1
|
Kabir AH, Thapa A, Hasan MR, Parvej MR. Local signal from Trichoderma afroharzianum T22 induces host transcriptome and endophytic microbiome leading to growth promotion in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7107-7126. [PMID: 39110656 DOI: 10.1093/jxb/erae340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 12/11/2024]
Abstract
Trichoderma, a highly abundant soil fungus, may benefit plants, yet it remains understudied in sorghum (Sorghum bicolor). In this study, sorghum plants were grown for 5 weeks in pots of soil with or without inoculation of T. afroharzianum T22. Inoculation with T. afroharzianum T22 significantly increased growth parameters and nutrient levels, demonstrating its beneficial role in sorghum. A split-root assay demonstrated that T. afroharzianum T22 is essential in both compartments of the pot for promoting plant growth, suggesting that local signals from this fungus drive symbiotic benefits in sorghum. RNA-seq analysis revealed that inoculation with T. afroharzianum T22 induced genes responsible for mineral transport (such as nitrate and aquaporin transporters), auxin response, sugar assimilation (hexokinase), and disease resistance (thaumatin) in sorghum roots. Microbial community analysis further unveiled the positive role of T. afroharzianum T22 in enriching Penicillium and Streptomyces while reducing disease-causing Fusarium in the roots. The microbial consortium, consisting of enriched microbiomes from bacterial and fungal communities, showed disrupted morphological features in plants inoculated with T. afroharzianum T22 in the absence of Streptomyces griseus. However, this disruption was not observed in the absence of Penicillium chrysogenum. These results indicate that S. griseus acts as a helper microbe in close association with T. afroharzianum T22 in the sorghum endosphere. This study provides the first comprehensive explanation of how T. afroharzianum T22 modulates host molecular determinants and endophytic helper microbes, thereby collectively promoting sorghum growth. These findings may facilitate the formulation of synthetic microbial inoculants dominated by T. afroharzianum T22 to enhance growth and stress resilience in sorghum and similar crops.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rasel Parvej
- Scott Research, Extension, and Education Center, School of Plant, Environmental, and Soil Sciences, Louisiana State University, Winnsboro, LA 71295, USA
| |
Collapse
|
2
|
Valbuena-Rodríguez JL, Fonseca-Guerra I, Buitrago-Yomayusa C, Puentes-S A, Rozo MEB. Isolation and characterization of Pantoea ananatis and P. agglomerans in quinoa: P. ananatis as a potential fungal biocontroller and plant growth promoter. Int Microbiol 2024:10.1007/s10123-024-00608-5. [PMID: 39414690 DOI: 10.1007/s10123-024-00608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Chenopodium quinoa, globally recognized as quinoa, stands out as one of the cereals with the highest nutritional value native to the Americas. It is cultivated in the Andes Mountain range, and Colombia is no exception, with the Boyacá department emerging as a significant quinoa-producing region. The quinoa ecosystem harbors a rich array of microorganisms within its rhizosphere. In this current study, nitrogen-fixing and phosphate-solubilizing isolates AM-0261 (Pantoea ananatis) and AM-0263 (Pantoea agglomerans) were sourced from rhizospheric soil samples of quinoa. These isolates were subjected to biochemical characterization and identification through PCR analysis and Sanger sequencing targeting a partial sequence of the 16 s region of the rRNA. To assess their potential as plant growth-promoting rhizobacteria (PGPR), taking into consideration that P. ananatis is an IAA producer, greenhouse-based bioassays were conducted using seedlings. Additionally, dual culture assays were employed to showcase their antagonistic capabilities against primary beneficial and phytopathogenic fungi associated with quinoa cultivation in the region. The results underscore the remarkable potential of P. ananatis as a PGPR and a biocontrol agent against quinoa's phytopathogenic fungi. This study represents the pioneering exploration of the interaction between these two bacterial strains with quinoa rhizosphere tissue. In addition, the isolate of P. annatis (AM-0261) stands out, which presents phosphate solubilization capacity, nitrogen fixation, antagonistic capacity, and IAA production, characteristics that make it a promising strain for its use for the management of diseases of fungal origin, and in the future, it could be useful in reducing the use of chemical fertilizers.
Collapse
|
3
|
Ng CWW, Yan WH, Xia YT, Tsim KWK, To JCT. Plant growth-promoting rhizobacteria enhance active ingredient accumulation in medicinal plants at elevated CO 2 and are associated with indigenous microbiome. Front Microbiol 2024; 15:1426893. [PMID: 39252828 PMCID: PMC11381388 DOI: 10.3389/fmicb.2024.1426893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Plant growth-promoting rhizobacteria (PGPR) and elevated CO2 (eCO2) have demonstrated their individual potential to enhance plant yield and quality through close interaction with rhizosphere microorganisms and plant growth. However, the efficacy of PGPR under eCO2 on rhizosphere microbiome and, ultimately, plant yield and active ingredient accumulation are not yet fully understood. Methods This study investigated how the medicinal plant Pseudostellaria heterophylla (P. heterophylla) and its rhizosphere microbes respond to PGPR (Bacillus subtilis and Pseudomonas fluorescens) at eCO2 (1,000 ppm). Results and Discussion It was found that the yield and active ingredient polysaccharides accumulation in the tuber of P. heterophylla were significantly increased by 38 and 253%, respectively. This promotion has been associated with increased root development and changes in the indigenous microbial community. Metagenomics analysis revealed a significant reduction in pathogenic Fusarium abundance in the rhizosphere. Potential biocontrol bacteria Actinobacteria and Proteobacteria were enriched, especially the genera Bradyrhizobium and Rhodanobacter. The reshaping of the rhizosphere microbiome was accompanied by the upregulation of biological pathways related to metabolite biosynthesis in the rhizosphere. These modifications were related to the promotion of the growth and productivity of P. heterophylla. Our findings highlighted the significant role played by PGPR in medicinal plant yield and active ingredient accumulation when exposed to eCO2.
