1
|
Azeez IA, Awogbindin IO, Olayinka JN, Folarin RO, Adamu AS, Ior LD, Shehu AM, Mukhtar AI, Ajeigbe OF, Emokpae AO, Usende IL, Babatunde BR, Yusha'u Y, Olateju OI, Kamoga R, Benson AIO, Oparaji KC, Owemidu IO, Iliyasu MO, Imam MI, Olopade JO. Neural stem cell research in Africa: current realities and future prospects. Biol Open 2022; 11:280534. [PMID: 36326097 PMCID: PMC9641530 DOI: 10.1242/bio.059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.
Collapse
Affiliation(s)
- Idris A. Azeez
- Department of Veterinary Anatomy, University of Jos 1 , Jos, 930001 Nigeria
| | | | - Juliet N. Olayinka
- Department of Pharmacology and Therapeutics, Afe Babalola University 3 , Ado-Ekiti, 360001 Nigeria
| | - Royhaan O. Folarin
- Department of Anatomy, Olabisi Onabanjo University 4 , Ago-Iwoye, 120107 Nigeria
| | - Abubakar S. Adamu
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Lydia D. Ior
- Department of Pharmacology, University of Jos 6 , Jos, 930001 , Nigeria
| | - Asmau M. Shehu
- Department of Human Anatomy, Federal University Dutse 7 , Dutse, 720223 , Nigeria
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Abubakar I. Mukhtar
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Olufunke F. Ajeigbe
- Elizade University, Ilara-Mokin, 340112 9 Department of Physical and Chemical Sciences, Biochemistry Programme , , Nigeria
| | | | - Ifukibot L. Usende
- Department of Veterinary Anatomy, University of Abuja 11 , Abuja, 900105 , Nigeria
| | | | - Yusuf Yusha'u
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - Oladiran I. Olateju
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Ronald Kamoga
- Department of Pharmacology and Therapeutics, Mbarara University of Science and Technology 13 , Mbarara P.O. Box 1410 , Uganda
| | - Ayoola I. O. Benson
- Department of Human Anatomy, Elizade University, Ilara-Mokin 14 , Abakaliki, 482131 Nigeria
| | - Kenneth C. Oparaji
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike 15 , Abakaliki, 482131 , Nigeria
| | - Idowu O. Owemidu
- Department of Physiology, Kogi State University 16 , Anyigba, 272102 , Nigeria
| | - Musa O. Iliyasu
- Department of Anatomy, Kogi State University 17 , Anyigba, 272102 , Nigeria
| | - Maryam I. Imam
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan 18 , Ibadan, 200005 , Nigeria
| |
Collapse
|
2
|
Diez A, An HY, Carfagnini N, Bottini C, MacDougall-Shackleton SA. Neurogenesis and the development of neural sex differences in vocal control regions of songbirds. J Comp Neurol 2021; 529:2970-2986. [PMID: 33719029 DOI: 10.1002/cne.25138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/10/2022]
Abstract
The brain regions that control the learning and production of song and other learned vocalizations in songbirds exhibit some of the largest sex differences in the brain known in vertebrates and are associated with sex differences in singing behavior. Song learning takes place through multiple stages: an early sensory phase when song models are memorized, followed by a sensorimotor phase in which auditory feedback is used to modify song output through subsong, plastic song, to adult crystalized song. However, how patterns of neurogenesis in these brain regions change through these learning stages, and differ between the sexes, is little explored. We collected brains from 63 young male and female zebra finches (Taeniopygia guttata) over four stages of song learning. Using neurogenesis markers for cell division (proliferating cell nuclear antigen), neuron migration (doublecortin), and mature neurons (neuron-specific nuclear protein), we demonstrate that there are sex-specific changes in neurogenesis over song development that differ between the caudal motor pathway and anterior forebrain pathway of the vocal control circuit. In many of these regions, sex differences emerged very early in development, by 25 days post hatch, at the beginning of song learning. The emergence of sex differences in other components of the system was more gradual and had specific trajectories depending on the brain region and its function. In conclusion, we found that sex differences occurred early and continued during song learning. Moreover, transitions from the different phases of song development do not seem to depend on large changes in neurogenesis in the vocal control areas measured.
