1
|
Halbedel S, Wamp S, Lachmann R, Holzer A, Pietzka A, Ruppitsch W, Wilking H, Flieger A. High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany. Genome Med 2024; 16:115. [PMID: 39375806 PMCID: PMC11457394 DOI: 10.1186/s13073-024-01389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Foodborne infections such as listeriosis caused by the bacterium Listeria monocytogenes represent a significant public health concern, particularly when outbreaks affect many individuals over prolonged time. Systematic collection of pathogen isolates from infected patients, whole genome sequencing (WGS) and phylogenetic analyses allow recognition and termination of outbreaks after source identification and risk profiling of abundant lineages. METHODS We here present a multi-dimensional analysis of > 1800 genome sequences from clinical L. monocytogenes isolates collected in Germany between 2018 and 2021. Different WGS-based subtyping methods were used to determine the population structure with its main phylogenetic sublineages as well as for identification of disease clusters. Clinical frequencies of materno-foetal and brain infections and in vitro infection experiments were used for risk profiling of the most abundant sublineages. These sublineages and large disease clusters were further characterised in terms of their genetic and epidemiological properties. RESULTS The collected isolates covered 62% of all notified cases and belonged to 188 infection clusters. Forty-two percent of these clusters were active for > 12 months, 60% generated cases cross-regionally, including 11 multinational clusters. Thirty-seven percent of the clusters were caused by sequence type (ST) ST6, ST8 and ST1 clones. ST1 was identified as hyper- and ST8, ST14, ST29 as well as ST155 as hypovirulent, while ST6 had average virulence potential. Inactivating mutations were found in several virulence and house-keeping genes, particularly in hypovirulent STs. CONCLUSIONS Our work presents an in-depth analysis of the genomic characteristics of L. monocytogenes isolates that cause disease in Germany. It supports prioritisation of disease clusters for epidemiological investigations and reinforces the need to analyse the mechanisms underlying hyper- and hypovirulence.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
- Institute for Medical Microbiology and Hospital Hygiene, Otto Von Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany
| | - Raskit Lachmann
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Alexandra Holzer
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Beethovenstraße 6, Graz, 8010, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Währingerstrasse 25a, Vienna, 1090, Austria
| | - Hendrik Wilking
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
| |
Collapse
|
2
|
Ishikawa F, Homma M, Tanabe G, Uchihashi T. Protein degradation by a component of the chaperonin-linked protease ClpP. Genes Cells 2024; 29:695-709. [PMID: 38965067 PMCID: PMC11448347 DOI: 10.1111/gtc.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
In cells, proteins are synthesized, function, and degraded (dead). Protein synthesis (spring) is important for the life of proteins. However, how proteins die is equally important for organisms. Proteases are secreted from cells and used as nutrients to break down external proteins. Proteases degrade unwanted and harmful cellular proteins. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for cellular protein degradation. Prokaryotes, such as bacteria, have similar protein degradation systems. In this review, we describe the structure and function of the ClpXP complex in the degradation system, which is an ATP-dependent protease in bacterial cells, with a particular focus on ClpP.
Collapse
Affiliation(s)
| | - Michio Homma
- Department of Biomolecular Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
| | | | - Takayuki Uchihashi
- Division of Material Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
3
|
Ishikawa F, Uchida C, Tanabe G. Proteolytic Regulation in the Biosynthesis of Natural Product Via a ClpP Protease System. ACS Chem Biol 2024; 19:1794-1802. [PMID: 39096241 DOI: 10.1021/acschembio.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Protein degradation is a tightly regulated biological process that maintains bacterial proteostasis. ClpPs are a highly conserved family of serine proteases that associate with the AAA + ATPase (an ATPase associated with diverse cellular activities) to degrade protein substrates. Identification and biochemical characterization of protein substrates for the AAA + ATPase-dependent ClpP degradation systems are considered essential for gaining an understanding of the molecular operation of the complex ClpP degradation machinery. Consequently, expanding the repertoire of protein substrates that can be degraded in vitro and within bacterial cells is necessary. Here, we report that AAA + ATPase-ClpP proteolytic complexes promote degradation of the secondary metabolite surfactin synthetases SrfAA, SrfAB, and SrfAC in Bacillus subtilis. On the basis of in vitro and in-cell studies coupled with activity-based protein profiling of nonribosomal peptide synthetases, we showed that SrfAC is targeted to the ClpC-ClpP proteolytic complex, whereas SrfAA is hydrolyzed not only by the ClpC-ClpP proteolytic complex but also by different ClpP proteolytic complexes. Furthermore, SrfAB does not appear to be a substrate for the ClpC-ClpP proteolytic complex, thereby implying that other ClpP proteolytic complexes are involved in the degradation of this surfactin synthetase. Natural product biosynthesis is regulated by the AAA + ATPase-ClpP degradation system, indicating that protein degradation plays a role in the regulatory stages of biosynthesis. However, few studies have examined the regulation of protein degradation levels. Furthermore, SrfAA, SrfAB, and SrfAC were identified as protein substrates for AAA + ATPase-ClpP degradation systems, thereby contributing to a better understanding of the complex ClpP degradation machinery.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Chiharu Uchida
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
4
|
Gurung V, Biswas S, Biswas I. Diverse nature of ClpX degradation motifs in Streptococcus mutans. Microbiol Spectr 2024; 12:e0345723. [PMID: 38051052 PMCID: PMC10782952 DOI: 10.1128/spectrum.03457-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cytoplasmic Clp-related proteases play a major role in maintaining cellular proteome in bacteria. ClpX/P is one such proteolytic complex that is important for conserving protein homeostasis. In this study, we investigated the role of ClpX/P in Streptococcus mutans, an important oral pathogen. We identified several putative substrates whose cellular levels are regulated by ClpX/P in S. mutans and subsequently discovered several recognition motifs that are critical for degradation. Our study is the first comprehensive analysis of determining ClpX/P motifs in streptococci. We believe that identifying the substrates that are regulated by ClpX/P will enhance our understanding about virulence regulation in this important group of pathogens.
