1
|
Yang J, Jia W, Zhang B, Sun S, Dou X, Wu Q, Wang Y, Li Y, Ma W, Ren G, Zhang X, Wang Y. Effects of Diet Xylooligosaccharide Supplementation on Growth Performance, Carcass Characteristics, and Meat Quality of Hu Lambs. Foods 2025; 14:656. [PMID: 40002100 PMCID: PMC11854800 DOI: 10.3390/foods14040656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we examined the effect of xylooligosaccharide (XOS) supplementation on the growth performance, carcass characteristics, and meat quality of Hu lambs. In total, 60 Hu lambs (two months old and weighing 17.32 ± 0.81 kg) were randomly assigned to four treatment groups, each with three replicates and five lambs per replicate. The lambs were fed basal diets supplemented with 0, 1.5, 3, or 4.5 g/kg XOSs in a basal diet for 60 days, with the groups designated XOS0%, XOS1.5%, XOS3%, and XOS4.5%, respectively. The results revealed, compared to theXOS0% group, the XOS3% group presented a lower F:G during 31 to 45 d (p = 0.06). By the 60th day, the body length indices of groups XOS3% and XOS4.5% increased compared to the XOS0% group, with a significant increase observed in group XOS4.5% (p < 0.05). Additionally, the GR values of the XOS1.5%, XOS3%, and XOS4.5% groups increased significantly, and the rumen fluid pH values of the XOS3% and XOS4.5% groups increased significantly (p < 0.01). The crude fat content in the XOS1.5% and XOS4.5% groups were significantly lower (p < 0.05). The hardness, adhesiveness, elasticity, cohesiveness, and chewiness of the mutton in the XOS1.5%, XOS3%, and XOS4.5% groups were increased, although the differences were not statistically significant (p > 0.05). Correlation analysis indicates that there is a significant correlation between growth performance, carcass traits, and meat quality (p < 0.05). The factors influencing meat quality originate from the growth period and the slaughtering phase, which can be attributed to the effects of xylooligosaccharides. In conclusion, XOS had positive effects on the growth performance, carcass characteristics, and meat quality of Hu lambs. The comprehensive effect of group XOS3% was best. Considering the production cost, the 3 g/kg XOSs is identified as the optimal supplementation level for sheep.
Collapse
Affiliation(s)
- Jiaxin Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Wanhang Jia
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Binglei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Saiyi Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Xueru Dou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Yuanxiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Guoyan Ren
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Xiaoyin Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| |
Collapse
|
2
|
Wang X, Qin Y, Li J, Huang P, Li Y, Huang J, Wang Q, Yang H. Vitamin B5 supplementation enhances intestinal development and alters microbes in weaned piglets. Anim Biotechnol 2024; 35:2335340. [PMID: 38587818 DOI: 10.1080/10495398.2024.2335340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study explored the effects of different vitamin B5 (VB5) levels on intestinal growth and function of weaned piglets. Twenty-one piglets (7.20 ± 1.11 kg) were included in a 28-day feeding trial with three treatments, including 0 mg/kg (L-VB5), 10 mg/kg (Control) and 50 mg/kg (H-VB5) of VB5 supplement. The results showed that: Large intestine weight/body weight was the highest in H-VB5 group, Control and H-VB5 groups had significantly higher villus height and villus height/crypt depth than the L-VB5 in the ileum (p < .05). Goblet cells (ileal crypt) and endocrine cells (ileal villus) significantly increased in Control and H-VB5 (p < .05). The H-VB5 group exhibited significantly higher levels of ki67 and crypt depth in the cecum and colon, colonic goblet cells and endocrine cells were both rising considerably (p < .05). Isobutyric acid and isovaleric acid were significantly reduced in the H-VB5 group (p < .05), and there was a decreasing trend in butyric acid (p = .073). At the genus level, the relative abundance of harmful bacteria such as Clostridium_Sensu_Structo_1 Strecto_1, Terrisporbacter and Streptococcus decreased significantly and the relative abundance of beneficial bacteria Turicibacter increased significantly in H-VB5 group (p < .05). Overall, the addition of 50 mg/kg VB5 primarily enhanced the morphological structure, cell proliferation and differentiation of the ileum, cecum and colon. It also had a significant impact on the gut microbiota and short-chain fatty acids.
Collapse
Affiliation(s)
- Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yan Qin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
3
|
Liu H, Lu H, Wang Y, Yu C, He Z, Dong H. Unlocking the power of short-chain fatty acids in ameliorating intestinal mucosal immunity: a new porcine nutritional approach. Front Cell Infect Microbiol 2024; 14:1449030. [PMID: 39286812 PMCID: PMC11402818 DOI: 10.3389/fcimb.2024.1449030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Short-chain fatty acids (SCFAs), a subset of organic fatty acids with carbon chains ranging from one to six atoms in length, encompass acetate, propionate, and butyrate. These compounds are the endproducts of dietary fiber fermentation, primarily catalyzed by the glycolysis and pentose phosphate pathways within the gut microbiota. SCFAs act as pivotal energy substrates and signaling molecules in the realm of animal nutrition, exerting a profound influence on the intestinal, immune system, and intestinal barrier functions. Specifically, they contibute to 60-70% of the total energy requirements in ruminants and 10-25% in monogastric animals. SCFAs have demonstrated the capability to effectively modulate intestinal pH, optimize the absorption of mineral elements, and impede pathogen invasion. Moreover, they enhance the expression of proteins associated with intestinal tight junctions and stimulate mucus production, thereby refining intestinal tissue morphology and preserving the integrity of the intestinal structure. Notably, SCFAs also exert anti-inflammatory properties, mitigating inflammation within the intestinal epithelium and strengthening the intestinal barrier's defensive capabilities. The present review endeavors to synthesize recent findings regarding the role of SCFAs as crucial signaling intermediaries between the metabolic activities of gut microbiota and the status of porcine cells. It also provides a comprehensive overview of the current literature on SCFAs' impact on immune responses within the porcine intestinal mucosa.
Collapse
Affiliation(s)
- Haoyang Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hongde Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yuxuan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Chenyun Yu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Zhiyuan He
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
4
|
Rungruangsaphakun J, Ayimbila F, Nakphaichit M, Keawsompong S. Simulated Swine Digestion and Gut Microbiota Fermentation of Hydrolyzed Copra Meal. Animals (Basel) 2024; 14:1677. [PMID: 38891724 PMCID: PMC11171118 DOI: 10.3390/ani14111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to compare the effects of hydrolyzed copra meal (HCM) inclusion at 1% on its in vitro digestibility and the microbiota and cecum fermentation using the gut microbiota of weaned swine, targeting microbial community and short-chain fatty acids (SCF). For this reason, three treatments were considered: control (no copra meal), 1% non-hydrolyzed copra meal (CM), and 1% HCM. Non-defatted copra meal was hydrolyzed and analyzed (reducing sugars and total carbohydrates) in our laboratory. For digestion, microbiota identification, and fermentation assays, fresh fecal samples from two weaned pigs (1 month old) were used. Three replicates of each treatment were employed. HCM was more digestible, with approximately 0.68 g of hydrolysate recovered after simulated digestion compared to 0.82 g of hydrolysate recovered from CM. This was shown by Scanning Electron Microscope (SEM) images. Also, the three swine shared the majority of microbial species identified at the phylum and family levels. There were no differences (p > 0.05) between treatments in the microbial community and SCFA during fermentation. However, higher Chao-1 and Shannon indexes were observed in CM and HCM treatments. HCM was also found to be capable of preserving Actinobacterota and Proteobacteria at the phylum level, while at the family level, both treatments may help Lactobacillaceae, Peptostreptococcaceae, Lachnospiraceae, and Ruminococcaceae survive in the long term. Also, there was a potential trend of increasing acetic acid and butyric acid in the CM and HCM treatments. While HCM shows promise in potentially modulating the gut microbiota of weaned swine, additional research is required to investigate the effects of higher doses of HCM on swine performance parameters.
Collapse
Affiliation(s)
- Jurairat Rungruangsaphakun
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand; (J.R.); (F.A.); (M.N.)
| | - Francis Ayimbila
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand; (J.R.); (F.A.); (M.N.)
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand
| | - Massalin Nakphaichit
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand; (J.R.); (F.A.); (M.N.)
