1
|
Bian X, Li M, Liu X, Zhu Y, Li J, Bergen PJ, Li W, Li X, Feng M, Zhang J. Transcriptomic investigations of polymyxins and colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Comput Struct Biotechnol J 2024; 23:2595-2605. [PMID: 39006922 PMCID: PMC11245955 DOI: 10.1016/j.csbj.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a Priority 1 (Critical) pathogen urgently requiring new antibiotics. Polymyxins are a last-line option against CRAB-associated infections. This transcriptomic study utilized a CRAB strain to investigate mechanisms of bacterial killing with polymyxin B, colistin, colistin B, and colistin/sulbactam combination therapy. After 4 h of 2 mg/L polymyxin monotherapy, all polymyxins exhibited common transcriptomic responses which primarily involved disruption to amino acid and fatty acid metabolism. Of the three monotherapies, polymyxin B induced the greatest number of differentially expressed genes (DEGs), including for genes involved with fatty acid metabolism. Gene disturbances with colistin and colistin B were highly similar (89 % common genes for colistin B), though effects on gene expression were generally lower (0-1.5-fold in most cases) with colistin B. Colistin alone (2 mg/L) or combined with sulbactam (64 mg/L) resulted in rapid membrane disruption as early as 1 h. Transcriptomic analysis of this combination revealed that the effects were driven by colistin, which included disturbances in fatty acid synthesis and catabolism, and inhibition of nutrient uptake. Combination therapy produced substantially higher fold changes in 72 % of DEGs shared with monotherapy, leading to substantially greater reductions in fatty acid biosynthesis and increases in biofilm, cell wall, and phospholipid synthesis. This indicates synergistic bacterial killing with the colistin/sulbactam combination results from a systematic increase in perturbation of many genes associated with bacterial metabolism. These mechanistic insights enhance our understanding of bacterial responses to polymyxin mono- and combination therapy and will assist to optimize polymyxin use in patients.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of biological medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of biological medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sett A, Maiti PK, Garg K, Hussain A, Saini S, Pandey S, Pathania R. 'GGFGGQ' repeats in Hfq of Acinetobacter baumannii are essential for nutrient utilization and virulence. J Biol Chem 2024:107895. [PMID: 39424139 DOI: 10.1016/j.jbc.2024.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
The nosocomial pathogen Acinetobacter baumannii is known for causing lung and soft tissue infections in immunocompromised hosts. Its ability to adapt to various environments through post-transcriptional gene regulation is key to its success. Central to this regulation is the RNA chaperone Hfq, which facilitates interactions between mRNA targets and their small RNA (sRNA) partners through a Sm-core domain. Notably, the A. baumannii Hfq protein has a uniquely long C-terminal domain (CTD) with GGFGGQ amino acid repeats and an acidic amino acid-rich C-terminal tip (C-tip). Previous research has shown the importance of the intact CTD for Hfq's functionality. Given the significance of the C-tip in E. coli Hfq, we examined the pathophysiological roles of the redundant 'GGFGGQ' repeats along with the C-tip of A. baumannii Hfq. We constructed several variations of Hfq protein with fewer 'GGFGGQ' repeats while preserving the C-tip, and variants with altered C-tip amino acid composition. We then studied their RNA interaction abilities and assessed the pathophysiological fitness and virulence of genome-complemented A. baumannii mutants. Our findings reveal that the redundancy of the 'GGFGGQ' repeats is crucial for Hfq's role in pathophysiological fitness and negatively impacts A. baumannii's virulence in a murine lung infection model. In addition, C-tip mutants exhibited a negative effect on both fitness and virulence, however, to a lesser extent than the other variants. These results underscore the importance of 'GGFGGQ' redundancy and acidic residues in Hfq's ribo-regulation and autoregulation, suggesting their critical role in establishing regulatory networks.
Collapse
Affiliation(s)
- Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Pulak Kumar Maiti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Arsalan Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Snehlata Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Shivam Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand-247667, India; Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| |
Collapse
|
3
|
Abid R, Khan M, Siddique N, Khan SW, Khan RU, Zahoor M, Ullah R, Alotaibi A. Novel chiral phthalimides: Antimicrobial evaluation and docking study against Acinetobacter baumannii's OmpA protein. Comput Biol Med 2024; 182:109099. [PMID: 39265475 DOI: 10.1016/j.compbiomed.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Antibiotics have been a vital component in the fight against microbial diseases for over 75 years, saving countless lives. However, the global rise of multi-drug-resistance (MDR) bacterial infections is pushing us closer to a post-antibiotic era where common infections may once again become lethal. To combat MDR Acinetobacter baumannii, we investigated chiral phthalimides and used molecular docking to identify potential targets. Outer membrane protein A (OmpA) is crucial for A. baumannii resistant to antibiotics, making it a pathogen of great concern due to its high mortality rate and limited treatment options. In this study, we evaluated three distinct compounds against the OmpA protein: FIA (2-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid), FIC (2-(1,3-dioxoindolin-2yl)-4-(methylthio) butanoic acid), and FII (3-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid). Molecular docking results showed that these three compounds exhibited strong interactions with the OmpA protein. Molecular dynamics (MD) simulation analysis further confirmed the stability and binding efficacy of these compounds with OmpA. Their antimicrobial activities were assessed using the agar well diffusion method, revealing that FIA had an optimal zone of inhibition of 24 mm. Additionally, the minimum inhibitory concentrations (MIC) of these compounds were determined, demonstrating their bactericidal properties against A. baumannii, with MICs of 11 μg/μL for FIA, 46 μg/μL for FIC, and 375 μg/μL for FII. In vitro cytotoxicity data indicated that none of the three compounds were hemolytic when exposed to human red blood cells. This finding is particularly significant as it highlights the superior efficacy of FIA against A. baumannii compared to the other compounds. With thorough pharmacokinetic validations, these chiral phthalimides are promising alternative therapeutic options for treating infections caused by A. baumannii, offering new hope in the face of rising antibiotic resistance.
Collapse
Affiliation(s)
- Rimsha Abid
- Institute of Pathology and Diagnostic Medicine, Department of Microbiology, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Momin Khan
- Institute of Pathology and Diagnostic Medicine, Department of Microbiology, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Nayyer Siddique
- Institute of Pathology and Diagnostic Medicine, Department of Microbiology, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Sher Wali Khan
- Department of Chemistry, Rawalpindi Women University, Rawalpindi, 46300, Pakistan.
| | - Rahat Ullah Khan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, 18800, Pakistan.
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
4
|
Cottom CO, Stephenson R, Ricci D, Yang L, Gumbart JC, Noinaj N. Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA. Structure 2024:S0969-2126(24)00330-7. [PMID: 39293443 DOI: 10.1016/j.str.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.
Collapse
Affiliation(s)
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dante Ricci
- Achaogen, Inc., South San Francisco, CA, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Khan MAS, Chaity SC, Hosen MA, Rahman SR. Genomic epidemiology of multidrug-resistant clinical Acinetobacter baumannii in Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105656. [PMID: 39116952 DOI: 10.1016/j.meegid.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The rising frequency of multidrug-resistant (MDR) Acinetobacter baumannii infections represents a significant public health challenge in Bangladesh. Genomic analysis of bacterial pathogens enhances surveillance and control efforts by providing insights into genetic diversity, antimicrobial resistance (AMR) profiles, and transmission dynamics. In this study, we conducted a comprehensive bioinformatic analysis of 82 whole-genome sequences (WGS) of A. baumannii from Bangladesh to understand their genomic epidemiological characteristics. WGS of the MDR and biofilm-forming A. baumannii strain S1C revealed the presence of 28 AMR genes, predicting its pathogenicity and classification within sequence type ST2. Multi-locus sequence typing (MLST) genotyping suggested heterogeneity in the distribution of clinical A. baumannii strains in Bangladesh, with a predominance of ST575. The resistome diversity was evident from the detection of 82 different AMR genes, with antibiotic inactivation being the most prevalent resistance mechanism. All strains were predicted to be multidrug-resistant. The observed virulence genes were associated with immune evasion, biofilm formation, adherence, nutrient acquisition, effector delivery, and other mechanisms. Mobile genetic elements carrying AMR genes were predicted in 68.29% (N = 56) of the genomes. The "open" state of the pan-genome and a high proportion of accessory genes highlighted the genome plasticity and diversity of A. baumannii in Bangladesh. Additionally, phylogenomic analysis indicated clustering of A. baumannii strains into three separate clades according to sequence type. In summary, our findings offer detailed insights into the genomic landscape of A. baumannii in Bangladesh, contributing to our understanding of its epidemiology and pathogenicity and informing strategies to combat this pathogen.
Collapse
Affiliation(s)
| | | | - Md Arman Hosen
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
6
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
Sett A, Dubey V, Bhowmik S, Pathania R. Decoding Bacterial Persistence: Mechanisms and Strategies for Effective Eradication. ACS Infect Dis 2024; 10:2525-2539. [PMID: 38940498 DOI: 10.1021/acsinfecdis.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ability of pathogenic bacteria to evade antibiotic treatment is an intricate and multifaceted phenomenon. Over the years, treatment failure among patients due to determinants of antimicrobial resistance (AMR) has been the focal point for the research and development of new therapeutic agents. However, the survival of bacteria by persisting under antibiotic stress has largely been overlooked. Bacterial persisters are a subpopulation of sensitive bacterial cells exhibiting a noninheritable drug-tolerant phenotype. They are linked to the recalcitrance of infections in healthcare settings, in turn giving rise to AMR variants. The importance of bacterial persistence in recurring infections has been firmly recognized. Fundamental work over the past decade has highlighted numerous unique tolerance factors contributing to the persister phenotype in many clinically relevant pathogens. This review summarizes contributing factors that could aid in developing new strategies against bacterial antibiotic persisters.
