading to ROS overproduction. SAMPs-treated C. neoformans cells showed a decrease in scavenger enzyme activity, supporting ROS accumulation. In the presence of ascorbic acid, an antioxidant agent, SAMPs did not induce ROS accumulation in C. neoformans cells. Interestingly, two SAMPs maintained inhibitory activity and membrane pore formation in C. neoformans cells by a ROS-independent mechanism. Yet, the ergosterol biosynthesis and lactate dehydrogenase activity were affected by SAMPs. In addition, we noticed decoupling of Cyt c from the mitochondria, which led to apoptosis events in the cryptococcal cells. The results presented herein suggest multiple mechanisms imposed by SAMPs against C. neoformans interfering in the development of resistance, thus revealing the potential of SAMPs in treating infections caused by C. neoformans.
Collapse
|
30
|
Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2022; 28:molecules28010133. [PMID: 36615326 PMCID: PMC9822300 DOI: 10.3390/molecules28010133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Matricaria chamomilla L. (MC) and Chamaemelum nobile (L.) All. (CN) are two varieties of Chamomile. These herbs have been used for thousands of years in Greece, Rome and ancient Egypt. Chamomile has been used for the treatment of stomach problems, cramps, dermatitis, and minor infections. The purpose of this study was to introduce the botanical characteristics and geographical distribution, traditional uses, chemical constituents, pharmacological activities, toxicity studies and quality control studies, and lay a theoretical foundation for the rational development and utilization of chamomile. This review powered that chemical constituents include flavonoids, coumarins, volatile oils, terpenes, organic acids, polysaccharides, and others. These compounds possess anticancer, anti-infective, anti-inflammatory, antithrombotic, antioxidant, hypolipidaemic, hypoglycaemic, antihypertensive, antidepressant, neuroprotective activities, among others. Chamomile is a widely used herb in traditional medicine. It brings great economic value due to its numerous pharmacological effects and traditional uses. However, more toxicity tests should be carried out to confirm its safety. There is need for further research to provide concrete scientific evidence and validate its medicinal properties.
Collapse
|
31
|
Fais R, Rizzato C, Franconi I, Tavanti A, Lupetti A. Synergistic Activity of the Human Lactoferricin-Derived Peptide hLF1-11 in Combination with Caspofungin against Candida Species. Microbiol Spectr 2022; 10:e0124022. [PMID: 35876581 PMCID: PMC9430458 DOI: 10.1128/spectrum.01240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Candida species are the main fungal opportunistic pathogens causing systemic infections that are often associated with drug resistance and biofilm production on medical devices. The pressing need for new antifungal agents led to an increased interest in the use of combination therapies. The present study was aimed at investigating potential synergistic activity of the human lactoferrin-derived hLF1-11 peptide with caspofungin against caspofungin-resistant or -susceptible C. albicans, C. parapsilosis, and C. glabrata strains. Synergism was evaluated by the checkerboard assay, measuring cellular metabolic activity against Candida planktonic and sessile cells. A fractional inhibitory concentration (FIC) index of ≤0.5 was interpreted as synergy. Synergism was evaluated by killing assays on planktonic cells. A cell viability assay was performed with biofilm formation inhibition and preformed biofilm. Synergy for killing and viability assays was defined as a ≥2-log-CFU/mL reduction in comparison with the most active constituent. hLF1-11 and caspofungin exerted (i) synergistic effects against planktonic cells of all the tested strains, yielding drastic caspofungin MIC reduction, (ii) synergistic effects on the inhibition of biofilm formation against biofilm producer strains, yielding caspofungin BIC reduction, and (iii) synergistic effects on preformed biofilm assessed by measuring metabolic activity (FIC range, 0.28 to 0.37) against biofilm-producing strains and by cell viability assay in C. albicans SC5314. The synergistic effect observed between caspofungin and hLF1-11 against Candida spp. is of potential clinical relevance, representing a promising novel approach to target caspofungin-resistant Candida species infections. Further studies elucidating the mechanisms of action of such a synergistic effect are needed. IMPORTANCE The present study describes a synergistic effect between a conventional antifungal drug, caspofungin, and a synthetic peptide derived from human lactoferrin, hLF1-11, against Candida species. These yeasts are able to cause severe systemic fungal infections in immunocompromised hosts. In addition, they can form biofilms in medical implanted devices. Recently, caspofungin-resistant Candida strains have emerged, thus highlighting the need to develop different therapeutic strategies. In in vitro studies, this drug combination is able to restore sensitivity to caspofungin in caspofungin-resistant strains of Candida species, both in free-living cells and in cells organized in biofilms. This synergism could represent a promising novel approach to target infections caused by caspofungin-resistant Candida species.
