1
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
2
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Sri-Ngern-Ngam K, Umthong S, Takano J, Koseki H, Palaga T. A polycomb group protein EED epigenetically regulates responses in lipopolysaccharide tolerized macrophages. Epigenetics Chromatin 2024; 17:36. [PMID: 39614386 DOI: 10.1186/s13072-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or "tolerance" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages. RESULT We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages. In Eed KO macrophages, significant reduction in H3K27me3 and increased active histone mark, H3K27ac, was observed. Eed KO macrophages exhibited dampened pro-inflammatory cytokine productions (TNF-α and IL-6) while increasing non-tolerizable genes upon LPS tolerance. Pharmacological inhibition of EED also reduced TNF-α and IL-6 during LPS tolerance. Mechanistically, LPS tolerized Eed KO macrophages failed to increase glycolytic activity. RNA-Seq analyses revealed that the hallmarks of hypoxia, TGF-β, and Wnt/β-catenin signaling were enriched in LPS tolerized Eed KO macrophages. Among the upregulated genes, the promoter of Runx3 was found to be associated with EED. Silencing Runx3 in Eed KO macrophages partially rescued the dampened pro-inflammatory response during LPS tolerance. Enrichment of H3K27me3 was decreased in a subset of genes that are upregulated in Eed KO LPS tolerized macrophages, indicating the direct regulatory roles of PRC2 on such genes. Motif enrichment analysis identified the ETS family transcription factor binding sites in the absence of EED in LPS tolerized macrophages. CONCLUSION Our results provided mechanistic insight into how the PRC2 via EED regulates LPS tolerance in macrophages by epigenetically silencing genes that play a crucial role during LPS tolerance such as those of the TGF-β/Runx3 axis.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittitach Sri-Ngern-Ngam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supawadee Umthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junichiro Takano
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Jakobs M, Tebbe B, Friedel AL, Schönberger T, Engler H, Wilde B, Fandrey J, Hörbelt-Grünheidt T, Schedlowski M. Acute hypoxic conditions preceding endotoxin administration result in an increased proinflammatory cytokine response in healthy men. Am J Physiol Endocrinol Metab 2024; 327:E422-E429. [PMID: 39140976 DOI: 10.1152/ajpendo.00247.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Tissues often experience hypoxia at sites of inflammation due to malperfusion, massive immune cell recruitment, and increased oxygen consumption. Organisms adapt to these hypoxic conditions through the transcriptional activation of various genes. In fact, there is significant crosstalk between the transcriptional responses to hypoxia and inflammatory processes. This interaction, named inflammatory hypoxia, plays a crucial role in various diseases including malignancies, chronic inflammatory lung diseases, and sepsis. To further elucidate the crosstalk between hypoxia and inflammation in vivo and assess its potential for innovative therapies, our study aimed at investigating the impact of acute hypoxic conditions on inflammation-induced immune responses. To this end, we exposed healthy human subjects to hypoxia either before (hypoxia priming) or after a single intravenous (i.v.) injection of 0.4 ng/kg LPS. Our data show that hypoxia exposure prior to LPS injection (hypoxia priming) amplified the proinflammatory response. This was reflected by an increase in body temperature, plasma noradrenaline levels, and the production of proinflammatory cytokines (i.e., IL-6 and TNF-α), compared with LPS control conditions. These effects were not observed when participants were exposed to hypoxia after LPS administration, demonstrating that the interaction between hypoxia and inflammation highly depends on the timing of both stimuli. Our findings suggest that acute hypoxia (i.e., hypoxia priming) modulates transient inflammation, leading to an enhanced proinflammatory response in healthy human subjects. This highlights the need for further investigations to understand the pathology of various hypoxia-inducible factor (HIF)-associated inflammatory diseases and to develop suitable, innovative therapies.NEW & NOTEWORTHY To our knowledge, this is the first in vivo study investigating the effects of hypoxia preceding (hypoxia priming) or following LPS administration on the endotoxin-induced inflammatory response in healthy human subjects. The data show that hypoxia priming amplified the proinflammatory response, reflected by an increased body temperature, increased plasma noradrenaline levels, and higher production of proinflammatory cytokines (i.e., IL-6 and TNF-α) compared with LPS control conditions.
Collapse
Affiliation(s)
- Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Bastian Tebbe
- Institute of Physiology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Anna Lena Friedel
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Tina Schönberger
- Institute of Physiology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Iannetta A, Zugaro S, Massimini M, Gentile W, Silvestrini T, Fioravanti G, Foschi M, Perugini M, Benedetti E, Della Salda L. Combined effects of glyphosate and chemical hypoxia in zebrafish: A new toxicological point of view. CHEMOSPHERE 2024; 366:143484. [PMID: 39374665 DOI: 10.1016/j.chemosphere.2024.143484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Glyphosate (Gly), a systemic and non-selective post-emergence herbicide used worldwide, has emerged as a pollutant. However, its toxic effects are debated by regulatory authorities. In addition, in the aquatic environment, often the presence of pollutants is associated with a hypoxia condition that could change their toxicological effects. We used zebrafish embryos to evaluate the toxic effects of Gly and its mechanisms in a hypoxic condition chemically induced by cobalt chloride (CoCl2). We found that Gly induced toxicity in a time and concentration-dependent manner. The toxicity of Gly was determined at 96 h post fertilization as a lethal concentration (LC), and LC10, LC20, and LC50 values were 85.7, 97, and 122.9 mg/L, respectively. When Gly was combined with CoCl2 the toxicological endpoints were lower than values referred to the Gly alone indicating the worse effects of chemical hypoxia on Gly toxicity. Histological observations were performed at 25, 50, 75, and 100 mg/L for Gly both alone and in combination with 10 mM CoCl2. Fisher's exact test showed significant differences in the presence of hepatic and gut inflammation at 75 and 100 mg/L of Gly both alone and in combination with CoCl2. To deeply investigate the effects of hypoxia on Gly toxicity we decided to test the lowest dose of Gly, 50 mg/L, alone or in combination with CoCl2 10 mM on liver glycogen storage and oxidative stress. Again the results obtained indicate the worse effects of chemical hypoxia on Gly toxicity. Thus Gly toxicity could be reconsidered in light of the damage it causes to the liver and intestines and its effect in combination with factors that induce chemical hypoxia.
Collapse
Affiliation(s)
- Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Silvana Zugaro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - William Gentile
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Tommaso Silvestrini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Giulia Fioravanti
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Martina Foschi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
5
|
Yang X, Chen YH, Liu L, Gu Z, You Y, Hao JR, Sun N, Gao C. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models. Pharmacol Res 2024; 208:107357. [PMID: 39159732 DOI: 10.1016/j.phrs.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aβ-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aβ aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aβ burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuan-Hao Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Gu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
6
|
Li N, Deng J, Zhang J, Yu F, Ye F, Hao L, Li S, Hu X. A New Strategy for Targeting UCP2 to Modulate Glycolytic Reprogramming as a Treatment for Sepsis A New Strategy for Targeting UCP2. Inflammation 2024; 47:1634-1647. [PMID: 38429403 PMCID: PMC11549132 DOI: 10.1007/s10753-024-01998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Fei Yu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanghang Ye
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
8
|
Schönberger T, Jakobs M, Friedel AL, Hörbelt-Grünheidt T, Tebbe B, Witzke O, Schedlowski M, Fandrey J. Exposure to normobaric hypoxia shapes the acute inflammatory response in human whole blood cells in vivo. Pflugers Arch 2024; 476:1369-1381. [PMID: 38714572 PMCID: PMC11310243 DOI: 10.1007/s00424-024-02969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/10/2024]
Abstract
Cells of the immune defence, especially leukocytes, often have to perform their function in tissue areas that are characterized by oxygen deficiency, so-called hypoxia. Physiological hypoxia significantly affects leukocyte function and controls the innate and adaptive immune response mainly through transcriptional gene regulation via the hypoxia-inducible factors (HIFs). Multiple pathogens including components of bacteria, such as lipopolysaccharides (LPS) trigger the activation of leukocytes. HIF pathway activation enables immune cells to adapt to both hypoxic environments in physiological and inflammatory settings and modulates immune cell responses through metabolism changes and crosstalk with other immune-relevant signalling pathways. To study the mutual influence of both processes in vivo, we used a human endotoxemia model, challenging participants with an intravenous LPS injection post or prior to a 4-h stay in a hypoxic chamber with normobaric hypoxia of 10.5% oxygen. We analysed changes in gene expression in whole blood cells and determined inflammatory markers to unveil the crosstalk between both processes. Our investigations showed differentially altered gene expression patterns of HIF and target genes upon in vivo treatment with LPS and hypoxia. Further, we found evidence for effects of hypoxic priming upon inflammation in combination with immunomodulatory effects in whole blood cells in vivo. Our work elucidates the complex interplay of hypoxic and inflammatory HIF regulation in human immune cells and offers new perspectives for further clinical research.