Collapse
Affiliation(s)
- Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Vineet Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
- Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
8
|
Scribano D, Cheri E, Pompilio A, Di Bonaventura G, Belli M, Cristina M, Sansone L, Zagaglia C, Sarshar M, Palamara AT, Ambrosi C. Acinetobacter baumannii OmpA-like porins: functional characterization of bacterial physiology, antibiotic-resistance, and virulence. Commun Biol 2024; 7:948. [PMID: 39107399 PMCID: PMC11303520 DOI: 10.1038/s42003-024-06645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Acinetobacter baumannii is a critical opportunistic pathogen associated with nosocomial infections. The high rates of antibiotic-resistance acquisition make most antibiotics ineffective. Thus, new medical countermeasures are urgently needed. Outer membrane proteins (OMPs) are prime candidates for developing novel drug targets and antibacterial strategies. However, there are substantial gaps in our knowledge of A. baumannii OMPs. This study reports the impact of OmpA-like protein on bacterial physiology and virulence in A. baumannii strain AB5075. We found that PsaB (ABUW_0505) negatively correlates to stress tolerance, while ArfA (ABUW_2730) significantly affects bacterial stiffness, cell shape, and cell envelope thickness. Furthermore, we expand our knowledge on YiaD (ABUW_3045), demonstrating structural and virulence roles of this porin, in addition to meropenem resistance. This study provides solid foundations for understanding how uncharacterized OMPs contribute to A. baumannii's physiological and pathological processes, aiding the development of innovative therapeutic strategies against A. baumannii infections.
Collapse
Affiliation(s)
- Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Elena Cheri
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Manuel Belli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Laboratory of Molecular and Cellular Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - Mario Cristina
- Laboratory of Molecular and Cellular Pathology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Sansone
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Laboratory of Molecular and Cellular Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
9
|
Sivarajan K, Ravindhiran R, Sekar JN, Murugesan R, Chidambaram K, Dhandapani K. Deciphering the impact of Acinetobacter baumannii on human health, and exploration of natural compounds as efflux pump inhibitors to treat multidrug resistance. J Med Microbiol 2024; 73. [PMID: 39212030 DOI: 10.1099/jmm.0.001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an ESKAPE pathogen and threatens human health by generating infections with high fatality rates. A. baumannii leads to a spectrum of infections such as skin and wound infections, endocarditis, meningitis pneumonia, septicaemia and urinary tract infections. Recently, strains of A. baumannii have emerged as multidrug-resistant (MDR), meaning they are resistant to at least three different classes of antibiotics. MDR development is primarily intensified by widespread antibiotic misuse and inadequate stewardship. The World Health Organization (WHO) declared A. baumannii a precarious MDR species. A. baumannii maintains the MDR phenotype via a diverse array of antimicrobial metabolite-hydrolysing enzymes, efflux of antibiotics, impermeability and antibiotic target modification, thereby complicating treatment. Hence, a deeper understanding of the resistance mechanisms employed by MDR A. baumannii can give possible approaches to treat antimicrobial resistance. Resistance-nodulation-cell division (RND) efflux pumps have been identified as the key contributors to MDR determinants, owing to their capacity to force a broad spectrum of chemical substances out of the bacterial cell. Though synthetic inhibitors have been reported previously, their efficacy and safety are of debate. As resistance-modifying agents, phytochemicals are ideal choices. These natural compounds could eliminate the bacteria or interact with pathogenicity events and reduce the bacteria's ability to evolve resistance. This review aims to highlight the mechanism behind the multidrug resistance in A. baumannii and elucidate the utility of natural compounds as efflux pump inhibitors to deal with the infections caused by A. baumannii.
Collapse
Affiliation(s)
- Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha 652529, Saudi Arabia
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
10
|
Negahdari B, Sarkoohi P, Ghasemi Nezhad F, Shahbazi B, Ahmadi K. Design of multi-epitope vaccine candidate based on OmpA, CarO and ZnuD proteins against multi-drug resistant Acinetobacter baumannii. Heliyon 2024; 10:e34690. [PMID: 39149030 PMCID: PMC11324976 DOI: 10.1016/j.heliyon.2024.e34690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Acinetobacter baumannii has been identified as a major cause of nosocomial infections. Acinetobacter infections are often difficult to treat with multidrug resistant phenotypes. One of the most effective ways to combat infectious diseases is through vaccination. In this study, an attempt was made to select the most protective and potent immunostimulatory epitopes based on the epitope-rich domains of the ZnuD, OmpA and CarO proteins of Acinetobacter baumannii to design a vaccine that can protect against this infection. After predicting the epitope of B- and T-cells, seven antigenic regions of three proteins CarO, ZnuD and OmpA, were selected. These regions were bound by a GGGS linker. The binding affinity and molecular interactions of the vaccine with the immune receptors TLR2 and TLR4 were studied using molecular docking analysis. This vaccine design was subjected to in silico immune simulations using C-ImmSim. The designed vaccine was highly antigenic, non-allergenic and stable. TLR2 and TLR4 were selected to analyze the ability of the modeled chimeric protein to interact with immune system receptors. The results showed strong interaction between the designed protein vaccine with TLR2 (-18.8 kcal mol-1) and TLR4 (-15.1 kcal mol-1). To verify the stability of the interactions and the structure of the designed protein, molecular dynamics (MD) simulations were performed for 200 ns. Various analyses using MD showed that the protein structure is stable alone and in interaction with TLR2 and TLR4. The ability of the vaccine candidate protein to stimulate the immune system to produce the necessary cytokines and antibodies against Acinetobacter baumannii was also demonstrated by the ability of the protein designed using the C-ImmSim web server to induce an immune response. Therefore, the designed protein vaccine may be a suitable candidate for in vivo as well as in vitro studies against Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Batul Negahdari
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Forozan Ghasemi Nezhad
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
11
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
12
|
Piri-Gharaghie T, Ghajari G, Rezaeizadeh G, Adil M, Mahdi MH. A novel vaccine strategy against Brucellosis using Brucella abortus multi-epitope OMPs vaccine based on Lactococcus lactis live bacterial vectors. Int Immunopharmacol 2024; 134:112204. [PMID: 38703567 DOI: 10.1016/j.intimp.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Brucella infections typically occur in mucosal membranes, emphasizing the need for mucosal vaccinations. This study evaluated the effectiveness of orally administering Lactococcus lactis (L. lactis) for producing the Brucella abortus multi-epitope OMPs peptide. A multi-epitope plasmid was generated through a reverse vaccinology method, and mice were administered the genetically modified L. lactis orally as a vaccine. The plasmid underwent digestion, synthesizing a 39 kDa-sized protein known as OMPs by the target group. The sera of mice that were administered the pNZ8124-OMPs-L. lactis vaccine exhibited a notable presence of IgG1 antibodies specific to outer membrane proteins (OMPs), heightened levels of interferon (IFN-λ) and tumor necrosis factor alpha (TNF-α), and enhanced transcription rates of interleukin 4 (IL-4) and interleukin 10 (IL-10). The spleen sections from the pNZ8124-OMPs-L. lactis and IRIBA group had less morphological damage associated with inflammation, infiltration of lymphocytes, and lesions to the spleen. The findings present a novel approach to utilizing the food-grade, non-pathogenic L. lactis as a protein cell factory to synthesize innovative immunological candidate OMPs. This approach offers a distinctive way to evaluate experimental medicinal items' practicality, safety, affordability, and long-term sustainability.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biological Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
13
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
14
|
Nayak S, Akshay SD, Deekshit VK, Raj JM, Maiti B. Exposure to imipenem at sub-minimum inhibitory concentration leads to altered expression of major outer membrane proteins in Acinetobacter baumannii. J Appl Microbiol 2024; 135:lxae105. [PMID: 38653725 DOI: 10.1093/jambio/lxae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
AIMS Acinetobacter baumannii is a nosocomial pathogen known to be multidrug-resistant (MDR), especially to drugs of the carbapenem class. Several factors contribute to resistance, including efflux pumps, β-lactamases, alteration of target sites, and permeability defects. In addition, outer membrane proteins (OMPs), like porins are involved in the passage of antibiotics, and their alteration could lead to resistance development. This study aimed to explore the possible involvement of porins and OMPs in developing carbapenem resistance due to differential expression. METHODS AND RESULTS The antibiotic-susceptible and MDR isolates of A. baumannii were first studied for differences in their transcriptional levels of OMP expression and OMP profiles. The antibiotic-susceptible isolates were further treated with imipenem, and it was found that the omp genes were differentially expressed. Six of the nine genes studied were upregulated at 1 h of exposure to imipenem. Their expression gradually decreased with time, further confirmed by their OMP profile and two-dimensional gel electrophoresis. CONCLUSIONS This study could identify OMPs that were differentially expressed on exposure to imipenem. Hence, this study provides insights into the role of specific OMPs in antibiotic resistance in A. baumannii.