Collapse
Affiliation(s)
- Roberta Fais
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Iacopo Franconi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Sasidharan S, Nishanth KS, Nair HJ. Ethanolic extract of Caesalpinia bonduc seeds triggers yeast metacaspase-dependent apoptotic pathway mediated by mitochondrial dysfunction through enhanced production of calcium and reactive oxygen species (ROS) in Candida albicans. Front Cell Infect Microbiol 2022; 12:970688. [PMID: 36093184 PMCID: PMC9449877 DOI: 10.3389/fcimb.2022.970688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a widespread disease-causing yeast affecting humankind, which leads to urinary tract, cutaneous and various lethal systemic infections. As this infection rate steadily increases, it is becoming a significant public health problem. Recently, Caesalpinia bonduc has received much attention from researchers due to its diverse pharmacological properties, including antimicrobial effects. Accordingly, we first planned to explore the in-vitro anticandidal potential of three extracts obtained from C. bonduc seeds against four Candida species. Initially, the anticandidal activity of the seed extracts was checked by the microdilution technique. Out of three seed extracts tested, ethanolic extract of C. bonduc seed (EECS) recorded the best activity against C. albicans. Hence, we next aimed to find out the anticandidal mechanism of EECS in C. albicans. The liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis showed that the major compounds present in the EECS were tocopherols, fucosterol, linoleic acid, β-amyrin, β-sitosterol, campesterol, cassane furanoditerpene, Norcassane furanoditerpene and other diterpenes. To evaluate the cell death mechanism in C. albicans, a series of parameters related to apoptosis, viz., reactive oxygen species (ROS) production, membrane permeability, mitochondrial membrane potential, release of cytochrome c, DNA fragmentation, nuclear condensation, increased Ca2+ level in cytosolic and mitochondrial and activation of metacaspase, were analyzed. The results showed that EECS treatment resulted in the elevation of ROS, which leads to plasma membrane permeability in C. albicans. Annexin V staining further confirms the early stage of apoptosis through phosphatidylserine (PS) externalization. We further inspected the late apoptotic stage using DAPI and TUNEL staining assays. From the results, it can be concluded that EECS triggered mitochondrial dysfunction by releasing high levels of ROS, cytochrome c and Ca2+resulting in the activation of metacaspase mediated apoptosis, which is the central mechanism behind the cell death of C. albicans. Finally, a Galleria mellonella-C. albicans infection system was employed to assess the in-vivo potential of EECS. The outcomes displayed that the EECS considerably enhanced the recovery rate of G. mellonella larvae from infection after the treatment. Additionally, EECS also recorded low hemolytic activity. This study thus spotlights the anticandidal potential and mechanism of action of EECS against C. albicans and thus delivers a promising treatment approach to manage C. albicans infection in the future.
Collapse
|
33
|
Lycosin-II Exhibits Antifungal Activity and Inhibits Dual-Species Biofilm by Candida albicans and Staphylococcus aureus. J Fungi (Basel) 2022; 8:jof8090901. [PMID: 36135626 PMCID: PMC9504746 DOI: 10.3390/jof8090901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The increase and dissemination of antimicrobial resistance is a global public health issue. To address this, new antimicrobial agents have been developed. Antimicrobial peptides (AMPs) exhibit a wide range of antimicrobial activities against pathogens, including bacteria and fungi. Lycosin-II, isolated from the venom of the spider Lycosa singoriensis, has shown antibacterial activity by disrupting membranes. However, the mode of action of Lycosin-II and its antifungal activity have not been clearly described. Therefore, we confirmed that Lycosin-II showed antifungal activity against Candida albicans (C. albicans). To investigate the mode of action, membrane-related assays were performed, including an evaluation of C. albicans membrane depolarization and membrane integrity after exposure to Lycosin-II. Our results indicated that Lycosin-II damaged the C. albicans membrane. Additionally, Lycosin-II induced oxidative stress through the generation of reactive oxygen species (ROS) in C. albicans. Moreover, Lycosin-II exhibited an inhibitory effect on dual-species biofilm formation by C. albicans and Staphylococcus aureus (S. aureus), which are the most co-isolated fungi and bacteria. These results revealed that Lycosin-II can be utilized against C. albicans and dual-species strain infections.
Collapse
|
34
|
Gbala ID, Macharia RW, Bargul JL, Magoma G. Membrane Permeabilization and Antimicrobial Activity of Recombinant Defensin-d2 and Actifensin against Multidrug-Resistant Pseudomonas aeruginosa and Candida albicans. Molecules 2022; 27:molecules27144325. [PMID: 35889198 PMCID: PMC9317813 DOI: 10.3390/molecules27144325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobial resistance requires urgent efforts towards the discovery of active antimicrobials, and the development of strategies to sustainably produce them. Defensin and defensin-like antimicrobial peptides (AMPs) are increasingly gaining pharmacological interest because of their potency against pathogens. In this study, we expressed two AMPs: defensin-d2 derived from spinach, and defensin-like actifensin from Actinomyces ruminicola. Recombinant pTXB1 plasmids carrying the target genes encoding defensin-d2 and actifensin were generated by the MEGAWHOP cloning strategy. Each AMP was first expressed as a fusion protein in Escherichia coli, purified by affinity chromatography, and was thereafter assayed for antimicrobial activity against multidrug-resistant (MDR) pathogens. Approximately 985 µg/mL and 2895 µg/mL of recombinant defensin-d2 and actifensin, respectively, were recovered with high purity. An analysis by MALDI-TOF MS showed distinct peaks corresponding to molecular weights of approximately 4.1 kDa for actifensin and 5.8 kDa for defensin-d2. An in vitro antimicrobial assay showed that MDR Pseudomonas aeruginosa and Candida albicans were inhibited at minimum concentrations of 7.5 µg/mL and 23 µg/mL for recombinant defensin-d2 and actifensin, respectively. The inhibitory kinetics of the peptides revealed cidal activity within 4 h of the contact time. Furthermore, both peptides exhibited an antagonistic interaction, which could be attributed to their affinities for similar ligands, as deduced by peptide–ligand profiling. Moreover, both peptides inhibited biofilm formation, and they exhibited no resistance potential and low hemolytic activity. The peptides also possess the ability to permeate and disrupt the cell membranes of MDR P. aeruginosa and C. albicans. Therefore, recombinant actifensin and defensin-d2 exhibit broad-spectrum antimicrobial activity and have the potential to be used as therapy against MDR pathogens.