Collapse
Affiliation(s)
- Tina Schönberger
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Anna-Lena Friedel
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Bastian Tebbe
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nephrology, University Hospital Essen, 45147, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
9
|
Hajiaqaei M, Ranjbaran M, Kadkhodaee M, Shafie A, Abdi A, Lorian K, Kianian F, Seifi B. Hydrogen sulfide upregulates hypoxia inducible factors and erythropoietin production in chronic kidney disease induced by 5/6 nephrectomized rats. Mol Biol Rep 2024; 51:916. [PMID: 39158746 DOI: 10.1007/s11033-024-09824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION In end stage renal disease )ESRD(, reduced EPO production resulted in decreased oxygen diffusion that cause Hypoxia-inducible factors (HIFs) stabilization. The mechanism of beneficial effects of H2S in chronic kidney disease (CKD) is the aim of the present study to examine the effects of the H2S donor sodium hydrosulfide (NaHS) on renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein in 5/6 nephrectomy-induced chronic renal failure in rats. METHODS AND MATERIALS Male rats were assigned into 3 groups (n = 8): Sham, CKD and NaHS groups. In the CKD group, 5/6 nephrectomy was performed. In the sham group, rats were anesthetized but 5/6 nephrectomy was not induced. In the NaHS group, 30 µmol/L of NaHS in drinking water for 8 weeks was adminstrated 4 weeks after 5/6 nephrectomy induction. At the end of the 12 week, blood and renal tissues were taken to evaluate renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein. RESULTS The induction of 5/6 nephrectomy significantly caused renal dysfunction, oxidative stress, increased HIF-2α gene expression and decreased erythropoietin levels in renal tissue samples. NaHS administration resulted in a marked improvement in renal function and oxidative stress indicators, a marked reduction in HIF-2α gene expression as well as an increase in erythropoietin protein levels in comparison with the CKD group. CONCLUSION In this study, regional hypoxia and oxidative stress in CKD, may cause the stabilization of the HIFs complexes, although erythropoietin synthesis was not increased due to destructive effects of CKD on the kidney tissues. Administration of NaHS caused up-regulating HIF-erythropoietin signaling pathway.
Collapse
Affiliation(s)
- Mahdi Hajiaqaei
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Anahid Shafie
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Arash Abdi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Keivan Lorian
- Research and Clinical Center for Infertility, Yazd Rreproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran.
| |
Collapse
|
10
|
Unsinger J, Osborne D, Walton AH, Han E, Sheets L, Mazer MB, Remy KE, Griffith TS, Rao M, Badovinac VP, Brakenridge SC, Turnbull I, Efron PA, Moldawer LL, Caldwell CC, Hotchkiss RS. TEMPORAL CHANGES IN INNATE AND ADAPTIVE IMMUNITY DURING SEPSIS AS DETERMINED BY ELISPOT. Shock 2024; 62:255-264. [PMID: 38754032 PMCID: PMC11348958 DOI: 10.1097/shk.0000000000002377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Background: The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The enzyme-linked immunospot (ELISpot) assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis that the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods: Mice were made septic using sublethal cecal ligation and puncture. Blood and spleens were harvested serially, and ex vivo interferon γ and TNF-α production were compared by ELISpot and enzyme-linked immunosorbent assay. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results: ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example, dexamethasone, arginine, and IL-7, in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and enzyme-linked immunosorbent assay results tended to parallel one another although some differences were noted. Conclusion: ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Collapse
Affiliation(s)
- Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dale Osborne
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew H Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan Han
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Sheets
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Monty B Mazer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kenneth E Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine
| | | | - Scott C Brakenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington
| | - Isaiah Turnbull
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Burnham KL, Milind N, Lee W, Kwok AJ, Cano-Gamez K, Mi Y, Geoghegan CG, Zhang P, McKechnie S, Soranzo N, Hinds CJ, Knight JC, Davenport EE. eQTLs identify regulatory networks and drivers of variation in the individual response to sepsis. CELL GENOMICS 2024; 4:100587. [PMID: 38897207 PMCID: PMC11293594 DOI: 10.1016/j.xgen.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.
Collapse
Affiliation(s)
- Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nikhil Milind
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Wanseon Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew J Kwok
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kiki Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuxin Mi
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Ping Zhang
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | | | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Charles J Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Julian C Knight
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| | | |
Collapse
|
12
|
Tátrai E, Ranđelović I, Surguta SE, Tóvári J. Role of Hypoxia and Rac1 Inhibition in the Metastatic Cascade. Cancers (Basel) 2024; 16:1872. [PMID: 38791951 PMCID: PMC11120288 DOI: 10.3390/cancers16101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The hypoxic condition has a pivotal role in solid tumors and was shown to correlate with the poor outcome of anticancer treatments. Hypoxia contributes to tumor progression and leads to therapy resistance. Two forms of a hypoxic environment might have relevance in tumor mass formation: chronic and cyclic hypoxia. The main regulators of hypoxia are hypoxia-inducible factors, which regulate the cell survival, proliferation, motility, metabolism, pH, extracellular matrix function, inflammatory cells recruitment and angiogenesis. The metastatic process consists of different steps in which hypoxia-inducible factors can play an important role. Rac1, belonging to small G-proteins, is involved in the metastasis process as one of the key molecules of migration, especially in a hypoxic environment. The effect of hypoxia on the tumor phenotype and the signaling pathways which may interfere with tumor progression are already quite well known. Although the role of Rac1, one of the small G-proteins, in hypoxia remains unclear, predominantly, in vitro studies performed so far confirm that Rac1 inhibition may represent a viable direction for tumor therapy.
Collapse
Affiliation(s)
- Enikő Tátrai
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Ivan Ranđelović
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Sára Eszter Surguta
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| | - József Tóvári
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
13
|
Zhu J, Jin Z, Wang J, Wu Z, Xu T, Tong G, Shen E, Fan J, Jiang C, Wang J, Li X, Cong W, Lin L. FGF21 ameliorates septic liver injury by restraining proinflammatory macrophages activation through the autophagy/HIF-1α axis. J Adv Res 2024:S2090-1232(24)00134-6. [PMID: 38599281 DOI: 10.1016/j.jare.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Sepsis, a systemic immune syndrome caused by severe trauma or infection, poses a substantial threat to the health of patients worldwide. The progression of sepsis is heavily influenced by septic liver injury, which is triggered by infection and cytokine storms, and has a significant impact on the tolerance and prognosis of septic patients. The objective of our study is to elucidate the biological role and molecular mechanism of fibroblast growth factor 21 (FGF21) in the process of sepsis. OBJECTIVES This study was undertaken in an attempt to elucidate the function and molecular mechanism of FGF21 in therapy of sepsis. METHODS Serum concentrations of FGF21 were measured in sepsis patients and septic mice. Liver injury was compared between mice FGF21 knockout (KO) mice and wildtype (WT) mice. To assess the therapeutic potential, recombinant human FGF21 was administered to septic mice. Furthermore, the molecular mechanism of FGF21 was investigated in mice with myeloid-cell specific HIF-1α overexpression mice (LyzM-CreDIO-HIF-1α) and myeloid-cell specific Atg7 knockout mice (Atg7△mye). RESULTS Serum level of FGF21 was significantly increased in sepsis patients and septic mice. Through the use of recombinant human FGF21 (rhFGF21) and FGF21 KO mice, we found that FGF21 mitigated septic liver injury by inhibiting the initiation and propagation of inflammation. Treatment with rhFGF21 effectively suppressed the activation of proinflammatory macrophages by promoting macroautophagy/autophagy degradation of hypoxia-inducible factor-1α (HIF-1α). Importantly, the therapeutic effect of rhFGF21 against septic liver injury was nullified in LyzM-CreDIO-HIF-1α mice and Atg7△mye mice. CONCLUSIONS Our findings demonstrate that FGF21 considerably suppresses inflammation upon septic liver injury through the autophagy/ HIF-1α axis.
Collapse
Affiliation(s)
- Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jie Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Chunhui Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Haihe Laboratory of Cell Ecosystem, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Li Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
14
|
Xue H, Xiao Z, Zhao X, Li S, Wang Z, Zhao J, Zhu F. A comprehensive analysis of immune features and construction of an immune gene diagnostic model for sepsis. BMC Genomics 2023; 24:794. [PMID: 38124071 PMCID: PMC10734174 DOI: 10.1186/s12864-023-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Sepsis is a life-threatening syndrome resulting from immune system dysfunction that is caused by infection. It is of great importance to analyze the immune characteristics of sepsis, identify the key immune system related genes, and construct diagnostic models for sepsis. In this study, the sepsis transcriptome and expression profiling data were merged into an integrated dataset containing 277 sepsis samples and 117 non-sepsis control samples. Single-sample gene set enrichment analysis (ssGSEA) was used to assess the immune cell infiltration. Two sepsis immune subtypes were identified based on the 22 differential immune cells between the sepsis and the healthy control groups. Weighted gene co-expression network analysis (WCGNA) was used to identify the key module genes. Then, 36 differentially expressed immune-related genes were identified, based on which a robust diagnostic model was constructed with 11 diagnostic genes. The expression of 11 diagnostic genes was finally assessed in the training and validation datasets respectively. In this study, we provide comprehensive insight into the immune features of sepsis and establish a robust diagnostic model for sepsis. These findings may provide new strategies for the early diagnosis of sepsis in the future.