Collapse
Affiliation(s)
- Vivek Gurung
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Wang C, Luo J, He W, Huang A, Lu W, Lin Y, Ou Y. Genome-wide identification and expression analysis of GDP-D-mannose pyrophosphorylase and KATANIN in Corymbia citriodora. FRONTIERS IN PLANT SCIENCE 2023; 14:1308354. [PMID: 38186597 PMCID: PMC10766700 DOI: 10.3389/fpls.2023.1308354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
The GDP-D-mannose pyrophosphorylase (GMP) and microtubule severing enzyme KATANIN (KTN) are crucial for wood formation. Although functional identification has been performed in Arabidopsis, few comprehensive studies have been conducted in forest trees. In this study, we discovered 8 CcGMP and 4 CcKTN genes by analyzing the whole genome sequence of Corymbia citriodora. The chromosomal location, genome synteny, phylogenetic relationship, protein domain, motif identification, gene structure, cis-acting regulatory elements, and protein-interaction of CcGMP and CcKTN were all investigated. KTN has just one pair of segmentally duplicated genes, while GMP has no duplication events. According to gene structure, two 5' UTRs were identified in CcGMP4. Furthermore, there is no protein-interaction between KTN and GMP. Based on real-time PCR, the expression of most genes showed a positive connection with DBH diameters. In addition, the expression of CcGMP4 and CcKTN4 genes were greater in different size tree, indicating that these genes are important in secondary xylem production. Overall, this findings will enhance our comprehension of the intricacy of CcGMP&CcKTN across diverse DBHs and furnish valuable insights for future functional characterization of specific genes in C. citriodora.
Collapse
Affiliation(s)
- Chubiao Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jianzhong Luo
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wenliang He
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Anying Huang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wanhong Lu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yan Lin
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yuduan Ou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
6
|
Wang B, van der Kloet F, Hamoen LW. Induction of the CtsR regulon improves Xylanase production in Bacillus subtilis. Microb Cell Fact 2023; 22:231. [PMID: 37946188 PMCID: PMC10633939 DOI: 10.1186/s12934-023-02239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The bacterium Bacillus subtilis is extensively used for the commercial production of enzymes due to its efficient protein secretion capacity. However, the efficiency of secretion varies greatly between enzymes, and despite many years of research, optimization of enzyme production is still largely a matter of trial-and-error. Genome-wide transcriptome analysis seems a useful tool to identify relevant secretion bottlenecks, yet to this day, only a limited number of transcriptome studies have been published that focus on enzyme secretion in B. subtilis. Here, we examined the effect of high-level expression of the commercially important enzyme endo-1,4-β-xylanase XynA on the B. subtilis transcriptome using RNA-seq. RESULTS Using the novel gene-set analysis tool GINtool, we found a reduced activity of the CtsR regulon when XynA was overproduced. This regulon comprises several protein chaperone genes, including clpC, clpE and clpX, and is controlled by transcriptional repression. CtsR levels are directly controlled by regulated proteolysis, involving ClpC and its cognate protease ClpP. When we abolished this negative feedback, by inactivating the repressor CtsR, the XynA production increased by 25%. CONCLUSIONS Overproduction of enzymes can reduce the pool of Clp protein chaperones in B. subtilis, presumably due to negative feedback regulation. Breaking this feedback can improve enzyme production yields. Considering the conserved nature of Clp chaperones and their regulation, this method might benefit high-yield enzyme production in other organisms.
Collapse
Affiliation(s)
- Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Frans van der Kloet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Halbedel S, Sperle I, Lachmann R, Kleta S, Fischer MA, Wamp S, Holzer A, Lüth S, Murr L, Freitag C, Espenhain L, Stephan R, Pietzka A, Schjørring S, Bloemberg G, Wenning M, Al Dahouk S, Wilking H, Flieger A. Large Multicountry Outbreak of Invasive Listeriosis by a Listeria monocytogenes ST394 Clone Linked to Smoked Rainbow Trout, 2020 to 2021. Microbiol Spectr 2023; 11:e0352022. [PMID: 37036341 PMCID: PMC10269727 DOI: 10.1128/spectrum.03520-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Whole-genome sequencing (WGS) has revolutionized surveillance of infectious diseases. Disease outbreaks can now be detected with high precision, and correct attribution of infection sources has been improved. Listeriosis, caused by the bacterium Listeria monocytogenes, is a foodborne disease with a high case fatality rate and a large proportion of outbreak-related cases. Timely recognition of listeriosis outbreaks and precise allocation of food sources are important to prevent further infections and to promote public health. We report the WGS-based identification of a large multinational listeriosis outbreak with 55 cases that affected Germany, Austria, Denmark, and Switzerland during 2020 and 2021. Clinical isolates formed a highly clonal cluster (called Ny9) based on core genome multilocus sequence typing (cgMLST). Routine and ad hoc investigations of food samples identified L. monocytogenes isolates from smoked rainbow trout filets from a Danish producer grouping with the Ny9 cluster. Patient interviews confirmed consumption of rainbow trout as the most likely infection source. The Ny9 cluster was caused by a MLST sequence type (ST) ST394 clone belonging to molecular serogroup IIa, forming a distinct clade within molecular serogroup IIa strains. Analysis of the Ny9 genome revealed clpY, dgcB, and recQ inactivating mutations, but phenotypic characterization of several virulence-associated traits of a representative Ny9 isolate showed that the outbreak strain had the same pathogenic potential as other serogroup IIa strains. Our report demonstrates that international food trade can cause multicountry outbreaks that necessitate cross-border outbreak collaboration. It also corroborates the relevance of ready-to-eat smoked fish products as causes for listeriosis. IMPORTANCE Listeriosis is a severe infectious disease in humans and characterized by an exceptionally high case fatality rate. The disease is transmitted through consumption of food contaminated by the bacterium Listeria monocytogenes. Outbreaks of listeriosis often occur but can be recognized and stopped through implementation of whole-genome sequencing-based pathogen surveillance systems. We here describe the detection and management of a large listeriosis outbreak in Germany and three neighboring countries. This outbreak was caused by rainbow trout filet, which was contaminated by a L. monocytogenes clone belonging to sequence type ST394. This work further expands our knowledge on the genetic diversity and transmission routes of an important foodborne pathogen.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ida Sperle