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand; (J.R.); (F.A.); (M.N.)
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand
| |
Collapse
|
5
|
Li S, Wang C, Zeng H, Han Z. Effects of different combinations of antibacterial compound supplements in calf pellets on growth performance, health, blood parameters, and rumen microbiome of dairy calves. Front Vet Sci 2024; 11:1376758. [PMID: 38803795 PMCID: PMC11128685 DOI: 10.3389/fvets.2024.1376758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
This study investigated the effects of different combinations of antibacterial compounds (attapulgite, plant essential oils, and chitosan oligosaccharides) on growth performance, blood biochemical parameters, and rumen microbiome of calves. A total of 48 preweaning calves were randomly divided into four groups (n = 12 per group), and fed the following full mixed-ration granule diets for the 67-d-feeding trial: (1) basal diet (control group); (2) basal diet +1,000 g/t attapulgite, plant essential oils, and chitosan oligosaccharide (AEOCO group); (3) basal diet +1,000 g/t attapulgite and chitosan oligosaccharide (ACO group); and (4) basal diet +1,000 g/t attapulgite and plant essential oil (AEO group). The results showed that the daily weight gain of the AEOCO and AEO groups significantly increased (p < 0.05), whereas the feed conversion ratio decreased compared with that of the control group. Among the three treatment groups, AEO group showed the most positive effect, with the diarrhea rate reduced by 68.2% compared with that of the control group. Total protein and globulin levels were lower in the AEO group than in the control group. Albumin levels were higher in the AEOCO and AEO groups than in the control group. Immunoglobulin A, immunoglobulin G, and immunoglobulin M concentrations were higher in the AEOCO group (p < 0.05) than in the control group. The interleukin-6 concentration was lower in the AEOCO and AEO groups than in the control group (p < 0.05). The Chao 1 richness and ACE indices were higher in the AEOCO group than in the control group (p < 0.05). The ACO group had a significantly lower (p < 0.05) relative abundance of Firmicutes than the control group. The relative abundance of Bacteroidetes was the lowest in the control group, whereas that of Spirochaetota and Fibrobacteriota was the highest (p < 0.05). The relative abundance of Succiniclasticum was higher in the ACO and AEO groups (p < 0.05). These findings indicate that the combination of attapulgite, plant essential oils, and chitosan oligosaccharides has ameliorative effects on the growth performance, blood parameters, and rumen microbiome of calves.
Collapse
Affiliation(s)
| | | | | | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Choi H, Duarte YG, Pasquali GAM, Kim SW. Investigation of the nutritional and functional roles of a combinational use of xylanase and β-glucanase on intestinal health and growth of nursery pigs. J Anim Sci Biotechnol 2024; 15:63. [PMID: 38704593 PMCID: PMC11070102 DOI: 10.1186/s40104-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. METHODS Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller's dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. RESULTS Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. CONCLUSIONS A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Yesid Garavito Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
Das R, Mishra P, Mishra B, Jha R. Effect of in ovo feeding of xylobiose and xylotriose on plasma immunoglobulin, cecal metabolites production, microbial ecology, and metabolic pathways in broiler chickens. J Anim Sci Biotechnol 2024; 15:62. [PMID: 38702804 PMCID: PMC11069197 DOI: 10.1186/s40104-024-01022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/06/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Dietary supplementation of xylooligosaccharides (XOS) has been found to influence gut health by manipulating cecal microbiota and producing microbe-origin metabolites. But no study investigated and compared the effect of in ovo feeding of xylobiose (XOS2) and xylotriose (XOS3) in chickens. This study investigated the effect of in ovo feeding of these XOS compounds on post-hatch gut health parameters in chickens. A total of 144 fertilized chicken eggs were divided into three groups: a) non-injected control (CON), b) XOS2, and c) XOS3. On the 17th embryonic day, the eggs of the XOS2 and XOS3 groups were injected with 3 mg of XOS2 and XOS3 diluted in 0.5 mL of 0.85% normal saline through the amniotic sac. After hatching, the chicks were raised for 21 d. Blood was collected on d 14 to measure plasma immunoglobulin. Cecal digesta were collected for measuring short-chain fatty acids (SCFA) on d 14 and 21, and for microbial ecology and microbial metabolic pathway analyses on d 7 and 21. RESULTS The results were considered significantly different at P < 0.05. ELISA quantified plasma IgA and IgG on d 14 chickens, revealing no differences among the treatments. Gas chromatography results showed no significant differences in the concentrations of cecal SCFAs on d 14 but significant differences on d 21. However, the SCFA concentrations were lower in the XOS3 than in the CON group on d 21. The cecal metagenomics data showed that the abundance of the family Clostridiaceae significantly decreased on d 7, and the abundance of the family Oscillospiraceae increased on d 21 in the XOS2 compared to the CON. There was a reduction in the relative abundance of genus Clostridium sensu stricto 1 in the XOS2 compared to the CON on d 7 and the genus Ruminococcus torques in both XOS2 and XOS3 groups compared to the CON on d 21. The XOS2 and XOS3 groups reduced the genes for chondroitin sulfate degradation I and L-histidine degradation I pathways, which contribute to improved gut health, respectively, in the microbiome on d 7. In contrast, on d 21, the XOS2 and XOS3 groups enriched the thiamin salvage II, L-isoleucine biosynthesis IV, and O-antigen building blocks biosynthesis (E. coli) pathways, which are indicative of improved gut health. Unlike the XOS3 and CON, the microbiome enriched the pathways associated with energy enhancement, including flavin biosynthesis I, sucrose degradation III, and Calvin-Benson-Bassham cycle pathways, in the XOS2 group on d 21. CONCLUSION In ovo XOS2 and XOS3 feeding promoted beneficial bacterial growth and reduced harmful bacteria at the family and genus levels. The metagenomic-based microbial metabolic pathway profiling predicted a favorable change in the availability of cecal metabolites in the XOS2 and XOS3 groups. The modulation of microbiota and metabolic pathways suggests that in ovo XOS2 and XOS3 feeding improved gut health during the post-hatch period of broilers.
Collapse
Affiliation(s)
- Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
8
|
Sarpong N, Seifert J, Bennewitz J, Rodehutscord M, Camarinha-Silva A. Microbial signatures and enterotype clusters in fattening pigs: implications for nitrogen utilization efficiency. Front Microbiol 2024; 15:1354537. [PMID: 38659980 PMCID: PMC11040106 DOI: 10.3389/fmicb.2024.1354537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
As global demand for pork continues to rise, strategies to enhance nitrogen utilization efficiency (NUE) in pig farming have become vital for environmental sustainability. This study explored the relationship between the fecal microbiota, their metabolites, and NUE in crossbreed fattening pigs with a defined family structure. Pigs were kept under standardized conditions and fed in a two-phase feeding regime. In each phase, one fecal sample was collected from each pig. DNA was extracted from a total of 892 fecal samples and subjected to target amplicon sequencing. The results indicated an influence of sire, sampling period (SP), and sex on the fecal microbiota. Streptococcus emerged as a potential biomarker in comparing high and low NUE pigs in SP 1, suggesting a genetic predisposition to NUE regarding the fecal microbiota. All fecal samples were grouped into two enterotype-like clusters named cluster LACTO and cluster CSST. Pigs' affiliation with enterotype-like clusters altered over time and might be sex-dependent. The stable cluster CSST demonstrated the highest NUE despite containing pigs with lower performance characteristics such as average daily gain, dry matter intake, and daily nitrogen retention. This research contributes with valuable insights into the microbiome's role in NUE, paving the way for future strategies to enhance sustainable pig production.