Collapse
Affiliation(s)
- Haiyan Xue
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Ziyan Xiao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiujuan Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Shu Li
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Zhenzhou Wang
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Jie Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Fengxue Zhu
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
- National Center for Trauma Medicine of China, Beijing, China.
| |
Collapse
|
15
|
Unsinger J, Osborne D, Walton AH, Han E, Sheets L, Mazer MB, Remy KE, Griffith TS, Rao M, Badovinac VP, Brackenridge SC, Turnbull I, Efron PA, Moldawer LL, Caldwell CC, Hotchkiss RS. Temporal Changes in Innate and Adaptive Immunity During Sepsis as Determined by ELISpot. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571668. [PMID: 38168302 PMCID: PMC10760123 DOI: 10.1101/2023.12.14.571668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The ELISpot assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis on whether the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods Mice were made septic using sublethal cecal ligation and puncture (CLP). Blood and spleens were harvested serially and ex vivo IFN-γ and TNF-α production were compared by ELISpot and ELISA. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example dexamethasone, arginine, and IL-7 in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and ELISA results tended to parallel one another although some differences were noted. Conclusion ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Collapse
|
16
|
Kong W, Liao Y, Zhao L, Hall N, Zhou H, Liu R, Persson PB, Lai E. Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review. Biomedicines 2023; 11:2984. [PMID: 38001984 PMCID: PMC10669676 DOI: 10.3390/biomedicines11112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The renin-angiotensin system (RAS) and hypoxia have a complex interaction: RAS is activated under hypoxia and activated RAS aggravates hypoxia in reverse. Renin is an aspartyl protease that catalyzes the first step of RAS and tightly regulates RAS activation. Here, we outline kidney renin expression and release under hypoxia and discuss the putative mechanisms involved. It is important that renin generally increases in response to acute hypoxemic hypoxia and intermittent hypoxemic hypoxia, but not under chronic hypoxemic hypoxia. The increase in renin activity can also be observed in anemic hypoxia and carbon monoxide-induced histotoxic hypoxia. The increased renin is contributed to by juxtaglomerular cells and the recruitment of renin lineage cells. Potential mechanisms regulating hypoxic renin expression involve hypoxia-inducible factor signaling, natriuretic peptides, nitric oxide, and Notch signaling-induced renin transcription.
Collapse
Affiliation(s)
- Weiwei Kong
- Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yixin Liao
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Liang Zhao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
| | - Nathan Hall
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.H.); (R.L.)
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.H.); (R.L.)
| | - Pontus B. Persson
- Institute of Translational Physiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Enyin Lai
- Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310003, China
- Institute of Translational Physiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany;
| |
Collapse
|
17
|
Ibadi MH, Majeed S, Ghafil FA, Hadi NR. Regorafenib modulation of the angiopoietin/TIE2 axis in a mouse model of sepsis-induced lung injury. J Med Life 2023; 16:1639-1645. [PMID: 38406775 PMCID: PMC10893570 DOI: 10.25122/jml-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 02/27/2024] Open
Abstract
Sepsis, often resulting from an immune response overreaction to microorganisms and their products, can lead to acute lung injury through inflammation mediated by excessive cytokines. This study aimed to investigate the effects of regorafenib on lung injury in mice following the induction of sepsis. We divided mice into four groups (n=6 each): a sham group (undergoing laparotomy without cecal ligation and puncture [CLP]), a CLP group, a vehicle group, and a regorafenib-treated group (30 mg/kg IP, administered one hour before CLP). TNF-α, IL-1β, VEGF, MPO, caspase-11, and Ang-2 levels were significantly increased (p<0.05) in the CLP group compared to the sham group, while the regorafenib group showed significant reductions in these markers versus the CLP group (p< 0.05). In contrast, Ang-1 levels, which were reduced in the CLP group (p<0.05) compared to the sham group, were elevated in the regorafenib group compared to the CLP group. Quantitative real-time PCR revealed a significant decrease in TIE2 and VE-cadherin mRNA expression in the lung tissue of the CLP group compared to the sham group. There were no significant differences in mRNA expression of the TIE2 gene between the regorafenib and CLP group. However, VE-cadherin significantly increased after regorafenib treatment. Regorafenib demonstrated lung-protective effects through its anti-inflammatory and antiangiogenic activities and its influence on lung tissue mRNA expression of the cadherin gene.
Collapse
Affiliation(s)
| | - Sahar Majeed
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Fadhaa Abdulameer Ghafil
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
18
|
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, Shi J, Jiang L, Feng S, Zhao Y, Zhang H, Liang Q, Chen D, Zhang Y, Wang C. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol 2023; 254:109698. [PMID: 37481013 DOI: 10.1016/j.clim.2023.109698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Linlin Jiang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yilin Zhao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Institute of Immunology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China..
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
19
|
Vinkel J, Arenkiel B, Hyldegaard O. The Mechanisms of Action of Hyperbaric Oxygen in Restoring Host Homeostasis during Sepsis. Biomolecules 2023; 13:1228. [PMID: 37627293 PMCID: PMC10452474 DOI: 10.3390/biom13081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The perception of sepsis has shifted over time; however, it remains a leading cause of death worldwide. Sepsis is now recognized as an imbalance in host cellular functions triggered by the invading pathogens, both related to immune cells, endothelial function, glucose and oxygen metabolism, tissue repair and restoration. Many of these key mechanisms in sepsis are also targets of hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been shown to improve survival in clinical studies on patients with necrotizing soft tissue infections as well as experimental sepsis models. High tissue oxygen tension during HBO2 treatment may affect oxidative phosphorylation in mitochondria. Oxygen is converted to energy, and, as a natural byproduct, reactive oxygen species are produced. Reactive oxygen species can act as mediators, and both these and the HBO2-mediated increase in oxygen supply have the potential to influence the cellular processes involved in sepsis. The pathophysiology of sepsis can be explained comprehensively through resistance and tolerance to infection. We argue that HBO2 treatment may protect the host from collateral tissue damage during resistance by reducing neutrophil extracellular traps, inhibiting neutrophil adhesion to vascular endothelium, reducing proinflammatory cytokines, and halting the Warburg effect, while also assisting the host in tolerance to infection by reducing iron-mediated injury and upregulating anti-inflammatory measures. Finally, we show how inflammation and oxygen-sensing pathways are connected on the cellular level in a self-reinforcing and detrimental manner in inflammatory conditions, and with support from a substantial body of studies from the literature, we conclude by demonstrating that HBO2 treatment can intervene to maintain homeostasis.
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjoern Arenkiel
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Mozzi A, Oldani M, Forcella ME, Vantaggiato C, Cappelletti G, Pontremoli C, Valenti F, Forni D, Saresella M, Biasin M, Sironi M, Fusi P, Cagliani R. SARS-CoV-2 ORF3c impairs mitochondrial respiratory metabolism, oxidative stress, and autophagic flux. iScience 2023; 26:107118. [PMID: 37361873 PMCID: PMC10265927 DOI: 10.1016/j.isci.2023.107118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Coronaviruses encode a variable number of accessory proteins that are involved in host-virus interaction, suppression of immune responses, or immune evasion. SARS-CoV-2 encodes at least twelve accessory proteins, whose roles during infection have been studied. Nevertheless, the role of the ORF3c accessory protein, an alternative open reading frame of ORF3a, has remained elusive. Herein, we show that the ORF3c protein has a mitochondrial localization and alters mitochondrial metabolism, inducing a shift from glucose to fatty acids oxidation and enhanced oxidative phosphorylation. These effects result in increased ROS production and block of the autophagic flux. In particular, ORF3c affects lysosomal acidification, blocking the normal autophagic degradation process and leading to autolysosome accumulation. We also observed different effect on autophagy for SARS-CoV-2 and batCoV RaTG13 ORF3c proteins; the 36R and 40K sites are necessary and sufficient to determine these effects.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Monica Oldani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Matilde E. Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Chiara Vantaggiato
- Scientific Institute IRCCS E. MEDEA, Laboratory of Molecular Biology, 23842 Bosisio Parini, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Francesca Valenti
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Marina Saresella
- Don C. Gnocchi Foundation ONLUS, IRCCS, Laboratory of Molecular Medicine and Biotechnology, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
21
|
STARK RYAN. Protein-mediated interactions in the dynamic regulation of acute inflammation. BIOCELL 2023; 47:1191-1198. [PMID: 37261220 PMCID: PMC10231872 DOI: 10.32604/biocell.2023.027838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 06/02/2023]
Abstract
Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease. These interactions require physical contact between proteins and their respective targets of interest. These targets include not only other proteins but also nucleic acids and other important molecules as well. These proteins are often involved in multibody complexes that work dynamically to regulate cellular health and function. Various techniques have been adapted to study these important interactions, such as affinity-based assays, mass spectrometry, and fluorescent detection. The application of these techniques has led to a greater understanding of how protein interactions are responsible for both the instigation and resolution of acute inflammatory diseases. These pursuits aim to provide opportunities to target specific protein interactions to alleviate acute inflammation.