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Program, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Raskit Lachmann
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Sylvia Kleta
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin A. Fischer
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Alexandra Holzer
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Stefanie Lüth
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Larissa Murr
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Christin Freitag
- Institute for Food of Animal Origin, Rhineland–Palatinate State Investigation Office, Koblenz, Germany
| | - Laura Espenhain
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Graz, Austria
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Guido Bloemberg
- Swiss National Center for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Switzerland
| | - Mareike Wenning
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Sascha Al Dahouk
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hendrik Wilking
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Antje Flieger
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
8
|
Lee S, Seo S, Sul S, Jeong DW, Lee JH. Genomic insight into the salt tolerance and proteolytic activity of Bacillus subtilis. FEMS Microbiol Lett 2023; 370:fnad105. [PMID: 37816668 DOI: 10.1093/femsle/fnad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
We assessed the salt tolerance and proteolytic activity of 40 genome-published Bacillus subtilis strains isolated from fermented Korean foods to illuminate the genomic background behind the functionality of B. subtilis in high-salt fermentation. On the basis of the salt tolerance and phenotypic proteolytic activity of the 40 strains, we selected five strains exhibiting different phenotypic characteristics. Comparative genomic analyses of these five strains provided genomic insight into the salt tolerance and proteolytic activity of B. subtilis. Two-component system (TCS) genes annotated as ybdGJK and laterally acquired authentic ATP-binding cassette (ABC) transporter system genes of tandem repeat structure might contribute to increase salt tolerance. The additional possession of gene homologs for CAAX protease family proteins and components of Clp (caseinolytic protease) complex, ATP-dependent Clp proteolytic subunit ClpP and AAA+ (ATPases associated with diverse cellular Activities) family ATPases, might determine the proteolytic activity of B. subtilis. This study established the scientific foundation for the viability and functionality of B. subtilis in high-salt fermentation.
Collapse
Affiliation(s)
- Sugyeong Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sumin Seo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sooyoung Sul
- Division of Sports Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
9
|
Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis Treatment. Pharmaceutics 2022; 14:pharmaceutics14091956. [PMID: 36145704 PMCID: PMC9502522 DOI: 10.3390/pharmaceutics14091956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Acyldepsipeptides (ADEPs) are a new class of emerging antimicrobial peptides (AMPs), which are currently explored for treatment of pathogenic infections, including tuberculosis (TB). These cyclic hydrophobic peptides have a unique bacterial target to the conventional anti-TB drugs, and present a therapeutic window to overcome Mycobacterium Tuberculosis (M. tb) drug resistance. ADEPs exerts their antibacterial activity on M. tb strains through activation of the protein homeostatic regulatory protease, the caseinolytic protease (ClpP1P2). ClpP1P2 is normally regulated and activated by the ClpP-ATPases to degrade misfolded and toxic peptides and/or short proteins. ADEPs bind and dysregulate all the homeostatic capabilities of ClpP1P2 while inducing non-selective proteolysis. The uncontrolled proteolysis leads to M. tb cell death within the host. ADEPs analogues that have been tested possess cytotoxicity and poor pharmacokinetic and pharmacodynamic properties. However, these can be improved by drug design techniques. Moreover, the use of nanomaterial in conjunction with ADEPs would yield effective synergistic effect. This new mode of action has potential to combat and eradicate the extensive multi-drug resistance (MDR) problem that is currently faced by the public health pertaining bacterial infections, especially TB.
Collapse
|
10
|
Zhang A, Lebrun R, Espinosa L, Galinier A, Pompeo F. PrkA is an ATP-dependent protease that regulates sporulation in Bacillus subtilis. J Biol Chem 2022; 298:102436. [PMID: 36041628 PMCID: PMC9512850 DOI: 10.1016/j.jbc.2022.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis, sporulation is a sequential and highly regulated process. Phosphorylation events by histidine kinases are key points in the phosphorelay that initiates sporulation, but serine/threonine protein kinases also play important auxiliary roles in this regulation. PrkA has been proposed to be a serine protein kinase expressed during the initiation of sporulation and involved in this differentiation process. Additionally, the role of PrkA in sporulation has been previously proposed to be mediated via the transition phase regulator ScoC, which in turn regulates the transcriptional factor σK and its regulon. However, the kinase activity of PrkA has not been clearly demonstrated, and neither its autophosphorylation nor phosphorylated substrates have been unambiguously established in B. subtilis. We demonstrated here that PrkA regulation of ScoC is likely indirect. Following bioinformatic homology searches, we revealed sequence similarities of PrkA with the ATPases associated with diverse cellular activities ATP-dependent Lon protease family. Here, we showed that PrkA is indeed able to hydrolyze α-casein, an exogenous substrate of Lon proteases, in an ATP-dependent manner. We also showed that this ATP-dependent protease activity is essential for PrkA function in sporulation since mutation in the Walker A motif leads to a sporulation defect. Furthermore, we found that PrkA protease activity is tightly regulated by phosphorylation events involving one of the Ser/Thr protein kinases of B. subtilis, PrkC. Taken together, our results clarify the key role of PrkA in the complex process of B. subtilis sporulation.