Collapse
Affiliation(s)
- Srajana Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Deralakatte, Mangaluru 575018, India
| | - Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Deralakatte, Mangaluru 575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Deralakatte, Mangaluru 575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Deralakatte, Mangaluru 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Deralakatte, Mangaluru 575018, India
| |
Collapse
|
15
|
Mahdally NH, ElShiekh RA, Thissera B, Eltaher A, Osama A, Mokhtar M, Elhosseiny NM, Kashef MT, Magdeldin S, El Halawany AM, Rateb ME, Attia AS. Dihydrophenazine: a multifunctional new weapon that kills multidrug-resistant Acinetobacter baumannii and restores carbapenem and oxidative stress susceptibilities. J Appl Microbiol 2024; 135:lxae100. [PMID: 38627251 DOI: 10.1093/jambio/lxae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
AIMS The current work aims to fully characterize a new antimicrobial agent against Acinetobacter baumannii, which continues to represent a growing threat to healthcare settings worldwide. With minimal treatment options due to the extensive spread of resistance to almost all the available antimicrobials, the hunt for new antimicrobial agents is a high priority. METHODS AND RESULTS An Egyptian soil-derived bacterium strain NHM-077B proved to be a promising source for a new antimicrobial agent. Bio-guided fractionation of the culture supernatants of NHM-077B followed by chemical structure elucidation identified the active antimicrobial agent as 1-hydroxy phenazine. Chemical synthesis yielded more derivatives, including dihydrophenazine (DHP), which proved to be the most potent against A. baumannii, yet it exhibited a marginally safe cytotoxicity profile against human skin fibroblasts. Proteomics analysis of the cells treated with DHP revealed multiple proteins with altered expression that could be correlated to the observed phenotypes and potential mechanism of the antimicrobial action of DHP. DHP is a multipronged agent that affects membrane integrity, increases susceptibility to oxidative stress, interferes with amino acids/protein synthesis, and modulates virulence-related proteins. Interestingly, DHP in subinhibitory concentrations re-sensitizes the highly virulent carbapenem-resistant A. baumannii strain AB5075 to carbapenems providing great hope in regaining some of the benefits of this important class of antibiotics. CONCLUSIONS This work underscores the potential of DHP as a promising new agent with multifunctional roles as both a classical and nonconventional antimicrobial agent that is urgently needed.
Collapse
Affiliation(s)
- Norhan H Mahdally
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A ElShiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ashraf Eltaher
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Maha Mokhtar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ali M El Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- School of Pharmacy, Newgiza University, Giza 12585, Egypt
| |
Collapse
|
16
|
Chen PK, Lee YT, Liu CY, Thuy TTD, Anh K, Wu JJ, Liao CH, Huang YT, Chen YC, Kao CY. A 19-year longitudinal study to characterize carbapenem-nonsusceptible Acinetobacter isolated from patients with bloodstream infections and the contribution of conjugative plasmids to carbapenem resistance and virulence. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:288-299. [PMID: 38350841 DOI: 10.1016/j.jmii.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND This study aimed to characterize carbapenem-nonsusceptible Acinetobacter (CNSA) isolated from patients with bacteremia from 1997 to 2015. METHODS A total of 173 CNSA (12.3%) was recovered from 1403 Acinetobacter isolates. The presence of selected β-lactamase genes in CNSA was determined by PCR amplification. The conjugation test was used to determine the transferability of metallo-β-lactamase (MBL)-carrying plasmids. Whole genome sequencing in combination with phenotypic assays was carried out to characterize MBL-plasmids. RESULTS In general, a trend of increasing numbers of CNSA was observed. Among the 173 CNSA, A. baumannii (54.9%) was the most common species, followed by A. nosocomialis (23.1%) and A. soli (12.1%). A total of 49 (28.3%) CNSA were extensively drug-resistant, and all were A. baumannii. The most common class D carbapenemase gene in 173 CNSA was blaOXA-24-like (32.4%), followed by ISAba1-blaOXA-51-like (20.8%), ISAba1-blaOXA-23 (20.2%), and IS1006/IS1008-blaOXA-58 (11.6%). MBL genes, blaVIM-11,blaIMP-1, and blaIMP-19 were detected in 9 (5.2%), 20 (11.6%), and 1 (0.6%) CNSA isolates, respectively. Transfer of MBL genes to AB218 and AN254 recipient cells was successful for 7 and 6 of the 30 MBL-plasmids, respectively. The seven AB218-derived transconjugants carrying MBL-plasmids produced less biofilm but showed higher virulence to larvae than recipient AB218. CONCLUSIONS Our 19-year longitudinal study revealed a stable increase in CNSA during 2005-2015. blaOXA-24-like, ISAba1-blaOXA-51-like, and ISAba1-blaOXA-23 were the major determinants of Acinetobacter carbapenem resistance. MBL-carrying plasmids contribute not only to the carbapenem resistance but also to A. baumannii virulence.
Collapse
Affiliation(s)
- Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veteran General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Ying Liu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kieu Anh
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chun-Hsing Liao
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Tsung Huang
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Health Innovation Center, National Yang Ming Chiao Tung University, Taiwan; Microbiota Research Center, National Yang Ming Chiao Tung University, Taiwan.
| |
Collapse
|
17
|
Lasarte-Monterrubio C, Guijarro-Sánchez P, Alonso-Garcia I, Outeda M, Maceiras R, González-Pinto L, Martínez-Guitián M, Fernández-Lozano C, Vázquez-Ucha JC, Bou G, Arca-Suárez J, Beceiro A. Epidemiology, resistance genomics and susceptibility of Acinetobacter species: results from the 2020 Spanish nationwide surveillance study. Euro Surveill 2024; 29:2300352. [PMID: 38606569 PMCID: PMC11010588 DOI: 10.2807/1560-7917.es.2024.29.15.2300352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/13/2023] [Indexed: 04/13/2024] Open
Abstract
BackgroundAs increasing antibiotic resistance in Acinetobacter baumannii poses a global healthcare challenge, understanding its evolution is crucial for effective control strategies.AimWe aimed to evaluate the epidemiology, antimicrobial susceptibility and main resistance mechanisms of Acinetobacter spp. in Spain in 2020, and to explore temporal trends of A. baumannii.MethodsWe collected 199 single-patient Acinetobacter spp. clinical isolates in 2020 from 18 Spanish tertiary hospitals. Minimum inhibitory concentrations (MICs) for nine antimicrobials were determined. Short-read sequencing was performed for all isolates, and targeted long-read sequencing for A. baumannii. Resistance mechanisms, phylogenetics and clonality were assessed. Findings on resistance rates and infection types were compared with data from 2000 and 2010.ResultsCefiderocol and colistin exhibited the highest activity against A. baumannii, although colistin susceptibility has significantly declined over 2 decades. A. non-baumannii strains were highly susceptible to most tested antibiotics. Of the A. baumannii isolates, 47.5% (56/118) were multidrug-resistant (MDR). Phylogeny and clonal relationship analysis of A. baumannii revealed five prevalent international clones, notably IC2 (ST2, n = 52; ST745, n = 4) and IC1 (ST1, n = 14), and some episodes of clonal dissemination. Genes bla OXA-23, bla OXA-58 and bla OXA-24/40 were identified in 49 (41.5%), eight (6.8%) and one (0.8%) A. baumannii isolates, respectively. ISAba1 was found upstream of the gene (a bla OXA-51-like) in 10 isolates.ConclusionsThe emergence of OXA-23-producing ST1 and ST2, the predominant MDR lineages, shows a pivotal shift in carbapenem-resistant A. baumannii (CRAB) epidemiology in Spain. Coupled with increased colistin resistance, these changes underscore notable alterations in regional antimicrobial resistance dynamics.
Collapse
Affiliation(s)
- Cristina Lasarte-Monterrubio
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Paula Guijarro-Sánchez
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Isaac Alonso-Garcia
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Michelle Outeda
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Romina Maceiras
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Lucia González-Pinto
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Marta Martínez-Guitián
- NANOBIOFAR, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Carlos Fernández-Lozano
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Research Center of Information and Communication Technologies (CITIC), University of A Coruña, A Coruña, Spain
| | - Juan Carlos Vázquez-Ucha
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - German Bou
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Jorge Arca-Suárez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| | - Alejandro Beceiro
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
- Microbiology Department, A Coruña University Hospital (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Spain
| |
Collapse
|
18
|
Motz RN, Guo C, Sargun A, Walker GT, Sassone-Corsi M, Raffatellu M, Nolan EM. Conjugation to Native and Nonnative Triscatecholate Siderophores Enhances Delivery and Antibacterial Activity of a β-Lactam to Gram-Negative Bacterial Pathogens. J Am Chem Soc 2024; 146:7708-7722. [PMID: 38457782 PMCID: PMC11037102 DOI: 10.1021/jacs.3c14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the β-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic β-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Rachel N. Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory T. Walker
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martina Sassone-Corsi
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, CA 92093, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Karampatakis T, Tsergouli K, Behzadi P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:257. [PMID: 38534692 DOI: 10.3390/antibiotics13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for a variety of community- and hospital-acquired infections. It is recognized as a life-threatening pathogen among hospitalized individuals and, in particular, immunocompromised patients in many countries. A. baumannii, as a member of the ESKAPE group, encompasses high genomic plasticity and simultaneously is predisposed to receive and exchange the mobile genetic elements (MGEs) through horizontal genetic transfer (HGT). Indeed, A. baumannii is a treasure trove that contains a high number of virulence factors. In accordance with these unique pathogenic characteristics of A. baumannii, the authors aim to discuss the natural treasure trove of pan-genome and virulence factors pertaining to this bacterial monster and try to highlight the reasons why this bacterium is a great concern in the global public health system.