Collapse
Affiliation(s)
- RYAN STARK
- Department of Pediatric Critical Care Medicine, Vanderbilt University Medical Center, 2200 Children’s Way, 5121 Doctors’ Office Tower, Nashville, TN 37232-9075
| |
Collapse
|
22
|
Li B, Feng Q, Yu C, Yang J, Qin X, Li X, Cao J, Xu X, Yang C, Jin Y. Predictive value of serum HIF-1α and VEGF for arrhythmia in acute coronary syndrome patients. Exp Biol Med (Maywood) 2023; 248:685-690. [PMID: 37350444 PMCID: PMC10291207 DOI: 10.1177/15353702231171902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 06/24/2023] Open
Abstract
Percutaneous coronary intervention (PCI) has been widely used in the alleviation of myocardial ischemia in patients with acute coronary syndrome (ACS). However, the incidence of reperfusion arrhythmia (RA) after PCI is high, which seriously affects the prognosis of ACS patients. Therefore, this study aimed to study the predictive value of serum HIF-1α and VEGF levels before PCI for RA in ACS patients post PCI. A total of 200 ACS patients who underwent PCI were selected and divided into those with RA after PCI (RA, n = 93) and those without RA after PCI (non-RA, n = 107) according to Lown grade. Spearman correlation analysis was applied for the relationship between serum hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) levels and Lown grade. Patients with RA after PCI tended to have higher levels of creatine kinase muscle and brain isoenzyme (CK-MB), serum HIF-1α and VEGF before surgery. Low left ventricular ejection fraction (LVEF), high CK-MB, high serum VEGF and HIF-1α were risk factors for RA in ACS patients within 24 h after PCI. Receiver operating characteristic (ROC) analysis revealed that serum HIF-1α and VEGF levels could predict RA in ACS patients after PCI, and the combined detection could increase the sensitivity of single HIF-1α detection and the specificity of single VEGF detection. Lown grade was positively correlated with the serum HIF-1α and VEGF concentrations. In conclusion, serum HIF-1α and VEGF levels before PCI are risk factors for the occurrence of RA in ACS patients after PCI, and have certain predictive values for the occurrence of RA in ACS patients after PCI.
Collapse
Affiliation(s)
- Bin Li
- Wuxi No.2 People’s Hospital, The Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Qiuting Feng
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Cheng Yu
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Jun Yang
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xian Qin
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xing Li
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Jianing Cao
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xin Xu
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Chenjian Yang
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Yan Jin
- Wuxi No.2 People’s Hospital, The Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| |
Collapse
|
23
|
He W, Kamely M, Wakaruk J, Goes EC, Korver DR, Barreda DR. Early-life β-glucan exposure enhances disease resilience of broiler chickens to a natural Clostridium perfringens infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104613. [PMID: 36496011 DOI: 10.1016/j.dci.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Necrotic enteritis (NE) is an economically important disease in poultry. Colonization by the opportunistic pathogen C. perfringens occurs early after hatch and induces host immune tolerance, which allows it to persist as part of the bird's commensal microflora. β-glucan, a yeast cell wall component, is well characterized for its immunomodulatory capacity, and is a strong driver of innate immune memory. In this study, we assessed the effectiveness of β-glucan to reduce severity of NE, when co-administered with heat-killed C. perfringens via intra-abdominal route at day 1 of age. We found that this early-life exposure in the presence of β-glucan did not reduce intestinal C. perfringens loads or lesion severity during a subsequent NE outbreak. However, it improved ileal morphology, prevented liver and spleen weight decline, and preserved feed efficiency in challenged birds. Molecular analyses revealed metabolic changes consistent with innate immune memory. Together, our results suggest that β-glucan can reduce the negative impacts of NE by influencing the context in which C. perfringens is first encountered.
Collapse
Affiliation(s)
- Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammad Kamely
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Emanuele C Goes
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Xiao C, Liu S, Ge G, Jiang H, Wang L, Chen Q, Jin C, Mo J, Li J, Wang K, Zhang Q, Zhou J. Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies. Front Pharmacol 2023; 14:1086813. [PMID: 36814489 PMCID: PMC9939531 DOI: 10.3389/fphar.2023.1086813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive malignancies. HCC It ranges as the fifth most common cause of cancer mortality worldwide. While The prognosis of metastatic or advanced HCC is still quite poor. Recently, locoregional treatment, especially local ablation therapies, plays an important role in the treatment of HCC. Radiofrequency ablation (RFA) and high-intensity focused ultrasound (HIFU) ablation are the most common-used methods effective and feasible for treating HCC. However, the molecular mechanisms underlying the actions of ablation in the treatments for HCC and the HCC recurrence after ablation still are poorly understood. Hypoxia-inducible factor (HIF), the key gene switch for adaptive responses to hypoxia, has been found to play an essential role in the rapid aggressive recurrence of HCC after ablation treatment. In this review, we summarized the current evidence of the roles of HIF in the treatment of HCC with ablation. Fifteen relevant studies were included and further analyzed. Among them, three clinical studies suggested that HIF-1α might serve as a crucial role in the RAF treatment of HCC or the local recurrence of HCC after RFA. The remainder included experimental studies demonstrated that HIF-1, 2α might target the different molecules (e.g., BNIP3, CA-IX, and arginase-1) and signaling cascades (e.g., VEGFA/EphA2 pathway), constituting a complex network that promoted HCC invasion and metastasis after ablation. Currently, the inhibitors of HIF have been developed, providing important proof of targeting HIF for the prevention of HCC recurrence after IRFA and HIFU ablation. Further confirmation by prospective clinical and in-depth experimental studies is still warranted to illustrate the effects of HIF in HCC recurrence followed ablation treatment in the future.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Ge
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jin Li
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
25
|
del Fresno C, Schulte LN, López-Collazo E. Editorial: Role of hypoxia-inducible factors in metabolic immune cell adaptation during sepsis. Front Immunol 2023; 14:1194504. [PMID: 37143647 PMCID: PMC10151767 DOI: 10.3389/fimmu.2023.1194504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Lab, IdiPAZ, La Paz University Hospital, Madrid, Spain
- *Correspondence: Carlos del Fresno, ; Leon Nicolas Schulte, ; Eduardo López-Collazo,
| | - Leon Nicolas Schulte
- Institute for Lung Research, Faculty of Medicine, University of Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- *Correspondence: Carlos del Fresno, ; Leon Nicolas Schulte, ; Eduardo López-Collazo,
| | - Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- *Correspondence: Carlos del Fresno, ; Leon Nicolas Schulte, ; Eduardo López-Collazo,
| |
Collapse
|
26
|
Kobara S, Rad MG, Grunwell JR, Coopersmith CM, Kamaleswaran R. Bioenergetic Crisis in ICU-Acquired Weakness Gene Signatures Was Associated With Sepsis-Related Mortality: A Brief Report. Crit Care Explor 2022; 4:e0818. [PMID: 36567787 PMCID: PMC9760600 DOI: 10.1097/cce.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To investigate the relationship between ICU-acquired weakness (ICUAW) signatures and sepsis-related mortality using gene expression from the blood within 24 hours of sepsis onset. DESIGN Observational study using differential gene expression analysis. SETTING Publicly available gene expression profile GSE54514, single-center medical and surgical ICU. PATIENTS Patients with primary bacteremia- and respiratory-triggered sepsis including 8 nonsurvivors and 13 survivors who were 18 years old and older and admitted to ICU. MEASUREMENTS AND MAIN RESULTS Among validated 526 ICUAW gene signatures, differential gene expression analysis controlling for age identified 38 significantly expressed genes between nonsurvivors and survivors. Functional enrichment analysis of differentially expressed ICUAW genes identified impaired cadherin binding, sarcomere formation, and energy metabolism among nonsurvivors. CONCLUSIONS Our findings demonstrated a biological association between sepsis-related mortality and ICUAW signatures in the early phase of sepsis. Defects in energy metabolism and muscle fiber formation were associated with sepsis-related mortality.