Collapse
Affiliation(s)
- Ao Zhang
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Régine Lebrun
- Plateforme Protéomique de l'IMM, Marseille Protéomique (MaP), CNRS FR 3479, Aix-Marseille Université, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
11
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mumtaz S, Ali S, Mumtaz S, Mughal TA, Tahir HM, Shakir HA. Chitosan conjugated silver nanoparticles: the versatile antibacterial agents. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
14
|
The transcription regulator BrsR serves as a network hub of natural competence protein-protein interactions in Streptococcus mutans. Proc Natl Acad Sci U S A 2021; 118:2106048118. [PMID: 34544866 DOI: 10.1073/pnas.2106048118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Genome evolution is an essential and stringently regulated aspect of biological fitness. For bacteria, natural competence is one of the principal mechanisms of genome evolution and is frequently subject to multiple layers of regulation derived from a plethora of environmental and physiological stimuli. Here, we present a regulatory mechanism that illustrates how such disparate stimuli can be integrated into the Streptococcus mutans natural competence phenotype. S. mutans possesses an intriguing, but poorly understood ability to coordinately control its independently regulated natural competence and bacteriocin genetic pathways as a means to acquire DNA released from closely related, bacteriocin-susceptible streptococci. Our results reveal how the bacteriocin-specific transcription activator BrsR directly mediates this coordination by serving as an anti-adaptor protein responsible for antagonizing the proteolysis of the inherently unstable, natural competence-specific alternative sigma factor ComX. This BrsR ability functions entirely independent of its transcription regulator function and directly modulates the timing and severity of the natural competence phenotype. Additionally, many of the DNA uptake proteins produced by the competence system were surprisingly found to possess adaptor abilities, which are employed to terminate the BrsR regulatory circuit via negative feedback. BrsR-competence protein heteromeric complexes directly inhibit nascent brsR transcription as well as stimulate the Clp-dependent proteolysis of extant BrsR proteins. This study illustrates how critical genetic regulatory abilities can evolve in a potentially limitless variety of proteins without disrupting their conserved ancestral functions. These unrecognized regulatory abilities are likely fundamental for transducing information through complex genetic networks.
Collapse
|
15
|
Illigmann A, Thoma Y, Pan S, Reinhardt L, Brötz-Oesterhelt H. Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis. Microb Physiol 2021; 31:260-279. [PMID: 34438398 DOI: 10.1159/000517718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
Fast adaptation to environmental changes ensures bacterial survival, and proteolysis represents a key cellular process in adaptation. The Clp protease system is a multi-component machinery responsible for protein homoeostasis, protein quality control, and targeted proteolysis of transcriptional regulators in prokaryotic cells and prokaryote-derived organelles of eukaryotic cells. A functional Clp protease complex consists of the tetradecameric proteolytic core ClpP and a hexameric ATP-consuming Clp-ATPase, several of which can associate with the same proteolytic core. Clp-ATPases confer substrate specificity by recognising specific degradation tags, and further selectivity is conferred by adaptor proteins, together allowing for a fine-tuned degradation process embedded in elaborate regulatory networks. This review focuses on the contribution of the Clp protease system to prokaryotic survival and summarises the current state of knowledge for exemplary bacteria in an increasing degree of interaction with eukaryotic cells. Starting from free-living bacteria as exemplified by a non-pathogenic and a pathogenic member of the Firmicutes, i.e., Bacillus subtilis and Staphylococcus aureus, respectively, we turn our attention to facultative and obligate intracellular bacterial pathogens, i.e., Mycobacterium tuberculosis, Listeria monocytogenes, and Chlamydia trachomatis, and conclude with mitochondria. Under stress conditions, the Clp protease system exerts its pivotal role in the degradation of damaged proteins and controls the timing and extent of the heat-shock response by regulatory proteolysis. Key regulators of developmental programmes like natural competence, motility, and sporulation are also under Clp proteolytic control. In many pathogenic species, the Clp system is required for the expression of virulence factors and essential for colonising the host. In accordance with its evolutionary origin, the human mitochondrial Clp protease strongly resembles its bacterial counterparts, taking a central role in protein quality control and homoeostasis, energy metabolism, and apoptosis in eukaryotic cells, and several cancer cell types depend on it for proliferation.
Collapse
Affiliation(s)
- Astrid Illigmann
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yvonne Thoma
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefan Pan
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Laura Reinhardt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
17
|
Brötz-Oesterhelt H, Vorbach A. Reprogramming of the Caseinolytic Protease by ADEP Antibiotics: Molecular Mechanism, Cellular Consequences, Therapeutic Potential. Front Mol Biosci 2021; 8:690902. [PMID: 34109219 PMCID: PMC8182300 DOI: 10.3389/fmolb.2021.690902] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rising antibiotic resistance urgently calls for the discovery and evaluation of novel antibiotic classes and unique antibiotic targets. The caseinolytic protease Clp emerged as an unprecedented target for antibiotic therapy 15 years ago when it was observed that natural product-derived acyldepsipeptide antibiotics (ADEP) dysregulated its proteolytic core ClpP towards destructive proteolysis in bacterial cells. A substantial database has accumulated since on the interaction of ADEP with ClpP, which is comprehensively compiled in this review. On the molecular level, we describe the conformational control that ADEP exerts over ClpP, the nature of the protein substrates degraded, and the emerging structure-activity-relationship of the ADEP compound class. On the physiological level, we review the multi-faceted antibacterial mechanism, species-dependent killing modes, the activity against carcinogenic cells, and the therapeutic potential of the compound class.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany.,Cluster of Excellence: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Andreas Vorbach
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
18
|
ClpC-Mediated Sporulation Regulation at Engulfment Stage in Bacillus anthracis. Indian J Microbiol 2021; 61:170-179. [PMID: 33927458 DOI: 10.1007/s12088-021-00927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial sporulation is a conserved process utilized by members of Bacillus genus and Clostridium in response to stress such as nutrient or temperature. Sporulation initiation is triggered by stress signals perceived by bacterial cell that leads to shutdown of metabolic pathways of bacterial cells. The mechanism of sporulation involves a complex network that is regulated at various checkpoints to form the viable bacterial spore. Engulfment is one such check point that drives the required cellular rearrangement necessary for the spore assembly and is mediated by bacterial proteolytic machinery that involves association of various Clp ATPases and ClpP protease. The present study highlights the importance of degradation of an anti-sigma factor F, SpoIIAB by ClpCP proteolytic machinery playing a crucial role in culmination of engulfment process during the sporulation in Bacillus anthracis.