Collapse
Affiliation(s)
| | - Katerina Tsergouli
- Microbiology Department, Agios Pavlos General Hospital, 55134 Thessaloniki, Greece
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
20
|
Sheikh AA, Schneiderman D, Sykes EME, Kumar A, Chen W, Lapen DR, Khan IUH. Three novel multiplex PCR assays for rapid detection of virulence, antimicrobial resistance, and toxin genes in Acinetobacter calcoaceticus-baumannii complex species. Lett Appl Microbiol 2024; 77:ovae027. [PMID: 38460955 DOI: 10.1093/lambio/ovae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The Acinetobacter calcoaceticus-baumannii (ACB) complex is an often-overlooked group of nosocomial pathogens with a significant environmental presence. Rapid molecular screening methods for virulence, antimicrobial resistance, and toxin (VAT) genes are required to investigate the potential pathogenicity of environmental isolates. This study aimed to develop and apply novel ACB complex-specific multiplex PCR (mPCR) primers and protocols for the rapid detection of eight VAT genes. We optimized three single-tube mPCR assays using reference DNA from ACB complex and other Acinetobacter species. These assays were then applied to detect VAT genes in cultured ACB complex isolates recovered from clinical and environmental sources. Widespread detection of VAT genes in environmental isolates confirmed the validity, functionality, and applicability of these novel assays. Overall, the three newly developed ACB complex species-specific mPCR assays are rapid and simple tools that can be adopted in diagnostic and clinical lab settings. The detection of VAT genes in environmental isolates suggests that environmental niches could serve as a reservoir for potentially pathogenic ACB complex and warrants further investigation. The newly developed mPCR assays are specific, sensitive, and efficient, making them well-suited for high-throughput screening in epidemiological studies and evaluating the potential pathogenicity of ACB complex recovered from various sources.
Collapse
Affiliation(s)
- Alexander A Sheikh
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - Danielle Schneiderman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, MB, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| |
Collapse
|
21
|
Ouyang Z, He W, Jiao M, Yu Q, Guo Y, Refat M, Qin Q, Zhang J, Shi Q, Zheng F, Wen Y. Mechanistic and biophysical characterization of polymyxin resistance response regulator PmrA in Acinetobacter baumannii. Front Microbiol 2024; 15:1293990. [PMID: 38476937 PMCID: PMC10927774 DOI: 10.3389/fmicb.2024.1293990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Acinetobacter baumannii PmrAB is a crucial two-component regulatory system (TCS) that plays a vital role in conferring resistance to polymyxin. PmrA, a response regulator belonging to the OmpR/PhoB family, is composed of a C-terminal DNA-binding effector domain and an N-terminal receiver domain. The receiver domain can be phosphorylated by PmrB, a transmembrane sensor histidine kinase that interacts with PmrA. Once phosphorylated, PmrA undergoes a conformational change, resulting in the formation of a symmetric dimer in the receiver domain. This conformational change facilitates the recognition of promoter DNA by the DNA-binding domain of PmrA, leading to the activation of adaptive responses. Methods X-ray crystallography was carried out to solve the structure of PmrA receiver domain. Electrophoretic mobility shift assay and Isothermal titration calorimetry were recruited to validate the interaction between the recombinant PmrA protein and target DNA. Field-emission scanning electron microscopy (FE-SEM) was employed to characterize the surface morphology of A. baumannii in both the PmrA knockout and mutation strains. Results The receiver domain of PmrA follows the canonical α5β5 response regulator assembly, which undergoes dimerization upon phosphorylation and activation. Beryllium trifluoride is utilized as an aspartate phosphorylation mimic in this process. Mutations involved in phosphorylation and dimerization significantly affected the expression of downstream pmrC and naxD genes. This impact resulted in an enhanced cell surface smoothness with fewer modifications, ultimately contributing to a decrease in colistin (polymyxin E) and polymyxin B resistance. Additionally, a conservative direct-repeat DNA PmrA binding sequence TTTAAGNNNNNTTTAAG was identified at the promoter region of the pmrC and naxD gene. These findings provide structural insights into the PmrA receiver domain and reveal the mechanism of polymyxin resistance, suggesting that PmrA could be a potential drug target to reverse polymyxin resistance in Acinetobacter baumannii.
Collapse
Affiliation(s)
- Zhenlin Ouyang
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wenbo He
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Min Jiao
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinyue Yu
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Guo
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Moath Refat
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qian Qin
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qindong Shi
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yurong Wen
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Department of Critical Care Medicine, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
de Oliveira PAA, Baboghlian J, Ramos COA, Mançano ASF, Porcari ADM, Girardello R, Ferraz LFC. Selection and validation of reference genes suitable for gene expression analysis by Reverse Transcription Quantitative real-time PCR in Acinetobacter baumannii. Sci Rep 2024; 14:3830. [PMID: 38360762 PMCID: PMC10869792 DOI: 10.1038/s41598-024-51499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacterium considered an emerging multi-drug-resistant pathogen. Furthermore, this bacterium can survive in extreme environmental conditions, which makes it a frequent cause of nosocomial infection outbreaks. Gene expression analyses by Reverse Transcription Quantitative real-time PCR (RT-qPCR) depend on a reference gene, also called an endogenous gene, which is used to normalize the generated data and thus ensure an accurate analysis with minimal errors. Currently, gene expression analyses in A. baumannii are compromised, as there are no reports in the literature describing the identification of validated reference genes for use in RT-qPCR analyses. For this reason, we selected twelve candidate reference genes of A. baumannii and assessed their expression profile under different experimental and culture conditions. The expression stability of the candidate genes was evaluated by using statistical algorithms such as BestKeeper, geNorm, NormFinder, Delta CT, and RefFinder, in order to identify the most suitable candidate reference genes for RT-qPCR analyses. The statistical analyses indicated rpoB, rpoD, and fabD genes as the most adequate to ensure accurate normalization of RT-qPCR data in A. baumannii. The accuracy of the proposed reference genes was validated by using them to normalize the expression of the ompA gene, encoding the outer membrane protein A, in A. baumannii sensible and resistant to the antibiotic polymyxin. The present work provides suitable reference genes for precise RT-qPCR data normalization on future gene expression studies with A. baumannii.
Collapse
Affiliation(s)
| | - Juliana Baboghlian
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | | | | | - Andréia de Melo Porcari
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | - Raquel Girardello
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil.
| |
Collapse
|
23
|
Noser AA, El-Barbary AA, Salem MM, El Salam HAA, Shahien M. Synthesis and molecular docking simulations of novel azepines based on quinazolinone moiety as prospective antimicrobial and antitumor hedgehog signaling inhibitors. Sci Rep 2024; 14:3530. [PMID: 38347004 PMCID: PMC10861550 DOI: 10.1038/s41598-024-53517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
A series of novel azepine derivatives based on quinazolinone moiety was synthesized through the reaction of quinazolinone chalcones (2a-d) either with 2-amino aniline in acidic medium to give diazepines (3a-d) or with 2-aminophenol to offer oxazepine (4a-d). The structure of the synthesized compounds was confirmed via melting points, elemental analyses, and different spectroscopic techniques. Moreover, these newly compounds mode of action was investigated in-silico using molecular docking against the outer membrane protein A (OMPA), exo-1,3-beta-glucanase for their antimicrobial activity, and against Smoothened (SMO), transcription factor glioma-associated homology (SUFU/GLI-1), the main proteins of Hedgehog signaling pathway to inspect their anticancer potential. Our results showed that, diazepine (3a) and oxazepine (4a) offered the highest binding energy against the target OMPA/ exo-1,3-beta-glucanase proteins and exhibited the potent antimicrobial activities against E. coli, P. aeruginosa, S. aureus, B. subtilis, C. Albicans and A. flavus. As well, diazepine (3a) and oxazepine (4a) achieved the best results among the other compounds, in their binding energy against the target SMO, SUFU/GLI-1 proteins. The in-vitro cytotoxic study was done for them on panel of cancer cell lines HCT-116, HepG2, and MCF-7 and normal cell line WI-38. Conclusively, it was revealed that molecular docking in-silico simulations and the in-vitro experiments were agreed. As a result, our findings elucidated that diazepine (3a) and oxazepine (4a), have the potential to be used as antimicrobial agents and as possible cancer treatment medications.
