1
|
Lei B, Kang B, Hao Y, Yang H, Zhong Z, Zhai Z, Zhong Y. Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating. Neuron 2024:S0896-6273(24)00835-3. [PMID: 39689709 DOI: 10.1016/j.neuron.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024]
Abstract
Recalling systems-consolidated neocortex-dependent remote memories re-engages the hippocampus in a process called systems reconsolidation. However, underlying mechanisms, particularly for the origin of the reinstated hippocampal memory engram, remain elusive. By developing a triple-event labeling tool and employing two-photon imaging, we trace hippocampal engram ensembles from memory acquisition to systems reconsolidation and find that remote recall recruits a new engram ensemble in the hippocampus for subsequent memory retrieval. Consistently, recruiting new engrams is supported by adult hippocampal neurogenesis-mediated silencing of original engrams. This new engram ensemble receives currently experienced contextual information, incorporates new information into the remote memory, and supports remote memory updating. Such a reconstructed hippocampal memory is then integrated with the valence of remote memory via medial prefrontal cortex projection-mediated activity coordination between the hippocampus and amygdala. Thus, the reconstruction of new memory engrams underlies systems reconsolidation, which explains how remote memories are updated with new information.
Collapse
Affiliation(s)
- Bo Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; Beijing Academy of Artificial Intelligence, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China.
| | - Bilin Kang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Yuejun Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Haoyu Yang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Zihan Zhong
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Zihan Zhai
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
2
|
Bavassi L, Fuentemilla L. Segregation-to-integration transformation model of memory evolution. Netw Neurosci 2024; 8:1529-1544. [PMID: 39735504 PMCID: PMC11675164 DOI: 10.1162/netn_a_00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/22/2024] [Indexed: 12/31/2024] Open
Abstract
Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time. The SIT model asserts that memories initially adopt a highly modular or segregated network structure, functioning as an optimal storage buffer by balancing protection from disruptions and accommodating substantial information. Over time, a repeated combination of neural network reactivations involving activation spreading and synaptic plasticity transforms the initial modular structure into an integrated memory form, facilitating intercommunity spreading and fostering generalization. The SIT model identifies a nonlinear or inverted U-shaped function in memory evolution where memories are most susceptible to changing their representation. This time window, located early during the transformation, is a consequence of the memory's structural configuration, where the activation diffusion across the network is maximized.
Collapse
Affiliation(s)
- Luz Bavassi
- Laboratorio de Neurociencias de la Memoria, IFIByNE - UBA, CONICET, Buenos Aires, Argentina
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lluís Fuentemilla
- Department of Cognition, Development and Education Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience (UBNeuro), University of Barcelona, Barcelona, Spain
- Bellvitge Institute for Biomedical Research, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Whitmore NW, Yamazaki EM, Paller KA. Targeted memory reactivation with sleep disruption does not weaken week-old memories. NPJ SCIENCE OF LEARNING 2024; 9:64. [PMID: 39500927 PMCID: PMC11538536 DOI: 10.1038/s41539-024-00276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
When memories are reactivated during sleep, they are potentially transformed and strengthened. However, disturbed sleep may make this process ineffective. In a prior study, memories formed shortly before sleep were weakened by auditory stimulation when that stimulation provoked memory reactivation while also disrupting sleep - a procedure known as targeted memory reactivation with sleep disruption (TMR-SD). Here we used TMR-SD to test whether memory weakening occurs for less-fragile memories. Participants first learned locations of 74 objects on a monitor. One week later, TMR-SD auditory cues linked with 50% of the previously learned object locations were presented during sleep. Even though the cues disturbed sleep, memories were not weakened when reactivated in this way, compared to when not reactivated. Whereas memory storage is vulnerable to disruption shortly after learning, this new evidence supports the notion that memory storage gradually gains resistance to the harm caused by reactivation combined with sleep disruption.
Collapse
Affiliation(s)
- Nathan W Whitmore
- Fluid Interfaces Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Psychology, Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Erika M Yamazaki
- Department of Psychology, Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Ken A Paller
- Department of Psychology, Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA.
| |
Collapse
|
4
|
Flores AI, Liester MB. The Role of Cells in Encoding and Storing Information: A Narrative Review of Cellular Memory. Cureus 2024; 16:e73063. [PMID: 39640131 PMCID: PMC11620785 DOI: 10.7759/cureus.73063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Memory, a fundamental aspect of human cognition and consciousness, is multifaceted and extends beyond traditional conceptualizations of mental recall. This review article explores memory through various lenses, including brain-based, body-based, and cellular mechanisms. At its core, memory involves the encoding, storage, and retrieval of information. Advances in neuroscience reveal that synaptic changes and molecular modifications, particularly in the hippocampus, are crucial for memory consolidation. Additionally, body memory, or somatic memory, highlights how sensory experiences and traumatic events are stored and influence behavior, underscoring the role of implicit memory. Multiple studies have demonstrated that memories can be encoded and stored in cells. Evidence suggests that these memories can then be transferred between individuals through organ transplantation. Additionally, observations in organisms that lack a nervous system, such as bacteria, fungi, and plants, expand traditional memory concepts. This review highlights and compiles novel research from the last few decades that explores information encoding and storage at a cellular level across a wide variety of disciplines. Our aim is to integrate these findings into a cohesive framework that helps explain the role of cellular processes in memory retention and transfer. By compiling research across diverse fields, this review aims to establish a foundation for future investigation into the physiological and psychological significance of cellular memory. Despite substantial progress, critical gaps persist in our understanding of how cellular memory interfaces with neural memory systems and the precise pathways through which information is encoded, stored, retrieved, and transferred at the cellular level. There has been a noticeable lack of research focused on cellular memory, and more rigorous investigations are needed to uncover how cells participate in memory and the extent to which these processes influence human behavior and cognition.