Collapse
Affiliation(s)
- Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Wen Hui Yan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Teng Xia
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Justin Chun Ting To
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Helmy KG, Abu-Hussien SH. Root Rot Management in Common Bean (Phaseolus vulgaris L.) Through Integrated Biocontrol Strategies using Metabolites from Trichoderma harzianum, Serratia marcescens, and Vermicompost Tea. MICROBIAL ECOLOGY 2024; 87:94. [PMID: 39008061 PMCID: PMC11249416 DOI: 10.1007/s00248-024-02400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.
Collapse
Affiliation(s)
- Karima G Helmy
- Plant Pathology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| |
Collapse
|
5
|
Yang K, Zheng Y, Sun K, Wu X, Zhang Z, He C, Xiao P. Rhizosphere microbial markers (micro-markers): A new physical examination indicator for traditional Chinese medicines. CHINESE HERBAL MEDICINES 2024; 16:180-189. [PMID: 38706829 PMCID: PMC11064633 DOI: 10.1016/j.chmed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/17/2023] [Accepted: 11/18/2023] [Indexed: 05/07/2024] Open
Abstract
Rhizosphere microorganisms, as one of the most important components of the soil microbiota and plant holobiont, play a key role in the medicinal plant-soil ecosystem, which are closely related to the growth, adaptability, nutrient absorption, stress tolerance and pathogen resistance of host plants. In recent years, with the wide application of molecular biology and omics technologies, the outcomes of rhizosphere microorganisms on the health, biomass production and secondary metabolite biosynthesis of medicinal plants have received extensive attention. However, whether or to what extent rhizosphere microorganisms can contribute to the construction of the quality evaluation system of Chinese medicinal materials is still elusive. Based on the significant role of rhizosphere microbes in the survival and quality formation of medicinal plants, this paper proposed a new concept of rhizosphere microbial markers (micro-markers), expounded the relevant research methods and ideas of applying the new concept, highlighted the importance of micro-markers in the quality evaluation and control system of traditional Chinese medicines (TCMs), and introduced the potential value in soil environmental assessment, plant pest control and quality assessment of TCMs. It provides reference for developing ecological planting of TCMs and ensuring the production of high quality TCMs by regulating rhizosphere microbial communities.
Collapse
Affiliation(s)
- Kailin Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yaping Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Kangmeng Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Xinyan Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| |
Collapse
|
6
|
Metwally RA, Soliman SA, Abdalla H, Abdelhameed RE. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. BMC PLANT BIOLOGY 2024; 24:118. [PMID: 38368386 PMCID: PMC10873961 DOI: 10.1186/s12870-024-04785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
Nofal AM, Hamouda RA, Rizk A, El-Rahman MA, Takla AK, Galal H, Alqahtani MD, Alharbi BM, Elkelish A, Shaheen S. Polyphenols-Rich Extract of Calotropis procera Alone and in Combination with Trichoderma Culture Filtrate for Biocontrol of Cantaloupe Wilt and Root Rot Fungi. Molecules 2023; 29:139. [PMID: 38202721 PMCID: PMC10780250 DOI: 10.3390/molecules29010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Fungal diseases have always been a major problem for cantaloupe crops; however, synthetic fungicides are hazardous to humans and the environment. Consequently, a feasible alternative to fungicides without side effects could be by using bio agents and naturally occurring plants with antibacterial potential. This study has achieved a novel procedure for managing wilt and root rot diseases by potentially using Trichoderma sp. culture filtrates in consortium with plant extract of Calotropis procera, Rhizoctonia solani, Fusarium oxysporum, and Pythium ultimum, which were isolated from infected cantaloupe roots with identified root rot symptoms. The antagonistic activity of four Trichoderma isolates and analysis of antibiotics and filtrate enzymes of the most active Trichoderma isolate were determined as well as phytochemical analysis of C. procera plant extract using HPLC-UV. The obtained results showed that all Trichoderma isolates considerably lowered the radial growth of P. ultimum, R. solani, and F. oxysporum in varying degrees. The scanning electron micrographs illustrate the mycoparasitic nature of Trichoderma sp. on F. oxysporum. The phytochemical analysis of C. procera indicated that phenolic contents were the major compounds found in extracts, such as vanillin (46.79%), chlorogenic acid (30.24%), gallic acid (8.06%), and daidzein (3.45%) but including only a low amount of the flavonoid compounds rutin, naringenin, and hesperetin. The Pot experiment's findings showed that cantaloupe was best protected against wilting and root rot diseases when it was treated with both Trichoderma sp. culture filtrates (10%) and C. procera extract of (15 mg/mL), both alone and in combination. This study demonstrates that the application of bio agent Trichoderma spp. filtrate with C. procera phenol extract appears useful for controlling wilting and root rot disease in cantaloupe. This innovative approach could be used as an alternative to chemical fungicide for the control of wilting and rot root diseases.