Collapse
Affiliation(s)
- Ahmed A Noser
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - A A El-Barbary
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hayam A Abd El Salam
- Green Chemistry Department, National Research Centre, Dokki, GizaCairo, 12622, Egypt
| | - Mohamed Shahien
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
24
|
Rangel K, De-Simone SG. Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event. Infect Drug Resist 2024; 17:507-529. [PMID: 38348231 PMCID: PMC10860873 DOI: 10.2147/idr.s431525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Acinetobacter pneumonia is a significant healthcare-associated infection that poses a considerable challenge to clinicians due to its multidrug-resistant nature. Recent world events, such as the COVID-19 pandemic, have highlighted the need for effective treatment and management strategies for Acinetobacter pneumonia. In this review, we discuss lessons learned from recent world events, particularly the COVID-19 pandemic, in the context of the treatment and management of Acinetobacter pneumonia. We performed an extensive literature review to uncover studies and information pertinent to the topic. The COVID-19 pandemic underscored the importance of infection control measures in healthcare settings, including proper hand hygiene, isolation protocols, and personal protective equipment use, to prevent the spread of multidrug-resistant pathogens like Acinetobacter. Additionally, the pandemic highlighted the crucial role of antimicrobial stewardship programs in optimizing antibiotic use and curbing the emergence of resistance. Advances in diagnostic techniques, such as rapid molecular testing, have also proven valuable in identifying Acinetobacter infections promptly. Furthermore, due to the limited availability of antibiotics for treating infections caused A. baumannii, alternative strategies are needed like the use of antimicrobial peptides, bacteriophages and their enzymes, nanoparticles, photodynamic and chelate therapy. Recent world events, particularly the COVID-19 pandemic, have provided valuable insights into the treatment and management of Acinetobacter pneumonia. These lessons emphasize the significance of infection control, antimicrobial stewardship, and early diagnostics in combating this challenging infection.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói, RJ, 22040-036, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
25
|
Mohseni Sani N, Talaee M, Akbari A, Ashoori F, Zamani J, Kermani AA, Shahbani Zahiri H, Presley J, Vali H, Akbari Noghabi K. Unveiling the structure-emulsifying function relationship of truncated recombinant forms of the SA01-OmpA protein opens up a new vista in bioemulsifiers. Microbiol Spectr 2024; 12:e0346523. [PMID: 38206002 PMCID: PMC10846152 DOI: 10.1128/spectrum.03465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
The emulsifying ability of SA01-OmpA (outer membrane protein A from Acinetobacter sp. SA01) was found to be constrained by challenges like low production efficiency and high costs associated with protein recovery from E. coli inclusion bodies, as described in our previous study. The present study sought to benefit from the advantages of the targeted truncating of SA01-OmpA protein, taking into account the reduced propensity of protein expression as inclusion bodies and cytotoxicity. Here, the structure and activity relationship of two truncated recombinant forms of SA01-OmpA protein was unraveled through a hybrid approach based on experimental data and computational methodologies, representing an innovative bioemulsifier with advantageous emulsifying activity. The recombinant truncated SA01-OmpA variants were cloned and heterologously expressed in E. coli host cells and subsequently purified. The results showed increased emulsifying activity of N-terminally truncated SA01-OmpA (NT-OmpA) compared to full-length SA01-OmpA. Molecular dynamics (MD) simulations analysis demonstrated a direct correlation between the C-terminally truncated SA01-OmpA (CT-OmpA) and its expression as inclusion bodies. Analysis of the structure-activity relationship of truncated variants of SA01-OmpA revealed that, compared to the full-length protein, deletion of the β-barrel portion from the N-terminal of SA01-OmpA increased the emulsifying activity of NT-OmpA while lowering its expression as inclusion bodies. Contrary to the full-length protein, the N-terminally truncated SA01-OmpA was not as cytotoxic, according to the MTT assay, FCM analysis, and AO/EB staining. The findings of this extensive study advance our knowledge of SA01-OmpA at the molecular level as well as the design and development of efficient bioemulsifiers.IMPORTANCEPrevious research (Shahryari et al. 2021, mSystems 6: e01175-20) introduced and characterized the SA01-OmpA protein as a multifaceted protein with a variety of functions, including maintaining cellular homeostasis under oxidative stress conditions, biofilm formation, outer membrane vesicles (OMV) biogenesis, and beneficial emulsifying capacity. By truncating the SA01-OmpA protein, the current study presents a unique method for developing protein-type bioemulsifiers. The findings indicate that the N-terminally truncated SA01-OmpA (NT-OmpA) has the potential to fully replace full-length SA01-OmpA as a novel bioemulsifier with significant emulsifying activity. This study opens up a new frontier in bioemulsifiers, shedding light on a possible relationship between the structure and activity of SA01-OmpA truncated forms.
Collapse
Affiliation(s)
- Naeema Mohseni Sani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahbubeh Talaee
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faranak Ashoori
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali A. Kermani
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - John Presley
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Kambiz Akbari Noghabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
26
|
Bai R, Guo J. Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review. Infect Drug Resist 2024; 17:449-462. [PMID: 38333568 PMCID: PMC10849896 DOI: 10.2147/idr.s451013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae), a significant contributor to the global challenge of antibiotic resistance, is not only a ubiquitous component of the human microbiome but also a potent pathogen capable of causing a spectrum of diseases. This review provides a thorough analysis of the intricate interactions between K. pneumoniae and the human immune system, elucidating its substantial impact on metabolic processes. We explore the mechanisms employed by K. pneumoniae to evade and manipulate immune responses, including molecular mimicry, immune modulation, and biofilm formation. The review further investigates the bacterium's influence on metabolic pathways, particularly glycolysis, highlighting how these interactions exacerbate disease severity. The emergence of multidrug-resistant and extremely drug-resistant strains within the Enterobacteriaceae family has heightened the public health crisis, underscoring the urgency for comprehensive research. We investigate the roles of the host's complement system, autophagy, cell death mechanisms, and various cytokines in combating K. pneumoniae infections, shedding light on areas that warrant further academic investigation. Additionally, the review discusses the challenges posed by K1- and K2-capsule polysaccharides in vaccine development due to their complex molecular structures and adhesive properties. Acknowledging the limited availability of effective antimicrobials, this review advocates for exploring alternative approaches such as immunotherapeutics, vaccinations, and phage therapy. We consolidate current knowledge on K. pneumoniae, covering classical and non-classical subtypes, antimicrobial resistance-mediated genes, virulence factors, and epidemiological trends in isolation and antibiotic resistance rates. This comprehensive review not only advances our understanding of K. pneumoniae but also underscores the imperative for ongoing research and collaborative efforts to develop new prevention and treatment strategies against this formidable pathogen.
Collapse
Affiliation(s)
- Ruojing Bai
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Yao Y, Chen Q, Zhou H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics (Basel) 2023; 12:1749. [PMID: 38136783 PMCID: PMC10740465 DOI: 10.3390/antibiotics12121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) has become a notorious pathogen causing nosocomial and community-acquired infections, especially ventilator-associated pneumonia. This opportunistic pathogen is found to possess powerful genomic plasticity and numerous virulence factors that facilitate its success in the infectious process. Although the interactions between A. baumannii and the pulmonary epitheliums have been extensively studied, a complete and specific description of its overall pathogenic process is lacking. In this review, we summarize the current knowledge of the antibiotic resistance and virulence factors of A. baumannii, specifically focusing on the pathogenic mechanisms of this detrimental pathogen in respiratory infectious diseases. An expansion of the knowledge regarding A. baumannii pathogenesis will contribute to the development of effective therapies based on immunopathology or intracellular signaling pathways to eliminate this harmful pathogen during infections.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.Y.); (Q.C.)
| |
Collapse
|
28
|
Gauba A, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1590. [PMID: 37998792 PMCID: PMC10668847 DOI: 10.3390/antibiotics12111590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Multidrug-resistant Gram-negative bacterial infections are exponentially increasing, posing one of the most urgent global healthcare and economic threats. Due to the lack of new therapies, the World Health Organization classified these bacterial species as priority pathogens in 2017, known as ESKAPE pathogens. This classification emphasizes the need for urgent research and development of novel targeted therapies. The majority of these priority pathogens are Gram-negative species, which possess a structurally dynamic cell envelope enabling them to resist multiple antibiotics, thereby leading to increased mortality rates. Despite 6 years having passed since the WHO classification, the progress in generating new treatment ideas has not been sufficient, and antimicrobial resistance continues to escalate, acting as a global ticking time bomb. Numerous efforts and strategies have been employed to combat the rising levels of antibiotic resistance by targeting specific resistance mechanisms. These mechanisms include antibiotic inactivating/modifying enzymes, outer membrane porin remodelling, enhanced efflux pump action, and alteration of antibiotic target sites. Some strategies have demonstrated clinical promise, such as the utilization of beta-lactamase inhibitors as antibiotic adjuvants, as well as recent advancements in machine-based learning employing artificial intelligence to facilitate the production of novel narrow-spectrum antibiotics. However, further research into an enhanced understanding of the precise mechanisms by which antibiotic resistance occurs, specifically tailored to each bacterial species, could pave the way for exploring narrow-spectrum targeted therapies. This review aims to introduce the key features of Gram-negative bacteria and their current treatment approaches, summarizing the major antibiotic resistance mechanisms with a focus on Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Additionally, potential directions for alternative therapies will be discussed, along with their relative modes of action, providing a future perspective and insight into the discipline of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
29
|
Nageeb WM, AlHarbi N, Alrehaili AA, Zakai SA, Elfadadny A, Hetta HF. Global genomic epidemiology of chromosomally mediated non-enzymatic carbapenem resistance in Acinetobacter baumannii: on the way to predict and modify resistance. Front Microbiol 2023; 14:1271733. [PMID: 37869654 PMCID: PMC10587612 DOI: 10.3389/fmicb.2023.1271733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Although carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria. Methods A total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango. Results Exhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance. Conclusion The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.
