1
|
Huang H, Chen C, Rong B, Zhou Y, Yuan W, Peng Y, Liu Z, Wang G, Wang H. Distinct resting-state functional connectivity of the anterior cingulate cortex subregions in first-episode schizophrenia. Brain Imaging Behav 2024; 18:675-685. [PMID: 38349504 DOI: 10.1007/s11682-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 07/04/2024]
Abstract
The anterior cingulate cortex (ACC) is a heterogeneous region of the brain's limbic system that regulates cognitive and emotional processing, and is frequently implicated in schizophrenia. This study aims to characterize resting-state functional connectivity (rsFC) profiles of three subregions of ACC in patients with first-episode schizophrenia and healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were collected from 60 first-episode schizophrenia (FES) patients and 60 healthy controls (HC), and the subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC) were selected as seed regions from the newest automated anatomical labeling atlas 3 (AAL3). Seed-based rsFC maps for each ACC subregion were generated and compared between the two groups. The results revealed that compared to the HC group, the FES group showed higher rsFC between the pgACC and bilateral lateral orbitofrontal cortex (lOFC), and lower rsFC between the dACC and right posterior OFC (pOFC), the medial prefrontal gyrus (MPFC), and the precuneus cortex (PCu). These findings point to a selective functional dysconnectivity of pgACC and dACC in schizophrenia and provide more accurate information about the functional role of the ACC in this disorder.
Collapse
Affiliation(s)
- Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Yuan
- Department of Psychiatry, Yidu People's Hospital, Yidu, 443300, China
| | - Yunlong Peng
- Department of Psychiatry, Yidu People's Hospital, Yidu, 443300, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Hubei Institute of Neurology and Psychiatry Research, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
2
|
Bulut T, Hagoort P. Contributions of the left and right thalami to language: A meta-analytic approach. Brain Struct Funct 2024:10.1007/s00429-024-02795-3. [PMID: 38625556 DOI: 10.1007/s00429-024-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Despite a pervasive cortico-centric view in cognitive neuroscience, subcortical structures including the thalamus have been shown to be increasingly involved in higher cognitive functions. Previous structural and functional imaging studies demonstrated cortico-thalamo-cortical loops which may support various cognitive functions including language. However, large-scale functional connectivity of the thalamus during language tasks has not been examined before. METHODS The present study employed meta-analytic connectivity modeling to identify language-related coactivation patterns of the left and right thalami. The left and right thalami were used as regions of interest to search the BrainMap functional database for neuroimaging experiments with healthy participants reporting language-related activations in each region of interest. Activation likelihood estimation analyses were then carried out on the foci extracted from the identified studies to estimate functional convergence for each thalamus. A functional decoding analysis based on the same database was conducted to characterize thalamic contributions to different language functions. RESULTS The results revealed bilateral frontotemporal and bilateral subcortical (basal ganglia) coactivation patterns for both the left and right thalami, and also right cerebellar coactivations for the left thalamus, during language processing. In light of previous empirical studies and theoretical frameworks, the present connectivity and functional decoding findings suggest that cortico-subcortical-cerebellar-cortical loops modulate and fine-tune information transfer within the bilateral frontotemporal cortices during language processing, especially during production and semantic operations, but also other language (e.g., syntax, phonology) and cognitive operations (e.g., attention, cognitive control). CONCLUSION The current findings show that the language-relevant network extends beyond the classical left perisylvian cortices and spans bilateral cortical, bilateral subcortical (bilateral thalamus, bilateral basal ganglia) and right cerebellar regions.