Collapse
|
19
|
Top J, Arredondo-Alonso S, Schürch AC, Puranen S, Pesonen M, Pensar J, Willems RJL, Corander J. Genomic rearrangements uncovered by genome-wide co-evolution analysis of a major nosocomial pathogen, Enterococcus faecium. Microb Genom 2020; 6:mgen000488. [PMID: 33253085 PMCID: PMC8116687 DOI: 10.1099/mgen.0.000488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Enterococcus faecium is a gut commensal of the gastro-digestive tract, but also known as nosocomial pathogen among hospitalized patients. Population genetics based on whole-genome sequencing has revealed that E. faecium strains from hospitalized patients form a distinct clade, designated clade A1, and that plasmids are major contributors to the emergence of nosocomial E. faecium. Here we further explored the adaptive evolution of E. faecium using a genome-wide co-evolution study (GWES) to identify co-evolving single-nucleotide polymorphisms (SNPs). We identified three genomic regions harbouring large numbers of SNPs in tight linkage that are not proximal to each other based on the completely assembled chromosome of the clade A1 reference hospital isolate AUS0004. Close examination of these regions revealed that they are located at the borders of four different types of large-scale genomic rearrangements, insertion sites of two different genomic islands and an IS30-like transposon. In non-clade A1 isolates, these regions are adjacent to each other and they lack the insertions of the genomic islands and IS30-like transposon. Additionally, among the clade A1 isolates there is one group of pet isolates lacking the genomic rearrangement and insertion of the genomic islands, suggesting a distinct evolutionary trajectory. In silico analysis of the biological functions of the genes encoded in three regions revealed a common link to a stress response. This suggests that these rearrangements may reflect adaptation to the stringent conditions in the hospital environment, such as antibiotics and detergents, to which bacteria are exposed. In conclusion, to our knowledge, this is the first study using GWES to identify genomic rearrangements, suggesting that there is considerable untapped potential to unravel hidden evolutionary signals from population genomic data.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anita C. Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Santeri Puranen
- Department of Computer Science, Aalto University, FI-00076 Espoo, Finland
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
| | - Maiju Pesonen
- Department of Computer Science, Aalto University, FI-00076 Espoo, Finland
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
- Present address: Oslo Centre for Biostatistics and Epidemiology (OCBE), Oslo University Hospital Research Support Services, Oslo, Norway
| | - Johan Pensar
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
- Present address: Department of Mathematics, University of Oslo, 0316 Oslo, Norway
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
- Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
20
|
Runthala A, Sai TH, Kamjula V, Phulara SC, Rajput VS, Sangapillai K. Excavating the functionally crucial active-site residues of the DXS protein of Bacillus subtilis by exploring its closest homologues. J Genet Eng Biotechnol 2020; 18:76. [PMID: 33242110 PMCID: PMC7691408 DOI: 10.1186/s43141-020-00087-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To achieve a high yield of terpenoid-based therapeutics, 1-deoxy-d-xylulose-5-phosphate (DXP) pathway has been significantly exploited for the production of downstream enzymes. The DXP synthase (DXS) enzyme, the initiator of this pathway, is pivotal for the convergence of carbon flux, and is computationally studied well for the industrially utilized generally regarded as safe (GRAS) bacterium Bacillus subtilis to decode its vital regions for aiding the construction of a functionally improved mutant library.
Results
For the 546 sequence dataset of DXS sequences, a representative set of 108 sequences is created, and it shows a significant evolutionary divergence across different species clubbed into 37 clades, whereas three clades are observed for the 76 sequence dataset of Bacillus subtilis. The DXS enzyme, sharing a statistically significant homology to transketolase, is shown to be evolutionarily too distant. By the mutual information-based co-evolutionary network and hotspot analysis, the most crucial loci within the active site are deciphered. The 650-residue representative structure displays a complete conservation of 114 loci, and only two co-evolving residues ASP154 and ILE371 are found to be the conserved ones. Lastly, P318D is predicted to be the top-ranked mutation causing the increase in the thermodynamic stability of 6OUW.
Conclusion
The study excavates the vital functional, phylogenetic, and conserved residues across the active site of the DXS protein, the key rate-limiting controller of the entire pathway. It would aid to computationally understand the evolutionary landscape of this industrially useful enzyme and would allow us to widen its substrate repertoire to increase the enzymatic yield of unnatural molecules for in vivo and in vitro applications.