Collapse
Affiliation(s)
- Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nada AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
30
|
He X, Liu J, Jiang K, Lian S, Shi Y, Fu S, Zhao P, Xiao J, Sun D, Guo D. The outer membrane protein of Fusobacterium necrophorum, 43K OMP, stimulates inflammatory cytokine production through nuclear factor kappa B activation. Anaerobe 2023; 82:102768. [PMID: 37541484 DOI: 10.1016/j.anaerobe.2023.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE Fusobacterium necrophorum causes bovine hepatic abscess, foot rot, mastitis, and endometritis. The 43 kDa outer membrane protein (43 K OMP) of F. necrophorum is a porin protein that plays an important role in infections by this bacterium, but the biological function and the pathogenesis of this protein are largely unknown. METHODS In this study, we investigated the role of the 43 K OMP in bacterial infection of bovine mammary epithelial cells (MAC-T cells) by Tandem Mass Tag proteomic analysis. The RAW264.7 cells were incubated with recombinant 43 K OMP (12.5 μg/mL) for 2 h, 4 h, 6 h, and 12 h, and then the inflammatory related protein and inflammatory cytokine production were measured by Western blot analysis and ELISA, the mRNA expression levels of inflammatory cytokine were measured by Real-Time PCR. RESULTS Proteomic analysis results demonstrated there were 224 differentially expressed proteins in the MAC-T cells stimulated with the 43 K OMP compared with control, and 118 proteins were upregulated and 106 proteins were downregulated. These differentially expressed proteins were mainly involved in NF-kappa B signaling, bacterial invasion of epithelial cells, cell adhesion, complement and coagulation cascades. The top six differentially expressed proteins were; MMP9, PLAU, STOM, PSMD13, PLAUR, and ITGAV, which were involved in a protein-protein interaction network. Furthermore, TLR/MyD88/NF-κB pathway related proteins and inflammatory cytokines (IL-6, TNF-α, and IL-1β) were assessed by Western blot analysis and ELISA. Results showed the 43 K OMP to enhance the expression of TLR4 protein at 2 h (P < 0.01) and the MyD88 protein at 4 h (P < 0.05) post-stimulation, and to decrease IκBα expression at 4 h, 6 h and 12 h (P < 0.05) post-infection, as well as induce phosphorylation at Ser536 (P < 0.01). Levels of IL-6, IL-1β, and TNF-α in the supernatants of mouse macrophages were increased (P < 0.05), as were mRNA expression levels of IL-6, IL-1β, and TNF-α (P < 0.05), while IL-4 mRNA expression was decreased (P < 0.05). CONCLUSIONS Taken together, these results suggested the important role for 43 K OMP in F. necrophorum infection, promoting the production of pro-inflammatory cytokines (IL-6 and TNF-α) by activation of the TLR/MyD88/NF-κB pathway. These findings provided a theoretical basis for a better understanding of the pathogenesis of F. necrophorum infection.
Collapse
Affiliation(s)
- Xianjing He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China.
| | - Jiao Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| | - Kai Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| | - Yu Shi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| | - Shan Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| | - Pengyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| | - Jiawei Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China.
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing 163319, Heilongjiang Province, China
| |
Collapse
|
31
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
32
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Schmitt BL, Leal BF, Leyser M, de Barros MP, Trentin DS, Ferreira CAS, de Oliveira SD. Increased ompW and ompA expression and higher virulence of Acinetobacter baumannii persister cells. BMC Microbiol 2023; 23:157. [PMID: 37246220 DOI: 10.1186/s12866-023-02904-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii is one of the main causes of healthcare-associated infections that threaten public health, and carbapenems, such as meropenem, have been a therapeutic option for these infections. Therapeutic failure is mainly due to the antimicrobial resistance of A. baumannii, as well as the presence of persister cells. Persisters constitute a fraction of the bacterial population that present a transient phenotype capable of tolerating supra-lethal concentrations of antibiotics. Some proteins have been suggested to be involved in the onset and/or maintenance of this phenotype. Thus, we investigated the mRNA levels of the adeB (AdeABC efflux pump component), ompA, and ompW (outer membrane proteins) in A. baumannii cells before and after exposure to meropenem. RESULTS We found a significant increase (p-value < 0.05) in the expression of ompA (> 5.5-fold) and ompW (> 10.5-fold) in persisters. However, adeB did not show significantly different expression levels when comparing treated and untreated cells. Therefore, we suggest that these outer membrane proteins, especially OmpW, could be part of the mechanism of A. baumannii persisters to deal with the presence of high doses of meropenem. We also observed in the Galleria mellonella larvae model that persister cells are more virulent than regular ones, as evidenced by their LD50 values. CONCLUSIONS Taken together, these data contribute to the understanding of the phenotypic features of A. baumannii persisters and their relation to virulence, as well as highlight OmpW and OmpA as potential targets for drug development against A. baumannii persisters.
Collapse
Affiliation(s)
- Brenda Landvoigt Schmitt
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Mariana Leyser
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Muriel Primon de Barros
- Laboratório de Bacteriologia e Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, R. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia e Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, R. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Sílvia Dias de Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
34
|
Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, Xu Y, Li HF. Drug‑resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med 2023; 25:209. [PMID: 37090073 PMCID: PMC10119666 DOI: 10.3892/etm.2023.11908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.
Collapse
Affiliation(s)
- Hao-Jia Wu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhi-Gang Xiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Juan Lv
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hai-Tang Huang
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chen-Yang Hui
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yue Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Heng-Fei Li
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
- Correspondence to: Professor Heng-Fei Li, Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Room 4, Garden Hill, Wuchang, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
35
|
The Prevalence of Virulence Factor Genes among Carbapenem-Non-Susceptible Acinetobacter baumannii Clinical Strains and Their Usefulness as Potential Molecular Biomarkers of Infection. Diagnostics (Basel) 2023; 13:diagnostics13061036. [PMID: 36980344 PMCID: PMC10047099 DOI: 10.3390/diagnostics13061036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Healthcare-associated infections caused by multidrug-resistant Acinetobacter baumannii strains are a serious global threat. Therefore, it is important to expand the knowledge on the mechanisms of pathogenicity of these particular bacteria. The aim of this study was to assess the distribution of selected virulence factor genes (bap, surA1, omp33-36, bauA, bauS, and pld) among carbapenem-non-susceptible clinical A. baumannii isolates and to evaluate their potential usefulness as genetic markers for rapid diagnostics of A. baumannii infections. Moreover, we aimed to compare the virulence genes prevalence with the occurrence of carbapenemases genes. A total of 100 carbapenem-non-susceptible A. baumannii clinical isolates were included in the study. The presence of virulence factors and blaOXA genes was evaluated by real-time PCR. The occurrence of virulence factors genes was as follows: 100.0% for the bap and surA1 genes, 99.0% for the basD and pld genes. The bauA and omp33-36 genes were absent among the studied strains. The predominant genes (bap and surA1) are involved in biofilm formation and their presence among all clinical strains can be applied as a genetic marker to recognize A. baumannii infection. High frequencies of the basD gene—involved in siderophore biosynthesis and the gene encoding phospholipase D (pld)—were also noted among blaOXA-positive strains, showing their potential role in a pathogenicity of blaOXA-positive A. baumannii clinical strains.
Collapse
|
36
|
Kharga K, Kumar L, Patel SKS. Recent Advances in Monoclonal Antibody-Based Approaches in the Management of Bacterial Sepsis. Biomedicines 2023; 11:biomedicines11030765. [PMID: 36979744 PMCID: PMC10045367 DOI: 10.3390/biomedicines11030765] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sepsis is a life-threatening condition characterized by an uncontrolled inflammatory response to an infectious agent and its antigens. Immune cell activation against the antigens causes severe distress that mediates a strong inflammatory response in vital organs. Sepsis is responsible for a high rate of morbidity and mortality in immunosuppressed patients. Monoclonal antibody (mAb)-based therapeutic strategies are now being explored as a viable therapy option for severe sepsis and septic shock. Monoclonal antibodies may provide benefits through two major strategies: (a) monoclonal antibodies targeting the pathogen and its components, and (b) mAbs targeting inflammatory signaling may directly suppress the production of inflammatory mediators. The major focus of mAb therapies has been bacterial endotoxin (lipopolysaccharide), although other surface antigens are also being investigated for mAb therapy. Several promising candidates for mAbs are undergoing clinical trials at present. Despite several failures and the investigation of novel targets, mAb therapy provides a glimmer of hope for the treatment of severe bacterial sepsis and septic shock. In this review, mAb candidates, their efficacy against controlling infection, with special emphasis on potential roadblocks, and prospects are discussed.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
- Correspondence: (L.K.); (S.K.S.P.)