Collapse
Affiliation(s)
- Naomi Sarpong
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Castro C, Niknafs S, Gonzalez-Ortiz G, Tan X, Bedford MR, Roura E. Dietary xylo-oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens. J Anim Sci Biotechnol 2024; 15:35. [PMID: 38433214 PMCID: PMC10910751 DOI: 10.1186/s40104-024-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND One of the main roles of the intestinal mucosa is to protect against environmental hazards. Supplementation of xylo-oligosaccharides (XOS) is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens. XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions. The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction (AXRF) supplementation on gut function and epithelial integrity in broiler chickens. METHODS A total of 128 broiler chickens (Ross 308) were assigned into one of two different dietary treatments for a period of 42 d: 1) control diet consisting of a corn/soybean meal-based diet; or 2) a control diet supplemented with 0.5% XOS and 1% AXRF. Each treatment was randomly distributed across 8 pens (n = 8) with 8 chickens each. Feed intake and body weight were recorded weekly. On d 42, one male chicken per pen was selected based on average weight and euthanized, jejunum samples were collected for proteomics analysis. RESULTS Dietary XOS/AXRF supplementation improved feed efficiency (P < 0.05) from d 1 to 42 compared to the control group. Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 differentially abundant proteins (DAP) (Padj < 0.00001) in supplemented chickens compared to the non-supplemented group. In the jejunum, the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue (e.g., inhibition of glycolysis and tricarboxylic acid cycle pathways). In addition, DAP were associated with decreased epithelial cell differentiation, and migration by reducing the actin polymerization pathway. Putting the two main pathways together, XOS/AXRF supplementation may decrease around 19% the energy required for the maintenance of the gastrointestinal tract. CONCLUSIONS Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation (hence, turnover), actin polymerization, and consequently energy requirement for maintenance of the jejunum of broiler chickens.
Collapse
Affiliation(s)
- Carla Castro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
10
|
Zhao BC, Wang TH, Chen J, Qiu BH, Xu YR, Li JL. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:174-188. [PMID: 38357573 PMCID: PMC10864218 DOI: 10.1016/j.aninu.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 02/16/2024]
Abstract
Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
11
|
Wang J, Liu S, Ma J, Dong X, Long S, Piao X. Growth performance, serum parameters, inflammatory responses, intestinal morphology and microbiota of weaned piglets fed 18% crude protein diets with different ratios of standardized ileal digestible isoleucine to lysine. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:313-325. [PMID: 38362516 PMCID: PMC10867559 DOI: 10.1016/j.aninu.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 02/17/2024]
Abstract
The present study was to explore the Ile requirement of piglets fed 18% crude protein (CP) diets. Two hundred and fifty 28-day-old Duroc × Landrace × Yorkshire piglets (8.37 ± 1.92 kg) were randomly divided into 5 dietary treatments (10 piglets per replicate, 5 barrows and 5 gilts per replicate) with 45%, 50%, 55%, 60%, 65% standardized ileal digestible (SID) Ile-to-Lys ratios, and the SID Lys was formulated to 1.19%. The experimental design consisted of two phases (d 1 to 14 and d 15 to 28). Results showed that average daily gain (ADG) had a tendency to quadratically increase as the SID Ile-to-Lys ratio increased (P = 0.09), and the optimum SID Ile-to-Lys ratios required to maximize ADG were 48.33% and 54.63% for broken-line linear model and quadratic polynomial model, respectively. Different SID Ile-to-Lys ratios had no significant effects on average daily feed intake and gain-to-feed ratio. Dry matter (P < 0.01), CP (P = 0.01), ether extract (P = 0.04), gross energy (P < 0.01) and organic matter (P < 0.01) digestibility increased quadratically. Serum total cholesterol levels decreased linearly (P = 0.01) and quadratically (P < 0.01); aspartate aminotransferase (P < 0.01), interleukin-1β (P = 0.01), and tumor necrosis factor-α (P < 0.01) levels decreased quadratically; immunoglobulin G (P = 0.03) and immunoglobulin M (P = 0.01) concentrations increased quadratically. Serum Ser levels decreased linearly (P < 0.01) and quadratically (P = 0.01); Glu (P = 0.02), Arg (P = 0.05), and Thr (P = 0.03) levels decreased quadratically; Gly (P < 0.01) and Leu (P = 0.01) levels decreased linearly; Ile (P < 0.01) concentration increased linearly. Duodenal villus height (P < 0.01) and villus height to crypt depth ratio (P < 0.01) increased quadratically. The deficiency or excess of Ile decreased short chain fatty acid-producing bacteria abundance and increased pathogenic bacteria abundance. Overall, taking ADG as the effect index, the optimum SID Ile-to-Lys ratios of piglets offered 18% CP diets were 48.33% and 54.63% based on two different statistical models, respectively, and the deficiency or excess of lle negatively affected piglet growth rates and health status.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoli Dong
- CJ International Trading Co., Ltd, Shanghai 201107, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, 101206, China
| |
Collapse
|
12
|
Davies C, González-Ortiz G, Rinttilä T, Apajalahti J, Alyassin M, Bedford MR. Stimbiotic supplementation and xylose-rich carbohydrates modulate broiler's capacity to ferment fibre. Front Microbiol 2024; 14:1301727. [PMID: 38274766 PMCID: PMC10808361 DOI: 10.3389/fmicb.2023.1301727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Stimbiotics are a new category of feed additives that can increase fibre fermentability by stimulating fibre-degrading microbiota in the gut. The aim of this study was to test, ex vivo, if the microbiota of broilers fed a stimbiotic are better able to ferment different xylose-rich substrates in an ileal and a caecal environment. The ileal and caecal contents from broiler chickens fed a stimbiotic or from a control group were used as an inoculum in the ex vivo fermentation experiment. Different xylose-rich substrates including monomeric xylose (XYL), XOS with DP 2 to 6 (XOS), short DP XOS of 2 to 3 (sDP-XOS), long DP XOS of 4 to 6 (lDP-XOS) and de-starched wheat bran (WB), were added to each ileal and caecal inoculum in fermentation vessels. Total gas, short-chain fatty acids (SCFA) production, bacterial quantification, and carbohydrate utilisation were monitored for 9 h post-inoculation. No significant interactions were observed in any of the parameters measured in either the ileal or caecal contents (p > 0.05). Stimbiotic ileal inocula resulted in higher total gas (p < 0.001) and volatile fatty acid (VFA) (p < 0.001) production, increased numbers of Lactobacillus spp. (p < 0.001), and decreased numbers of Enterococcus spp. (p < 0.01) after 9 h regardless of the xylose-rich substrate added. Stimbiotic caecal inocula resulted in a higher ratio of VFA to branched-chain fatty acids (BCFAs) by up to +9% (p < 0.05). Ileal microbiota were found to preferentially metabolise WB, while caecal microbiota favoured XOS substrates, particularly lDP-XOS. These results indicate that stimbiotics can promote the abundance of lactic acid bacteria involved in the establishment of fibre-degrading bacteria and VFA content in the gut, which could have beneficial effects on broiler performance. Further, ileal and caecal microbiota differ in their utilisation of different substrates which may impact the effectiveness of different stimbiotic products.
Collapse
Affiliation(s)
| | | | - Teemu Rinttilä
- AB Vista, Wiltshire, United Kingdom
- Alimetrics Research Ltd., Espoo, Finland
| | - Juha Apajalahti
- AB Vista, Wiltshire, United Kingdom
- Alimetrics Research Ltd., Espoo, Finland
| | - Mohammad Alyassin
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | | |
Collapse
|
13
|
Kim K, Jinno C, Li X, Bravo D, Cox E, Ji P, Liu Y. Impact of an oligosaccharide-based polymer on the metabolic profiles and microbial ecology of weanling pigs experimentally infected with a pathogenic E. coli. J Anim Sci Biotechnol 2024; 15:1. [PMID: 38169416 PMCID: PMC10759389 DOI: 10.1186/s40104-023-00956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E. coli (ETEC) F18 in a manner similar to carbadox. The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18. RESULTS Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic. The relative abundance of metabolic markers of immune responses and nutrient metabolisms, such as amino acids and carbohydrates, were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups (q < 0.2 and fold change > 2.0). In addition, pigs in antibiotic had a reduced (P < 0.05) relative abundance of Lachnospiraceae and Lactobacillaceae, whereas had greater (P < 0.05) Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation (PI) compared with d 5 PI. CONCLUSIONS The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood, and further exploration is needed. However, current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA, 95616, USA
- Present Affiliation: Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA, 95616, USA
- Present Affiliation: Cedars-Sinai Medical Center, Los Angeles, CA, 90084, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - David Bravo
- Pancosma|ADM, 1180, Rolle, Switzerland
- Present Affiliation: Nutreco Exploration, Nutreco, The Netherlands
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Ghent University, 9000, Ghent, Belgium
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Zhang J, Shu Z, Lv S, Zhou Q, Huang Y, Peng Y, Zheng J, Zhou Y, Hu C, Lan S. Fermented Chinese Herbs Improve the Growth and Immunity of Growing Pigs through Regulating Colon Microbiota and Metabolites. Animals (Basel) 2023; 13:3867. [PMID: 38136904 PMCID: PMC10740985 DOI: 10.3390/ani13243867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: the development of new antibiotic substitutes to promote pig growth and health has become an important way to solve the current dilemma and promote the pig industry. (2) Methods: to assess the effects of a fermented Chinese herbal (FCH) formula on the growth and immunity of growing pigs, 100 Duroc × Landrace × Yorshire three-way crossed growing pigs were randomly divided into control and treatment groups that were fed a basal diet, and a basal diet with 1% (group A), 2% (group B), and 3% (group C) FCH formulas, respectively. A sixty-day formal experiment was conducted, and their growth and serum indices, colonic microbiota, and metabolites were analyzed. (3) Results: the daily gain of growing pigs in groups A, B, and C increased by 7.93%, 17.68%, and 19.61%, respectively, and the feed-to-gain ratios decreased by 8.33%, 15.00%, and 14.58%, respectively. Serum immunity and antioxidant activities were significantly increased in all treatment groups. Particularly, adding a 2% FCH formula significantly changed the colon's microbial structure; the Proteobacteria significantly increased and Firmicutes significantly decreased, and the metabolite composition in the colon's contents significantly changed. (4) Conclusions: these results indicate that the FCH formula is a good feed additive for growing pigs, and the recommended addition ratio was 3%.