Collapse
Affiliation(s)
- Seibi Kobara
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | - Milad G Rad
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Jocelyn R Grunwell
- Department of Pediatrics, Division of Critical Care, Emory University School of Medicine, Atlanta, GA
- Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
27
|
Chen M, Su W, Chen F, Lai T, Liu Y, Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front Genet 2022; 13:1056405. [PMID: 36406124 PMCID: PMC9671214 DOI: 10.3389/fgene.2022.1056405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangling Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianlun Lai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
28
|
Chong S, Xie Q, Ma T, Xiang Q, Zhou Y, Cui Y. Risk of infection in roxadustat treatment for anemia in patients with chronic kidney disease: A systematic review with meta-analysis and trial sequential analysis. Front Pharmacol 2022; 13:967532. [PMID: 36188528 PMCID: PMC9523222 DOI: 10.3389/fphar.2022.967532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Many studies demonstrated that roxadustat (FG-4592) could increase hemoglobin (Hb) levels effectively in anemia patients with chronic kidney disease (CKD). However, its safety remains controversial. This study aims to explore the risk of infection for CKD patients treated with roxadustat, especially focused on sepsis. Methods: We thoroughly searched for the randomized controlled trials (RCTs) comparing treatment with roxadustat versus erythropoiesis stimulating agents (ESAs) or placebo in PubMed, Embase, Cochrane Library, ClinicalTrials.gov, European Union Clinical Trials Register. Both on and not on dialysis anemia patients with CKD were included. Primary outcomes contained the incidence rates of sepsis. Secondary outcomes included infection-related consequences (septic shock and other infection events), general safety outcomes [all-cause mortality, treatment-emergent adverse events (TEAEs) and treatment-emergent serious adverse events (TESAEs)] and iron parameters. Moreover, a trial sequential analysis (TSA) was conducted to assess if the results were supposed to be a robust conclusion. Results: Eighteen RCTs (n = 11,305) were included. Overall, the incidence of sepsis (RR: 2.42, 95% CI [1.50, 3.89], p = 0.0003) and cellulitis (RR: 2.07, 95% CI [1.24, 3.44], p = 0.005) were increased in the roxadustat group compared with placebo group. In non-dialysis-dependent (NDD) CKD patients, the incidence of cellulitis (RR 2.01, 95% CI [1.23, 3.28], p = 0.005) was significantly higher in roxadustat group than that in the ESAs or placebo group. Both groups showed similar results in the incidence of septic shock (RR 1.29, 95% CI [0.86, 1.94], p = 0.22). A significant increased risk of all-cause mortality [risk ratios (RR): 1.15, 95% confidence interval (CI) [1.05, 1.26], p = 0.002] was found in roxadustat treatment, and TSA confirmed the result. Compared with ESAs or placebo, both the incident rates of TEAEs (RR:1.03, 95% CI [1.01, 1.04], p = 0.008) and TESAEs (RR: 1.06, 95% CI [1.02, 1.11], p = 0.002) were significantly increased in roxadustat group. As for iron parameters, changes from baseline (Δ) of hepcidin (MD: -26.46, 95% CI [-39.83, -13.09], p = 0.0001), Δ ferritin and Δ TSAT were remarkably lower in the roxadustat group, while Δ Hb, Δ iron and Δ TIBC increased significantly versus those in ESAs or placebo group. Conclusion: We found evidence that incidence rates of sepsis and cellulitis are higher in roxadustat group compared with placebo. This may be the result of improved iron homeostasis. The risk of all-cause mortality, TEAEs and TESAEs in CKD patients also increased in patients treated with roxadustat. We need more clinical and mechanistic studies to confirm whether roxadustat really causes infection.
Collapse
Affiliation(s)
- Shan Chong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- *Correspondence: Qiufen Xie,
| | - Tiantian Ma
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| |
Collapse
|
29
|
Dzhalilova DS, Makarova OV. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:995-1014. [PMID: 36180993 DOI: 10.1134/s0006297922090115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
30
|
Karabulut Uzunçakmak S, Naldan ME, Dirican E, Kerget F, Halıcı Z. Preliminary investigation of gene expression levels of PAPP-A, STC-2, and HIF-1α in SARS-Cov-2 infected patients. Mol Biol Rep 2022; 49:8693-8699. [PMID: 35796937 PMCID: PMC9261127 DOI: 10.1007/s11033-022-07710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
Background Coronavirus-19 is still considered a pandemic that influences the world. Other molecular alterations should be clearer besides the increasing cytokine storm and pro-inflammatory molecules. Hypoxic conditions that induce HIF-1α lead to stimulate gene expression of STC-2 that targets PAPP-A expression. This study aimed to determine gene expression levels of PAPP-A, STC-2, and HIF-1α in COVID-19 infection. We also aimed to reveal the relationship of these genes with laboratory and clinical data of COVID-19 patients. Materials and Results We extracted RNA from peripheral blood samples of COVID-19(+) and COVID-19(−) individuals. The real-time PCR method was used to measure mRNA expression of PAPP-A, STC-2, and HIF-1α. Gene expression analysis was evaluated by the 2−ΔΔCt method. PAPP-A, STC-2, and HIF-1α mRNA expressions of severe patients were higher than healthy individuals (p = 0.0451, p = 0.4466, p < 0.0001, respectively). Correlation analysis of gene expression patterns of severe patients demonstrated a positive correlation between PAPP-A and STC-2 (p < 0.0001, r = 0.8638). Conclusion This is the first study that investigates the relation of PAPP-A, STC-2, and HIF-1α gene expression in patients with COVID-19 infection. Besides the routine laboratory findings, PAPP-A, STC-2, and HIF-1α mRNA expressions may be considered to patients’ prognosis as a sign of increased cytokines and pro-inflammatory molecules.
Collapse
Affiliation(s)
| | - Muhammet Emin Naldan
- Department of Anesthesia, Bilecik Seyh Edibali University, 11230, Bilecik, Turkey
| | - Ebubekir Dirican
- Health Services Vocational School, Bayburt University, 69000, Bayburt, Turkey
| | - Ferhan Kerget
- Department of Infectious and Clinical Microbiology Diseases, Erzurum Regional Education and Research Hospital, 25240, Erzurum, Turkey
| | - Zekai Halıcı
- Department of Pharmacology, Ataturk University, 25240, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
31
|
Lei X, Teng W, Fan Y, Zhu Y, Yao L, Li Y, Zhu S. The protective effects of HIF-1α activation on sepsis induced intestinal mucosal barrier injury in rats model of sepsis. PLoS One 2022; 17:e0268445. [PMID: 35576220 PMCID: PMC9109928 DOI: 10.1371/journal.pone.0268445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
The integrity of the intestinal barrier is critical for protecting the host against the pathogen. The role of hypoxia-inducible factor-1α (HIF-1α) in the intestinal barrier disfunction related to sepsis remained unclear. The purpose of the present study is to investigate the role of HIF-1α on oxidative damage, the intestinal mucosal permeability, structural and morphological changes during sepsis. Twenty-four Sprague Dawley (SD) rats were randomly divided into four groups of 6 rats each: the sham group (sham), sepsis group (subjected to cecal ligation and perforation, CLP), sepsis + DMOG group (40 mg/kg of DMOG by intraperitoneal injection for 7 consecutive days before CLP), and sepsis + BAY 87–2243 group (9 mg/kg of BAY 87–2243 orally administered for 3 consecutive days before CLP). Sepsis increased plasma levels of inflammatory mediators, oxidative stress markers and HIF-1α expression; caused pathological damage; increased permeability (P < 0.05); and decreased TJ protein expression in the intestinal mucosa of rats with sepsis (P < 0.05). The addition of DMOG up-regulated HIF-1α, then decreased the plasma levels of inflammatory mediators, oxidative stress markers, alleviated pathological damage to the intestinal mucosa and decreased intestinal permeability (P < 0.05); while BAY 87–2243 treatment had the opposite effects. Our findings showed that HIF-1α protects the intestinal barrier function of septic rats by inhibiting intestinal inflammation and oxidative damage, our results provide a novel insight for developing sepsis treatment.
Collapse
Affiliation(s)
- Xiuzhen Lei
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenbin Teng
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Fan
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yeke Zhu
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liuxu Yao
- Department of Anesthesiology, Shaoxing People’s Hospital, Shaoxing University, Zhejiang, China
| | - Yuhong Li
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- * E-mail: (YL); (SZ)
| | - Shengmei Zhu
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (YL); (SZ)
| |
Collapse
|
32
|
Malavika M, Sanju S, Poorna MR, Vishnu Priya V, Sidharthan N, Varma P, Mony U. Role of myeloid derived suppressor cells in sepsis. Int Immunopharmacol 2022; 104:108452. [PMID: 34996010 DOI: 10.1016/j.intimp.2021.108452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/05/2022]
Abstract
Sepsis is a serious and menacing organ dysfunction that occur due to dysregulated response of the host towards the infection. This organ dysfunction may lead to sepsis with intense cellular, metabolic and circulatory dysregulation, multiple organ failure and high mortality. Lymphopenia is observed in two-third of sepsis patients and a significant depletion of lymphocytes occurs in non-survivors compared to sepsis survivors. Myeloid derived suppressor cells (MDSCs) gave new insights into sepsis-associated lymphopenia. If MDSC expansion and its tissue-infiltration persist, it can induce significant pathophysiology including lymphopenia, host immunosuppression and immune-paralysis that contributes to worsened patient outcomes. This review focuses on MDSCs and its subsets, the role of MDSCs in infection, sepsis and septic shock.