Collapse
Affiliation(s)
- Ana I Flores
- Department of Psychology, University of California San Diego, San Diego, USA
| | - Mitchell B Liester
- Department of Psychiatry, University of Colorado School of Medicine, Colorado Springs, USA
| |
Collapse
|
5
|
Hu YB, Deng X, Liu L, Cao CC, Su YW, Gao ZJ, Cheng X, Kong D, Li Q, Shi YW, Wang XG, Ye X, Zhao H. Distinct roles of excitatory and inhibitory neurons in the medial prefrontal cortex in the expression and reconsolidation of methamphetamine-associated memory in male mice. Neuropsychopharmacology 2024; 49:1827-1838. [PMID: 38730034 PMCID: PMC11473735 DOI: 10.1038/s41386-024-01879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine, a commonly abused drug, is known for its high relapse rate. The persistence of addictive memories associated with methamphetamine poses a significant challenge in preventing relapse. Memory retrieval and subsequent reconsolidation provide an opportunity to disrupt addictive memories. However, the key node in the brain network involved in methamphetamine-associated memory retrieval has not been clearly defined. In this study, using the conditioned place preference in male mice, whole brain c-FOS mapping and functional connectivity analysis, together with chemogenetic manipulations of neural circuits, we identified the medial prefrontal cortex (mPFC) as a critical hub that integrates inputs from the retrosplenial cortex and the ventral tegmental area to support both the expression and reconsolidation of methamphetamine-associated memory during its retrieval. Surprisingly, with further cell-type specific analysis and manipulation, we also observed that methamphetamine-associated memory retrieval activated inhibitory neurons in the mPFC to facilitate memory reconsolidation, while suppressing excitatory neurons to aid memory expression. These findings provide novel insights into the neural circuits and cellular mechanisms involved in the retrieval process of addictive memories. They suggest that targeting the balance between excitation and inhibition in the mPFC during memory retrieval could be a promising treatment strategy to prevent relapse in methamphetamine addiction.
Collapse
Affiliation(s)
- Yu-Bo Hu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Deng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lu Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Can-Can Cao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ya-Wen Su
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhen-Jie Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Deshan Kong
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qi Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
6
|
Haskel MVL, da Silva Correa V, Queiroz R, Bonini JS, da Silva WC. On the participation of glycine receptors in the reconsolidation of spatial long-term memory in male rats. Behav Brain Res 2024; 471:115086. [PMID: 38825024 DOI: 10.1016/j.bbr.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The effects of intra-hippocampal manipulation of glycine receptors on the reconsolidation of recent and late long-term spatial memory were evaluated and assessed in the Morris water maze. The results obtained from the intra-hippocampal infusion of glycine and taurine demonstrated that taurine at a 100 nmol/side dose impaired the reconsolidation of recent and late long-term spatial memory. In comparison, at a dose of 10 nmol/side, it only affected the reconsolidation of late long-term spatial memory, reinforcing that there are differences between molecular mechanisms underlying recent and late long-term memory reconsolidation. On the other hand, glycine impaired the reconsolidation of early and late spatial memory when infused at a dose of 10 nmol/side, but not at a dose of 100 nmol/side, unless it is co-infused with an allosteric site antagonist of the NMDA receptor. Altogether these results show that glycine acting in situ in the hippocampal CA1 region exerts a pharmacological effect on U-curve, which can be explained by its concomitant action on its ionotropic receptor GlyR and on its NMDA receptor co-agonist site.
Collapse
MESH Headings
- Animals
- Receptors, Glycine/metabolism
- Receptors, Glycine/drug effects
- Male
- Glycine/pharmacology
- Rats
- Spatial Memory/drug effects
- Spatial Memory/physiology
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Rats, Wistar
- Taurine/pharmacology
- Taurine/administration & dosage
- Hippocampus/drug effects
- Hippocampus/metabolism
- Memory Consolidation/drug effects
- Memory Consolidation/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiology
- Maze Learning/drug effects
- Maze Learning/physiology
Collapse
Affiliation(s)
- Maria Vaitsa Loch Haskel
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Vinicius da Silva Correa
- Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Ruliam Queiroz
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Juliana Sartori Bonini
- Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Weber Claudio da Silva
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil.
| |
Collapse
|
7
|
Shin JD, Jadhav SP. Prefrontal cortical ripples mediate top-down suppression of hippocampal reactivation during sleep memory consolidation. Curr Biol 2024; 34:2801-2811.e9. [PMID: 38834064 PMCID: PMC11233241 DOI: 10.1016/j.cub.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical slow and spindle oscillations during non-REM sleep. Recent evidence suggests that high-frequency cortical ripples can also coordinate with hippocampal SWRs in support of consolidation; however, the contribution of cortical ripples to reactivation remains unclear. We used high-density, continuous recordings in the hippocampus (area CA1) and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples dissociated from SWRs are prevalent in NREM sleep and predominantly suppress hippocampal activity. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation rather than coordination, and this suppression is stronger for assemblies that are reactivated during coordinated CA1-PFC ripples for consolidation of recent experiences. Further, we show non-canonical, serial coordination of independent cortical ripples with slow and spindle oscillations, which are known signatures of memory consolidation. These results establish a role for prefrontal cortical ripples in top-down regulation of behaviorally relevant hippocampal representations during consolidation.