Collapse
Affiliation(s)
- Junhao Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Zhiheng Shu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Sixiao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Qingwen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yingjie Peng
- Guangdong Chuangzhan Bona Agricultural Technology Co., Ltd., Guangning 526339, China;
| | - Jun Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| |
Collapse
|
15
|
Han J, Li M, Li X, Liu C, Li XL, Wang K, Qiao R, Yang F, Han X, Li XJ. Effects of microbes in pig farms on occupational exposed persons and the environment. AMB Express 2023; 13:136. [PMID: 38032532 PMCID: PMC10689614 DOI: 10.1186/s13568-023-01631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In terms of pig farming, pig gut microbes have a significant effect on farmers and the farm environment. However, it is still unclear which microbial composition is more likely to contribute to this effect. This study collected a total of 136 samples, including pigs' faeces samples, farmers' faeces samples, samples from individuals who had no contact with any type of farm animal (referred to as 'non-exposed' persons), and environmental dust samples (collected from inside and outside pig houses and the farm) from two pig farms, pig farm A and pig farm B. Whereafter, 16S rRNA sequencing and taxonomic composition analysis were performed. According to the study, compared to non-exposed persons, pig farmers had a significantly higher abundance of 7 genera. In addition, the farmers were grouped according to the duration of their occupational exposure, and it was shown that 4 genera, including Turicibacter, Terrisporobacter, and Clostridium_sensu_stricto_1, exhibited a rise in more frequent contact with pigs. As compared to outside the pig house, the environmental dust has a greater concentration of the 3 bacteria mentioned before. Therefore, these 3 microbes can be considered as co-occurring microbes that may exist both in humans and the environment. Also, the 3 co-occurring microbes are involved in the fermentation and production of short-chain fatty acids and their effectiveness decreased as distance from the farm increased. This study shows that the 3 microbes where pig farmers co-occur with the environment come from pig farms, which provides fresh ideas for preventing the spread of microbial aerosols in pig farms and reducing pollution.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyu Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, China.
| |
Collapse
|
16
|
Ahmed RO, Ali A, Leeds T, Salem M. Fecal Microbiome Analysis Distinguishes Bacterial Taxa Biomarkers Associated with Red Fillet Color in Rainbow Trout. Microorganisms 2023; 11:2704. [PMID: 38004716 PMCID: PMC10673235 DOI: 10.3390/microorganisms11112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The characteristic reddish-pink fillet color of rainbow trout is an important marketing trait. The gastrointestinal microbiome is vital for host health, immunity, and nutrient balance. Host genetics play a crucial role in determining the gut microbiome, and the host-microbiome interaction impacts the host's phenotypic expression. We hypothesized that fecal microbiota could be used to predict fillet color in rainbow trout. Fish were fed Astaxanthin-supplemented feed for six months, after which 16s rDNA sequencing was used to investigate the fecal microbiome composition in rainbow trout families with reddish-pink fillet coloration (red fillet group, average saturation index = 26.50 ± 2.86) compared to families with pale white fillet color (white fillet group, average saturation index = 21.21 ± 3.53). The linear discriminant analysis effect size (LEFse) tool was used to identify bacterial biomarkers associated with fillet color. The alpha diversity measure shows no difference in the red and white fillet groups. Beta diversity principal component analysis showed clustering of the samples along the white versus red fillet group. The red fillet group has enrichment (LDA score > 1.5) of taxa Leuconostoc lactis, Corynebacterium variabile, Jeotgalicoccus halotolerans, and Leucobacter chromiireducens. In contrast, the white fillet group has an enriched presence of mycoplasma, Lachnoclostridium, and Oceanobacillus indicireducens. The enriched bacterial taxa in the red fillet group have probiotic functions and can generate carotenoid pigments. Bacteria taxa enriched in the white fillet group are either commensal, parasitic, or capable of reducing indigo dye. The study identified specific bacterial biomarkers differentially abundant in fish families of divergent fillet color that could be used in genetic selection to improve feed carotenoid retention and reddish-pink fillet color. This work extends our understanding of carotenoid metabolism in rainbow trout through the interaction between gut microbiota and fillet color.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| |
Collapse
|
17
|
Li X, Wu X, Ma W, Xu H, Chen W, Zhao F. Feeding Behavior, Growth Performance and Meat Quality Profile in Broiler Chickens Fed Multiple Levels of Xylooligosaccharides. Animals (Basel) 2023; 13:2582. [PMID: 37627372 PMCID: PMC10451349 DOI: 10.3390/ani13162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
A total of 240 1-day-old Arbor Acres broiler chickens were randomly distributed to 4 treatment groups with 6 replicates and 10 birds per replicate. Chickens were fed with corn-soybean meal diet supplementation with additions of 0, 150, 300, and 450 mg/kg XOS for 42 days. At 4 weeks of age, the average feeding time was reduced in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was increased in the 300 mg/kg XOS group (p < 0.05). At 5 weeks of age, broilers fed with 300 mg/kg XOS had increased the percentage of feeding time (p < 0.05), and 450 mg/kg XOS had increased the feeding frequency and percentage of feeding time (p < 0.05). At 6 weeks of age, the feeding frequency was highest in the 450 mg/kg XOS group (p < 0.05). During 4 to 6 weeks of age, the average feeding time was increased in 300 mg/kg XOS group (p < 0.05), the frequency was improved in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was longer in the XOS group than that in the control group (p < 0.05). The average daily gain was improved during days 22-42 and days 1-42 in the 150 mg/kg XOS group (p < 0.05). Broilers fed with 300 mg/kg XOS had an increased eviscerated rate (p < 0.05). The pH45min of breast muscle was highest in the 450 mg/kg XOS group (p < 0.05), as well as the pH45min and pH24h of thigh muscle, which improved in the 300 mg/kg and 450 mg/kg XOS groups (p < 0.05). In addition, the cooking loss of thigh muscle was reduced in the 300 mg/kg XOS group (p < 0.05). In conclusion, dietary supplementation with XOS had positive effects on the feeding behavior, growth performance, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Xixi Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Xiaohong Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Furong Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| |
Collapse
|
18
|
Dong CD, Tsai ML, Nargotra P, Kour B, Chen CW, Sun PP, Sharma V. Bioprocess development for the production of xylooligosaccharide prebiotics from agro-industrial lignocellulosic waste. Heliyon 2023; 9:e18316. [PMID: 37519746 PMCID: PMC10372396 DOI: 10.1016/j.heliyon.2023.e18316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- School of Biotechnology, University of Jammu, India
| |
Collapse
|
19
|
Dang G, Wen X, Zhong R, Wu W, Tang S, Li C, Yi B, Chen L, Zhang H, Schroyen M. Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway. J Anim Sci Biotechnol 2023; 14:38. [PMID: 36882874 PMCID: PMC9993796 DOI: 10.1186/s40104-023-00838-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chong Li
- The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
20
|
Sun F, Li H, Sun Z, Liu L, Zhang X, Zhao J. Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets. Animals (Basel) 2023; 13:ani13060964. [PMID: 36978506 PMCID: PMC10044045 DOI: 10.3390/ani13060964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to explore the effects of xylose with different polymerizations on growth performance, intestinal barrier function, and gut microbial composition in weaned piglets. A total of 144 weaned piglets were assigned to 3 dietary treatments in a completely randomized design according to their body weight and sex. Dietary treatments included a corn-soybean meal basal diet (CON) and 2 additional diets formulated with 1% arabinoxylan (AX) and 1% xylo-oligosaccharide (XOS), respectively. Results showed that dietary supplementation of XOS or AX reduced diarrhea incidence of weaned piglets compared with the CON group (p < 0.05). XOS or AX increased the ileal villus height and intestinal activity of antioxidases in weaned piglets compared with the CON group (p < 0.05). XOS or AX reduced the ileal and colonic IL-6 content and increased the colonic sIgA and IL-10 concentrations in weaned piglets compared with the CON group (p < 0.05). XOS or AX increased the total organic acids concentrations in the ileum and in vitro fermentation (p < 0.05). XOS increased the abundance of Lactobacillus and Bifidobacterium in the ileal digesta (p < 0.05), while AX increased the population of Lactobacillus in the ileal digesta and the abundance of Bifidobacterium in the colonic digesta of weaned piglets (p < 0.05). In conclusion, both XOS and AX reduce diarrhea incidence and improve antioxidant capacity, immune function, and populations of beneficial bacteria, while microbial fermentation of XOS with a lower polymerization and molecular mass can produce more organic acids and an increased abundance of Lactobacillus and Bifidobacterium in the upper gut of weaned pigs compared with AX.