Collapse
Affiliation(s)
- Ashraf M. Nofal
- Sustainable Development Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt; (A.M.N.); (M.A.E.-R.)
| | - Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Amira Rizk
- Food Science and Technology Department, Faculty of Agriculture, Tanta University, Tanta City 31527, Egypt;
| | - Mohamed Abd El-Rahman
- Sustainable Development Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt; (A.M.N.); (M.A.E.-R.)
| | - Adel K. Takla
- Sustainable Development Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt; (A.M.N.); (M.A.E.-R.)
| | - Hoda Galal
- Pomology, Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Sabery Shaheen
- Sustainable Development Department, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt; (A.M.N.); (M.A.E.-R.)
| |
Collapse
|
8
|
Lian H, Li R, Ma G, Zhao Z, Zhang T, Li M. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt. Sci Rep 2023; 13:17606. [PMID: 37848461 PMCID: PMC10582011 DOI: 10.1038/s41598-023-44296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
At the seedling and adult plant phases, pot experiments were carried out to enhance the physiological-biochemical characteristics of cucumber, guarantee its high yield, and ensure its cultivation of quality. Trichoderma harzianum conidia agents at 104, 105, 106, and 107 cfu g-1 were applied in accordance with the application of Fusarium oxysporum powder at concentrations of 104 cfu/g on the protective enzyme activity, physiological and biochemical indices, seedling quality, resilience to Fusarium wilt, quality, and yield traits. Fusarium oxysporum powder at 104 cfu g-1 was used to treat CK1, while Fusarium oxysporum powder and T. harzianum conidia agents were not used to treat CK2. The results show that different T. harzianum agents improved the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD) in cucumber seedlings, improved chlorophyll content, root activity, root-shoot ratio, and seedling strength index, and decreased malondialdehyde (MAD) content (P < 0.05). T3, a combination of 104 cfu g-1 Fusarium oxysporum powder and 106 cfu g-1 T. harzianum conidia agents, had the greatest promoting effect. The effects of different T. harzianum conidia agents and their application amounts on the control of cucumber Fusarium wilt were explored. T3 had the best promotion impact, and the control effect of cucumber Fusarium wilt at seedling stage and adult stage reached 83.98% and 70.08%, respectively. The quality index and yield formation of cucumber were also increased by several T. harzianum agents, with T3 having the strongest promotion effects. In comparison to CK1, the soluble sugar, Vc, soluble protein, and soluble solid contents of T3 cucumber fruit were 120.75%, 39.14%, 42.26%, and 11.64% higher (P < 0.05), respectively. In comparison to CK2, the soluble sugar, Vc, soluble protein, and soluble solid contents of T3 cucumber fruit were 66.06%, 24.28%, 36.15%, and 7.95% higher (P < 0.05), respectively. In comparison to CK1 and CK2, the yields of T3 cucumber were 50.19% and 35.86% higher, respectively. As a result, T. harzianum agents can enhance the physiological and biochemical traits of cucumber seedlings, raise the quality of cucumber seedlings, have a controlling impact on Fusarium wilt, and increase the yield and quality of cucumber fruit. The greatest effectiveness of T3 comes from its use. In this study, Trichoderma harzianum conidia agents demonstrated good impacts on cucumber yield formation and plant disease prevention, demonstrating their high potential as biocontrol agents.
Collapse
Affiliation(s)
- Hua Lian
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Runzhe Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Guangshu Ma
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| | - Zhenghan Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Ting Zhang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Key Laboratory of Intergrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|
9
|
Khuong NQ, Nhien DB, Thu LTM, Trong ND, Hiep PC, Thuan VM, Quang LT, Thuc LV, Xuan DT. Using Trichoderma asperellum to Antagonize Lasiodiplodia theobromae Causing Stem-End Rot Disease on Pomelo ( Citrus maxima). J Fungi (Basel) 2023; 9:981. [PMID: 37888237 PMCID: PMC10607552 DOI: 10.3390/jof9100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Stem-end rot disease has been causing damage to the production of pomelos in Vietnam. The cur-rent study aimed to (i) isolate fungal pathogens causing pomelo stem-end rot disease (PSERD) and (ii) discover Trichoderma spp. that had an antagonistic ability against pathogens under in vitro conditions. Fungi causing PSERD were isolated from pomelo fruits with symptoms of stem-end rot disease and collected from pomelo farms in Ben Tre province, Vietnam. Moreover, 50 fungal strains of Trichoderma spp. also originated from soils of these pomelo farms in Ben Tre province and were dual-tested with the fungal pathogen on the PDA medium. The results demonstrated that 11 pathogenic fungi causing PSERD were isolated from the fruit and showed mycelial growth of roughly 5.33-8.77 cm diameter at 72 h after inoculation. The two fungi that exhibited the fast-est growth, namely, S-P06 and S-P07, were selected. ITS sequencing of the S-P06 and S-P07 fungi resulted in Lasiodiplodia theobromae. All the 50 Trichoderma spp. strains were allowed to antago-nize against the S-P06 and S-P07 strains under in vitro conditions. The greatest antagonistic effi-ciency was found in Trichoderma spp. T-SP19 at 85.4-86.2% and T-SP32 at 84.7-85.4%. The two antagonists were identified as Trichoderma asperellum T-SP19 and T-SP32. The selected strains of Trichoderma asperellum were potent as a biological control for fruit plants.