Collapse
Affiliation(s)
- Talat Bulut
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Department of Speech and Language Therapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Jockwitz C, Krämer C, Dellani P, Caspers S. Differential predictability of cognitive profiles from brain structure in older males and females. GeroScience 2024; 46:1713-1730. [PMID: 37730943 PMCID: PMC10828131 DOI: 10.1007/s11357-023-00934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Structural brain imaging parameters may successfully predict cognitive performance in neurodegenerative diseases but mostly fail to predict cognitive abilities in healthy older adults. One important aspect contributing to this might be sex differences. Behaviorally, older males and females have been found to differ in terms of cognitive profiles, which cannot be captured by examining them as one homogenous group. In the current study, we examined whether the prediction of cognitive performance from brain structure, i.e. region-wise grey matter volume (GMV), would benefit from the investigation of sex-specific cognitive profiles in a large sample of older adults (1000BRAINS; N = 634; age range 55-85 years). Prediction performance was assessed using a machine learning (ML) approach. Targets represented a) a whole-sample cognitive component solution extracted from males and females, and b) sex-specific cognitive components. Results revealed a generally low predictability of cognitive profiles from region-wise GMV. In males, low predictability was observed across both, the whole sample as well as sex-specific cognitive components. In females, however, predictability differences across sex-specific cognitive components were observed, i.e. visual working memory (WM) and executive functions showed higher predictability than fluency and verbal WM. Hence, results accentuated that addressing sex-specific cognitive profiles allowed a more fine-grained investigation of predictability differences, which may not be observable in the prediction of the whole-sample solution. The current findings not only emphasize the need to further investigate the predictive power of each cognitive component, but they also emphasize the importance of sex-specific analyses in older adults.
Collapse
Affiliation(s)
- Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Kurth F, Strohmaier S, Luders E. Reduced Age-Related Gray Matter Loss in the Orbitofrontal Cortex in Long-Term Meditators. Brain Sci 2023; 13:1677. [PMID: 38137125 PMCID: PMC10741700 DOI: 10.3390/brainsci13121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The orbitofrontal cortex (OFC) is a functionally heterogeneous brain region contributing to mental processes relating to meditation practices. The OFC has been reported to decline in volume with increasing age and differs in volume between meditation practitioners and non-practitioners. We hypothesized that the age-related decline of the OFC is diminished in meditation practitioners. We tested this hypothesis in a sample of 50 long-term meditators and 50 matched controls by correlating chronological age with regional gray matter volumes of the left and right OFC, as well as in seven left and right cytoarchitectonically defined subregions of the OFC (Fo1-Fo7). In both meditators and controls, we observed a negative relationship between age and OFC (sub)volumes, indicating that older participants have smaller OFC volumes. However, in meditators, the age-related decline was less steep compared to controls. These age-related differences reached significance for left and right Fo2, Fo3, Fo4, and Fo7, as well as left Fo5 and right Fo6. Since different subregions of the OFC are associated with distinct brain functions, further investigations are required to explore the functional implications of these findings in the context of meditation and the aging brain.
Collapse
Affiliation(s)
- Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
| | - Sarah Strohmaier
- Psychology Discipline, Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, 751 85 Uppsala, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organization in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity. Cereb Cortex 2023; 33:11384-11399. [PMID: 37833772 PMCID: PMC10690868 DOI: 10.1093/cercor/bhad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The left inferior frontal gyrus has been ascribed key roles in numerous cognitive domains, such as language and executive function. However, its functional organization is unclear. Possibilities include a singular domain-general function, or multiple functions that can be mapped onto distinct subregions. Furthermore, spatial transition in function may be either abrupt or graded. The present study explored the topographical organization of the left inferior frontal gyrus using a bimodal data-driven approach. We extracted functional connectivity gradients from (i) resting-state fMRI time-series and (ii) coactivation patterns derived meta-analytically from heterogenous sets of task data. We then sought to characterize the functional connectivity differences underpinning these gradients with seed-based resting-state functional connectivity, meta-analytic coactivation modeling and functional decoding analyses. Both analytic approaches converged on graded functional connectivity changes along 2 main organizational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior functional connectivity) to being more tightly coupled with perceptually driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal functional connectivity), and with the semantic network, on the other (ventral). These results provide novel insights into an overarching graded functional organization of the functional connectivity that explains its role in multiple cognitive domains.