Collapse
Affiliation(s)
- Feize Sun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Huahui Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiujun Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Guo Y, Liu T, Li W, Zhang W, Cai C, Lu C, Gao P, Cao G, Li B, Guo X, Yang Y. Effects of Low-Ambient-Temperature Stimulation on Modifying the Intestinal Structure and Function of Different Pig Breeds. Animals (Basel) 2022; 12:ani12202740. [PMID: 36290125 PMCID: PMC9597737 DOI: 10.3390/ani12202740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Low ambient temperature resulted in the body’s cold stress response, while local wild boars in the middle-temperate zone performed better than commercial pigs. Therefore, three breeds—Large White (LW) pigs, a local Mashen (MS) pig breed and Jinfen White (JFW) pigs, a hybrid breed from wild boar—were investigated in an artificial climate chamber. The results implicated that low-ambient-temperature stimulation increased trypsin activity in duodenal chyme and promoted inflammatory response in Mashen pigs. The cold-resistance mechanism of MS pigs should be explored to reduce hogs’ stress caused by low-ambient-temperature stimulation. Abstract Ambient temperature (Ta) fluctuation is a key factor affecting the growth performance and economic returns of pigs. However, whether the response of intestinal structure and function are related to pig breeds in low Ta has not been investigated yet. In this study, Large White (LW) pigs, Jinfen White (JFW) pigs and Mashen (MS) pigs were raised in artificial climate chambers under normal Ta (25 °C) and low Ta (4 °C) for 96 h. Afterwards, the decrease in body temperature and complete blood counts (CBC) of all pigs were measured. Hematoxylin–eosin, immunohistochemical staining, qPCR and ELISA were used to investigate their intestinal mucosa integrity and inflammatory response. The results showed that MS pigs could maintain a normal body temperature and villus structure after 4 °C stimulation compared with those of LW and JFW pigs. Villus height and villus height/crypt depth of MS pigs were significantly higher than those of LW and JFW pigs at 4 °C. Low-Ta stimulation increased the digestion of carbohydrates of all pigs. Meanwhile, low Ta enhanced the activity of lipase in LW pigs and increased trypsin activity in MS and JFW pigs. Furthermore, low-Ta stimulation significantly downregulated the protein of tight junction and upregulated the mRNA expression of inflammatory cytokines in MS pigs. MS pigs also showed stronger spleen immune function at 4 °C. These results indicated that the local MS pig breed had stronger intestinal function in low Ta by producing a stronger inflammatory response, which lays the foundation for further study on the mechanism of cold tolerance in pigs.
Collapse
|
22
|
Tong Y, Wang Q, Zhang J, Yang R. Orally Administered Xylo‐Oligosaccharides (XOS) Ameliorates Diarrhea Symptoms in Mice via Intestinal Barrier Improvement and Gut Microbiota Modulation. Mol Nutr Food Res 2022; 66:e2200171. [DOI: 10.1002/mnfr.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yanjun Tong
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Qinyue Wang
- Affiliated Hospital of Jiangnan University Wuxi Jiangsu 214041 P. R. China
| | - Jieyu Zhang
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
23
|
Liu J, Wu A, Cai J, She ZG, Li H. The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Front Immunol 2022; 13:968799. [PMID: 36119048 PMCID: PMC9471422 DOI: 10.3389/fimmu.2022.968799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of metabolic syndrome and is the most common chronic liver disease in the world. The pathogenesis of NAFLD has not been fully clarified; it involves metabolic disturbances, inflammation, oxidative stress, and various forms of cell death. The “intestinal-liver axis” theory, developed in recent years, holds that there is a certain relationship between liver disease and the intestinal tract, and changes in intestinal flora are closely involved in the development of NAFLD. Many studies have found that the intestinal flora regulates the pathogenesis of NAFLD by affecting energy metabolism, inducing endotoxemia, producing endogenous ethanol, and regulating bile acid and choline metabolism. In this review, we highlighted the updated discoveries in intestinal flora dysregulation and their link to the pathogenesis mechanism of NAFLD and summarized potential treatments of NAFLD related to the gut microbiome.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Anding Wu
- Department of general surgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translation Medicine, Huanggang, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Gang She, ; Hongliang Li,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Gang She, ; Hongliang Li,
| |
Collapse
|
24
|
Stimbiotic Supplementation Alleviates Poor Performance and Gut Integrity in Weaned Piglets Induced by Challenge with E. coli. Animals (Basel) 2022; 12:ani12141799. [PMID: 35883346 PMCID: PMC9312148 DOI: 10.3390/ani12141799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the effects of stimbiotic (STB), a xylanase and xylo-oligosaccharide complex. A total of 36 male weaned pigs with initial body weights of 8.49 ± 0.10 kg were used in a 3-week experiment. The experiment was conducted in a 2 × 3 factorial arrangement (six replicates/treatment) of treatments consisting of two levels of challenge (challenge and non-challenge) and three levels of STB (0, 0.5, and 1 g/kg diet). Supplementations STB 0.5 g/kg (STB5) and STB 1 g/kg (STB10) improved the G:F (p = 0.04) in piglets challenged with STEC. STB supplementation, which also decreased (p < 0.05) the white blood cells, neutrophils, lymphocytes, and expression levels of tumor necrosis factor-alpha and interleukin-6. Supplementations STB5 and STB10 improved (p < 0.01) the lymphocytes and neutrophils in piglets challenged with STEC on 14 dpi. Additionally, supplementations STB5 and STB10 improved (p < 0.01) the tumor necrosis factor-alpha in piglets challenged with STEC on 3 dpi. Supplementations STB5 and STB10 also improved the villus height-to-crypt depth ratio (p < 0.01) in piglets challenged with STEC. Supplementation with STB reduced (p < 0.05) the expression levels of calprotectin. In conclusion, STB could alleviate a decrease of the performance, immune response, and inflammatory response induced by the STEC challenge.