Collapse
Affiliation(s)
- Justin D Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
8
|
Miranda M, Silva A, Morici JF, Coletti MA, Belluscio M, Bekinschtein P. Retrieval of contextual memory can be predicted by CA3 remapping and is differentially influenced by NMDAR activity in rat hippocampus subregions. PLoS Biol 2024; 22:e3002706. [PMID: 38950066 PMCID: PMC11244845 DOI: 10.1371/journal.pbio.3002706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/12/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Azul Silva
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Antonio Coletti
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Belluscio
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Arellano Perez AD, Kautzmann AS, de Oliveira Alvares L. Social interaction-induced fear memory reduction: exploring the influence of dopamine and oxytocin receptors on memory updating. Transl Psychiatry 2024; 14:242. [PMID: 38844463 PMCID: PMC11156639 DOI: 10.1038/s41398-024-02955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
It has been well established that a consolidated memory can be updated during the plastic state induced by reactivation. This updating process opens the possibility to modify maladaptive memory. In the present study, we evaluated whether fear memory could be updated to less-aversive level by incorporating hedonic information during reactivation. Thus, male rats were fear conditioned and, during retrieval, a female was presented as a social rewarding stimulus. We found that memory reactivation with a female (but not a male) reduces fear expression within-session and in the test, without presenting reinstatement or spontaneous recovery. Interestingly, this intervention impaired extinction. Finally, we demonstrated that this emotional remodeling to eliminate fear expression requires the activation of dopamine and oxytocin receptors during retrieval. Hence, these results shed new lights on the memory updating process and suggests that the exposure to natural rewarding information such as a female during retrieval reduces a previously consolidated fear memory.
Collapse
Affiliation(s)
- Angel David Arellano Perez
- Departamento de Biofísica, Laboratório de Neurobiologia da Memória, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa da Pós-Graduação em Neurociências. Instituto de Ciências Básicas da Saúde (ICBS). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Sartori Kautzmann
- Departamento de Biofísica, Laboratório de Neurobiologia da Memória, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Departamento de Biofísica, Laboratório de Neurobiologia da Memória, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa da Pós-Graduação em Neurociências. Instituto de Ciências Básicas da Saúde (ICBS). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Rattel JA, Danböck S, Miedl SF, Liedlgruber M, Wilhelm FH. Hitting the Rewind Button: Imagining Analogue Trauma Memories in Reverse Reduces Distressing Intrusions. COGNITIVE THERAPY AND RESEARCH 2024; 48:932-943. [PMID: 39329077 PMCID: PMC11422422 DOI: 10.1007/s10608-024-10488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 09/28/2024]
Abstract
Background Intrusive re-experiencing of trauma is a core symptom of posttraumatic stress disorder. Intrusive re-experiencing could potentially be reduced by 'rewinding', a new treatment approach assumed to take advantage of reconsolidation-updating by mentally replaying trauma fast-backward. Methods The present analogue study was the first to investigate 'rewinding' in a controlled laboratory setting. First, 115 healthy women watched a highly aversive film and were instructed to report film-related intrusions during the following week. Twenty-four hours after film-viewing, participants reporting at least one intrusion (N = 81) were randomly allocated to an intervention (fast-backward, or fast-forward as active control condition) or a passive control condition. Intervention groups reactivated their trauma memory, followed by mentally replaying the aversive film either fast-backward or fast-forward repeatedly. Results Results indicate that replaying trauma fast-backward reduced intrusion load (intrusion frequency weighted for intrusion distress) compared to the passive group, whereas replaying fast-forward did not. No above-threshold differences between fast-backward and fast-forward emerged. Conclusion Present findings strengthen the view that 'rewinding' could be a promising intervention to reduce intrusions.
Collapse
Affiliation(s)
- Julina A. Rattel
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Sarah Danböck
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Stephan F. Miedl
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Michael Liedlgruber
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Frank H. Wilhelm
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Lai S, Zhang L, Tu X, Ma X, Song Y, Cao K, Li M, Meng J, Shi Y, Wu Q, Yang C, Lan Z, Lau CG, Shi J, Ma W, Li S, Xue YX, Huang Z. Termination of convulsion seizures by destabilizing and perturbing seizure memory engrams. SCIENCE ADVANCES 2024; 10:eadk9484. [PMID: 38507477 PMCID: PMC10954199 DOI: 10.1126/sciadv.adk9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Epileptogenesis, arising from alterations in synaptic strength, shares mechanistic and phenotypic parallels with memory formation. However, direct evidence supporting the existence of seizure memory remains scarce. Leveraging a conditioned seizure memory (CSM) paradigm, we found that CSM enabled the environmental cue to trigger seizure repetitively, and activating cue-responding engram cells could generate CSM artificially. Moreover, cue exposure initiated an analogous process of memory reconsolidation driven by mammalian target of rapamycin-brain-derived neurotrophic factor signaling. Pharmacological targeting of the mammalian target of rapamycin pathway within a limited time window reduced seizures in animals and interictal epileptiform discharges in patients with refractory seizures. Our findings reveal a causal link between seizure memory engrams and seizures, which leads us to a deeper understanding of epileptogenesis and points to a promising direction for epilepsy treatment.