Collapse
Affiliation(s)
- Veronica Diveica
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - Richard J Binney
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
| |
Collapse
|
6
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and functional dissociations between variably present anterior lateral prefrontal sulci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542301. [PMID: 37292839 PMCID: PMC10245924 DOI: 10.1101/2023.05.25.542301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid-specific. While recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from 72 young adult humans aged 22-36 and show that dorsal and ventral components of the paraintermediate frontal sulcus (pimfs) present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in anatomy and function in LPFC, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and highlight the importance of considering individual anatomy when investigating structural and functional features of the cortex.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Kevin S. Weiner
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
7
|
Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organisation in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526818. [PMID: 36778322 PMCID: PMC9915604 DOI: 10.1101/2023.02.02.526818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The left inferior frontal gyrus (LIFG) has been ascribed key roles in numerous cognitive domains, including language, executive function and social cognition. However, its functional organisation, and how the specific areas implicated in these cognitive domains relate to each other, is unclear. Possibilities include that the LIFG underpins a domain-general function or, alternatively, that it is characterized by functional differentiation, which might occur in either a discrete or a graded pattern. The aim of the present study was to explore the topographical organisation of the LIFG using a bimodal data-driven approach. To this end, we extracted functional connectivity (FC) gradients from 1) the resting-state fMRI time-series of 150 participants (77 female), and 2) patterns of co-activation derived meta-analytically from task data across a diverse set of cognitive domains. We then sought to characterize the FC differences driving these gradients with seed-based resting-state FC and meta-analytic co-activation modelling analyses. Both analytic approaches converged on an FC profile that shifted in a graded fashion along two main organisational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior LIFG) to being more tightly coupled with perceptually-driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal LIFG), and with the semantic network, on the other (ventral). These results provide novel insights into a graded functional organisation of the LIFG underpinning both task-free and task-constrained mental states, and suggest that the LIFG is an interface between distinct large-scale functional networks.
Collapse
Affiliation(s)
- Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Wales, UK
| | - Michael C. Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Rebecca L. Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, UK
| | - Richard J. Binney
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Wales, UK
| |
Collapse
|
8
|
Bruno A, Bludau S, Mohlberg H, Amunts K. Cytoarchitecture, intersubject variability, and 3D mapping of four new areas of the human anterior prefrontal cortex. Front Neuroanat 2022; 16:915877. [PMID: 36032993 PMCID: PMC9403835 DOI: 10.3389/fnana.2022.915877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) plays a key role in cognitive control and executive functions, including working memory, attention, value encoding, decision making, monitoring, and controlling behavioral strategies. However, the relationships between this variety of functions and the underlying cortical areas, which specifically contribute to these functions, are not yet well-understood. Existing microstructural maps differ in the number, localization, and extent of areas of the DLPFC. Moreover, there is a considerable intersubject variability both in the sulcal pattern and in the microstructure of this region, which impedes comparison with functional neuroimaging studies. The aim of this study was to provide microstructural, cytoarchitectonic maps of the human anterior DLPFC in 3D space. Therefore, we analyzed 10 human post-mortem brains and mapped their borders using a well-established approach based on statistical image analysis. Four new areas (i.e., SFS1, SFS2, MFG1, and MFG2) were identified in serial, cell-body stained brain sections that occupy the anterior superior frontal sulcus and middle frontal gyrus, i.e., a region corresponding to parts of Brodmann areas 9 and 46. Differences between areas in cytoarchitecture were captured using gray level index profiles, reflecting changes in the volume fraction of cell bodies from the surface of the brain to the cortex-white matter border. A hierarchical cluster analysis of these profiles indicated that areas of the anterior DLPFC displayed higher cytoarchitectonic similarity between each other than to areas of the neighboring frontal pole (areas Fp1 and Fp2), Broca's region (areas 44 and 45) of the ventral prefrontal cortex, and posterior DLPFC areas (8d1, 8d2, 8v1, and 8v2). Area-specific, cytoarchitectonic differences were found between the brains of males and females. The individual areas were 3D-reconstructed, and probability maps were created in the MNI Colin27 and ICBM152casym reference spaces to take the variability of areas in stereotaxic space into account. The new maps contribute to Julich-Brain and are publicly available as a resource for studying neuroimaging data, helping to clarify the functional and organizational principles of the human prefrontal cortex.