Collapse
|
25
|
Supplementation of xylo-oligosaccharides to suckling piglets promotes the growth of fiber-degrading gut bacterial populations during the lactation and nursery periods. Sci Rep 2022; 12:11594. [PMID: 35804098 PMCID: PMC9270449 DOI: 10.1038/s41598-022-15963-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/01/2022] [Indexed: 12/29/2022] Open
Abstract
Modulating early-life microbial colonization through xylo-oligosacharides (XOS) supplementation represents an opportunity to accelerate the establishment of fiber-degrading microbial populations and improve intestinal health. Ninety piglets from 15 litters were orally administered once a day from d7 to d27 of lactation with either 5 mL of water (CON) or 5 mL of a solution containing 30 to 60 mg of XOS (XOS). Supplementation ceased at weaning (d28) when all piglets were fed the same commercial pre-starter diet. Growth performance did not differ between treatments during the experimental period (d7 to d40). Piglet’s fecal microbiota (n = 30) shifted significantly from the end of lactation (d27) to nursery period (d40) exhibiting an increase in microbial alpha diversity. Animals supplemented with XOS showed higher richness and abundance of fiber-degrading bacteria and short-chain fatty acid (SCFA) production at d27 and d40. Additionally, the predicted abundance of the pyruvate to butanoate fermentation pathway was increased in the XOS group at d40. These results show that supplementation of XOS to lactating piglets promotes fiber-degrading bacterial populations in their hindgut. Moreover, differences observed in the nursery period suggest that XOS can influence the microbiota in the long-term.
Collapse
|
26
|
Miao Z, Du W, Xiao C, Su C, Gou W, Shen L, Zhang J, Fu Y, Jiang Z, Wang Z, Jia X, Zheng JS, Wang H. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med 2022; 20:204. [PMID: 35701845 PMCID: PMC9199182 DOI: 10.1186/s12916-022-02402-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The interplay among the plant-based dietary pattern, gut microbiota, and cardiometabolic health is still unclear, and evidence from large prospective cohorts is rare. We aimed to examine the association of long-term and short-term plant-based dietary patterns with gut microbiota and to assess the prospective association of the identified microbial features with cardiometabolic biomarkers. METHODS Using a population-based prospective cohort study: the China Health and Nutrition Survey, we included 3096 participants from 15 provinces/megacities across China. We created an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). The average PDIs were calculated using repeat food frequency questionnaires collected in 2011 and 2015 to represent a long-term dietary pattern. Short-term dietary pattern was estimated using 3-day 24-h dietary recalls collected in 2015. Fecal samples were collected in 2015 and measured using 16S rRNA sequencing. We investigated the association of long-term and short-term plant-based dietary patterns with gut microbial diversity, taxonomies, and functional pathways using linear mixed models. Furthermore, we assessed the prospective associations between the identified gut microbiome signatures and cardiometabolic biomarkers (measured in 2018) using linear regression. RESULTS We found a significant association of short-term hPDI with microbial alpha-diversity. Both long-term and short-term plant-based diet indices were correlated with microbial overall structure, whereas long-term estimates explained more variance. Long-term and short-term PDIs were differently associated with microbial taxonomic composition, yet only microbes related to long-term estimates showed association with future cardiometabolic biomarkers. Higher long-term PDI was associated with the lower relative abundance of Peptostreptococcus, while this microbe was positively correlated with the high-sensitivity C-reactive protein and inversely associated with high-density lipoprotein cholesterol. CONCLUSIONS We found shared and distinct gut microbial signatures of long-term and short-term plant-based dietary patterns. The identified microbial genera may provide insights into the protective role of long-term plant-based dietary pattern for cardiometabolic health, and replication in large independent cohorts is needed.
Collapse
Affiliation(s)
- Zelei Miao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
| | - Wenwen Du
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Congmei Xiao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Chang Su
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Wanglong Gou
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Luqi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiguo Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhihong Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Xiaofang Jia
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China.
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Huijun Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China.
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China.
| |
Collapse
|
27
|
Pang J, Zhou X, Ye H, Wu Y, Wang Z, Lu D, Wang J, Han D. The High Level of Xylooligosaccharides Improves Growth Performance in Weaned Piglets by Increasing Antioxidant Activity, Enhancing Immune Function, and Modulating Gut Microbiota. Front Nutr 2021; 8:764556. [PMID: 34938759 PMCID: PMC8685398 DOI: 10.3389/fnut.2021.764556] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the effects of the high level of xylooligosaccharides (XOS) on growth performance, antioxidant capability, immune function, and fecal microbiota in weaning piglets. The results showed that 28 d body weight exhibited linear and quadratic increases (P < 0.05) with increasing dietary XOS level, as well as average daily feed intake (ADFI) on d 15–28, average daily gain (ADG) on d 15–28 and 1–28. There was a linear decrease (P < 0.05) between XOS levels and feed conversion rate (FCR) on d 1–14 and 1–28. Additionally, glutathione peroxidase (GSH-Px) showed a linear increase (P < 0.05), while the malondialdehyde (MDA) level decreased linearly and quadratically (P < 0.05) with the increasing dietary level of XOS. Moreover, the XOS treatments markedly increased the levels of immunoglobulin A (Ig A) (linear, P < 0.05; quadratic, P < 0.05), IgM (quadratic, P < 0.05), IgG (linear, P < 0.05), and anti-inflammatory cytokine interleukin-10 (IL-10) (quadratic, P < 0.05) in serum, while the IL-1β (linear, P < 0.05; quadratic, P < 0.05) and IL-6 (linear, P < 0.05) decreased with increasing level of XOS. Microbiota analysis showed that dietary supplementation with 1.5% XOS decreased (P < 0.05) the α-diversity and enriched (P < 0.05) beneficial bacteria including Lactobacillus, Bifidobacterium, and Fusicatenibacter at the genus level, compared with the control group. Importantly, linearly increasing responses (P < 0.05) to fecal acetate, propionate, butyrate, and total short-chain fatty acids (SCFAs) were observed with increasing level of XOS. Spearman correlation analyses found that Lactobacillus abundance was positively correlated with ADG, acetate, propionate, and IgA (P < 0.05), but negatively correlated with IL-1β (P < 0.05). Bifidobacterium abundance was positively related with ADFI, total SCFAs, IgG, and IL-10 (P < 0.05), as well as g_Fusicatenibacter abundance with ADFI, total SCFAs, and IL-10. However, Bifidobacterium and Fusicatenibacter abundances were negatively associated with MDA levels (P < 0.05). In summary, dietary supplementation with XOS can improve the growth performance in weaning piglets by increasing antioxidant capability, enhancing immune function, and promoting beneficial bacteria counts.
Collapse
Affiliation(s)
- Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingjian Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Ye
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Cai Q, Hu C, Tang W, Jiang H, Geng M, Huang X, Kong X. Dietary Addition With Clostridium butyricum and Xylo-Oligosaccharides Improves Carcass Trait and Meat Quality of Huanjiang Mini-Pigs. Front Nutr 2021; 8:748647. [PMID: 34805243 PMCID: PMC8604159 DOI: 10.3389/fnut.2021.748647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to investigate the effects of dietary addition with Clostridium butyricum (CB) and xylo-oligosaccharides (XOS) on growth performance, carcass trait, and meat quality of pigs. A total of 128 Huanjiang mini-pigs with an initial body weight of 9.5 ± 0.1 kg were randomly assigned to one of four groups. The pigs in control (Con) group were fed a basal diet and those in the experimental groups were fed the basal diet supplemented with 0.05% CB (CB group), 0.02% XOS (XOS group), or 0.05% CB + 0.02% XOS (CB + XOS group). Eight replicate pens were used per group with four pigs per pen. On days 28, 56, and 84 of the trial, the growth performance, carcass trait, and meat quality were evaluated. The results showed that dietary CB addition decreased (p < 0.05) the average daily gain and increased (p < 0.05) the ratio of feed intake to body weight gain at day 28 of the trial; CB, XOS, and CB + XOS addition increased (p < 0.05) the backfat thickness at day 84 of the trial compared with the Con group. Dietary CB, XOS, and CB + XOS addition increased (p < 0.05) the pH45min, while decreased (p < 0.05) the marbling score at day 28 of the trial compared with the Con group. Dietary CB + XOS addition increased (p < 0.05) the contents of Ala, Arg, Asp, Gly, His, Leu, Lys, Met, Phe, Ser, Thr, Tyr, and Val in muscle at day 56 of the trial. At day 84 of the trial, dietary CB addition increased the contents of nonessential amino acid (NEAA), total amino acid (TAA), and monounsaturated fatty acid (MUFA), while decreased (p < 0.05) the percentage of C20:1 in muscle compared with the Con group. Collectively, dietary addition with 0.05% CB and 0.02% XOS could not alter the growth performance, but increase carcass trait, meat quality, and muscular nutrient contents in Huanjiang mini-pigs.