Collapse
Affiliation(s)
- Ifeoluwa D. Gbala
- Molecular Biology and Biotechnology, Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi P.O. Box 62000-00200, Kenya;
- Correspondence:
| | - Rosaline W. Macharia
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Joel L. Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Gabriel Magoma
- Molecular Biology and Biotechnology, Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi P.O. Box 62000-00200, Kenya;
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| |
Collapse
|
35
|
Bakare OO, Gokul A, Fadaka AO, Wu R, Niekerk LA, Barker AM, Keyster M, Klein A. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges. Molecules 2022; 27:3703. [PMID: 35744828 PMCID: PMC9229691 DOI: 10.3390/molecules27123703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
The quest for an extraordinary array of defense strategies is imperative to reduce the challenges of microbial attacks on plants and animals. Plant antimicrobial peptides (PAMPs) are a subset of antimicrobial peptides (AMPs). PAMPs elicit defense against microbial attacks and prevent drug resistance of pathogens given their wide spectrum activity, excellent structural stability, and diverse mechanism of action. This review aimed to identify the applications, features, production, expression, and challenges of PAMPs using its structure-activity relationship. The discovery techniques used to identify these peptides were also explored to provide insight into their significance in genomics, transcriptomics, proteomics, and their expression against disease-causing pathogens. This review creates awareness for PAMPs as potential therapeutic agents in the medical and pharmaceutical fields, such as the sensitive treatment of bacterial and fungal diseases and others and their utilization in preserving crops using available transgenic methods in the agronomical field. PAMPs are also safe to handle and are easy to recycle with the use of proteases to convert them into more potent antimicrobial agents for sustainable development.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 121001, Ogun State, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa;
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Bio labels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa;
| | - Ruomou Wu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
36
|
Huang X, Zheng D, Yong J, Li Y. Antifungal activity and potential mechanism of berberine hydrochloride against fluconazole-resistant Candida albicans. J Med Microbiol 2022; 71. [PMID: 35679157 DOI: 10.1099/jmm.0.001542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The emergence of resistance to fluconazole in Candida albicans has made the clinical treatment of this microbe difficult. A potential strategy to address this problem involves diminishing fungal resistance to antimicrobial drugs.Hypothesis. Berberine hydrochloride (BH), the primary active ingredient of the traditional Chinese medicine (TCM) Coptis, inhibits the growth of fluconazole-resistant C. albicans through its action on the high-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway.Aim. To examine the effect of BH on the HOG-MAPK pathway to assess the potential molecular mechanism by which BH inhibits fluconazole-resistant C. albicans.Methodology. The minimum inhibitory concentration (MIC) of BH to fluconazole-resistant C. albicans was measured using the broth microdilution approach to determine the concentration of effective drug intervention. Changes in physiological functions regulated by the HOG-MAPK pathway in response to BH treatment were measured, as well as the expression of central signalling pathway genes and key downstream factors by qRT-PCR and Western blotting, respectively.Results. BH inhibited fluconazole-resistant C. albicans and the sensitivity to fluconazole increased after BH treatment. At a concentration of 256 and 64 μg ml-1 BH may affect key downstream factors that regulate several physiological functions of C. albicans by upregulating the core genes expression of SLN1, SSK2, HOG1, and PBS2 in the HOG-MAPK pathway. Upregulation of GPD1, the key gene for glycerol synthesis, increased cell osmotic pressure. BH treatment increased the accumulation of reactive oxygen species by upregulating the expression of the key respiratory metabolism gene ATP11 and downregulating the expression of the superoxide dismutase gene SOD2. Furthermore, downregulation of mycelial-specific HWP1 hindered the morphological transformation of C. albicans and inhibition of the chitin synthase gene CHS3 and the β-(1,3) glucan synthase gene GSC1 impaired cytoderm integrity.Conclusion. BH affects multiple target genes in diminishing the resistance of C. albicans strains to fluconazole. This effect may be related to the action of BH on the HOG-MAPK pathway.