Collapse
Affiliation(s)
- Adriana Diez
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Ha Yun An
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Nicole Carfagnini
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Claire Bottini
- Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Voukali E, Veetil NK, Němec P, Stopka P, Vinkler M. Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds. Sci Rep 2021; 11:5312. [PMID: 33674647 PMCID: PMC7935914 DOI: 10.1038/s41598-021-84274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/27/2022] Open
Abstract
Cerebrospinal fluid (CSF) proteins regulate neurogenesis, brain homeostasis and participate in signalling during neuroinflammation. Even though birds represent valuable models for constitutive adult neurogenesis, current proteomic studies of the avian CSF are limited to chicken embryos. Here we use liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to explore the proteomic composition of CSF and plasma in adult chickens (Gallus gallus) and evolutionarily derived parrots: budgerigar (Melopsittacus undulatus) and cockatiel (Nymphicus hollandicus). Because cockatiel lacks a complete genome information, we compared the cross-species protein identifications using the reference proteomes of three model avian species: chicken, budgerigar and zebra finch (Taeniopygia guttata) and found the highest identification rates when mapping against the phylogenetically closest species, the budgerigar. In total, we identified 483, 641 and 458 unique proteins consistently represented in the CSF and plasma of all chicken, budgerigar and cockatiel conspecifics, respectively. Comparative pathways analyses of CSF and blood plasma then indicated clusters of proteins involved in neurogenesis, neural development and neural differentiation overrepresented in CSF in each species. This study provides the first insight into the proteomics of adult avian CSF and plasma and brings novel evidence supporting the adult neurogenesis in birds.
Collapse
Affiliation(s)
- Eleni Voukali
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Nithya Kuttiyarthu Veetil
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| |
Collapse
|
4
|
Mazengenya P, Bhagwandin A, Ihunwo AO. Putative adult neurogenesis in palaeognathous birds: The common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae). Int J Dev Neurosci 2020; 80:613-635. [PMID: 32767787 DOI: 10.1002/jdn.10057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study, we examined adult neurogenesis throughout the brain of the common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae) using immunohistochemistry for the endogenous markers PCNA which labels proliferating cells, and DCX, which stains immature and migrating neurons. The distribution of PCNA and DCX labelled cells was widespread throughout the brain of both species. The highest density of cells immunoreactive to both markers was observed in the olfactory bulbs and the telencephalon, especially the subventricular zone of the lateral ventricle. Proliferative hot spots, identified with strong PCNA and DCX immunolabelling, were identified in the dorsal and ventral poles of the rostral aspects of the lateral ventricles. The density of PCNA immunoreactive cells was less in the telencephalon of the emu compared to the common ostrich. Substantial numbers of PCNA immunoreactive cells were observed in the diencephalon and brainstem, but DCX immunoreactivity was weaker in these regions, preferentially staining axons and dendrites over cell bodies, except in the medial regions of the hypothalamus where distinct DCX immunoreactive cells and fibres were observed. PCNA and DCX immunoreactive cells were readily observed in moderate density in the cortical layers of the cerebellum of both species. The distribution of putative proliferating cells and immature neurons in the brain of the common ostrich and the emu is widespread, far more so than in mammals, and compares with the neognathous birds, and suggests that brain plasticity and neuronal turnover is an important aspect of cognitive brain functions in these birds.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- College of Medicine, Ajman University, Ajman, United Arab Emirates.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Pepperberg IM. The Comparative Psychology of Intelligence: Some Thirty Years Later. Front Psychol 2020; 11:973. [PMID: 32508723 PMCID: PMC7248277 DOI: 10.3389/fpsyg.2020.00973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
After re-reading Macphail's (1987) essay "The Comparative Psychology of Intelligence" with all the associated commentaries, I was struck by how contemporary many of the arguments and counter-arguments still appear. Of course, we now know much more about the abilities of many more species (including their neurobiology) and fewer researchers currently favor explanations of behavior based solely on associative processes; however, the role of contextual variables in comparative psychology still remains cloudy. I discuss these issues briefly. Given my research interests involving the cognitive and communicative abilities of Grey parrots, the one aspect of the original article upon which I feel I can comment in depth involves Macphail's claims about the importance of language-and specifically syntax-in problem-solving and thus in placing humans above all other creatures. Granted, no other species has (or in my opinion is likely ever to acquire) everything that goes into what is considered "human language." Nevertheless, several other species have acquired symbolic representation, and considerable information now exists upon which to base an argument that such acquisition by itself enables more complex and "human-like" cognitive processes. Such processes may form the basis of the kind of intelligence that is measured-not surprisingly-with human-based tasks, including the use of such representations as a means to directly query non-human subjects in ways not unlike those used with young children.