Collapse
Affiliation(s)
- M Malavika
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - S Sanju
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Neeraj Sidharthan
- Department of Clinical Hematology and Stem Cell Transplant, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Praveen Varma
- Department of Cardiovascular and Thoracic Surgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
33
|
Wu X, Fan X, Crawford R, Xiao Y, Prasadam I. The Metabolic Landscape in Osteoarthritis. Aging Dis 2022; 13:1166-1182. [PMID: 35855332 PMCID: PMC9286923 DOI: 10.14336/ad.2021.1228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- The Prince Charles Hospital, Orthopedic Department, Brisbane, Queensland, Australia.
| | - Yin Xiao
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Correspondence should be addressed to: Dr. Indira Prasadam, Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
34
|
Gong F, Li R, Zheng X, Chen W, Zheng Y, Yang Z, Chen Y, Qu H, Mao E, Chen E. OLFM4 Regulates Lung Epithelial Cell Function in Sepsis-Associated ARDS/ALI via LDHA-Mediated NF-κB Signaling. J Inflamm Res 2021; 14:7035-7051. [PMID: 34955649 PMCID: PMC8694847 DOI: 10.2147/jir.s335915] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is one of the leading causes of death in patients with sepsis. As such, early and accurate identification of sepsis-related ARDS is critical. Methods Bioinformatic analysis was used to explore the GEO datasets. ELISA method was used to detect the plasma or cellular supernatant of relevant proteins. Quantitative real-time PCR was used for mRNA measurements and Western blot was applied for protein measurements. Immunohistochemistry staining and Immunofluorescence staining were used to identify the localization of OLFM4. Cecal ligation and puncture (CLP) model was used to establish sepsis model. Results The bioinformatic analysis results identified ten genes (CAMP, LTF, RETN, LCN2, ELANE, PGLYRP1, BPI, DEFA4, MPO, and OLFM4) as critical in sepsis and sepsis-related ARDS. OLFM4, LCN2, and BPI were further demonstrated to have diagnostic values in sepsis-related ARDS. Plasma expression of OLFM4 and LCN2 was also upregulated in sepsis-related ARDS patients compared to septic patients alone. OLFM4 expression was significantly increased in the lung tissues of septic mice and was co-localized with Ly6G+ neutrophils, F4/80+ macrophages and pro-surfactant C+ lung epithelial cells. In vitro data showed that OLFM4 expression in lung epithelial cells was downregulated upon LPS stimulation, whereas neutrophil media induced OLFM4 expression in lung epithelial cells. Overexpression of OLFM4 and treatment with recombinant OLFM4 effectively suppressed LPS-induced pro-inflammatory responses in lung epithelial cells. Furthermore, the increased levels of LDHA phosphorylation and the downstream NF-κB activation induced by LPS in epithelial cells were effectively diminished by OLFM4 overexpression and recombinant OLFM4 treatment via a reduction in ROS production and HIF1α expression. Conclusion OLFM4 may regulate the pro-inflammatory response of lung epithelial cells in sepsis-related ARDS by modulating metabolic disorders; this result could provide new insights into the treatment of sepsis-induced ARDS.
Collapse
Affiliation(s)
- Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Weiwei Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yanjun Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Liu D, Sun W, Zhang D, Yu Z, Qin W, Liu Y, Zhang K, Yin J. Long noncoding RNA GSEC promotes neutrophil inflammatory activation by supporting PFKFB3-involved glycolytic metabolism in sepsis. Cell Death Dis 2021; 12:1157. [PMID: 34907156 PMCID: PMC8671582 DOI: 10.1038/s41419-021-04428-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming is a hallmark of neutrophil activation in sepsis. LncRNAs play important roles in manipulating cell metabolism; however, their specific involvement in neutrophil activation in sepsis remains unclear. Here we found that 11 lncRNAs and 105 mRNAs were differentially expressed in three transcriptome datasets (GSE13904, GSE28750, and GSE64457) of gene expression in blood leukocytes and neutrophils of septic patients and healthy volunteers. After Gene Ontology biological process analysis and lncRNA-mRNA pathway network construction, we noticed that GSEC lncRNA and PFKFB3 were co-expressed and associated with enhanced glycolytic metabolism. Our clinical observations confirmed the expression patterns of GSEC lncRNA and PFKFB3 genes in neutrophils in septic patients. Performing in vitro experiments, we found that the expression of GSEC lncRNA and PFKFB3 was increased when neutrophils were treated with inflammatory stimuli. Knockdown and overexpression experiments showed that GSEC lncRNA was essential for mediating PFKFB3 mRNA expression and stability in neutrophil-like dHL-60 cells. In addition, we found that GSEC lncRNA-induced PFKFB3 expression was essential for mediating dHL-60 cell inflammatory cytokine expression. Performing mechanistic experiments, we found that glycolytic metabolism with PFKFB3 involvement supported inflammatory cytokine expression. In summary, our study uncovers a mechanism by which GSEC lncRNA promotes neutrophil inflammatory activation in sepsis by supporting glycolytic metabolism with PFKFB3.
Collapse
Affiliation(s)
- Dadong Liu
- Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Critical Care Medicine, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Danying Zhang
- Department of Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zongying Yu
- Department of Electrocardiograph, The No. 4 Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Weiting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yishu Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jiangtao Yin
- Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
36
|
Chen XY, Wang QL, Huang WX, Li LW, Liu LC, Yang Y, Wu YJ, Song SS, Ma H, Zhou H, Luo P. Application of serum exosomal hypoxia-inducible factor-1 alpha (HIF-1α) as potential circulating biomarker for bacterial peritonitis. Bioengineered 2021; 13:1975-1987. [PMID: 34898382 PMCID: PMC8973742 DOI: 10.1080/21655979.2021.2006866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Bacterial peritonitis is a severe disease that diagnosis remains challenging for clinicians. Measuring biomarkers might be a rapid diagnostic method. The objective of this study was to analyze and evaluate the dynamic changes in HIF-1α concentration in serum exosomes during bacterial peritonitis. The pre-clinical application value of serum exosomal HIF-1α was evaluated via imipenem and cilastatin sodium (ICS) intervention in the bacterial peritonitis model. The new colorimetric method to quantitate dynamic expression changes of HIF-1α in serum exosomes during bacterial peritonitis was established by our team via using the gold seed-coated with aptamer-functionalized Au @ Au core-shell peroxidase mimic. The typical inflammatory cytokines of bacterial peritonitis were also measured. Following intramuscular administration with ICS, In-Vivo Xtreme imaging system was used to visualize abdominal infection extent. Meanwhile, HIF-1α concentration in rat serum exosomes and pro-inflammatory factors levels in serum were detected. The serum typical inflammatory cytokines levels were elevated in GFP-labelled E.coli induced bacterial peritonitis. The serum exosomal HIF-1α levels clearly increased at 12 h, reached the peak during 24-48 h, and then gradually decreased at 72 h. Following intramuscular administration with ICS, the abdominal infection extent, HIF-1α concentration in serum exosomes, and the serum pro-inflammatory factors levels were reduced at 24 h in GFP-labelled E. coli induced bacterial peritonitis model. The serum exosomal HIF-1α can be used as a biomarker in the early stage of bacterial peritonitis, which might provide the basic research in the pre-clinical for further predicting and monitoring the pathological process of bacterial peritonitis.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Qian-Long Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Haidian District, Beijing, China
| | - Wei-Xue Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Long-Wei Li
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Lan-Cong Liu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi Yang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - You-Jiao Wu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Shan-Shan Song
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hao Ma
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hua Zhou
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
37
|
Taniguchi-Ponciano K, Vadillo E, Mayani H, Gonzalez-Bonilla CR, Torres J, Majluf A, Flores-Padilla G, Wacher-Rodarte N, Galan JC, Ferat-Osorio E, Blanco-Favela F, Lopez-Macias C, Ferreira-Hermosillo A, Ramirez-Renteria C, Peña-Martínez E, Silva-Román G, Vela-Patiño S, Mata-Lozano C, Carvente-Garcia R, Basurto-Acevedo L, Saucedo R, Piña-Sanchez P, Chavez-Gonzalez A, Marrero-Rodríguez D, Mercado M. Increased expression of hypoxia-induced factor 1α mRNA and its related genes in myeloid blood cells from critically ill COVID-19 patients. Ann Med 2021; 53:197-207. [PMID: 33345622 PMCID: PMC7784832 DOI: 10.1080/07853890.2020.1858234] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND COVID-19 counts 46 million people infected and killed more than 1.2 million. Hypoxaemia is one of the main clinical manifestations, especially in severe cases. HIF1α is a master transcription factor involved in the cellular response to oxygen levels. The immunopathogenesis of this severe form of COVID-19 is poorly understood. METHODS We performed scRNAseq from leukocytes from five critically ill COVID-19 patients and characterized the expression of hypoxia-inducible factor1α and its transcriptionally regulated genes. Also performed metanalysis from the publicly available RNAseq data from COVID-19 bronchoalveolar cells. RESULTS Critically-ill COVID-19 patients show a shift towards an immature myeloid profile in peripheral blood cells, including band neutrophils, immature monocytes, metamyelocytes, monocyte-macrophages, monocytoid precursors, and promyelocytes-myelocytes, together with mature monocytes and segmented neutrophils. May be the result of a physiological response known as emergency myelopoiesis. These cellular subsets and bronchoalveolar cells express HIF1α and their transcriptional targets related to inflammation (CXCL8, CXCR1, CXCR2, and CXCR4); virus sensing, (TLR2 and TLR4); and metabolism (SLC2A3, PFKFB3, PGK1, GAPDH and SOD2). CONCLUSIONS The up-regulation and participation of HIF1α in events such as inflammation, immunometabolism, and TLR make it a potential molecular marker for COVID-19 severity and, interestingly, could represent a potential target for molecular therapy. Key messages Critically ill COVID-19 patients show emergency myelopoiesis. HIF1α and its transcriptionally regulated genes are expressed in immature myeloid cells which could serve as molecular targets. HIF1α and its transcriptionally regulated genes is also expressed in lung cells from critically ill COVID-19 patients which may partially explain the hypoxia related events.