Collapse
Affiliation(s)
- Xiaoxue Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan 610041, PR China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Jiangyan Yong
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan 610075, PR China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| |
Collapse
|
37
|
Souza LAL, Dias LP, Araújo NMS, Carneiro RF, Nagano CS, Teixeira CS, Silva RGG, Oliveira JTA, Sousa DOB. JcTI-PepI, a synthetic peptide bioinspired in the trypsin inhibitor from Jatropha curcas, presents potent inhibitory activity against C. krusei, a neglected pathogen. Biochimie 2022; 200:107-118. [PMID: 35623496 DOI: 10.1016/j.biochi.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance has been increasing globally, posing a global public health risk. It has prompted the scientific community to look for alternatives to traditional drugs. Antimicrobial Peptides (AMPs) have stood out in this context because they have the potential to control infectious diseases while causing no or little harm to mammalian cells. In the present study, three peptides, JcTI-PepI, JcTI-PepII, and JcTI-PepIII, were designed and tested for antimicrobial activity based on the primary sequence of JcTI-I, a 2S albumin with trypsin inhibitory activity from Jatropha curcas. JcTI-PepI strongly inhibited C. krusei growth, and it caused severe disruptions in cellular processes and cell morphology. C. krusei cells treated with JcTI-PepI showed indicative of membrane permeabilization and overproduction of Reactive Oxygen Species. Moreover, the yeast's ability to acidify the medium was severely compromised. JcTI-PepI was also effective against pre-formed biofilm and did not harm human erythrocytes and Vero cells. Overall, these characteristics indicate that JcTI-PepI is both safe and effective against C. krusei, an intrinsically resistant strain that causes serious health problems and is frequently overlooked. It implies that this peptide has a high potential for use as a new antimicrobial agent in the future.
Collapse
Affiliation(s)
- Larissa A L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Lucas P Dias
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nadine M S Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Rômulo F Carneiro
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudener S Teixeira
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Rafael G G Silva
- Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - José T A Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Daniele O B Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
38
|
Wang Q, Pan L, Han Y, Zhou Z. Antimicrobial Mechanisms of Enterocin CHQS Against Candida albicans. Curr Microbiol 2022; 79:191. [PMID: 35552837 DOI: 10.1007/s00284-022-02878-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Candida albicans is the most common fungal pathogen in hospital-acquired infections, which is extremely harmful to health. The increasing fungal infections is requiring the rapid development of novel antifungal agents. In this study, the antimicrobial activity of CHQS, an enterocin isolated from Enterococcus faecalis TG2 against C. albicans was confirmed by the minimum inhibitory concentration, minimum fungicidal concentration, and time-kill curve. Aniline blue and calcofluor white staining methods showed that CHQS remarkably affected β-1,3-glucan and chitin cell wall components and made cell wall more vulnerable. The C. albicans cell wall rupture and intracellular vacuolation were observed by TEM and SEM. Moreover, CHQS induced the accumulation of intracellular reactive oxygen species and decreased mitochondrial membrane potential. These results suggested that CHQS might have a complex multi-target antimicrobial mechanism against C. albicans. In addition, the use of CHQS combined with amphotericin B showed synergistic antimicrobial effects against C. albicans. In conclusion, enterocin CHQS, a natural product with antimicrobial effect, might has a bright future for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
39
|
Bezerra LP, Freitas CDT, Silva AFB, Amaral JL, Neto NAS, Silva RGG, Parra ALC, Goldman GH, Oliveira JTA, Mesquita FP, Souza PFN. Synergistic Antifungal Activity of Synthetic Peptides and Antifungal Drugs against Candida albicans and C. parapsilosis Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11050553. [PMID: 35625197 PMCID: PMC9138075 DOI: 10.3390/antibiotics11050553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
C. albicans and C. parapsilosis are biofilm-forming yeasts responsible for bloodstream infections that can cause death. Synthetic antimicrobial peptides (SAMPs) are considered to be new weapons to combat these infections, alone or combined with drugs. Here, two SAMPs, called Mo-CBP3-PepI and Mo-CBP3-PepIII, were tested alone or combined with nystatin (NYS) and itraconazole (ITR) against C. albicans and C. parapsilosis biofilms. Furthermore, the mechanism of antibiofilm activity was evaluated by fluorescence and scanning electron microscopies. When combined with SAMPs, the results revealed a 2- to 4-fold improvement of NYS and ITR antibiofilm activity. Microscopic analyses showed cell membrane and wall damage and ROS overproduction, which caused leakage of internal content and cell death. Taken together, these results suggest the potential of Mo-CBP3-PepI and Mo-CBP3-PepIII as new drugs and adjuvants to increase the activity of conventional drugs for the treatment of clinical infections caused by C. albicans and C. parapsilosis.