Collapse
Affiliation(s)
- Irene M Pepperberg
- Department of Psychology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Docampo-Seara A, Pereira-Guldrís S, Sánchez-Farías N, Mazan S, Rodríguez MA, Candal E. Characterization of neurogenic niches in the telencephalon of juvenile and adult sharks. Brain Struct Funct 2020; 225:817-839. [PMID: 32062722 PMCID: PMC7046584 DOI: 10.1007/s00429-020-02038-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Neurogenesis is a multistep process by which progenitor cells become terminally differentiated neurons. Adult neurogenesis has gathered increasing interest with the aim of developing new cell-based treatments for neurodegenerative diseases in humans. Active sites of adult neurogenesis exist from fish to mammals, although in the adult mammalian brain the number and extension of neurogenic areas is considerably reduced in comparison to non-mammalian vertebrates and they become mostly reduced to the telencephalon. Much of our understanding in this field is based in studies on mammals and zebrafish, a modern bony fish. The use of the cartilaginous fish Scyliorhinus canicula (representative of basal gnathostomes) as a model expands the comparative framework to a species that shows highly neurogenic activity in the adult brain. In this work, we studied the proliferation pattern in the telencephalon of juvenile and adult specimens of S. canicula using antibodies against the proliferation marker proliferating cell nuclear antigen (PCNA). We have characterized proliferating niches using stem cell markers (Sex determining region Y-box 2), glial markers (glial fibrillary acidic protein, brain lipid binding protein and glutamine synthase), intermediate progenitor cell markers (Dlx2 and Tbr2) and markers for migrating neuroblasts (Doublecortin). Based in the expression pattern of these markers, we demonstrate the existence of different cell subtypes within the PCNA immunoreactive zones including non-glial stem cells, glial progenitors, intermediate progenitor-like cells and migratory neuroblasts, which were widely distributed in the ventricular zone of the pallium, suggesting that the main progenitor types that constitute the neurogenic niche in mammals are already present in cartilaginous fishes.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - S Pereira-Guldrís
- Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - N Sánchez-Farías
- Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - S Mazan
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls, France
| | - M A Rodríguez
- Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Candal
- Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Herold C, Schlömer P, Mafoppa-Fomat I, Mehlhorn J, Amunts K, Axer M. The hippocampus of birds in a view of evolutionary connectomics. Cortex 2019; 118:165-187. [DOI: 10.1016/j.cortex.2018.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
|
8
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Quantitative analysis of age and life-history stage related changes in DCX expression in the male Japanese quail (Cortunix japonica) telencephalon. Int J Dev Neurosci 2019; 74:38-48. [PMID: 30890437 DOI: 10.1016/j.ijdevneu.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Most avian neurogenesis studies focused on the song control system and little attention has been given to non-song birds such as the Japanese quail. However, the only few neurogenesis studies in quails mainly focused on the sex steroid sensitive areas of the brain such as the medial preoptic and lateral septal nuclei. Despite the important role the quail telencephalon plays in filial imprinting and passive avoidance learning, neurogenesis in this structure has been completely overlooked. The aim of this study was therefore to quantitatively determine how DCX expression in the Japanese quail telencephalon changes with post hatching age (3-12 weeks) and life history stage. In this study, DCX was used as a proxy for neuronal incorporation. Bipolar and multipolar DCX immunoreactive cells were observed in the entire telencephalon except for the entopallium and arcopallium. In addition, DCX expression in all the eight telencephalic areas quantified was strongly negatively correlated with post-hatching age. Furthermore, numbers of bipolar and multipolar DCX immunoreactive cells were higher in the juvenile compared to subadult and adult quails. In conclusion, neuronal incorporation in the quail telencephalon is widespread but it declines with post hatching age. In addition, the most dramatic decline in neuronal incorporation in the telencephalic areas quantified takes place just after the birds have attained sexual maturity.