Collapse
|
21
|
Ogura M. Glucose-Mediated Protein Arginine Phosphorylation/Dephosphorylation Regulates ylxR Encoding Nucleoid-Associated Protein and Cell Growth in Bacillus subtilis. Front Microbiol 2020; 11:590828. [PMID: 33101263 PMCID: PMC7546277 DOI: 10.3389/fmicb.2020.590828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Glucose is the most favorable carbon source for many bacteria, and these bacteria have several glucose-responsive networks. We proposed new glucose responsive system, which includes protein acetylation and probable translation control through TsaEBD, which is a tRNA modification enzyme required for the synthesis of threonylcarbamoyl adenosine (t6A)-tRNA. The system also includes nucleoid-associated protein YlxR, regulating more than 400 genes including many metabolic genes and the ylxR-containing operon driven by the PylxS promoter is induced by glucose. Thus, transposon mutagenesis was performed for searching regulatory factors for PylxS expression. As a result, ywlE was identified. The McsB kinase phosphorylates arginine (Arg) residues of proteins and the YwlE phosphatase counteracts against McsB through Arg-dephosphorylation. Phosphorylated Arg has been known to function as a tag for ClpCP-dependent protein degradation. The previous analysis identified TsaD as an Arg-phosphorylated protein. Our results showed that the McsB/YwlE system regulates PylxS expression through ClpCP-mediated protein degradation of TsaD. In addition, we observed that glucose induced ywlE expression and repressed mcsB expression. It was concluded that these phenomena would cause glucose induction (GI) of PylxS, based on the Western blot analyses of TsaD-FLAG. These observations and the previous those that many glycolytic enzymes are Arg-phosphorylated suggested that the McsB/YwlE system might be involved in cell growth in glucose-containing medium. We observed that the disruption of mcsB and ywlE resulted in an increase of cell mass and delayed growth, respectively, in semi-synthetic medium. These results provide us broader insights to the physiological roles of the McsB/YwlE system and protein Arg-phosphorylation.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| |
Collapse
|
22
|
SppI Forms a Membrane Protein Complex with SppA and Inhibits Its Protease Activity in Bacillus subtilis. mSphere 2020; 5:5/5/e00724-20. [PMID: 33028682 PMCID: PMC7568657 DOI: 10.1128/msphere.00724-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Our study presents new insights into the molecular mechanism that regulates the activity of SppA, a widely conserved bacterial membrane protease. We show that the membrane proteins SppA and SppI form a complex in the Gram-positive model bacterium B. subtilis and that SppI inhibits SppA protease activity in vitro and in vivo. Furthermore, we demonstrate that the C-terminal domain of SppI is involved in SppA inhibition. Since SppA, through its protease activity, contributes directly to resistance to lantibiotic peptides and cationic antibacterial peptides, we propose that the conserved SppA-SppI complex could play a major role in the evasion of bactericidal peptides, including those produced as part of human innate immune defenses. The membrane protease SppA of Bacillus subtilis was first described as a signal peptide peptidase and later shown to confer resistance to lantibiotics. Here, we report that SppA forms octameric complexes with YteJ, a membrane protein of thus-far-unknown function. Interestingly, sppA and yteJ deletion mutants exhibited no protein secretion defects. However, these mutant strains differed significantly in their resistance to antimicrobial peptides. In particular, sppA mutant cells displayed increased sensitivity to the lantibiotics nisin and subtilin and the human lysozyme-derived cationic antimicrobial peptide LP9. Importantly, YteJ was shown to antagonize SppA activity both in vivo and in vitro, and this SppA-inhibitory activity involved the C-terminal domain of YteJ, which was therefore renamed SppI. Most likely, SppI-mediated control is needed to protect B. subtilis against the potentially detrimental protease activity of SppA since a mutant overexpressing sppA by itself displayed defects in cell division. Altogether, we conclude that the SppA-SppI complex of B. subtilis has a major role in protection against antimicrobial peptides. IMPORTANCE Our study presents new insights into the molecular mechanism that regulates the activity of SppA, a widely conserved bacterial membrane protease. We show that the membrane proteins SppA and SppI form a complex in the Gram-positive model bacterium B. subtilis and that SppI inhibits SppA protease activity in vitro and in vivo. Furthermore, we demonstrate that the C-terminal domain of SppI is involved in SppA inhibition. Since SppA, through its protease activity, contributes directly to resistance to lantibiotic peptides and cationic antibacterial peptides, we propose that the conserved SppA-SppI complex could play a major role in the evasion of bactericidal peptides, including those produced as part of human innate immune defenses.
Collapse
|
23
|
Malik IT, Pereira R, Vielberg M, Mayer C, Straetener J, Thomy D, Famulla K, Castro H, Sass P, Groll M, Brötz‐Oesterhelt H. Functional Characterisation of ClpP Mutations Conferring Resistance to Acyldepsipeptide Antibiotics in Firmicutes. Chembiochem 2020; 21:1997-2012. [PMID: 32181548 PMCID: PMC7496096 DOI: 10.1002/cbic.201900787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Acyldepsipeptide (ADEP) is an exploratory antibiotic with a novel mechanism of action. ClpP, the proteolytic core of the caseinolytic protease, is deregulated towards unrestrained proteolysis. Here, we report on the mechanism of ADEP resistance in Firmicutes. This bacterial phylum contains important pathogens that are relevant for potential ADEP therapy. For Staphylococcus aureus, Bacillus subtilis, enterococci and streptococci, spontaneous ADEP-resistant mutants were selected in vitro at a rate of 10-6 . All isolates carried mutations in clpP. All mutated S. aureus ClpP proteins characterised in this study were functionally impaired; this increased our understanding of the mode of operation of ClpP. For molecular insights, crystal structures of S. aureus ClpP bound to ADEP4 were determined. Well-resolved N-terminal domains in the apo structure allow the pore-gating mechanism to be followed. The compilation of mutations presented here indicates residues relevant for ClpP function and suggests that ADEP resistance will occur at a lower rate during the infection process.