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (L.K.); (S.K.S.P.)
| |
Collapse
|
37
|
Zeng X, Wang N, Xiang C, Liu Q, Li D, Zhou Y, Zhang X, Xie Y, Zhang W, Yang H, Jiang M, Zong X, Zou Q, Shi Y. Peptidoglycan-associated lipoprotein contributes to the virulence of Acinetobacter baumannii and serves as a vaccine candidate. Genomics 2023; 115:110590. [PMID: 36868326 DOI: 10.1016/j.ygeno.2023.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The role of peptidoglycan-associated lipoprotein (Pal) in A. baumannii pathogenesis remains unclear. Here, we illustrated its role by constructing a pal deficient A. baumannii mutant and its complementary strain.Transcriptome analysis of the WT and pal mutant revealed a total of 596 differentially expressed genes. Gene Ontology analysis revealed that pal deficiency caused the downregulation of genes related to material transport and metabolic processes. The pal mutant showed a slower growth and was sensitive to detergent and serum killing compared to WT strain, whereas, the complemented pal mutant showed rescued phenotype. The pal mutant caused decreased mortality in mice pneumonia infection compared to WT strain, while the complemented pal mutant showed increased mortality. Mice immunized with recombinant Pal showed 40% protection against A. baumannii-mediated pneumonia. Collectively, these data indicate Pal is a virulence factor of A. baumannii and may serve as a potential target for preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Xi Zeng
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China; Department of Phamacy, the 78th Group Army Hospital of Chinese PLA, Mudanjiang, Heilongjiang, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanying Xiang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daiyu Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangyang Zhou
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xie
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hong Yang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Xianchun Zong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front Cell Infect Microbiol 2023; 13:1053968. [PMID: 36968113 PMCID: PMC10038080 DOI: 10.3389/fcimb.2023.1053968] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infectionAcinetobacter baumannii is a gram-negative multidrug-resistant nosocomial pathogen and a major cause of hospital acquired infetions. Carbapenem resistant A. baumannii has been categorised as a Priority1 critial pathogen by the World Health Organisation. A. baumannii is responsible for infections in hospital settings, clinical sectors, ventilator-associated pneumonia, and bloodstream infections with a mortality rates up to 35%. With the development of advanced genome sequencing, molecular mechanisms of manipulating bacterial genomes, and animal infection studies, it has become more convenient to identify the factors that play a major role in A. baumannii infection and its persistence. In the present review, we have explored the mechanism of infection, virulence factors, and various other factors associated with the pathogenesis of this organism. Additionally, the role of the innate and adaptive immune response, and the current progress in the development of innovative strategies to combat this multidrug-resistant pathogen is also discussed.
Collapse
Affiliation(s)
- Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| |
Collapse
|
39
|
Khoshnood S, Sadeghifard N, Mahdian N, Heidary M, Mahdian S, Mohammadi M, Maleki A, Haddadi MH. Antimicrobial resistance and biofilm formation capacity among Acinetobacter baumannii strains isolated from patients with burns and ventilator-associated pneumonia. J Clin Lab Anal 2022; 37:e24814. [PMID: 36573013 PMCID: PMC9833984 DOI: 10.1002/jcla.24814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a pathogen responsible for nosocomial infections, especially in patients with burns and ventilator-associated pneumonia (VAP). The aims of this study was to compare the biofilm formation capacity, antimicrobial resistance patterns and molecular typing based on PFGE (Pulsed-Field Gel Electrophoresis) in A. baumannii isolated from burn and VAP patients. MATERIALS AND METHODS A total of 50 A. baumannii isolates were obtained from burn and VAP patients. In this study, we assessed antimicrobial susceptibility, biofilm formation capacity, PFGE fingerprinting, and the distribution of biofilm-related genes (csuD, csuE, ptk, ataA, and ompA). RESULTS Overall, 74% of the strains were multidrug resistant (MDR), and 26% were extensively drug-resistant (XDR). Regarding biofilm formation capacity, 52%, 36%, and 12% of the isolates were strong, moderate, and weak biofilm producers. Strong biofilm formation capacity significantly correlated with XDR phenotype (12/13, 92.3%). All the isolates harbored at least one biofilm-related gene. The most prevalent gene was csuD (98%), followed by ptk (90%), ataA (88%), ompA (86%), and csuE (86%). Harboring all the biofilm-related genes was significantly associated with XDR phenotype. Finally, PFGE clustering revealed 6 clusters, among which cluster No. 2 showed a significant correlation with strong biofilm formation and XDR phenotype. CONCLUSION Our findings revealed the variable distribution of biofilm-related genes among MDR and XDR A. baumannii isolates from burn and VAP patients. A significant correlation was found between strong biofilm formation capacity and XDR phenotype. Finally, our results suggested that XDR phenotype was predominant among strong-biofilm producer A. baumannii in our region.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | | - Nahid Mahdian
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Mohsen Heidary
- Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran
| | - Somayeh Mahdian
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Maryam Mohammadi
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Abbas Maleki
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | |
Collapse
|
40
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
41
|
Chowdhury AR, Mukherjee D, Singh AK, Chakravortty D. Loss of outer membrane protein A (OmpA) impairs the survival of Salmonella Typhimurium by inducing membrane damage in the presence of ceftazidime and meropenem. J Antimicrob Chemother 2022; 77:3376-3389. [PMID: 36177811 DOI: 10.1093/jac/dkac327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Salmonella enterica serovar Typhimurium is one of the significant non-typhoidal Salmonella serovars that causes gastroenteritis. The rapid development of antimicrobial resistance necessitates studying new antimicrobials and their therapeutic targets in this pathogen. Our study aimed to investigate the role of four prominent outer membrane porins of S. Typhimurium, namely OmpA, OmpC, OmpD and OmpF, in developing resistance against ceftazidime and meropenem. METHODS The antibiotic-mediated inhibition of bacterial growth was determined by measuring the absorbance and the resazurin assay. DiBAC4 (Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol), 2,7-dichlorodihydrofluoroscein diacetate (DCFDA) and propidium iodide were used to determine the outer membrane depolarization, reactive oxygen species (ROS) generation and subsequent killing of Salmonella. The expression of oxidative stress-response and efflux pump genes was quantified by quantitative RT-qPCR. HPLC was done to determine the amount of antibiotics that entered the bacteria. The damage to the bacterial outer membrane was studied by confocal and atomic force microscopy. The in vivo efficacy of ceftazidime and meropenem were tested in the C57BL/6 mouse model. RESULTS Deleting ompA reduced the survival of Salmonella in the presence of ceftazidime and meropenem. Massive outer membrane depolarization and reduced expression of oxidative stress-response genes in S. Typhimurium ΔompA hampered its growth in the presence of antibiotics. The enhanced uptake of antibiotics and decreased expression of efflux pump genes in S. Typhimurium ΔompA resulted in damage to the bacterial outer membrane. The clearance of the S. Typhimurium ΔompA from C57BL/6 mice with ceftazidime treatment proved the role of OmpA in rendering protection against β-lactam antibiotics. CONCLUSIONS OmpA protects S. Typhimurium from two broad-spectrum β-lactam antibiotics, ceftazidime and meropenem, by maintaining the stability of the outer membrane.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India.,School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
42
|
Tamehri M, Rasooli I, Pishgahi M, Jahangiri A, Ramezanalizadeh F, Banisaeed Langroodi SR. Combination of BauA and OmpA elicit immunoprotection against Acinetobacter baumannii in a murine sepsis model. Microb Pathog 2022; 173:105874. [DOI: 10.1016/j.micpath.2022.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/18/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
43
|
Manfi Ahmed S, Hashim Yaseen K, Mohammed Mahmood M. Immunological Evaluation of Individuals Infected with Acinetobacter baumannii. ARCHIVES OF RAZI INSTITUTE 2022; 77:1813-1819. [PMID: 37123129 PMCID: PMC10133591 DOI: 10.22092/ari.2022.357980.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/21/2022] [Indexed: 05/02/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is a spherical rod-shaped Gram-negative non-lactose fermenting (Coccobacilli, Aerobic bacteria) bacteria. It is a member of the Moraxellacea family. A. baumannii is a pathogenic, opportunistic organism that infects humans in society and hospitals. In particular, patients with immune system defects are at risk, especially those with burn infections and those hospitalized in intensive care (ICU). It plays a vital role in many illnesses, including septicemia, pneumonia, meningitis, soft tissues, skin infection, endocarditis, and urinary tract infection (UTI). The current study included immunological evaluation of infection with A. baumannii. In the current study, 150 blood samples were obtained as follows: 100 blood samples were collected from infected individuals with A. baumannii admitted to hospitals in Baghdad. Fifty blood samples were obtained from healthy individuals and considered as the control. 10 ml of blood samples were collected from the venous blood of the participants. A. baumannii was collected and isolated from infected patients and diagnosed by traditional methods, using different culture media (MacConkey agar, blood agar, and Chromogenetic agar) and by biochemical assays, then the bacteria diagnosis was confirmed using the VITEK 2 ID-GN cards. Microscopic examination and culture diagnosis of bacteria were conducted, and the diagnosis was confirmed by complete biochemical examinations using VITEK2 Compact System. Assessments included the serum level of IL-17A and TNF-α for hospitalized patients infected with A. baumannii. The study recorded a significant increase in the serum level of IL-17A for patients infected with A. baumannii (479.83±26.21 pg/ml) compared to control subjects (69.32±4.53 pg/ml). The recorded data showed a significant increase in the serum level of TNF-α for patients infected with A. baumannii (98.05±28.89 pg/ml) compared to control (1.40±25.12 pg/ml).