Collapse
Affiliation(s)
- Shirong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kexin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Miaomiao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jihong Meng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing Wu
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Chen Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zifan Lan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Weining Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Twitto-Greenberg R, Liraz-Zaltsman S, Michaelson DM, Liraz O, Lubitz I, Atrakchi-Baranes D, Shemesh C, Ashery U, Cooper I, Harari A, Harats D, Schnaider-Beeri M, Shaish A. 9-cis beta-carotene-enriched diet significantly improved cognition and decreased Alzheimer's disease neuropathology and neuroinflammation in Alzheimer's disease-like mouse models. Neurobiol Aging 2024; 133:16-27. [PMID: 38381472 DOI: 10.1016/j.neurobiolaging.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 02/22/2024]
Abstract
A significant progressive decline in beta-carotene (βC) levels in the brain is associated with cognitive impairment and a higher prevalence of Alzheimer's disease (AD). In this study, we investigated whether the administration of 9-cis beta-carotene (9CBC)-rich powder of the alga Dunaliella bardawil, the best-known source of βC in nature, inhibits the development of AD-like neuropathology and cognitive deficits. We demonstrated that in 3 AD mouse models, Tg2576, 5xFAD, and apoE4, 9CBC treatment improved long- and short-term memory, decreased neuroinflammation, and reduced the prevalence of β-amyloid plaques and tau hyperphosphorylation. These findings suggest that 9CBC has the potential to be an effective preventive and symptomatic AD therapy.
Collapse
Affiliation(s)
- Rachel Twitto-Greenberg
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel; Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel; Institutes for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kyrat-Ono, Israel
| | - Daniel M Michaelson
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Liraz
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Lubitz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Uri Ashery
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel; Institutes for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kyrat-Ono, Israel
| | - Ayelet Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Dror Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Aviv Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; Department of Life Sciences, Achva Academic College, Be'er-Tuvia Regional Council, Israel.
| |
Collapse
|
13
|
Leonard LB, Deevy P. Word learning by children with developmental language disorder: Identifying gaps in our understanding of spaced retrieval effects. AUTISM & DEVELOPMENTAL LANGUAGE IMPAIRMENTS 2024; 9:23969415241275940. [PMID: 39221431 PMCID: PMC11365034 DOI: 10.1177/23969415241275940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background and aims Current evidence shows that children with developmental language disorder (DLD) benefit from spaced retrieval during word learning activities. Word recall is quite good relative to recall with alternative word learning procedures. However, recall on an absolute basis can be improved further; many studies report that fewer than two-thirds of the words are learned, even with the assistance of spaced retrieval during the learning activities. In this article we identify details of spaced retrieval that are less well understood in an effort to promote more effective learning through retrieval practice. Main contribution We discuss the importance of factors such as: (a) integrating immediate retrieval with spaced retrieval trials; (b) determining whether gradual increases in spacing have more than short-term benefits relative to equal spacing; (c) discovering the number of successful retrievals sufficient to ensure later recall; (d) using spaced retrieval to avoid erosion of phonetic details on later recall tests; and (e) whether the well-documented difficulties with learning word forms might be tied to a particular subgroup of children with DLD. We also speculate on some of the possible reasons why spaced retrieval is beneficial in the first place. Conclusions Although many children with DLD make gains in word learning through procedures that incorporate spaced retrieval, there are numerous details involved in the process that can alter its success. Until we have a better understanding of the boundaries of spaced retrieval's effectiveness, we will not be taking full advantage of this promising addition to word learning procedures. Implications Spaced retrieval activities can be an important addition to the resources that clinicians and educators have available to assist children in their word learning. With a deeper understanding of the issues discussed here, we should be able to put spaced retrieval to even greater use.
Collapse
Affiliation(s)
- Laurence B. Leonard
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Patricia Deevy
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
14
|
Gräff J. Engrams of Fear Memory Attenuation. ADVANCES IN NEUROBIOLOGY 2024; 38:149-161. [PMID: 39008015 DOI: 10.1007/978-3-031-62983-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fear attenuation is an etiologically relevant process for animal survival, since once acquired information needs to be continuously updated in the face of changing environmental contingencies. Thus, when situations are encountered that were originally perceived as fearful but are no longer so, fear must be attenuated, otherwise, it risks becoming maladaptive. But what happens to the original memory trace of fear during fear attenuation? In this chapter, we review the studies that have started to approach this question from an engram perspective. We find evidence pointing to both the original memory trace of fear being suppressed, as well as it being updated towards safety. These seemingly conflicting results reflect a well-established dichotomy in the field of fear memory attenuation, namely whether fear attenuation is mediated by an inhibitory mechanism that suppresses fear expression, called extinction, or by an updating mechanism that allows the fear memory to reconsolidate in a different form, called reconsolidation-updating. Which of these scenarios takes the upper hand is ultimately influenced by the behavioral paradigms used to induce fear attenuation, but is an important area for further study as the precise cell populations underlying fear attenuation and the molecular mechanisms therein can now be understood at unprecedented resolution.