Collapse
Affiliation(s)
- Qiaoli Cai
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Chengjun Hu
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wu Tang
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huijiao Jiang
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Meimei Geng
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| |
Collapse
|
29
|
Zhu YT, Yue SM, Li RT, Qiu SX, Xu ZY, Wu Y, Yao J, Zuo Y, Li KJ, Li Y. Prebiotics Inulin Metabolism by Lactic Acid Bacteria From Young Rabbits. Front Vet Sci 2021; 8:719927. [PMID: 34660762 PMCID: PMC8517115 DOI: 10.3389/fvets.2021.719927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Inulin as a commercial prebiotic could selectively promote the growth of beneficial gut microbes such as lactic acid bacteria (LAB). Whether LAB in rabbit gut possesses the capability to metabolize and utilize inulin is little known. Therefore, this study recovered 94 LAB strains from neonate rabbits and found that only 29% (28/94) could metabolize inulin with both species- and strain-specificity. The most vigorous inulin-degrading strain, Lacticaseibacillus paracasei YT170, could efficiently utilize both short-chain and long-chain components through thin-layer chromatography analysis. From genomic analysis, a predicted fosRABCDXE operon encoding putative cell wall-anchored fructan β-fructosidase, five fructose-transporting proteins and a pts1BCA operon encoding putative β-fructofuranosidase and sucrose-specific IIBCA components were linked to long-chain and short-chain inulin utilization respectively. This study provides a mechanistic rationale for effect of inulin administration on rabbits and lays a foundation for synbiotic applications aimed at modulating the intestinal microbiota of young rabbits.
Collapse
Affiliation(s)
- Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Shuang-Ming Yue
- Department of Bioengineering, Sichuan Water Conservancy College, Chengdu, China
| | - Rui-Tong Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Shi-Xiu Qiu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Zhen-Ying Xu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yi Wu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jin Yao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Ke-Juan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yang Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
30
|
Tang S, Zhang S, Zhong R, Su D, Xia B, Liu L, Chen L, Zhang H. Time-course alterations of gut microbiota and short-chain fatty acids after short-term lincomycin exposure in young swine. Appl Microbiol Biotechnol 2021; 105:8441-8456. [PMID: 34651253 DOI: 10.1007/s00253-021-11627-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that antibiotic administration causes gut injury, negatively affecting nutrient digestion, immune regulation, and colonization resistance against pathogens due to the disruption of gut microbiota. However, the time-course effects of therapeutic antibiotics on alterations of gut microbes and short-chain fatty acids (SCFAs) in young swine are still unknown. In this study, twenty piglets were assigned into two groups and fed commercial diets with or without lincomycin in the first week for a 28-day trial period. Results showed that 1-week lincomycin exposure (LE) did reduce the body weight on day 14 (p = 0.0450) and 28 (p = 0.0362). The alpha-diversity notably reduced after 1-week LE, and then gradually raised and reached the control group level in the second week on cessation of LE, indicated by the variation of Sobs, Chao, Shannon, and ACE index (p < 0.05). Beta-diversity analysis revealed that the distinct microbial cluster existed persistently for the whole trial period between two groups (p < 0.001). The relative abundance of most microbes including fiber-degrading (e.g., Agathobacter and Coprococcus), beneficial (e.g., Lactobacillus and Mitsuokella), or pathogenic bacteria (e.g., Terrisporobacter and Lachnoclostridium) decreased (LDA score > 3), and the concentration of SCFAs also diminished in the feces of 1-week lincomycin-administrated young swine, indicating that therapeutic LE killed most bacteria and reduced SCFA production with gut dysbiosis occurring. After the LE stopped, the state of gut dysbiosis gradually attenuated and formed new gut-microbe homeostasis distinct from microbial homeostasis of young pigs unexposed to lincomycin. The increased presence of potential pathogens, such as Terrisporobacter, Negativibacillus, and Escherichia-Shigella, and decreased beneficial bacteria, such as Lactobacillus and Agathobacter, were observed in new homeostasis reshaped by short-lincomycin administration (LDA score > 3 or p < 0.05), adversely affecting gut development and health of young pigs. Collectively, these results suggested that severe disruption of the commensal microbiota occurred after short-term LE or termination of LE in young swine. KEY POINTS: • Therapeutic lincomycin exposure induced gut dysbiosis, killing most bacteria and reducing short-chain fatty acid production. • Gut dysbiosis gradually attenuated and formed new homeostasis after lincomycin exposure stopped. • The new homeostasis, increased Escherichia-Shigella etc. and decreased Lactobacillus etc., was potentially harmful to gut health.
Collapse
Affiliation(s)
- Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Dan Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
31
|
Sun Q, Wang ZL, Liu XC, Ji YC, He Y, Ai Q, Li LQ. Effect of the course of treatment with broad-spectrum antibiotics on intestinal flora and short-chain fatty acids in feces of very low birth weight infants: a prospective study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1008-1014. [PMID: 34719415 DOI: 10.7499/j.issn.1008-8830.2107103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To study the effect of the course of treatment with broad-spectrum antibiotics on intestinal flora and short-chain fatty acids (SCFAs) in feces of very low birth weight (VLBW) infants. METHODS A total of 29 VLBW infants who were admitted to the Neonatal Diagnosis and Treatment Center of Children's Hospital Affiliated to Chongqing Medical University from June to December 2020 were enrolled as subjects for this prospective study. According to the course of treatment with broad-spectrum antibiotics, they were divided into two groups: ≤7 days (n=9) and >7 days (n=20). Fecal samples were collected on days 14 and 28 of hospitalization, and 16S rDNA high-throughput sequencing and gas chromatography-mass spectrometry were used to analyze the flora and SCFAs in fecal samples. RESULTS There was a significant reduction in Chao index of the intestinal flora in the ≤7 days group and the >7 days group from week 2 to week 4 (P<0.05). In the ≤7 days group, there were significant increases in the proportions of Firmicutes and Clostridium_sensu_stricto_1 and a significant reduction in the proportion of Proteobacteria from week 2 to week 4 (P<0.05). At week 4, compared with the ≤7 days group, the >7 days group had significant reductions in the proportions of Firmicutes and Clostridium_sensu_stricto_1 and a significant increase in the proportion of Proteobacteria (P<0.05), as well as significant reductions in the content of isobutyric acid and valeric acid (P<0.05). CONCLUSIONS The course of treatment with broad-spectrum antibiotics can affect the abundance, colonization, and evolution of intestinal flora and the content of their metabolites SCFAs in VLBW infants. The indication and treatment course for broad-spectrum antibiotics should be strictly controlled in clinical practice.