Collapse
Affiliation(s)
- Leandro P. Bezerra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
- Correspondence: (C.D.T.F.); (P.F.N.S.)
| | - Ayrles F. B. Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Jackson L. Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Rafael G. G. Silva
- Department of Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil;
| | - Aura L. C. Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo P.O. Box 05508-000, SP, Brazil;
| | - Jose T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel, Nunes de Melo 100, Caixa, Fortaleza 60430-275, CE, Brazil;
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel, Nunes de Melo 100, Caixa, Fortaleza 60430-275, CE, Brazil;
- Correspondence: (C.D.T.F.); (P.F.N.S.)
| |
Collapse
|
40
|
Sun CQ, Peng J, Yang LB, Jiao ZL, Zhou LX, Tao RY, Zhu LJ, Tian ZQ, Huang MJ, Guo G. A Cecropin-4 Derived Peptide C18 Inhibits Candida albicans by Disturbing Mitochondrial Function. Front Microbiol 2022; 13:872322. [PMID: 35531288 PMCID: PMC9075107 DOI: 10.3389/fmicb.2022.872322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
Global burden of fungal infections and related health risk has accelerated at an incredible pace, and multidrug resistance emergency aggravates the need for the development of new effective strategies. Candida albicans is clinically the most ubiquitous pathogenic fungus that leads to high incidence and mortality in immunocompromised patients. Antimicrobial peptides (AMPs), in this context, represent promising alternatives having potential to be exploited for improving human health. In our previous studies, a Cecropin-4-derived peptide named C18 was found to possess a broader antibacterial spectrum after modification and exhibit significant antifungal activity against C. albicans. In this study, C18 shows antifungal activity against C. albicans or non-albicans Candida species with a minimum inhibitory concentration (MIC) at 4∼32 μg/ml, and clinical isolates of fluconazole (FLZ)-resistance C. tropicalis were highly susceptible to C18 with MIC value of 8 or 16 μg/ml. Additionally, C18 is superior to FLZ for killing planktonic C. albicans from inhibitory and killing kinetic curves. Moreover, C18 could attenuate the virulence of C. albicans, which includes damaging the cell structure, retarding hyphae transition, and inhibiting biofilm formation. Intriguingly, in the Galleria mellonella model with C. albicans infection, C18 could improve the survival rate of G. mellonella larvae to 70% and reduce C. albicans load from 5.01 × 107 to 5.62 × 104 CFU. For mechanistic action of C18, the level of reactive oxygen species (ROS) generation and cytosolic Ca2 + increased in the presence of C18, which is closely associated with mitochondrial dysfunction. Meanwhile, mitochondrial membrane potential (△Ψm) loss and ATP depletion of C. albicans occurred with the treatment of C18. We hypothesized that C18 might inhibit C. albicans via triggering mitochondrial dysfunction driven by ROS generation and Ca2 + accumulation. Our observation provides a basis for future research to explore the antifungal strategies and presents C18 as an attractive therapeutic candidate to be developed to treat candidiasis.
Collapse
Affiliation(s)
- Chao-Qin Sun
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Long-Bing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zheng-Long Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Luo-Xiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Ru-Yu Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Li-Juan Zhu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhu-Qing Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Ming-Jiao Huang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- *Correspondence: Guo Guo,
| |
Collapse
|
41
|
Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Pharmaceutics 2022; 14:pharmaceutics14030642. [PMID: 35336016 PMCID: PMC8950055 DOI: 10.3390/pharmaceutics14030642] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.
Collapse
|
42
|
Ahamad I, Bano F, Anwer R, Srivastava P, Kumar R, Fatma T. Antibiofilm Activities of Biogenic Silver Nanoparticles Against Candida albicans. Front Microbiol 2022; 12:741493. [PMID: 35069463 PMCID: PMC8782275 DOI: 10.3389/fmicb.2021.741493] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilms are microbial colonies that are encased in an organic polymeric matrix and are resistant to antimicrobial treatments. Biofilms can adhere to both biotic and abiotic surfaces, allowing them to colonize medical equipment such as urinary and intravenous catheters, mechanical heart valves, endotracheal tubes, and prosthetic joints. Candida albicans biofilm is the major etiological cause of the pathogenesis of candidiasis in which its unobstructed growth occurs in the oral cavity; trachea, and catheters that progress to systemic infections in the worst scenarios. There is an urgent need to discover novel biofilm preventive and curative agents. In the present investigation, an effort is made to observe the role of cyanobacteria-derived AgNPs as a new antibiofilm agent with special reference to candidiasis. AgNPs synthesized through the green route using Anabaena variabilis cell extract were characterized by UV-visible spectroscopy. The nanoparticles were spherical in shape with 11-15 nm size and were monodispersed. The minimum inhibitory concentration (MIC) of AgNPs was obtained at 12.5 μg/mL against C. albicans. AgNPs 25 μg/mL showed 79% fungal cell membrane permeability and 22.2% ROS production. AgNPs (25 μg/mL) also facilitated 62.5% of biofilm inhibition and degradation. Therefore, AgNPs could be considered as a promising antifungal agent to control biofilm produced by C. albicans.