Collapse
Affiliation(s)
- Johannes Gräff
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland.
| |
Collapse
|
15
|
Nachtigall EG, de C Myskiw J, Izquierdo I, Furini CRG. Cellular mechanisms of contextual fear memory reconsolidation: Role of hippocampal SFKs, TrkB receptors and GluN2B-containing NMDA receptors. Psychopharmacology (Berl) 2024; 241:61-73. [PMID: 37700085 DOI: 10.1007/s00213-023-06463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Memories are stored into long-term representations through a process that depends on protein synthesis. However, a consolidated memory is not static and inflexible and can be reactivated under certain circumstances, the retrieval is able to reactivate memories and destabilize them engaging a process of restabilization known as reconsolidation. Although the molecular mechanisms that mediate fear memory reconsolidation are not entirely known, so here we investigated the molecular mechanisms in the hippocampus involved in contextual fear conditioning memory (CFC) reconsolidation in male Wistar rats. We demonstrated that the blockade of Src family kinases (SFKs), GluN2B-containing NMDA receptors and TrkB receptors (TrkBR) in the CA1 region of the hippocampus immediately after the reactivation session impaired contextual fear memory reconsolidation. These impairments were blocked by the neurotrophin BDNF and the NMDAR agonist, D-Serine. Considering that the study of the link between synaptic proteins is crucial for understanding memory processes, targeting the reconsolidation process may provide new ways of disrupting maladaptive memories, such as those seen in post-traumatic stress disorder. Here we provide new insights into the cellular mechanisms involved in contextual fear memory reconsolidation, demonstrating that SFKs, GluN2B-containing NMDAR, and TrkBR are necessary for the reconsolidation process. Our findings suggest a link between BDNF and SFKs and GluN2B-containing NMDAR as well as a link between NMDAR and SFKs and TrkBR in fear memory reconsolidation. These preliminary pharmacological findings provide new evidence of the mechanisms involved in the reconsolidation of fear memory and have the potential to contribute to the development of treatments for psychiatric disorders involving maladaptive memories.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS, 90610-000, Brazil
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Jociane de C Myskiw
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS, 90610-000, Brazil.
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
16
|
Shin JD, Jadhav SP. Cortical ripples mediate top-down suppression of hippocampal reactivation during sleep memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571373. [PMID: 38168420 PMCID: PMC10760112 DOI: 10.1101/2023.12.12.571373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation, and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical oscillations during non-REM sleep. However, the contribution of high-frequency cortical ripples to consolidation is still unclear. We used continuous recordings in the hippocampus and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples, when dissociated from SWRs, predominantly suppress hippocampal activity in non-REM sleep. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation, which is inversely related to reactivation strength during coordinated CA1-PFC ripples. Further, we show non-canonical, serial coordination of ripples with cortical slow and spindle oscillations. These results establish a role for cortical ripples in regulating consolidation.
Collapse
Affiliation(s)
- Justin D. Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P. Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
17
|
Bosetto Fiebrantz AK, Felski Leite L, Dal Pisol Schwab E, Sartori Bonini J, da Silva WC. On the participation of adenosinergic receptors in the reconsolidation of spatial long-term memory in male rats. Learn Mem 2023; 30:260-270. [PMID: 37802547 PMCID: PMC10561635 DOI: 10.1101/lm.053785.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023]
Abstract
To date, there is insufficient evidence to explain the role of adenosinergic receptors in the reconsolidation of long-term spatial memory. In this work, the role of the adenosinergic receptor family (A1, A2A, A2B, and A3) in this process has been elucidated. It was demonstrated that when infused bilaterally into the hippocampal CA1 region immediately after an early nonreinforced test session performed 24 h posttraining in the Morris water maze task, adenosine can cause anterograde amnesia for recent and late long-term spatial memory. This effect on spatial memory reconsolidation was blocked by A1 or A3 receptor antagonists and mimicked by A1 plus A3 receptor agonists, showing that this effect occurs through A1 and A3 receptors simultaneously. The A3 receptor alone participates only in the reconsolidation of late long-term spatial memory. When the memory to be reconsolidated was delayed (reactivation 5 d posttraining), the amnesic effect of adenosine became transient and did not occur in a test performed 5 d after the reactivation of the mnemonic trace. Finally, it has been shown that the amnesic effect of adenosine on spatial memory reconsolidation depends on the occurrence of protein degradation and that the amnesic effect of inhibition of protein synthesis on spatial memory reconsolidation is dependent on the activation of A3 receptors.