Collapse
Affiliation(s)
- Ariane Bruno
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Ariane Bruno
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Bulut T. Meta-analytic connectivity modeling of the left and right inferior frontal gyri. Cortex 2022; 155:107-131. [DOI: 10.1016/j.cortex.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/21/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
|
10
|
Murty DVPS, Song S, Morrow K, Kim J, Hu K, Pessoa L. Distributed and Multifaceted Effects of Threat and Safety. J Cogn Neurosci 2021; 34:495-516. [PMID: 34942650 DOI: 10.1162/jocn_a_01807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In the present fMRI study, we examined how anxious apprehension is processed in the human brain. A central goal of the study was to test the prediction that a subset of brain regions would exhibit sustained response profiles during threat periods, including the anterior insula, a region implicated in anxiety disorders. A second important goal was to evaluate the responses in the amygdala and the bed nucleus of the stria terminals, regions that have been suggested to be involved in more transient and sustained threat, respectively. A total of 109 participants performed an experiment in which they encountered "threat" or "safe" trials lasting approximately 16 sec. During the former, they experienced zero to three highly unpleasant electrical stimulations, whereas in the latter, they experienced zero to three benign electrical stimulations (not perceived as unpleasant). The timing of the stimulation during trials was randomized, and as some trials contained no stimulation, stimulation delivery was uncertain. We contrasted responses during threat and safe trials that did not contain electrical stimulation, but only the potential that unpleasant (threat) or benign (safe) stimulation could occur. We employed Bayesian multilevel analysis to contrast responses to threat and safe trials in 85 brain regions implicated in threat processing. Our results revealed that the effect of anxious apprehension is distributed across the brain and that the temporal evolution of the responses is quite varied, including more transient and more sustained profiles, as well as signal increases and decreases with threat.
Collapse
Affiliation(s)
| | | | | | | | - Kesong Hu
- Lake Superior State University, Sault Ste. Marie, MI
| | | |
Collapse
|
11
|
Wang J, Duan Y, Zhang T, Huang J, Ren Z, Ye J, Wang N, Li Y, Chen X, Gao P, Li K, Liu Y. Aberrant multimodal brain networks in patients with anti-NMDA receptor encephalitis. CNS Neurosci Ther 2021; 27:652-663. [PMID: 33713553 PMCID: PMC8111502 DOI: 10.1111/cns.13632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022] Open
Abstract
Aims To explore large‐scale brain network alterations and examine their clinical and neuropsychological relevance in patients with anti‐N‐methyl‐D‐aspartate receptor (NMDAR) encephalitis. Methods Twenty‐four patients with anti‐NMDAR encephalitis and 26 matched healthy controls (HCs) were enrolled in our study. Based on the multimodal MRI dataset, individual morphological, structural, and functional brain networks were constructed and compared between the two groups at multiple levels. The associations with clinical/neuropsychological variables and the discriminant ability of significant alterations were further studied. Results Multimodal network analysis revealed that anti‐NMDAR encephalitis mainly affected morphological and structural networks, but subtle alterations were observed in functional networks. Intriguingly, decreased network local efficiency was observed for both morphological and structural networks and increased nodal centrality in the lateral orbital gyrus was convergently observed among the three types of networks in the patients. Moreover, the alterations, particularly those from structural networks, accounted largely for cognitive deficits of the patients and could distinguish the diseased individuals from the HCs with excellent performance (area under the curve =0.933). Conclusions The current study provides a comprehensive view of characteristic multimodal network dysfunction in anti‐NMDAR encephalitis, which is crucial to establish new diagnostic biomarkers and promising therapeutic targets for the disease.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tian Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhuoqiong Ren
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Ye
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yinzhi Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Xiaoya Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiyi Gao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
12
|
Gur RC, Butler ER, Moore TM, Rosen AFG, Ruparel K, Satterthwaite TD, Roalf DR, Gennatas ED, Bilker WB, Shinohara RT, Port A, Elliott MA, Verma R, Davatzikos C, Wolf DH, Detre JA, Gur RE. Structural and Functional Brain Parameters Related to Cognitive Performance Across Development: Replication and Extension of the Parieto-Frontal Integration Theory in a Single Sample. Cereb Cortex 2020; 31:1444-1463. [PMID: 33119049 DOI: 10.1093/cercor/bhaa282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601 youths age 8-22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation to a working memory and a social cognition task. Across age and sex groups, better performance was associated with higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect. Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance and integrity of neural tissue while maintaining a low resting energy state.
Collapse
Affiliation(s)
- Ruben C Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ellyn R Butler
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adon F G Rosen
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David R Roalf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Efstathios D Gennatas
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Warren B Bilker
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Allison Port
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Elliott
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel H Wolf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|