Collapse
Affiliation(s)
- Nguyen Quoc Khuong
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho 94115, Vietnam; (N.Q.K.); (L.T.M.T.); (N.D.T.); (P.C.H.); (V.M.T.); (L.T.Q.); (L.V.T.)
| | - Dinh Bich Nhien
- Institute of Food and Biotechnology, Can Tho University, Can Tho 94115, Vietnam;
| | - Le Thi My Thu
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho 94115, Vietnam; (N.Q.K.); (L.T.M.T.); (N.D.T.); (P.C.H.); (V.M.T.); (L.T.Q.); (L.V.T.)
| | - Nguyen Duc Trong
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho 94115, Vietnam; (N.Q.K.); (L.T.M.T.); (N.D.T.); (P.C.H.); (V.M.T.); (L.T.Q.); (L.V.T.)
| | - Phan Chan Hiep
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho 94115, Vietnam; (N.Q.K.); (L.T.M.T.); (N.D.T.); (P.C.H.); (V.M.T.); (L.T.Q.); (L.V.T.)
| | - Vo Minh Thuan
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho 94115, Vietnam; (N.Q.K.); (L.T.M.T.); (N.D.T.); (P.C.H.); (V.M.T.); (L.T.Q.); (L.V.T.)
| | - Le Thanh Quang
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho 94115, Vietnam; (N.Q.K.); (L.T.M.T.); (N.D.T.); (P.C.H.); (V.M.T.); (L.T.Q.); (L.V.T.)
| | - Le Vinh Thuc
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho 94115, Vietnam; (N.Q.K.); (L.T.M.T.); (N.D.T.); (P.C.H.); (V.M.T.); (L.T.Q.); (L.V.T.)
| | - Do Thi Xuan
- Institute of Food and Biotechnology, Can Tho University, Can Tho 94115, Vietnam;
| |
Collapse
|
10
|
Chen W, Modi D, Picot A. Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2736. [PMID: 37514350 PMCID: PMC10384710 DOI: 10.3390/plants12142736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The phytomicrobiome plays a crucial role in soil and ecosystem health, encompassing both beneficial members providing critical ecosystem goods and services and pathogens threatening food safety and security. The potential benefits of harnessing the power of the phytomicrobiome for plant disease suppression and management are indisputable and of interest in agriculture but also in forestry and landscaping. Indeed, plant diseases can be mitigated by in situ manipulations of resident microorganisms through agronomic practices (such as minimum tillage, crop rotation, cover cropping, organic mulching, etc.) as well as by applying microbial inoculants. However, numerous challenges, such as the lack of standardized methods for microbiome analysis and the difficulty in translating research findings into practical applications are at stake. Moreover, climate change is affecting the distribution, abundance, and virulence of many plant pathogens, while also altering the phytomicrobiome functioning, further compounding disease management strategies. Here, we will first review literature demonstrating how agricultural practices have been found effective in promoting soil health and enhancing disease suppressiveness and mitigation through a shift of the phytomicrobiome. Challenges and barriers to the identification and use of the phytomicrobiome for plant disease management will then be discussed before focusing on the potential impacts of climate change on the phytomicrobiome functioning and disease outcome.
Collapse
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dixi Modi
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
11
|
A Salt-Tolerant Strain of Trichoderma longibrachiatum HL167 Is Effective in Alleviating Salt Stress, Promoting Plant Growth, and Managing Fusarium Wilt Disease in Cowpea. J Fungi (Basel) 2023; 9:jof9030304. [PMID: 36983472 PMCID: PMC10052927 DOI: 10.3390/jof9030304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Salt stress is a constraint factor in agricultural production and restricts crops yield and quality. In this study, a salt-tolerant strain of Trichoderma longibrachiatum HL167 was obtained from 64 isolates showing significant salt tolerance and antagonistic activity to Fusarium oxysporum. T. longibrachiatum HL167 inhibited F. oxysporum at a rate of 68.08% in 200 mM NaCl, penetrated F. oxysporum under 200 mM NaCl, and eventually induced F. oxysporum hyphae breaking, according to electron microscope observations. In the pot experiment, pretreatment of cowpea seedlings with T. longibrachiatum HL167 reduced the accumulation level of ROS in tissues and the damage caused by salt stress. Furthermore, in the field experiment, it was discovered that treating cowpea with T. longibrachiatum HL167 before root inoculation with F. oxysporum can successfully prevent and control the development of cowpea Fusarium wilt, with the best control effect reaching 61.54%. Moreover, the application of HL 167 also improved the K+/Na+ ratio of cowpea, alleviated the ion toxicity of salt stress on cowpea, and HL167 was found to effectively colonize the cowpea roots. T. longibrachiatum HL167, which normally survives in saline–alkali environments and has the functions of disease prevention and plant growth promotion capabilities, has important research implications for improving the saline–alkali soil environment and for the sustainable development of green agriculture.