Collapse
Affiliation(s)
- Anne Karine Bosetto Fiebrantz
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brasil
| | - Luana Felski Leite
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
| | - Eduarda Dal Pisol Schwab
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
| | - Juliana Sartori Bonini
- Laboratório de Neurociências e Comportamento, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
| | - Weber Cláudio da Silva
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brasil
| |
Collapse
|
18
|
Patrick MB, Omar N, Werner CT, Mitra S, Jarome TJ. The ubiquitin-proteasome system and learning-dependent synaptic plasticity - A 10 year update. Neurosci Biobehav Rev 2023; 152:105280. [PMID: 37315660 PMCID: PMC11323321 DOI: 10.1016/j.neubiorev.2023.105280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Over 25 years ago, a seminal paper demonstrated that the ubiquitin-proteasome system (UPS) was involved in activity-dependent synaptic plasticity. Interest in this topic began to expand around 2008 following another seminal paper showing that UPS-mediated protein degradation controlled the "destabilization" of memories following retrieval, though we remained with only a basic understanding of how the UPS regulated activity- and learning-dependent synaptic plasticity. However, over the last 10 years there has been an explosion of papers on this topic that has significantly changed our understanding of how ubiquitin-proteasome signaling regulates synaptic plasticity and memory formation. Importantly, we now know that the UPS controls much more than protein degradation, is involved in plasticity underlying drugs of abuse and that there are significant sex differences in how ubiquitin-proteasome signaling is used for memory storage processes. Here, we aim to provide a critical 10-year update on the role of ubiquitin-proteasome signaling in synaptic plasticity and memory formation, including updated cellular models of how ubiquitin-proteasome activity could be regulating learning-dependent synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Morgan B Patrick
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nour Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Craig T Werner
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; National Center for Wellness and Recovery, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| | - Swarup Mitra
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
19
|
Alapin JM, Mohamed MS, Shrestha P, Khaled HG, Vorabyeva AG, Bowling HL, Oliveira MM, Klann E. Opto4E-BP, an optogenetic tool for inducible, reversible, and cell type-specific inhibition of translation initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.554643. [PMID: 37693507 PMCID: PMC10491233 DOI: 10.1101/2023.08.30.554643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is one of the primary triggers for initiating cap-dependent translation. Amongst its functions, mTORC1 phosphorylates eIF4E-binding proteins (4E-BPs), which prevents them from binding to eIF4E and thereby enables translation initiation. mTORC1 signaling is required for multiple forms of protein synthesis-dependent synaptic plasticity and various forms of long-term memory (LTM), including associative threat memory. However, the approaches used thus far to target mTORC1 and its effectors, such as pharmacological inhibitors or genetic knockouts, lack fine spatial and temporal control. The development of a conditional and inducible eIF4E knockdown mouse line partially solved the issue of spatial control, but still lacked optimal temporal control to study memory consolidation. Here, we have designed a novel optogenetic tool (Opto4E-BP) for cell type-specific, light-dependent regulation of eIF4E in the brain. We show that light-activation of Opto4E-BP decreases protein synthesis in HEK cells and primary mouse neurons. In situ , light-activation of Opto4E-BP in excitatory neurons decreased protein synthesis in acute amygdala slices. Finally, light activation of Opto4E-BP in principal excitatory neurons in the lateral amygdala (LA) of mice after training blocked the consolidation of LTM. The development of this novel optogenetic tool to modulate eIF4E-dependent translation with spatiotemporal precision will permit future studies to unravel the complex relationship between protein synthesis and the consolidation of LTM.
Collapse
|
20
|
Rivi V, Batabyal A, Lukowiak K, Benatti C, Rigillo G, Tascedda F, Blom JMC. LPS-Induced Garcia Effect and Its Pharmacological Regulation Mediated by Acetylsalicylic Acid: Behavioral and Transcriptional Evidence. BIOLOGY 2023; 12:1100. [PMID: 37626986 PMCID: PMC10451780 DOI: 10.3390/biology12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Lymnaea stagnalis learns and remembers to avoid certain foods when their ingestion is followed by sickness. This rapid, taste-specific, and long-lasting aversion-known as the Garcia effect-can be formed by exposing snails to a novel taste and 1 h later injecting them with lipopolysaccharide (LPS). However, the exposure of snails to acetylsalicylic acid (ASA) for 1 h before the LPS injection, prevents both the LPS-induced sickness state and the Garcia effect. Here, we investigated novel aspects of this unique form of conditioned taste aversion and its pharmacological regulation. We first explored the transcriptional effects in the snails' central nervous system induced by the injection with LPS (25 mg), the exposure to ASA (900 nM), as well as their combined presentation in untrained snails. Then, we investigated the behavioral and molecular mechanisms underlying the LPS-induced Garcia effect and its pharmacological regulation by ASA. LPS injection, both alone and during the Garcia effect procedure, upregulated the expression levels of immune- and stress-related targets. This upregulation was prevented by pre-exposure to ASA. While LPS alone did not affect the expression levels of neuroplasticity genes, its combination with the conditioning procedure resulted in their significant upregulation and memory formation for the Garcia effect.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (G.R.)
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.B.); (K.L.)
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, Maharashtra, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.B.); (K.L.)
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (G.R.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (G.R.)