Collapse
Affiliation(s)
- Irshad Ahamad
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fareha Bano
- Department of Biology, College of Science and Arts, Taibah University (Female Branch), AlUla, Saudi Arabia
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Pooja Srivastava
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation (DRDO), Government of India, New Delhi, India
| | - Raj Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation (DRDO), Government of India, New Delhi, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
43
|
Yang L, Tian Z, Zhou L, Zhu L, Sun C, Huang M, Peng J, Guo G. In vitro Antifungal Activity of a Novel Antimicrobial Peptide AMP-17 Against Planktonic Cells and Biofilms of Cryptococcus neoformans. Infect Drug Resist 2022; 15:233-248. [PMID: 35115792 PMCID: PMC8800587 DOI: 10.2147/idr.s344246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Background Cryptococcus neoformans is a common human fungal pathogen in immunocompromised people, as well as a prevalent cause of meningitis in HIV-infected individuals. With the emergence of clinical fungal resistance and the shortage of antifungal drugs, it is urgent to discover novel antifungal agents. AMP-17, a novel antimicrobial peptide from Musca domestica, has antifungal activity against C. neoformans. However, its antifungal and anti-biofilm activities remain unclear. Thus, this study aimed to evaluate the antifungal activity of AMP-17 against planktonic cells and biofilms of C. neoformans. Methods The minimum inhibitory concentration (MIC), the biofilm inhibitory and eradicating concentration (BIC and BEC) were determined by the broth microdilution assay or the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay, respectively. The inhibitory and killing activities of AMP-17 against C. neoformans were investigated through the time-inhibition/killing kinetic curves. The potential antifungal mechanism of AMP-17 was detected by flow cytometry, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The efficiency of AMP-17 against biofilm formation or preformed biofilm was evaluated by crystal violet staining and XTT reduction assays. The morphology of pre-biofilms was tested by optical microscopy (OM) and CLSM. Results AMP-17 exhibited in vitro antifungal activity against C. neoformans planktonic cells and biofilms, with MICs of 4~16 μg/ml, BIC80 and BEC80 of 16~32 μg/ml, 64~128 μg/ml, respectively. In addition, the 2× and 4× MIC of AMP-17 exhibited similar inhibition levels compared to the 2× and 4× MIC of the clinical drugs FLC and AMB in C. neoformans growth. Moreover, the time-kill results showed that AMP-17 (8× MIC) did not significantly eliminate colony forming units (CFU) after 6 h of treatment; however, there was 2.9-log reduction in CFU of C. neoformans. Furthermore, increasing of the permeability of the fungal cell membrane was observed with the treatment of AMP-17, since the vast change as fungal leakage and cell membrane disruption. However, the DNA binding assay of AMP-17 indicated that the peptide did not target DNA. Besides, AMP-17 was superior in inhibiting and eradicating biofilms of C. neoformans compared with FLC. Conclusion AMP-17 exhibited potential in vitro antifungal activity against the planktonic cells and biofilms of C. neoformans, and it may disrupt fungal cell membranes through multi-target interactions, which provides a promising therapeutic strategy and experimental basis for Cryptococcus-associated infections.
Collapse
Affiliation(s)
- Longbing Yang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zhuqing Tian
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Luoxiong Zhou
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Lijuan Zhu
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Chaoqin Sun
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Mingjiao Huang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Jian Peng
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Guo Guo
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Correspondence: Guo Guo, Building Wuben, School of Basic Medical Sciences, Guizhou Medical University, College Town, Gui’an New District, Guiyang, 550025, People’s Republic of China, Tel/fax +86 851 882 59268, Email
| |
Collapse
|
44
|
Shafiei M, Toreyhi H, Firoozpour L, Akbarzadeh T, Amini M, Hosseinzadeh E, Hashemzadeh M, Peyton L, Lotfali E, Foroumadi A. Design, Synthesis, and In Vitro and In Vivo Evaluation of Novel Fluconazole-Based Compounds with Promising Antifungal Activities. ACS OMEGA 2021; 6:24981-25001. [PMID: 34604679 PMCID: PMC8482776 DOI: 10.1021/acsomega.1c04016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 05/30/2023]
Abstract
Demand has arisen for developing new azole antifungal agents with the growth of the resistant rate of infective fungal species to current azole antifungals in recent years. Accordingly, the present study reports the synthesis of novel fluconazole (FLC) analogues bearing urea functionality that led to discovering new azole agents with promising antifungal activities. In particular, compounds 8b and 8c displayed broad-spectrum activity and superior in vitro antifungal capabilities compared to the standard drug FLC against sensitive and resistant Candida albicans (C. albicans). The highly active compounds 8b and 8c had potent antibiofilm properties against FLC-resistant C. albicans species. Additionally, these compounds exhibited very low toxicity for three mammalian cell lines and human red blood cells. Time-kill studies revealed that our synthesized compounds displayed a fungicidal mechanism toward fungal growth. Furthermore, a density functional theory (DFT) calculation, additional docking, and independent gradient model (IGM) studies were performed to analyze their structure-activity relationship (SAR) and to assess the molecular interactions in the related target protein. Finally, in vivo results represented a significant reduction in the tissue fungal burden and improvements in the survival rate in a mice model of systemic candidiasis along with in vitro and in silico studies, demonstrating the therapeutic efficiency of compounds 8b and 8c as novel leads for candidiasis drug discovery.