Collapse
|
12
|
Biocontrol of Fusarium equiseti using chitosan nanoparticles combined with Trichoderma longibrachiatum and Penicillium polonicum. Fungal Biol Biotechnol 2023; 10:5. [PMID: 36747259 PMCID: PMC9903466 DOI: 10.1186/s40694-023-00151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
A safe and ecofriendly biocontrol of pathogenic Fusarium equiseti was developed based on chitosan nanoparticles (CNPs) combined with Trichoderma longibrachiatum and Penicillium polonicum. Two strains of F. equiseti which were isolated from wilting tomato plant as well as three antagonistic fungi including Trichoderma longibrachiatum and two strains of Penicillium polonicum were isolated from the surrounding soil. All the isolated pathogenic and antagonistic fungi were identified using genomic DNA sequences. The antifungal activity of the three antagonistic fungi were studied against the two strains of F. equiseti. Also, CNPs which were prepared according to the ionic gelation method using sodium tripolyphosphate anions in acetic acid solution were used to enhance the antifungal activity of the three antagonistic fungi. The results exhibit that, combination of T. longibrachiatum with CNPs and P. polonicum with CNPs achieve high antifungal activity against F. equiseti by an inhibition rate equal to 71.05% and 66.7%, respectively.
Collapse
|
13
|
Agyekum DVA, Kobayashi T, Dastogeer KMG, Yasuda M, Sarkodee-Addo E, Ratu STN, Xu Q, Miki T, Matsuura E, Okazaki S. Diversity and function of soybean rhizosphere microbiome under nature farming. Front Microbiol 2023; 14:1130969. [PMID: 36937301 PMCID: PMC10014912 DOI: 10.3389/fmicb.2023.1130969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Nature farming is a farming system that entails cultivating crops without using chemical fertilizers and pesticides. The present study investigated the bacterial and fungal communities in the rhizosphere of soybean grown in conventional and nature farming soils using wild-type and non-nodulating mutant soybean. The effect of soil fumigant was also analyzed to reveal its perturbation of microbial communities and subsequent effects on the growth of soybean. Overall, the wild-type soybean exhibited a better growth index compared to mutant soybean and especially in nature farming. Nodulation and arbuscular mycorrhiza (AM) fungi colonization were higher in plants under nature farming than in conventionally managed soil; however, fumigation drastically affected these symbioses with greater impacts on plants in nature farming soil. The rhizosphere microbiome diversity in nature farming was higher than that in conventional farming for both cultivars. However, the diversity was significantly decreased after fumigation treatment with a greater impact on nature farming. Principal coordinate analysis revealed that nature farming and conventional farming soil harbored distinct microbial communities and that soil fumigation significantly altered the communities in nature farming soils but not in conventional farming soils. Intriguingly, some beneficial microbial taxa related to plant growth and health, including Rhizobium, Streptomyces, and Burkholderia, were found as distinct microbes in the nature farming soil but were selectively bleached by fumigant treatment. Network analysis revealed a highly complex microbial network with high taxa connectivity observed under nature farming soil than in conventional soil; however, fumigation strongly broke it. Overall, the results highlighted that nature farming embraced higher microbial diversity and the abundance of beneficial soil microbes with a complex and interconnected network structure, and also demonstrated the underlying resilience of the microbial community to environmental perturbations, which is critical under nature farming where chemical fertilizers and pesticides are not applied.