Collapse
Affiliation(s)
- Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Héctor Mayani
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Abraham Majluf
- Unidad de Investigación Médica en trombosis, hemostasia y aterogénesis, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Guillermo Flores-Padilla
- Servicio de Medicina Interna, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Juan Carlos Galan
- Servicio de Medicina Interna, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Francisco Blanco-Favela
- Unidad de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Constantino Lopez-Macias
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Claudia Ramirez-Renteria
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eduardo Peña-Martínez
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Gloria Silva-Román
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Sandra Vela-Patiño
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Carlos Mata-Lozano
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
- Analitek S.A. de C.V., CDMX, México
| | - Roberto Carvente-Garcia
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
- Analitek S.A. de C.V., CDMX, México
| | - Lourdes Basurto-Acevedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Patricia Piña-Sanchez
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Antonieta Chavez-Gonzalez
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Daniel Marrero-Rodríguez
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Moisés Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| |
Collapse
|
38
|
Liu T, Feng S, Zhang Y, Wang C. Commentary: Plasma Metabolic Profiling of Pediatric Sepsis in a Chinese Cohort. Front Cell Dev Biol 2021; 9:766357. [PMID: 34778274 PMCID: PMC8581402 DOI: 10.3389/fcell.2021.766357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
An analysis of urine and serum amino acids in critically ill patients upon admission by means of targeted LC-MS/MS: a preliminary study. Sci Rep 2021; 11:19977. [PMID: 34620961 PMCID: PMC8497565 DOI: 10.1038/s41598-021-99482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis, defined as a dysregulated host response to infection, causes the interruption of homeostasis resulting in metabolic changes. An examination of patient metabolites, such as amino acids, during the early stage of sepsis may facilitate diagnosing and assessing the severity of the sepsis. The aim of this study was to compare patterns of urine and serum amino acids relative to sepsis, septic shock and survival. Urine and serum samples were obtained from healthy volunteers (n = 15) once or patients (n = 15) within 24 h of a diagnosis of sepsis or septic shock. Concentrations of 25 amino acids were measured in urine and serum samples with liquid chromatography-electrospray mass spectrometry. On admission in the whole cohort, AAA, ABA, mHis, APA, Gly-Pro and tPro concentrations were significantly lower in the serum than in the urine and Arg, Gly, His, hPro, Leu, Ile, Lys, Orn, Phe, Sarc, Thr, Tyr, Asn and Gln were significantly higher in the serum than in the urine. The urine Gly-Pro concentration was significantly higher in septic shock than in sepsis. The serum Cit concentration was significantly lower in septic shock than in sepsis. The urine ABA, mHis and Gly-Pro, and serum Arg, hPro and Orn concentrations were over two-fold higher in the septic group compared to the control group. Urine and serum amino acids measured in septic patients on admission to the ICU may shed light on a patient’s metabolic condition during sepsis or septic shock.
Collapse
|
40
|
Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709509. [PMID: 34447792 PMCID: PMC8382733 DOI: 10.3389/fcvm.2021.709509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) diseases are the major cause of death in industrialized countries. The main function of the CV system is to deliver nutrients and oxygen to all tissues. During most CV pathologies, oxygen and nutrient delivery is decreased or completely halted. Several mechanisms, including increased oxygen transport and delivery, as well as increased blood flow are triggered to compensate for the hypoxic state. If the compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis, glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and survival, among others. The overall regulation of the expression of HIF-dependent genes depends on the severity, duration, and location of hypoxia. In the present review, common CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly from their stabilization and activation, are related to the development and perpetuation of hypoxia in these pathologies. We further classify CV diseases into acute and chronic hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis, disease progression and clinical outcomes of these diseases. We conclude that HIFs and their derived factors are fundamental in the genesis and progression of CV diseases. Understanding these mechanisms will lead to more effective treatment strategies leading to reduced morbidity and mortality.
Collapse
Affiliation(s)
| | - Cleva Villanueva
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Richard A Bond
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
41
|
De Melo P, Pineros Alvarez AR, Ye X, Blackman A, Alves-Filho JC, Medeiros AI, Rathmell J, Pua H, Serezani CH. Macrophage-Derived MicroRNA-21 Drives Overwhelming Glycolytic and Inflammatory Response during Sepsis via Repression of the PGE 2/IL-10 Axis. THE JOURNAL OF IMMUNOLOGY 2021; 207:902-912. [PMID: 34301845 DOI: 10.4049/jimmunol.2001251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Myeloid cells are critical for systemic inflammation, microbial control, and organ damage during sepsis. MicroRNAs are small noncoding RNAs that can dictate the outcome of sepsis. The role of myeloid-based expression of microRNA-21 (miR-21) in sepsis is inconclusive. In this study, we show that sepsis enhanced miR-21 expression in both peritoneal macrophages and neutrophils from septic C57BL/6J mice, and the deletion of miR-21 locus in myeloid cells (miR-21Δmyel mice) enhanced animal survival, decreased bacterial growth, decreased systemic inflammation, and decreased organ damage. Resistance to sepsis was associated with a reduction of aerobic glycolysis and increased levels of the anti-inflammatory mediators PGE2 and IL-10 in miR-21Δmyel in vivo and in vitro. Using blocking Abs and pharmacological tools, we discovered that increased survival and decreased systemic inflammation in septic miR-21Δmyel mice is dependent on PGE2/IL-10-mediated inhibition of glycolysis. Together, these findings demonstrate that expression of miR-21 in myeloid cells orchestrates the balance between anti-inflammatory mediators and metabolic reprogramming that drives cytokine storm during sepsis.
Collapse
Affiliation(s)
- Paulo De Melo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alexandra I Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil.,Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jeffrey Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and.,Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| | - Heather Pua
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN.,Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and.,Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| | - C Henrique Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and.,Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
42
|
Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches. J Neurosci 2021; 41:5338-5349. [PMID: 34162747 PMCID: PMC8221594 DOI: 10.1523/jneurosci.3188-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.
Collapse
Affiliation(s)
- Olivia Swain
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Sofia K Romano
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Ritika Miryala
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jocelyn Tsai
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Vinnie Parikh
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - George K E Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
43
|
de Jong TV, Guryev V, Moshkin YM. Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients. Sci Rep 2021; 11:10793. [PMID: 34031464 PMCID: PMC8144599 DOI: 10.1038/s41598-021-90192-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Abstract
Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients is challenging. This stems from the heterogeneous response of individuals to disease and is reflected in the inter-individual variability of gene expression responses that obscures differential gene expression analysis. Here, we developed an alternative approach that could be applied to dissect the disease-associated molecular changes. We define gene ensemble noise as a measure that represents a variance for a collection of genes encoding for either members of known biological pathways or subunits of annotated protein complexes and calculated within an individual. The gene ensemble noise allows for the holistic identification and interpretation of gene expression disbalance on the level of gene networks and systems. By comparing gene expression data from COVID-19, H1N1, and sepsis patients we identified common disturbances in a number of pathways and protein complexes relevant to the sepsis pathology. Among others, these include the mitochondrial respiratory chain complex I and peroxisomes. This suggests a Warburg effect and oxidative stress as common hallmarks of the immune host-pathogen response. Finally, we showed that gene ensemble noise could successfully be applied for the prediction of clinical outcome namely, the mortality of patients. Thus, we conclude that gene ensemble noise represents a promising approach for the investigation of molecular mechanisms of pathology through a prism of alterations in the coherent expression of gene circuits.
Collapse
Affiliation(s)
- Tristan V de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Gene Learning Association, Geneva, Switzerland
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands. .,Gene Learning Association, Geneva, Switzerland.
| | - Yuri M Moshkin
- Federal Research Centre, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia. .,Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia. .,Gene Learning Association, Geneva, Switzerland.
| |
Collapse
|
44
|
Zakharova NM, Tarahovsky YS, Komelina NP, Khrenov MO, Kovtun AL. Pharmacological torpor prolongs rat survival in lethal normobaric hypoxia. J Therm Biol 2021; 98:102906. [PMID: 34016333 DOI: 10.1016/j.jtherbio.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Resistance to hypoxia is one of the most prominent features of natural hibernation and is expected to be present in the pharmacological torpor (PT) that simulates hibernation. We studied resistance to lethal hypoxia (3.5% oxygen content) in rats under PT. To initiate PT, we used the previously developed pharmacological composition (PC) which, after a single intravenous injection, can induce a daily decrease in Tb by 7 °C-8 °C at the environmental temperature of 22 °C-23 °C. Half-survival (median) time of rats in lethal hypoxia was found to increase from 5 ± 0.8 min in anesthetized control rats to 150 ± 12 min in rats injected with PC, which is a 30-fold increase. Behavioral tests after PT and hypoxia, including the traveling distance, the number of rearing and grooming episodes, revealed that animal responses are significantly restored within a week. It is assumed that the discovered unprecedented resistance of artificially torpid rats to lethal hypoxia may open up broad prospects for the therapeutic use of PT for preconditioning to various damaging factors, treatment of diseases, and extend the so-called "golden hour" for lifesaving interventions.