Collapse
Affiliation(s)
- Qian Sun
- Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Li L-Q, )
| | - Zheng-Li Wang
- Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Li L-Q, )
| | - Xiao-Chen Liu
- Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Li L-Q, )
| | - Yan-Chun Ji
- Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Li L-Q, )
| | - Yu He
- Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Li L-Q, )
| | - Qing Ai
- Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Li L-Q, )
| | - Lu-Quan Li
- Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Li L-Q, )
| |
Collapse
|
32
|
Chen Y, Xie Y, Ajuwon KM, Zhong R, Li T, Chen L, Zhang H, Beckers Y, Everaert N. Xylo-Oligosaccharides, Preparation and Application to Human and Animal Health: A Review. Front Nutr 2021; 8:731930. [PMID: 34568407 PMCID: PMC8458953 DOI: 10.3389/fnut.2021.731930] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023] Open
Abstract
Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have great prebiotic potential. XOS are the degraded products of xylan prepared via chemical, physical or enzymatic degradation. They are mainly composed of xylose units linked by β-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such as excellent water solubility and high temperature resistance, but also have a variety of functional biological activities including anti-inflammation, antioxidative, antitumor, antimicrobial properties and so on. Numerous studies have revealed in the recent decades that XOS can be applied to many food and feed products and exert their nutritional benefits. XOS have also been demonstrated to reduce the occurrence of human health-related diseases, improve the growth and resistance to diseases of animals. These effects open a new perspective on XOS potential applications for human consumption and animal production. Herein, this review aims to provide a general overview of preparation methods for XOS, and will also discuss the current application of XOS to human and animal health field.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Yining Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Kolapo M Ajuwon
- Departments of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Li
- Hunan United Bio-Technology Co., Changsha, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| |
Collapse
|
33
|
In-Feed Supplementation of Resin Acid-Enriched Composition Modulates Gut Microbiota, Improves Growth Performance, and Reduces Post-Weaning Diarrhea and Gut Inflammation in Piglets. Animals (Basel) 2021; 11:ani11092511. [PMID: 34573477 PMCID: PMC8472311 DOI: 10.3390/ani11092511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The weaning process represents a delicate phase for piglets, and is often characterized by lower feed intake, lower weight gain, diarrhea, and ultimately increased mortality. We aimed to determine the effects of RAC supplementation in diets on improving piglet growth and vitality, reducing post-weaning diarrhea, and enhancing gut health. In a 2 × 2 × 2 factorial experiment, we selected forty sows and their piglets. Piglets were followed until seven weeks of age. There were no significant differences found between RAC treated and control piglets until weaning (p = 0.26). However, three weeks after weaning, RAC treated piglets had higher body weight and average daily growth (ADG) than the control piglets (p = 0.003). In addition, the piglets that received RAC after weaning, irrespective of mother or prior creep feed treatment, had lower post-weaning diarrhea (PWD) and fecal myeloperoxidase (MPO) level than control piglets. Gut microbiota analysis in post-weaning piglets revealed that RAC supplementation significantly increased Lachnospiraceae_unclassified, Blautia, Butyricicoccus, Gemmiger and Holdemanella, and decreased Bacteroidales_unclassified. Overall, RAC supplementation to piglets modulated post-weaning gut microbiota, improved growth performance after weaning, reduced post-weaning diarrhea and reduced fecal myeloperoxidase levels. We therefore consider RAC to be a potential natural feed supplement to prevent enteric infections and improve growth performance in weaning piglets.
Collapse
|
34
|
Chen Y, Xie Y, Zhong R, Han H, Liu L, Chen L, Zhang H, Beckers Y, Everaert N. Effects of graded levels of xylo-oligosaccharides on growth performance, serum parameters, intestinal morphology, and intestinal barrier function in weaned piglets. J Anim Sci 2021; 99:skab183. [PMID: 34097723 PMCID: PMC8280928 DOI: 10.1093/jas/skab183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to investigate the effects of xylo-oligosaccharides (XOSs) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to four dietary treatments in a 28-d trial, including a control (CON) diet and three diets with XOS supplementation at the concentration of 100 (XOS100), 500 (XOS500), and 1,000 (XOS1000) mg/kg. There were four replicates per treatment with 15 pigs per pen. From day 1 to 14, there were no differences (P > 0.05) in average daily gain (ADG), average daily feed intake, and gain to feed ratio (G:F) during the different treatments. The different doses of XOSs showed a quadratic effect on BW on day 28, ADG, and G:F on day 1 to 28 of piglets (P < 0.05). From day 15 to 28, ADG of pigs fed the XOS500 diet was higher (P < 0.05) than pigs fed the CON diet. During the overall period (day 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG, and G:F than pigs fed the CON diet (P < 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity, total superoxide dismutase and catalase levels, and lower malondialdehyde levels on days 14 and 28 (P < 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on days 14 and 28 (P < 0.05). However, serum immunoglobulin A and immunoglobulin M were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum in comparison with the CON and XOS1000 groups. Moreover, the XOS500 group significantly elevated the expression levels of occludin and zonula occludens protein-1 in the ileum compared with the CON group. The ileal interleukin (IL)-1β, IL-8, and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 groups were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than in the CON group. In conclusion, XOSs have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure, and intestinal barrier function in weaned piglets.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, 5030 Gembloux, Belgium
| | - Yining Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yves Beckers
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, 5030 Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, 5030 Gembloux, Belgium
| |
Collapse
|
35
|
Su J, Zhang W, Ma C, Xie P, Blachier F, Kong X. Dietary Supplementation With Xylo-oligosaccharides Modifies the Intestinal Epithelial Morphology, Barrier Function and the Fecal Microbiota Composition and Activity in Weaned Piglets. Front Vet Sci 2021; 8:680208. [PMID: 34222403 PMCID: PMC8241929 DOI: 10.3389/fvets.2021.680208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The present study determined the effects of dietary xylo-oligosaccharides (XOS) supplementation on the morphology of jejunum and ileum epithelium, fecal microbiota composition, metabolic activity, and expression of genes related to colon barrier function. A total of 150 piglets were randomly assigned to one of five groups: a blank control group (receiving a basal diet), three XOS groups (receiving the basal diet supplemented with 100, 250, and 500 g/t XOS, respectively), as well as a positive control group, used as a matter of comparison, that received the basal diet supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3,000 mg/kg ZnO. The trial was carried out for 56 days. The results showed that the lowest dose tested (100 g/t XOS) increased (P < 0.05) the ileal villus height, the relative amount of Lactobacillus and Bifidobacterium spp., and the concentration of acetic acid and short-chain fatty acid in feces when compared with the blank control group. In conclusion, dietary 100 g/t XOS supplementation modifies the intestinal ecosystem in weaned piglets in an apparently overall beneficial way.
Collapse
Affiliation(s)
- Jiayi Su
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wanghong Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Peifeng Xie
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
36
|
Ding H, Zhao X, Azad MAK, Ma C, Gao Q, He J, Kong X. Dietary supplementation with Bacillus subtilis and xylo-oligosaccharides improves growth performance and intestinal morphology and alters intestinal microbiota and metabolites in weaned piglets. Food Funct 2021; 12:5837-5849. [PMID: 34018533 DOI: 10.1039/d1fo00208b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study was conducted to investigate the effects of dietary supplementation with Bacillus subtilis (BS) and xylo-oligosaccharides (XOS) on growth performance, intestinal morphology, intestinal microbial community, and metabolites of weaned piglets. One hundred and twenty-eight piglets were randomly allocated to one of four groups, including a control group (basal diet), BS group (basal diet + 500 g t-1 BS), XOS group (basal diet + 250 g t-1 XOS), and BS + XOS group (basal diet + 500 g t-1 BS + 250 g t-1 XOS). Dietary BS and XOS were mixed with the basal diet. All groups had eight replicates with four piglets per replicate. The experiment lasted for 42 days. The results showed that dietary XOS supplementation increased the ADFI and ADG, while decreasing the F/G. Dietary BS or XOS supplementation improved the intestinal morphology of weaned piglets by increasing the villus height and the ratio of villus height to crypt depth in the ileum. In addition, dietary XOS supplementation increased the concentrations of butyrate in the ileum and tryptamine and spermidine in the colon, while decreasing the concentration of indole in the colon compared with the control group. Dietary BS supplementation increased the colonic concentrations of butyrate, tryptamine, and cadaverine, while decreasing the concentration of skatole compared with the control group. The LEfSe analysis identified 16 biomarkers in the ileum of the BS group. The intestinal microbiota alterations of weaned piglets indicated that dietary BS or XOS supplementation could improve intestinal health by increasing the gut microbial diversity and altering the relative abundances of different bacterial species. Moreover, Spearman's correlation analysis revealed the potential link between gut microbiota alterations and metabolite changes of weaned piglets. These findings suggest that dietary XOS supplementation could alone improve the growth performance, while dietary BS or XOS and BS with XOS supplementation could influence intestinal health by altering the intestinal morphology, microbial community, and metabolites of weaned piglets. Meanwhile, there were interactions between BS and XOS in intestinal metabolites.
Collapse
Affiliation(s)
- Hao Ding
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China. and College of Animal Science and Technology, Hunan Agricultural University, Hunan Co-Innovation of Animal Production Safety, Changsha, Hunan 410128, China
| | - Xichen Zhao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Md Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Cui Ma
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Qiankun Gao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Co-Innovation of Animal Production Safety, Changsha, Hunan 410128, China
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China. and College of Animal Science and Technology, Hunan Agricultural University, Hunan Co-Innovation of Animal Production Safety, Changsha, Hunan 410128, China
| |
Collapse
|