Collapse
Affiliation(s)
- S Manfi Ahmed
- Department of Dentist, Al-Rafidain University College, Baghdad, Iraq
| | - K Hashim Yaseen
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - M Mohammed Mahmood
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
44
|
Sato Y, Hatayama N, Ubagai T, Tansho-Nagakawa S, Ono Y, Yoshino Y. Tigecycline Suppresses the Virulence Factors of Multidrug-Resistant Acinetobacter baumannii Allowing Human Neutrophils to Act. Infect Drug Resist 2022; 15:3357-3368. [PMID: 35789794 PMCID: PMC9250330 DOI: 10.2147/idr.s368890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the ability of human neutrophils to kill multidrug-resistant Acinetobacter baumannii (MDRAB) in the presence of tigecycline (TGC). Methods Clinical isolates of MDRAB were cultured with human neutrophils and H2O2 in the presence of TGC. The numbers of viable bacteria, catalase activity, gene expression at the K locus of the MDRAB, reactive oxygen species (ROS) production, and granule exocytosis in human neutrophils were determined. Results There was a time-dependent increase in the numbers of MDRAB after co-culturing with human neutrophils, whereas there was a significant decrease in the MDRAB numbers when co-cultured with both, human neutrophils and TGC for 6 h. The presence or absence of TGC did not affect total ROS production or the expression of CD11b, CD15, and CD63 on human neutrophils occurred when co-cultured with MDRAB. TGC significantly suppressed catalase activity and gene expression at the K locus of MDRAB, and significantly reduced the thickness of the capsule. Additionally, the bacterial viability of TGC-treated MDRAB cultured with H2O2 was lower than that without H2O2 after 6 h of culture. Conclusion TGC significantly suppressed the expression of catalase and the capsule in MDRAB without adverse effects on neutrophil function, allowing human neutrophils to kill MDRAB. TGC is an effective antibiotic for treating MDRAB infections.
Collapse
Affiliation(s)
- Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan.,Teikyo Heisei University, Faculty of Health and Medical Science, Toshima-ku, Tokyo, 170-8445, Japan
| | - Yusuke Yoshino
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
45
|
Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy. Nat Commun 2022; 13:3776. [PMID: 35773283 PMCID: PMC9247103 DOI: 10.1038/s41467-022-31455-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
In 2016, a 68-year-old patient with a disseminated multidrug-resistant Acinetobacter baumannii infection was successfully treated using lytic bacteriophages. Here we report the genomes of the nine phages used for treatment and three strains of A. baumannii isolated prior to and during treatment. The phages used in the initial treatment are related, T4-like myophages. Analysis of 19 A. baumannii isolates collected before and during phage treatment shows that resistance to the T4-like phages appeared two days following the start of treatment. We generate complete genomic sequences for three A. baumannii strains (TP1, TP2 and TP3) collected before and during treatment, supporting a clonal relationship. Furthermore, we use strain TP1 to select for increased resistance to five of the phages in vitro, and identify mutations that are also found in phage-insensitive isolates TP2 and TP3 (which evolved in vivo during phage treatment). These results support that in vitro investigations can produce results that are relevant to the in vivo environment.
Collapse
|
46
|
Yeganeh O, Shabani M, Pakzad P, Mosaffa N, Hashemi A. Evaluation the reactivity of a peptide-based monoclonal antibody derived from OmpA with drug resistant pulsotypes of Acinetobacter baumannii as a potential therapeutic approach. Ann Clin Microbiol Antimicrob 2022; 21:30. [PMID: 35773688 PMCID: PMC9245400 DOI: 10.1186/s12941-022-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is an opportunistic and antibiotic-resistant pathogen that predominantly causes nosocomial infections. There is urgent need for development nonantibiotic-based treatment strategies. We developed a novel monoclonal antibody (mAb) against a peptide of conserved outer membrane protein A (OmpA) and evaluated its reactivity with different pulsotypes of A. baumannii. METHODS Peptide derived from A. baumannii OmpA was conjugated to keyhole limpet hemocyanin and injected into BALB/c mice. Splenocytes of immunized mice were fused with SP2/0 myeloma cells followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, one monoclone was selected as 3F10-C9 and the antibody was tested for reaction with five different Acinetobacter pulsotypes that were resistant to carbapenem antibiotics. The affinity constant was measured by ELISA. The ELISA, western blotting, indirect immunofluorescence (IFA), and in vitro opsonophagocytosis assays were used to evaluate the reactivity of generated mAb. RESULTS The anti-OmpA antibody reacted with the immunizing peptide and had a high affinity (1.94 × 10-9 M) for its antigen in the ELISA. Specific binding of mAb to OmpA was confirmed in Western blot. IFA assays revealed that mAb recognized specific OmpA on the pulsotypes. Opsonophagocytosis assays showed that the mAb increased the bactericidal activity of macrophage cells. The antibody function was higher in the presence of serum complement. CONCLUSIONS The peptide-based mAb demonstrated optimal performance in laboratory experiments which may be appropriate in investigation on OmpA in Acinetobacter pathogenesis and development of passive immunization as a novel therapeutic approach.
Collapse
Affiliation(s)
- Omid Yeganeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
In Silico Docking, Resistance Modulation and Biofilm Gene Expression in Multidrug-Resistant Acinetobacter baumannii via Cinnamic and Gallic Acids. Antibiotics (Basel) 2022; 11:antibiotics11070870. [PMID: 35884124 PMCID: PMC9311515 DOI: 10.3390/antibiotics11070870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the mounting global burden of antimicrobial resistance (AMR), the generation of new classes of effective antimicrobials still lags far behind. The interplay between multidrug resistance and biofilm formation in Acinetobacter baumannii has drastically narrowed the available therapeutic choices. The use of natural compounds holds promise as an alternate option for restoring the activity of existing antibiotics and attenuating virulence traits through reduced biofilm formation. This study aimed to evaluate the modulatory effect of combining cinnamic and gallic acids at ½MIC with various antibiotics against multidrug-resistant (MDR) A. baumannii clinical isolates as well as study the effect on the expression of the biofilm-associated genes (bap, csuE, ompA) via quantitative, real-time PCR. Combining cinnamic or gallic acid with imipenem, amikacin or doxycycline resulted in significant reduction of resistance (p < 0.05). On the contrary, no effect was recorded when both acids were combined with levofloxacin, and only cinnamic acid had a synergistic effect with colistin. The transcriptomic changes of biofilm-related genes in the presence of gallic acid at ½MIC were compared with untreated control samples. The fold expression values proved that gallic acid substantially down-regulated the respective genes in all five strong biofilm formers. Molecular docking studies of gallic and cinnamic acids on target genes revealed good binding affinities and verified the proposed mechanism of action. To the best of our knowledge, this is the first report on the effect of gallic acid on the expression of bap, csuE and ompA genes in A. baumannii, which may permit its use as an adjunct anti-virulence therapeutic strategy.
Collapse
|
48
|
Kim HR, Eom YB. Auranofin promotes antibacterial effect of doripenem against carbapenem-resistant Acinetobacter baumannii. J Appl Microbiol 2022; 133:1422-1433. [PMID: 35633297 DOI: 10.1111/jam.15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study was performed to identify the potential for repurposing auranofin as an antibiotic adjuvant against carbapenemase-producing A. baumannii. METHODS AND RESULTS The clinically isolated A. baumannii strains used in this study were all resistant to carbapenems and harbored the blaOXA-23 gene. The synergistic effect of auranofin and doripenem against carbapenemase-producing A. baumannii was confirmed through checkerboard and growth kinetic analyses. This study also demonstrated the inhibitory effects of auranofin against A. baumannii biofilms. The anti-biofilm effects of auranofin were visualized by confocal laser scanning microscopy (CLSM). Furthermore, auranofin inhibited motility, one of the virulence factors. Additionally, the changes in the expression of carbapenemase-, biofilm- and efflux pump-related genes induced by auranofin were confirmed via quantitative polymerase chain reaction (qPCR). CONCLUSIONS Our results demonstrated that auranofin has an antibacterial effect with doripenem and an inhibitory effect on several factors related to carbapenem resistance. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that auranofin is a promising antibiotic adjuvant that can be used to prevent antibiotic resistance in carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- H-R Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Y-B Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
49
|
Havenga B, Reyneke B, Waso-Reyneke M, Ndlovu T, Khan S, Khan W. Biological Control of Acinetobacter baumannii: In Vitro and In Vivo Activity, Limitations, and Combination Therapies. Microorganisms 2022; 10:microorganisms10051052. [PMID: 35630494 PMCID: PMC9147981 DOI: 10.3390/microorganisms10051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The survival, proliferation, and epidemic spread of Acinetobacter baumannii (A. baumannii) in hospital settings is associated with several characteristics, including resistance to many commercially available antibiotics as well as the expression of multiple virulence mechanisms. This severely limits therapeutic options, with increased mortality and morbidity rates recorded worldwide. The World Health Organisation, thus, recognises A. baumannii as one of the critical pathogens that need to be prioritised for the development of new antibiotics or treatment. The current review will thus provide a brief overview of the antibiotic resistance and virulence mechanisms associated with A. baumannii’s “persist and resist strategy”. Thereafter, the potential of biological control agents including secondary metabolites such as biosurfactants [lipopeptides (surfactin and serrawettin) and glycolipids (rhamnolipid)] as well as predatory bacteria (Bdellovibrio bacteriovorus) and bacteriophages to directly target A. baumannii, will be discussed in terms of their in vitro and in vivo activity. In addition, limitations and corresponding mitigations strategies will be outlined, including curtailing resistance development using combination therapies, product stabilisation, and large-scale (up-scaling) production.
Collapse
Affiliation(s)
- Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, Gaborone 0022, Botswana;
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
- Correspondence: ; Tel.: +27-21-808-5804
| |
Collapse
|
50
|
Leptihn S, Loh B. Complexity, challenges and costs of implementing phage therapy. Future Microbiol 2022; 17:643-646. [DOI: 10.2217/fmb-2022-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Belinda Loh
- Fraunhofer Institute for Cell Therapy & Immunology (IZI), Department of Vaccines and Infection Models, Perlickstr. 1, Leipzig, 04103, Germany
| |
Collapse
|