Collapse
Affiliation(s)
- Mohammad Shafiei
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Hossein Toreyhi
- Student
Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Loghman Firoozpour
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Tahmineh Akbarzadeh
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Elaheh Hosseinzadeh
- Department
of Chemistry, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mehrnoosh Hashemzadeh
- University
of Arizona College of Medicine Phoenix and Pima college, Tucson, Arizona 85750, United States
| | - Lee Peyton
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905-0001, United States
| | - Ensieh Lotfali
- Department
of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
45
|
Chang CK, Kao MC, Lan CY. Antimicrobial Activity of the Peptide LfcinB15 against Candida albicans. J Fungi (Basel) 2021; 7:jof7070519. [PMID: 34209722 PMCID: PMC8306953 DOI: 10.3390/jof7070519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Lactoferricin (Lfcin) is an amphipathic, cationic peptide derived from proteolytic cleavage of the N-lobe of lactoferrin (Lf). Lfcin and its derivatives possess broad-spectrum antibacterial and antifungal activities. However, unlike their antibacterial functions, the modes of action of Lfcin and its derivatives against pathogenic fungi are less well understood. In this study, the mechanisms of LfcinB15, a derivative of bovine Lfcin, against Candida albicans were, therefore, extensively investigated. LfcinB15 exhibited inhibitory activity against planktonic cells, biofilm cells, and clinical isolates of C. albicans and non-albicans Candida species. We further demonstrated that LfcinB15 is localized on the cell surface and vacuoles of C. albicans cells. Moreover, LfcinB15 uses several different methods to kill C. albicans, including disturbing the cell membrane, inducing reactive oxygen species (ROS) generation, and causing mitochondrial dysfunction. Finally, the Hog1 and Mkc1 mitogen-activated protein kinases were both activated in C. albicans cells in response to LfcinB15. These findings help us to obtain more insight into the complex mechanisms used by LfcinB15 and other Lfcin-derived peptides to fight fungal pathogens.
Collapse
Affiliation(s)
- Che-Kang Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (M.-C.K.); ; (C.-Y.L.); Tel.: +886-3-5742473 (M.-C.K.); +886-3-5742472 (C.-Y.L.)
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (M.-C.K.); ; (C.-Y.L.); Tel.: +886-3-5742473 (M.-C.K.); +886-3-5742472 (C.-Y.L.)
| |
Collapse
|
46
|
Schaefer S, Pham TTP, Brunke S, Hube B, Jung K, Lenardon MD, Boyer C. Rational Design of an Antifungal Polyacrylamide Library with Reduced Host-Cell Toxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27430-27444. [PMID: 34060800 DOI: 10.1021/acsami.1c05020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Life-threatening invasive fungal infections represent an urgent threat to human health worldwide. The limited set of antifungal drugs has critical constraints such as resistance development and/or adverse side effects. One approach to overcome these limitations is to mimic naturally occurring antifungal peptides called defensins. Inspired by their advantageous amphiphilic properties, a library of 35 synthetic, linear, ternary polyacrylamides was prepared by controlled/living radical polymerization. The effect of the degree of polymerization (20, 40, and 100) and varying hydrophobic functionalities (branched, linear, cyclic, or aromatic differing in their number of carbons) on their antifungal activity was investigated. Short copolymers with a calculated log P of ∼1.5 revealed optimal activity against the major human fungal pathogen Candida albicans and other pathogenic fungal species with limited toxicity to mammalian host cells (red blood cells and fibroblasts). Remarkably, selected copolymers outperformed the commercial antifungal drug amphotericin B, with respect to the therapeutic index, highlighting their potential as novel antifungal compounds.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Thi Thu Phuong Pham
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Kenward Jung
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Megan Denise Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
47
|
Herbal Products and Their Active Constituents Used Alone and in Combination with Antifungal Drugs against Drug-Resistant Candida sp. Antibiotics (Basel) 2021; 10:antibiotics10060655. [PMID: 34072664 PMCID: PMC8229001 DOI: 10.3390/antibiotics10060655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical isolates of Candida yeast are the most common cause of opportunistic fungal infections resistant to certain antifungal drugs. Therefore, it is necessary to detect more effective antifungal agents that would be successful in overcoming such infections. Among them are some herbal products and their active constituents.The purpose of this review is to summarize the current state of knowledge onherbal products and their active constituents havingantifungal activity against drug-resistant Candida sp. used alone and in combination with antifungal drugs.The possible mechanisms of their action on drug-resistant Candida sp. including (1) inhibition of budding yeast transformation into hyphae; (2) inhibition of biofilm formation; (3) inhibition of cell wall or cytoplasmic membrane biosynthesis; (4) ROS production; and (5) over-expression of membrane transporters will be also described.