Collapse
Affiliation(s)
- Dominic V. A. Agyekum
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tatsuyuki Kobayashi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Khondoker M. G. Dastogeer
- Department of Plant Pathology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Michiko Yasuda
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Elsie Sarkodee-Addo
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Safirah T. N. Ratu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qicong Xu
- International Nature Farming Research Center, Nagano, Japan
| | - Takaaki Miki
- International Nature Farming Research Center, Nagano, Japan
| | - Eri Matsuura
- College of Agriculture, Ibaraki University, Mito, Japan
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Shin Okazaki,
| |
Collapse
|
14
|
Liu Y, Liu Y, Zeng C, Wang J, Nyimbo WJ, Jiao Y, Wu L, Chen T, Fang C, Lin W. Intercropping with Achyranthes bidentata alleviates Rehmannia glutinosa consecutive monoculture problem by reestablishing rhizosphere microenvironment. FRONTIERS IN PLANT SCIENCE 2022; 13:1041561. [PMID: 36483951 PMCID: PMC9724704 DOI: 10.3389/fpls.2022.1041561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The consecutive monoculture of Rehmannia glutinosa leads to a serious decrease in its production and quality. Previous studies have demonstrated that intercropping altered species diversity and rhizosphere microbial diversity. However, it remained unknown whether the impaired growth of monocultured plants could be restored by enhanced belowground interspecific interactions. METHOD In the present research, a continuous cropping facilitator Achyranthes bidentata was intercropped with R. glutinosa under pot conditions, and three different types of root barrier treatments were set, including that complete belowground interaction (N), partial belowground interaction (S), and no belowground interspecies interaction (M), with the aims to investigate belowground interaction and the underlying mechanism of alleviated replanting disease of R. glutinosa by intercropping with A. bidentata. RESULTS The results showed that the land equivalent ratio (LER) of the two years was 1.17, and the system productivity index (SPI) increased by 16.92 % under S treatment, whereas no significant difference was found in N and M regimes. In the rhizosphere soil, intercropping systems had significantly increased the contents of sugars and malic acid in the soil of R. glutinosa, together with the content of organic matter and the invertase and urease activities. Meanwhile, intercropping increased the community diversity of fungi and bacteria, and the relative abundance of potential beneficial bacteria, such as Bacillus, Nitrospira, and Sphingomonas, despite the pathogenic Fusarium oxysporum was still the dominant genus in the rhizospheric soil of R. glutinosa under various treatments. The results of antagonism experiments and exogenous addition of specific bacteria showed that Bacillus spp. isolated from rhizosphere soil had a significant antagonistic effect on the pathogen of R. glutinosa. CONLUSION Taken together, our study indicated that the R. glutinosa//A. bidentata intercropping systems alleviate the consecutive monoculture problem of R. glutinosa by recruiting beneficial bacteria. The studies we have conducted have a positive effect on sustainable agricultural development.
Collapse
Affiliation(s)
- Yazhou Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunli Zeng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juanying Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Key Lab of Agro-bioengineering, Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Witness Joseph Nyimbo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyang Jiao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linkun Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Pradhan PC, Mukhopadhyay A, Kumar R, Kundu A, Patanjali N, Dutta A, Kamil D, Bag TK, Aggarwal R, Bharadwaj C, Singh PK, Singh A. Performance appraisal of Trichoderma viride based novel tablet and powder formulations for management of Fusarium wilt disease in chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:990392. [PMID: 36275506 PMCID: PMC9585344 DOI: 10.3389/fpls.2022.990392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 06/08/2023]
Abstract
In developing a Trichoderma viride-based biocontrol program for Fusarium wilt disease in chickpea, the choice of the quality formulation is imperative. In the present study, two types of formulations i.e. powder for seed treatment (TvP) and tablet for direct application (TvT), employing T. viride as the biocontrol agent, were evaluated for their ability to control chickpea wilt under field conditions at three dosages i.e. recommended (RD), double of recommended (DD) and half of recommended (1/2 RD). A screening study for the antagonistic fungi strains based on volatile and non-volatile bioassays revealed that T. viride ITCC 7764 has the most potential among the five strains tested (ITCC 6889, ITCC 7204, ITCC 7764, ITCC 7847, ITCC 8276), which was then used to develop the TvP and TvT formulations. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of volatile organic compounds (VOCs) of T. viride strain confirmed the highest abundance of compositions comprising octan-3-one (13.92%), 3-octanol (10.57%), and 1-octen-3-ol (9.40%) in the most potential T. viride 7764. Further Physico-chemical characterization by standard Collaborative International Pesticides Analytical Council (CIPAC) methods revealed the optimized TvP formulation to be free flowing at pH 6.50, with a density of 0.732 g cm-3. The TvT formulation showed a pH value of 7.16 and density of 0.0017 g cm-3 for a complete disintegration time of 22.5 min. The biocontrol potential of TvP formulation was found to be superior to that of TvT formulation in terms of both seed germination and wilt incidence in chickpea under field conditions. However, both the developed formulations (TvP and TvT) expressed greater bioefficacy compared to the synthetic fungicide (Carbendazim 50% WP) and the conventional talc-based formulation. Further research should be carried out on the compatibility of the developed products with other agrochemicals of synthetic or natural origin to develop an integrated disease management (IDM) schedule in chickpea.