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, 34148 Trieste, Italy
| | - Joan M. C. Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (G.R.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
21
|
İlhan ÇF, Kışlal S. Memory Impairing Effect of Propranolol on Consolidation and Reconsolidation for Various Learning Tasks. Noro Psikiyatr Ars 2023; 60:271-282. [PMID: 37645086 PMCID: PMC10461772 DOI: 10.29399/npa.28203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 08/31/2023] Open
Abstract
Newly acquired memory traces have been thought to become stable and resistant to interruption after they are stored in long-term memory. However, according to a recent research drugs such as beta-adrenergic receptor antagonists enable memories to be updated and rewritten when administered during consolidation and reconsolidation. Propranolol is a widely used beta-adrenergic receptor antagonist that disrupts the consolidation and reconsolidation processes of memory formation as it inhibits protein synthesis in the central nervous system. This review aims to discuss the memory impairing effect of the systemic and intracerebral administration of propranolol during the consolidation and reconsolidation processes associated with different learning tasks. In doing so, this review will help elucidate the effects of propranolol on different stages of memory formation. Since learning and maladaptive memories underpin some of the most common psychological disorders, such as phobias, post-traumatic stress disorder, addiction, drug-seeking behavior, and so on, a thorough understanding of propranolol's memory-impairing effect has significant clinical value and the potential to help people suffering from these disorders.
Collapse
Affiliation(s)
- Çınar Furkan İlhan
- Middle East Technical University, Institute of Social Sciences, Department of Psychology, Ankara, Turkey
| | - Sezen Kışlal
- Middle East Technical University, Institute of Social Sciences, Department of Psychology, Ankara, Turkey
| |
Collapse
|
22
|
Lo Y, Yi PL, Hsiao YT, Lee TY, Chang FC. A prolonged stress rat model recapitulates some PTSD-like changes in sleep and neuronal connectivity. Commun Biol 2023; 6:716. [PMID: 37438582 DOI: 10.1038/s42003-023-05090-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
Chronic post-traumatic stress disorder (PTSD) exhibits psychological abnormalities during fear memory processing in rodent models. To simulate long-term impaired fear extinction in PTSD patients, we constructed a seven-day model with multiple prolonged stress (MPS) by modifying manipulation repetitions, intensity, and unpredictability of stressors. Behavioral and neural changes following MPS conveyed longitudinal PTSD-like effects in rats for 6 weeks. Extended fear memory was estimated through fear retrieval induced-freezing behavior and increased long-term serum corticosterone concentrations after MPS manipulation. Additionally, memory retrieval and behavioral anxiety tasks continued enhancing theta oscillation activity in the prefrontal cortex-basal lateral amygdala-ventral hippocampus pathway for an extended period. Moreover, MPS and remote fear retrieval stimuli disrupted sleep-wake activities to consolidate fear memory. Our prolonged fear memory, neuronal connectivity, anxiety, and sleep alteration results demonstrated integrated chronic PTSD symptoms in an MPS-induced rodent model.
Collapse
Affiliation(s)
- Yun Lo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia University, New Taipei City, 25103, Taiwan.
| | - Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Tung-Yen Lee
- Graduate Institute of Brain & Mind Sciences, College of Medicine, National Taiwan University, Taipei, 110225, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
- Graduate Institute of Brain & Mind Sciences, College of Medicine, National Taiwan University, Taipei, 110225, Taiwan.
- Neurobiology & Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
- Department of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
23
|
Nachtigall EG, D R de Freitas J, de C Myskiw J, R G Furini C. Role of hippocampal Wnt signaling pathways on contextual fear memory reconsolidation. Neuroscience 2023:S0306-4522(23)00248-8. [PMID: 37286160 DOI: 10.1016/j.neuroscience.2023.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Memories already consolidated when reactivated return to a labile state and can be modified, this process is known as reconsolidation. It is known the Wnt signaling pathways can modulate hippocampal synaptic plasticity as well as learning and memory. Yet, Wnt signaling pathways interact with NMDA (N-methyl-D-aspartate) receptors. However, whether canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ signaling pathways are required in the CA1 region of hippocampus for contextual fear memory reconsolidation remains unclear. So, here we verified that the inhibition of canonical Wnt/β-catenin pathway with DKK1 (Dickkopf-1) into CA1 impaired the reconsolidation of contextual fear conditioning (CFC) memory when administered immediately and 2h after reactivation session but not 6h later, while the inhibition of non-canonical Wnt/Ca2+ signaling pathway with SFRP1 (Secreted frizzled-related protein-1) into CA1 immediately after reactivation session had no effect. Moreover, the impairment induced by DKK1 was blocked by the administration of the agonist of the NMDA receptors glycine site, D-Serine, immediately and 2h after reactivation session. We found that hippocampal canonical Wnt/β-catenin is necessary to the reconsolidation of CFC memory at least two hours after reactivation, while non-canonical Wnt/Ca2+ signaling pathway is not involved in this process and, that there is a link between Wnt/β-catenin signaling pathway and NMDA receptors. In view of this, this study provides new evidence regarding the neural mechanisms underlying contextual fear memory reconsolidation and contributes to provide a new possible target for the treatment of fear related disorders.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil
| | - Jociane de C Myskiw