Collapse
Affiliation(s)
- Imran T. Malik
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Rebeca Pereira
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
- Laboratory of AntibioticsBiochemistryEducation and Molecular modelingDepartment of Molecular and Cell BiologyFederal Fluminense UniversityOuteiro São João Batista, CentroNiterói24210130Rio de JaneiroBrazil
| | - Marie‐Theres Vielberg
- Center for Integrated Protein Science at the Department of ChemistryTechnical University MunichLichtenbergstrasse 485748GarchingGermany
| | - Christian Mayer
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Dhana Thomy
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Kirsten Famulla
- Institute for Pharmaceutical Biology and BiotechnologyUniversity of DüsseldorfUniversitätsstrasse 1, Building 26.23.40225DüsseldorfGermany
| | - Helena Castro
- Laboratory of AntibioticsBiochemistryEducation and Molecular modelingDepartment of Molecular and Cell BiologyFederal Fluminense UniversityOuteiro São João Batista, CentroNiterói24210130Rio de JaneiroBrazil
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| | - Michael Groll
- Center for Integrated Protein Science at the Department of ChemistryTechnical University MunichLichtenbergstrasse 485748GarchingGermany
| | - Heike Brötz‐Oesterhelt
- Interfaculty Institute of Microbiology and Infection MedicineDept. of Microbial Bioactive CompoundsUniversity of TübingenAuf der Morgenstelle 2872076TuebingenGermany
| |
Collapse
|
24
|
Dittmar D, Reder A, Schlüter R, Riedel K, Hecker M, Gerth U. Complementation studies with human ClpP in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118744. [PMID: 32442436 DOI: 10.1016/j.bbamcr.2020.118744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022]
Abstract
ATP-dependent intracellular proteolysis is essential for all living organisms. ClpP, the proteolytic subunit of the ATP-dependent Clp proteases, shares 56% protein identity between B. subtilis and man. The aim of this study was to verify, whether human ClpP (HClpP) is able to substitute the bacterial pendant, BClpP, irrespectively of the huge evolutionary distance. For this reason hclpP was expressed from the natural B. subtilis promoters at the original chromosomal site. Growth at 37 °C as well as sporulation in the presence of hclpP depict an intermediate phenotype between wild type and clpP mutant suggesting a partial functional substitution of BClpP by HClpP. Northern as well as Western blot analyses show a similar induction pattern of both, bclpP and hclpP during heat stress on the mRNA as well as on the protein levels. Co-immunoprecipitation experiments imply specific interaction of HClpP with bacterial ClpC, ClpX and ClpE during control as well as heat stress conditions. Radioactive pulse-chase labeling and immunoprecipitation revealed that a ClpXP substrate, the short-living regulatory protein MgsR, is degraded by HClpP, although with an extremely slower rate in comparison to BClpP. The occurrence of an exceptional thickened cell wall of a clpP mutant can be almost fully reversed by the complementation with HClpP. The utilization of the HClpP expressing strain as a test system for new biological or synthetic active substances targeting BClpP is discussed.
Collapse
Affiliation(s)
- Denise Dittmar
- Institute of Microbiology of the Department of Biology, University of Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Institute of Microbiology of the Department of Biology, University of Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology of the Department of Biology, University of Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology of the Department of Biology, University of Greifswald, Germany
| | - Ulf Gerth
- Institute of Microbiology of the Department of Biology, University of Greifswald, Germany.
| |
Collapse
|
25
|
Lilge L, Reder A, Tippmann F, Morgenroth F, Grohmann J, Becher D, Riedel K, Völker U, Hecker M, Gerth U. The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in Bacillus subtilis. Front Microbiol 2020; 11:900. [PMID: 32477307 PMCID: PMC7235348 DOI: 10.3389/fmicb.2020.00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
Collapse
Affiliation(s)
- Lars Lilge
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Frank Tippmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Janice Grohmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Nagpal J, Paxman JJ, Zammit JE, Thomas AA, Truscott KN, Heras B, Dougan DA. Molecular and structural insights into an asymmetric proteolytic complex (ClpP1P2) from Mycobacterium smegmatis. Sci Rep 2019; 9:18019. [PMID: 31792243 PMCID: PMC6889138 DOI: 10.1038/s41598-019-53736-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 11/09/2022] Open
Abstract
The ClpP protease is found in all kingdoms of life, from bacteria to humans. In general, this protease forms a homo-oligomeric complex composed of 14 identical subunits, which associates with its cognate ATPase in a symmetrical manner. Here we show that, in contrast to this general architecture, the Clp protease from Mycobacterium smegmatis (Msm) forms an asymmetric hetero-oligomeric complex ClpP1P2, which only associates with its cognate ATPase through the ClpP2 ring. Our structural and functional characterisation of this complex demonstrates that asymmetric docking of the ATPase component is controlled by both the composition of the ClpP1 hydrophobic pocket (Hp) and the presence of a unique C-terminal extension in ClpP1 that guards this Hp. Our structural analysis of MsmClpP1 also revealed openings in the side-walls of the inactive tetradecamer, which may represent sites for product egress.