Collapse
Affiliation(s)
- Prakash Chandra Pradhan
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Randeep Kumar
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Deeba Kamil
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Bag
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Aggarwal
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Chellapilla Bharadwaj
- Division of Genetics, (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - P. K. Singh
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
16
|
Kong WL, Ni H, Wang WY, Wu XQ. Antifungal effects of volatile organic compounds produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Front Microbiol 2022; 13:1013468. [PMID: 36212874 PMCID: PMC9533717 DOI: 10.3389/fmicb.2022.1013468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are considered promising environmental-safety fumigants for controlling soil-borne diseases. Verticillium dahliae, a notorious fungal pathogen, causes economically important wilt diseases in agriculture and forestry industries. Here, we determined the antifungal activity of VOCs produced by Trichoderma koningiopsis T2. The VOCs from T. koningiopsis T2 were trapped by solid-phase microextraction (SPME) and tentatively identified through gas chromatography–mass spectrometry (GC/MS). The microsclerotia formation, cell wall-degrading enzymes and melanin synthesis of V. dahliae exposed to the VOC mixtures and selected single standards were examined. The results showed that the VOCs produced by strain T2 significantly inhibited the growth of V. dahliae mycelium and reduced the severity of Verticillium wilt in tobacco and cotton. Six individual compounds were identified in the volatilome of T. koningiopsis T2, and the dominant compounds were 3-octanone, 3-methyl-1-butanol, butanoic acid ethyl ester and 2-hexyl-furan. The VOCs of strain T2 exert a significant inhibitory effect on microsclerotia formation and decreased the activities of pectin lyase and endo-β-1,4-glucanase in V. dahliae. VOCs also downregulated the VdT3HR, VdT4HR, and VdSCD genes related to melanin synthesis by 29. 41-, 10. 49-, and 3.11-fold, respectively. Therefore, T. koningiopsis T2 has potential as a promising biofumigant for the biocontrol of Verticillium wilt disease.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Hang Ni
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Yu Wang
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
- *Correspondence: Xiao-Qin Wu,
| |
Collapse
|
17
|
Yun T, Jing T, Zhou D, Zhang M, Zhao Y, Li K, Zang X, Zhang L, Xie J, Wang W. Potential Biological Control of Endophytic Streptomyces sp. 5-4 Against Fusarium Wilt of Banana Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. PHYTOPATHOLOGY 2022; 112:1877-1885. [PMID: 35471064 DOI: 10.1094/phyto-11-21-0464-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most disastrous fungal diseases. Biological control is a promising strategy for controlling Fusarium wilt of banana. To explore endophytic actinomycetes as biocontrol resources against Foc TR4, antagonistic strains were isolated from different tissues of medicinal plants. Here, a total of 144 actinomycetes were isolated and belonged to Nonomuraea, Kitasatospora, and Streptomyces. Forty-three isolates exhibited antifungal activities against Foc TR4. The strain labeled with 5-4 isolated from roots of Piper austrosinense had a broad-spectrum antifungal activity by the production of chitinase and β-1,3-glucanase and was identified as Streptomyces hygroscopicus subsp. hygroscopicus 5-4. Furthermore, disease index of banana wilt was significantly reduced by application of strain 5-4 in comparison with application of Foc TR4 alone. Exogenous application of strain 5-4 increased the expression levels of defense genes such as (PAL), peroxidase (POD), pathogenesis-related protein 1 (PR-1), hydrolytic enzymes (β-1,3-glucanase), lysin motif receptor kinase 1 (LYK-1), and mitogen-activated protein kinase 1 (MPK-1). The antifungal mechanism assay demonstrated that extracts of strain 5-4 inhibited spore gemination and hyphal growth of Foc TR4, and caused abnormally swollen, deformity, and rupture of Foc TR4 hypha. Thus, S. hygroscopicus subsp. hygroscopicus 5-4 could be used as a potential biological agent for controlling Fusarium wilt of banana.
Collapse
Affiliation(s)
- Tianyan Yun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Tao Jing
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| | - Yankun Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| | - Kai Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| | - Xiaoping Zang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| |
Collapse
|
18
|
Yuan QS, Wang L, Wang H, Wang X, Jiang W, Ou X, Xiao C, Gao Y, Xu J, Yang Y, Cui X, Guo L, Huang L, Zhou T. Pathogen-Mediated Assembly of Plant-Beneficial Bacteria to Alleviate Fusarium Wilt in Pseudostellaria heterophylla. Front Microbiol 2022; 13:842372. [PMID: 35432244 PMCID: PMC9005978 DOI: 10.3389/fmicb.2022.842372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla (Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China under the continuous monocropping regime. However, the ternary interactions among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We investigated the potential interaction relationship by which the pathogen-mediated P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput sequencing. Plant-pathogen interaction assays were conducted to measure the arrival of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent seedling disease incidence. A growth assay was used to determine the effect of the tuberous root crude exudate inoculated with the pathogen on P. poae. We observed that pathogen-mediated P. heterophylla altered the diversity and the composition of the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil and within the tuberous root in the FW group with high severity. Correlation analysis showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum. The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1, and N3-3-C4). These results indicated that the extracts from the tuberous root of P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its growth. Furthermore, the colonization assay found that the gene copies of sucD in the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-induced attraction assay found that the relative copies of sucD of P. poae in the F. oxysporum treatment were significantly higher than in the H2O treatment. These results showed that F. oxysporum promoted the colonization of P. poae on the tuberous root via F. oxysporum mediation. In addition, the colonization assay found that the disease severity index in the P. poae and F. oxysporum treatment group was significantly lower than that in the F. oxysporum treatment group, and a pathogen-induced attraction assay found that the disease severity index in the F. oxysporum treatment group was significantly higher than that in the H2O treatment group. Together, these results suggest that pathogen-mediated P. heterophylla promoted and assembled plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial associations between pathogen-mediated P. heterophylla and microbes can provide novel insights into the implementation and design of disease management strategies.