Collapse
Affiliation(s)
| | - Yury S Tarahovsky
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia; Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region 142290, Russia.
| | - Natalia P Komelina
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | | |
Collapse
|
45
|
Al-Yousif N, Rawal S, Jurczak M, Mahmud H, Shah FA. Endogenous Glucose Production in Critical Illness. Nutr Clin Pract 2021; 36:344-359. [PMID: 33682953 DOI: 10.1002/ncp.10646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulation of endogenous glucose production (EGP) by hormonal, neuronal, and metabolic signaling pathways contributes to the maintenance of euglycemia under normal physiologic conditions. EGP is defined by the generation of glucose from substrates through glycogenolysis and gluconeogenesis, usually in fasted states, for local and systemic use. Abnormal increases in EGP are noted in patients with diabetes mellitus type 2, and elevated EGP may also impact the pathogenesis of nonalcoholic fatty liver disease and congestive heart failure. In this narrative review, we performed a literature search in PubMed to identify recently published English language articles characterizing EGP in critical illness. Evidence from preclinical and clinical studies demonstrates that critical illness can disrupt EGP through multiple mechanisms including increased systemic inflammation, counterregulatory hormone and catecholamine release, alterations in the hypothalamic-pituitary axis, insulin resistance, lactic acidosis, and iatrogenic insults such as vasopressors and glucocorticoids administered as part of clinical care. EGP contributes to hyperglycemia in critical illness when abnormally elevated and to hypoglycemia when abnormally depressed, each of which has been independently associated with increased mortality. Increased EGP may also promote protein catabolism that could worsen critical illness myopathy and impede recovery. Better understanding of the mechanisms and factors contributing to dysregulated EGP in critical illness may help in the development of therapeutic strategies that promote euglycemia, reduce intensive care unit-associated catabolism, and improve patient outcomes.
Collapse
Affiliation(s)
- Nameer Al-Yousif
- Department of Internal Medicine, UPMC Mercy Hospital, Pittsburgh, Pennsylvania, USA
| | - Sagar Rawal
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hussain Mahmud
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Faraaz Ali Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Zeng X, Feng J, Yang Y, Zhao R, Yu Q, Qin H, Wei L, Ji P, Li H, Wu Z, Zhang J. Screening of Key Genes of Sepsis and Septic Shock Using Bioinformatics Analysis. J Inflamm Res 2021; 14:829-841. [PMID: 33737824 PMCID: PMC7962593 DOI: 10.2147/jir.s301663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Sepsis is a disease associated with high mortality. We performed bioinformatic analysis to identify key biomarkers associated with sepsis and septic shock. Methods The top 20% of genes showing the greatest variance between sepsis and controls in the GSE13904 dataset (children) were screened by co-expression network analysis. The differentially expressed genes (DEGs) were identified through analyzing differential gene expression between sepsis patients and control in the GSE13904 (children) and GSE154918 (adult) data sets. Intersection analysis of module genes and DEGs was performed to identify common DEGs for enrichment analysis, protein-protein interaction network (PPI network) analysis, and Short Time-series Expression Miner (STEM) analysis. The PPI network genes were ranked by degree of connectivity, and the top 100 sepsis-associated genes were identified based on the area under the receiver operating characteristic curve (AUC). In addition, we evaluated differences in immune cell infiltration between sepsis patients and controls in children (GSE13904, GSE25504) and adults (GSE9960, GSE154918). Finally, we analyzed differences in DNA methylation levels between sepsis patients and controls in GSE138074 (adults). Results The common genes were associated mainly with up-regulated inflammatory and metabolic responses, as well as down-regulated immune responses. Sepsis patients showed lower infiltration by most types of immune cells. Genes in the PPI network with AUC values greater than 0.9 in both GSE13904 (children) and GSE154918 (adults) were screened as key genes for diagnosis. These key genes (MAPK14, FGR, RHOG, LAT, PRKACB, UBE2Q2, ITK, IL2RB, and CD247) were also identified in STEM analysis to be progressively dysregulated across controls, sepsis patients and patients with septic shock. In addition, the expression of MAPK14, FGR, and CD247 was modified by methylation. Conclusion This study identified several potential diagnostic genes and inflammatory and metabolic responses mechanisms associated with the development of sepsis.
Collapse
Affiliation(s)
- Xiaoliang Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Han Qin
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Lile Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Pan Ji
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Hongyuan Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Zimeng Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| |
Collapse
|
47
|
Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021; 66:101249. [PMID: 33383189 DOI: 10.1016/j.arr.2020.101249] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China.
| | - Ali Mobasheri
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, FI-90014 Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
48
|
A Unique Monocyte Transcriptome Discriminates Sickle Cell Disease From Other Hereditary Hemolytic Anemias and Shows the Particular Importance of Lipid and Interferon Signaling. Hemasphere 2021; 5:e531. [PMID: 33604514 PMCID: PMC7886403 DOI: 10.1097/hs9.0000000000000531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023] Open
|
49
|
Rethinking animal models of sepsis - working towards improved clinical translation whilst integrating the 3Rs. Clin Sci (Lond) 2021; 134:1715-1734. [PMID: 32648582 PMCID: PMC7352061 DOI: 10.1042/cs20200679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Sepsis is a major worldwide healthcare issue with unmet clinical need. Despite extensive animal research in this area, successful clinical translation has been largely unsuccessful. We propose one reason for this is that, sometimes, the experimental question is misdirected or unrealistic expectations are being made of the animal model. As sepsis models can lead to a rapid and substantial suffering – it is essential that we continually review experimental approaches and undertake a full harm:benefit impact assessment for each study. In some instances, this may require refinement of existing sepsis models. In other cases, it may be replacement to a different experimental system altogether, answering a mechanistic question whilst aligning with the principles of reduction, refinement and replacement (3Rs). We discuss making better use of patient data to identify potentially useful therapeutic targets which can subsequently be validated in preclinical systems. This may be achieved through greater use of construct validity models, from which mechanistic conclusions are drawn. We argue that such models could provide equally useful scientific data as face validity models, but with an improved 3Rs impact. Indeed, construct validity models may not require sepsis to be modelled, per se. We propose that approaches that could support and refine clinical translation of research findings, whilst reducing the overall welfare burden on research animals.
Collapse
|
50
|
Sepsis is associated with mitochondrial DNA damage and a reduced mitochondrial mass in the kidney of patients with sepsis-AKI. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:36. [PMID: 33494815 PMCID: PMC7831178 DOI: 10.1186/s13054-020-03424-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Background Sepsis is a life-threatening condition accompanied by organ dysfunction subsequent to a dysregulated host response to infection. Up to 60% of patients with sepsis develop acute kidney injury (AKI), which is associated with a poor clinical outcome. The pathophysiology of sepsis-associated AKI (sepsis-AKI) remains incompletely understood, but mitochondria have emerged as key players in the pathogenesis. Therefore, our aim was to identify mitochondrial damage in patients with sepsis-AKI. Methods We conducted a clinical laboratory study using “warm” postmortem biopsies from sepsis-associated AKI patients from a university teaching hospital. Biopsies were taken from adult patients (n = 14) who died of sepsis with AKI at the intensive care unit (ICU) and control patients (n = 12) undergoing tumor nephrectomy. To define the mechanisms of the mitochondrial contribution to the pathogenesis of sepsis-AKI, we explored mRNA and DNA expression of mitochondrial quality mechanism pathways, DNA oxidation and mitochondrial DNA (mtDNA) integrity in renal biopsies from sepsis-AKI patients and control subjects. Next, we induced human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS) for 48 h to mimic sepsis and validate our results in vitro. Results Compared to control subjects, sepsis-AKI patients had upregulated mRNA expression of oxidative damage markers, excess mitochondrial DNA damage and lower mitochondrial mass. Sepsis-AKI patients had lower mRNA expression of mitochondrial quality markers TFAM, PINK1 and PARKIN, but not of MFN2 and DRP1. Oxidative DNA damage was present in the cytosol of tubular epithelial cells in the kidney of sepsis-AKI patients, whereas it was almost absent in biopsies from control subjects. Oxidative DNA damage co-localized with both the nuclei and mitochondria. Accordingly, HUVECs induced with LPS for 48 h showed an increased mnSOD expression, a decreased TFAM expression and higher mtDNA damage levels. Conclusion Sepsis-AKI induces mitochondrial DNA damage in the human kidney, without upregulation of mitochondrial quality control mechanisms, which likely resulted in a reduction in mitochondrial mass.![]()
Collapse
|