Collapse
|
48
|
Seyedjavadi SS, Khani S, Amani J, Halabian R, Goudarzi M, Hosseini HM, Eslamifar A, Shams-Ghahfarokhi M, Imani Fooladi AA, Razzaghi-Abyaneh M. Design, Dimerization, and Recombinant Production of MCh-AMP1-Derived Peptide in Escherichia coli and Evaluation of Its Antifungal Activity and Cytotoxicity. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:638595. [PMID: 37744143 PMCID: PMC10512307 DOI: 10.3389/ffunb.2021.638595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 09/26/2023]
Abstract
Fungal species resistant to current antifungal agents are considered as a serious threat to human health, the dilemma that has dragged attentions toward other sources of antifungals such as antimicrobial peptides (AMPs). In order to improve biological activity of a recently described antifungal peptide MCh-AMP1 from Matricaria chamomilla flowers, MCh-AMP1dimer (DiMCh-AMP1), containing 61 amino acid residues connected by flexible linker (GPDGSGPDESGPDES), was designed and expressed in Escherichia coli, and its structure was analyzed using bioinformatics tools. DiMCh-AMP1 synthetic gene was cloned into pET-28a expression vector, which was then used to transform E. coli BL21 (DE3) strain. His-tag purification was achieved using metal-chelate affinity chromatography. Because there is no methionine residue in the DiMCh-AMP1 sequence, cyanogen bromide was successfully used to separate the target product from the tag. Reverse-phase high-performance liquid chromatography was used as the final step of purification. Results showed that recombinant peptide was produced in considerable amounts (0.9 mg/L) with improved antifungal activity toward both yeasts and molds compared to its monomeric counterpart. The minimum inhibition concentration and minimum fungicidal concentration values of DiMCh-AMP1 against Candida and Aspergillus species were reported in the range of 1.67-6.66 μM and 3.33-26.64 μM, respectively. Our results showed that while antifungal activity of dimerized peptide was improved considerably, its cytotoxicity was decreased, implying that DiMCh-AMP1 could be a potential candidate to design an effective antifungal agent against pathogenic yeasts and molds.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
49
|
Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:25-49. [PMID: 33931141 DOI: 10.1016/bs.apcsb.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Candida albicans are polymorphic fungal species commonly occurs in a symbiotic association with the host's usual microflora. Certain specific changes in its usual microenvironment can lead to diseases ranging from external mucosal to severally lethal systemic infections like invasive candidiasis hospital-acquired fatal infection caused by different species of Candida. The patient acquired with this infection has a high mortality and morbidity rate, ranging from 40% to 60%. This is an ill-posed problem by its very nature. Hence, early diagnosis and management is a crucial part. Antifungal drug resistance against the first and second generation of antifungal drugs has made it difficult to treat such fatal diseases. After a few dormant years, recently, there has been a rapid turnover of identifying novel drugs with low toxicity to limit the problem of drug resistance. After an initial overview of related work, we examine specific prior work on how a change in oxidative stress can facilitate apoptosis in C. albicans. Subsequently, it was investigated that Candida spp. suppresses the production of ROS mediated host defense system. Here, we have reviewed possibly all the small molecule inhibitors, natural products, antimicrobial peptide, and some naturally derived semi-synthetic compounds which are known to influence oxidative stress, to generate a proper apoptotic response in C. albicans and thus might be a novel therapeutic approach to augment the current treatment options.
Collapse
|
50
|
Kamli MR, Srivastava V, Hajrah NH, Sabir JSM, Ali A, Malik MA, Ahmad A. Phytogenic Fabrication of Ag-Fe Bimetallic Nanoparticles for Cell Cycle Arrest and Apoptosis Signaling Pathways in Candida auris by Generating Oxidative Stress. Antioxidants (Basel) 2021; 10:182. [PMID: 33513888 PMCID: PMC7910930 DOI: 10.3390/antiox10020182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Novel green synthetic nanomedicines have been recognized as alternative therapies with the potential to be antifungal agents. Apoptosis induction, cell cycle arrest and activation of the antioxidant defense system in fungal cells have also gained attention as emerging drug targets. In this study, a facile and biodegradable synthetic route was developed to prepare Ag-Fe bimetallic nanoparticles using aqueous extract of Beta vulgaris L. Surface plasmon resonance of Beta vulgaris-assisted AgNPs nanoparticles was not observed in the UV-visible region of Ag-Fe bimetallic NPs, which confirms the formation of Ag-Fe nanoparticles. Beta vulgaris-assisted Ag-Fe NPs were characterized by FTIR spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and TGA-DTG analysis for their structural and morphological properties. The as-prepared Ag-Fe NPs were well dispersed and spherical with the average particle size of 15 nm. The antifungal activity of these Ag-Fe NPs against clinical isolates of Candida auris was determined by broth microdilution and cell viability assays. For insights into mechanisms, induction of apoptosis and triggering cell cycle arrest were studied following standard protocols. Furthermore, analysis of antioxidant defense enzymes was determined spectrophotometrically. Antifungal susceptibility results revealed high antifungal activity with MIC values ranging from 0.19 to 0.39 µg/mL. Further studies showed that Ag-Fe NPs were able to induce apoptosis, cell cycle arrest in G2/M phase and disturbances in primary and secondary antioxidant enzymes. This study presents the potential of Ag-Fe NPs to inhibit and potentially eradicate C. auris by inducing apoptosis, cell cycle arrest and increased levels of oxidative stress.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Nahid H Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arif Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|