Collapse
Affiliation(s)
- Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; Department of Human Anatomy & Physiology, University of Johannesburg, Cnr Siemert and Beit Streets, Doornfontein, Johannesburg, 2094, South Africa
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
9
|
Augusto-Oliveira M, Arrifano GPF, Malva JO, Crespo-Lopez ME. Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies. Cells 2019; 8:cells8020125. [PMID: 30764477 PMCID: PMC6406791 DOI: 10.3390/cells8020125] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in many species, from fish to mammals, with an apparent reduction in the number of both neurogenic zones and new neurons inserted into established circuits with increasing brain complexity. Although the absolute number of new neurons is high in some species, the ratio of these cells to those already existing in the circuit is low. Continuous replacement/addition plays a role in spatial navigation (migration) and other cognitive processes in birds and rodents, but none of the literature relates adult neurogenesis to spatial navigation and memory in primates and humans. Some models developed by computational neuroscience attribute a high weight to hippocampal adult neurogenesis in learning and memory processes, with greater relevance to pattern separation. In contrast to theories involving neurogenesis in cognitive processes, absence/rarity of neurogenesis in the hippocampus of primates and adult humans was recently suggested and is under intense debate. Although the learning process is supported by plasticity, the retention of memories requires a certain degree of consolidated circuitry structures, otherwise the consolidation process would be hampered. Here, we compare and discuss hippocampal adult neurogenesis in different species and the inherent paradoxical aspects.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Research on Neurodegeneration and Infection, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-005, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Gabriela P F Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| |
Collapse
|
10
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Age-related changes in Ki-67 and DCX expression in the BALB/ c mouse (Mus Musculus) brain. Int J Dev Neurosci 2018; 72:36-47. [PMID: 30472241 DOI: 10.1016/j.ijdevneu.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Several studies have identified age as one of the strongest regulators of neurogenesis in the mammalian brain. However, previous age-related studies focused mainly on changes in neurogenesis during different stages of adulthood and did not describe changes in neurogenesis through the different life history stages of the animal. The aim of this study was therefore to determine time course changes in neurogenesis in the male BALB/c mouse brain at postnatal ages 1 week to 12 weeks, spanning juvenile, sub adult and adult life history stages. To achieve this, Ki-67 and DCX immunohistochemistry was used to assess changes in cell proliferation and neuronal incorporation respectively. Ki-67 expression was mainly observed in the olfactory bulb, rostral migratory stream, sub ventricular zone of lateral ventricle and the sub granular zone of the dentate gyrus. In addition, fewer Ki-67 positive cells were also observed in the neocortex, cerebellum and tectum. DCX was expressed in similar regions as Ki-67 except for the cerebellum and tectum. Expression of both Ki-67 and DCX sharply decreased with advancing age or life history stages in the sub ventricular zone, rostral migratory stream and sub granular zone of the BALB/c mouse brain. Neurogenesis therefore persists throughout all life history stages in the BALB/c mouse brain although it decreases with age.
Collapse
Affiliation(s)
- Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa; Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Cnr Siemert and Beit Streets, Doornfontein, 2094, Johannesburg, South Africa
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa.
| |
Collapse
|