Collapse
Affiliation(s)
- Qing-Song Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoai Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaohong Ou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanping Gao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
19
|
Xu H, Yan L, Zhang M, Chang X, Zhu D, Wei D, Naeem M, Song C, Wu X, Liu T, Chen W, Yang W. Changes in the Density and Composition of Rhizosphere Pathogenic Fusarium and Beneficial Trichoderma Contributing to Reduced Root Rot of Intercropped Soybean. Pathogens 2022; 11:pathogens11040478. [PMID: 35456153 PMCID: PMC9031213 DOI: 10.3390/pathogens11040478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
The dynamic of soil-borne disease is closely related to the rhizosphere microbial communities. Maize–soybean relay strip intercropping has been shown to significantly control the type of soybean root rot that tends to occur in monoculture. However, it is still unknown whether the rhizosphere microbial community participates in the regulation of intercropped soybean root rot. In this study, rhizosphere Fusarium and Trichoderma communities were compared in either healthy or root-rotted rhizosphere soil from monocultured and intercropped soybean, and our results showed the abundance of rhizosphere Fusarium in intercropping was remarkably different from monoculture. Of four species identified, F. oxysporum was the most aggressive and more frequently isolated in diseased soil of monoculture. In contrast, Trichoderma was largely accumulated in healthy rhizosphere soil of intercropping rather than monoculture. T. harzianum dramatically increased in the rhizosphere of intercropping, while T. virens and T. afroharzianum also exhibited distinct isolation frequency. For the antagonism test in vitro, Trichoderma strains had antagonistic effects on F. oxysporum with the percentage of mycelial inhibition ranging from 50.59–92.94%, and they displayed good mycoparasitic abilities against F. oxysporum through coiling around and entering into the hyphae, expanding along the cell–cell lumen and even dissolving cell walls of the target fungus. These results indicate maize–soybean relay strip intercropping significantly increases the density and composition proportion of beneficial Trichoderma to antagonize the pathogenic Fusarium species in rhizosphere, thus potentially contributing to the suppression of soybean root rot under the intercropping.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
| | - Li Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Y.); (T.L.); (W.C.)
| | - Mingdi Zhang
- Department of International Law Affairs, Dong-a University, Busan 49236, Korea;
| | - Xiaoli Chang
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Y.); (T.L.); (W.C.)
- Correspondence: ; Tel.: +86-028-86290872
| | - Dan Zhu
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
| | - Dengqin Wei
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
| | - Muhammd Naeem
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
| | - Chun Song
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
| | - Xiaoling Wu
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Y.); (T.L.); (W.C.)
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Y.); (T.L.); (W.C.)
| | - Wenyu Yang
- Department of Plant Protection, College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; (H.X.); (D.Z.); (D.W.); (M.N.); (C.S.); (X.W.); (W.Y.)
| |
Collapse
|
20
|
Bai YC, Li BX, Xu CY, Raza M, Wang Q, Wang QZ, Fu YN, Hu JY, Imoulan A, Hussain M, Xu YJ. Intercropping Walnut and Tea: Effects on Soil Nutrients, Enzyme Activity, and Microbial Communities. Front Microbiol 2022; 13:852342. [PMID: 35369467 PMCID: PMC8971985 DOI: 10.3389/fmicb.2022.852342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
The practice of intercropping, which involves growing more than one crop simultaneously during the same growing season, is becoming more important for increasing soil quality, land-use efficiency, and subsequently crop productivity. The present study examined changes in soil physicochemical properties, enzymatic activity, and microbial community composition when walnut (Juglans spp.) was intercropped with tea (Camellia sinensis L.) plants in a forest and compared with a walnut and tea monocropping system. The results showed that walnut-tea intercropping improved the soil nutrient profile and enzymatic activity. The soil available nitrogen (AN), available phosphorus (AP), available potassium (AK), organic matter (OM) content, and sucrase activity were significantly boosted in intercropped walnut and tea than in monocropping forests. The interaction between crops further increased bacterial and fungal diversity when compared to monoculture tea forests. Proteobacteria, Bacteroidetes, Firmicutes, Chlamydiae, Rozellomycota, and Zoopagomycota were found in greater abundance in an intercropping pattern than in monoculture walnut and tea forest plantations. The walnut-tea intercropping system also markedly impacted the abundance of several bacterial and fungal operational taxonomic units (OTUs), which were previously shown to support nutrient cycling, prevent diseases, and ameliorate abiotic stress. The results of this study suggest that intercropping walnut with tea increased host fitness and growth by positively influencing soil microbial populations.
Collapse
Affiliation(s)
- Yong-Chao Bai
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bao-Xin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qi-Zhu Wang
- Center for Walnut Technology of Baokang County, Xiangyang, China
| | - Ya-Nan Fu
- Center for Walnut Technology of Baokang County, Xiangyang, China
| | - Jian-Yang Hu
- State Key Laboratory of the Discovery and Development of Novel Pesticides, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Abdessamad Imoulan
- Department of Biology, Faculty of Science and Technics of Errachidia, Mouly Ismail University, Meknes, Morocco
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|