Collapse
Affiliation(s)
- Jyotsna Nagpal
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Jessica E Zammit
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Adam A. Thomas
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Kaye N Truscott
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia.
| | - David A Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia.
| |
Collapse
|
27
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
28
|
Montandon C, Friso G, Liao JYR, Choi J, van Wijk KJ. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors. J Proteome Res 2019; 18:2585-2600. [DOI: 10.1021/acs.jproteome.9b00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cyrille Montandon
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Jui-Yun Rei Liao
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Junsik Choi
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Klaas J. van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Schäfer H, Heinz A, Sudzinová P, Voß M, Hantke I, Krásný L, Turgay K. Spx, the central regulator of the heat and oxidative stress response in B. subtilis, can repress transcription of translation-related genes. Mol Microbiol 2018; 111:514-533. [PMID: 30480837 DOI: 10.1111/mmi.14171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Spx is a Bacillus subtilis transcription factor that interacts with the alpha subunits of RNA polymerase. It can activate the thiol stress response regulon and interfere with the activation of many developmental processes. Here, we show that Spx is a central player orchestrating the heat shock response by up-regulating relevant stress response genes as revealed by comparative transcriptomic experiments. Moreover, these experiments revealed the potential of Spx to inhibit transcription of translation-related genes. By in vivo and in vitro experiments, we confirmed that Spx can inhibit transcription from rRNA. This inhibition depended mostly on UP elements and the alpha subunits of RNA polymerase. However, the concurrent up-regulation activity of stress genes by Spx, but not the inhibition of translation related genes, was essential for mediating stress response and antibiotic tolerance under the applied stress conditions. The observed inhibitory activity might be compensated in vivo by additional stress response processes interfering with translation. Nevertheless, the impact of Spx on limiting translation becomes apparent under conditions with high cellular Spx levels. Interestingly, we observed a subpopulation of stationary phase cells that contains raised Spx levels, which may contribute to growth inhibition and a persister-like behaviour of this subpopulation during outgrowth.
Collapse
Affiliation(s)
- Heinrich Schäfer
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Anja Heinz
- Institute of Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, D-14195, Berlin, Germany
| | - Petra Sudzinová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Michelle Voß
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Ingo Hantke
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| |
Collapse
|
30
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
Affiliation(s)
- Frederick Stull
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines, Institut Pasteur-CNRS URA2185, 75724 Paris cedex 15, France
| | - James C A Bardwell
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
31
|
Hill NS, Zuke JD, Buske PJ, Chien AC, Levin PA. A nutrient-dependent division antagonist is regulated post-translationally by the Clp proteases in Bacillus subtilis. BMC Microbiol 2018; 18:29. [PMID: 29625553 PMCID: PMC5889556 DOI: 10.1186/s12866-018-1155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/08/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Changes in nutrient availability have dramatic and well-defined impacts on both transcription and translation in bacterial cells. At the same time, the role of post-translational control in adaptation to nutrient-poor environments is poorly understood. Previous studies demonstrate the ability of the glucosyltransferase UgtP to influence cell size in response to nutrient availability. Under nutrient-rich medium, interactions with its substrate UDP-glucose promote interactions between UgtP and the tubulin-like cell division protein FtsZ in Bacillus subtilis, inhibiting maturation of the cytokinetic ring and increasing cell size. In nutrient-poor medium, reductions in UDP-glucose availability favor UgtP oligomerization, sequestering it from FtsZ and allowing division to occur at a smaller cell mass. RESULTS Intriguingly, in nutrient-poor conditions UgtP levels are reduced ~ 3-fold independent of UDP-glucose. B. subtilis cells cultured under different nutrient conditions indicate that UgtP accumulation is controlled through a nutrient-dependent post-translational mechanism dependent on the Clp proteases. Notably, all three B. subtilis Clp chaperones appeared able to target UgtP for degradation during growth in nutrient-poor conditions. CONCLUSIONS Together these findings highlight conditional proteolysis as a mechanism for bacterial adaptation to a rapidly changing nutritional landscape.
Collapse
Affiliation(s)
- Norbert S Hill
- Department of Biology, Washington University, St. Louis, 63130, MO, USA.,Present address: Department of Molecular and Cell Biology, University of California, Berkeley, 94720, CA, USA
| | - Jason D Zuke
- Department of Biology, Washington University, St. Louis, 63130, MO, USA.,Present address: Department of Bacteriology, University of Wisconsin, Madison, 53706, WI, USA
| | - P J Buske
- Department of Biology, Washington University, St. Louis, 63130, MO, USA.,Present address: Clinical Immunology and Bioanalysis, MedImmune LLC, South San Francisco, 94080, CA, USA
| | - An-Chun Chien
- Department of Biology, Washington University, St. Louis, 63130, MO, USA.,Leukaemia & Blood Cancer Research Unit, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Petra Anne Levin
- Department of Biology, Washington University, St. Louis, 63130, MO, USA.
| |
Collapse
|
32
|
Tanner AW, Carabetta VJ, Dubnau D. ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Mol Microbiol 2018; 108:178-186. [PMID: 29446505 PMCID: PMC5897911 DOI: 10.1111/mmi.13928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/23/2023]
Abstract
In Bacillus subtilis, a proteolytic machine composed of MecA, ClpC and ClpP degrades the transcription factor ComK, controlling its accumulation during growth. MecA also inhibits sporulation and biofilm formation by down-regulating spoIIG and sinI, genes that are dependent for their transcription on the phosphorylated protein Spo0A-P. Additionally, MecA has been shown to interact in vitro with Spo0A. Although the inhibitory effect on transcription requires MecA's binding partner ClpC, inhibition is not accompanied by the degradation of Spo0A, pointing to a previously unsuspected regulatory mechanism involving these proteins. Here, we further investigate the MecA and ClpC effects on Spo0A-P-dependent transcription. We show that MecA inhibits the transcription of several Spo0A-P activated genes, but fails to de-repress several Spo0A-P repressed promoters. This demonstrates that MecA and ClpC do not act by preventing the binding of Spo0A-P to its target promoters. Consistent with this, MecA by itself has no effect in vitro on the transcription from PspoIIG while the addition of both MecA and ClpC has a strong inhibitory effect. A complex of MecA and ClpC likely binds to Spo0A-P on its target promoters, preventing the activation of transcription. Thus, components of a degradative machine have been harnessed to directly repress transcription.
Collapse
Affiliation(s)
- Andrew W. Tanner
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Valerie J. Carabetta
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|