- Psychobiology and Neurocomputation Laboratory (LPBNC), Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, 9500, Bldg. 43422, room 208A, 91501-970, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681 - Bldg. 40, 8(th) floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Vafaei AA, Nasrollahi N, Kashefi A, Raise-Abdullahi P, Rashidy-Pour A. Corticosterone injection into the dorsal and ventral hippocampus impairs fear memory reconsolidation in a time-dependent manner in rats. Neurosci Lett 2023; 808:137302. [PMID: 37207715 DOI: 10.1016/j.neulet.2023.137302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Reconsolidation is an active process induced following the reactivation of previously consolidated memories. Recent studies suggest brain corticosteroid receptors may participate in the modulation of fear memory reconsolidation. Glucocorticoid receptors (GRs), with 10-fold lower affinity than mineralocorticoid receptors (MRs), are mainly occupied during the peak of the circadian rhythm, and after stress, so they probably have a more critical role than MRs in memory phases during stressful situations. This study investigated the role of dorsal and ventral hippocampal (DH and VH) GRs and MRs on fear memory reconsolidation in rats. Male Wistar rats with surgically implanted bilaterally cannulae at the DH and VH were trained and tested in an inhibitory avoidance task. The animals received bilateral microinjections of vehicle (0.3 µl/side), corticosterone (3 ng/0.3 µl/side), the GRs antagonist RU38486 (3 ng/0.3 µl/side), or the MRs antagonist spironolactone (3 ng/0.3 µl/side) immediately after memory reactivation. Moreover, drugs were injected into VH 90 minutes after memory reactivation. Memory tests were performed 2, 9, 11, and 13 days after memory reactivation. Results indicated that injection of corticosterone into the DH but not VH immediately after memory reactivation significantly impaired fear memory reconsolidation. Moreover, corticosterone injection into VH 90 minutes after memory reactivation impaired fear memory reconsolidation. RU38486 reversed these effects but not spironolactone. These findings indicate that corticosterone injection into the DH and VH via GRs activation impairs the reconsolidation of fear memory in a time-dependent manner.
Collapse
Affiliation(s)
- Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nadie Nasrollahi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Adel Kashefi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
25
|
Silva BA, Gräff J. Face your fears: attenuating remote fear memories by reconsolidation-updating. Trends Cogn Sci 2023; 27:404-416. [PMID: 36813591 DOI: 10.1016/j.tics.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Traumatic events generate some of the most enduring memories, yet little is known about how long-lasting fear memories can be attenuated. In this review, we collect the surprisingly sparse evidence on remote fear memory attenuation from both animal and human research. What is becoming apparent is twofold: although remote fear memories are more resistant to change compared with recent ones, they can nevertheless be attenuated when interventions are targeted toward the period of memory malleability instigated by memory recall, the reconsolidation window. We describe the physiological mechanisms underlying remote reconsolidation-updating approaches and highlight how they can be enhanced through interventions promoting synaptic plasticity. By capitalizing on an intrinsically relevant phase of memory, reconsolidation-updating harbors the potential to permanently alter remote fear memories.
Collapse
Affiliation(s)
- Bianca A Silva
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Switzerland.
| |
Collapse
|
26
|
Bui UTD, Milton AL. Making Leaps and Hitting Boundaries in Reconsolidation: Overcoming Boundary Conditions to Increase Clinical Translatability of Reconsolidation-based Therapies. Neuroscience 2023; 519:198-206. [PMID: 36933761 DOI: 10.1016/j.neuroscience.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Reconsolidation results in the restabilisation, and thus persistence, of a memory made labile by retrieval, and interfering with this process is thought to enable modification or weakening of the original trace. As such, reconsolidation-blockade has been a focus of research aiming to target the maladaptive memories underlying mental health disorders, including post-traumatic stress disorder and drug addiction. Current first-line therapies are not effective for all patients, and a substantial proportion of those for whom therapies are effective later relapse. A reconsolidation-based intervention would be invaluable as an alternative treatment for these conditions. However, the translation of reconsolidation-based therapies to the clinic presents a number of challenges, with arguably the greatest being the overcoming of the boundary conditions governing the opening of the reconsolidation window. These include factors such as the age and strength of memory, and can broadly be divided into two categories: intrinsic features of the targeted memory itself, and parameters of the reactivation procedure used. With maladaptive memory characteristics inevitably varying amongst individuals, manipulation of the other limitations imposed by procedural variables have been explored to circumvent the boundary conditions on reconsolidation. Although several apparently discrepant results remain to be reconciled and these limitations yet to be truly defined, many studies have produced successful results which encouragingly demonstrate that boundary conditions may be overcome using various proposed strategies to enable translation of a reconsolidation-based intervention to clinical use.
Collapse
Affiliation(s)
- Uyen T D Bui
- Department of Psychology, University of Cambridge, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, UK.
| |
Collapse
|
27
|
Cammisuli DM, Castelnuovo G. Neuroscience-based psychotherapy: A position paper. Front Psychol 2023; 14:1101044. [PMID: 36860785 PMCID: PMC9968886 DOI: 10.3389/fpsyg.2023.1101044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
In the recent years, discoveries in neuroscience have greatly impacted upon the need to modify therapeutic practice starting from the evidence showing some cerebral mechanisms capable of coping with mental health crisis and traumatic events of the individual's life history by redesigning the narrative plot and the person's sense of the Self. The emerging dialogue between neuroscience and psychotherapy is increasingly intense and modern psychotherapy cannot ignore the heritage deriving from studies about neuropsychological modification of memory traces, neurobiology of attachment theory, cognitive mechanisms involved in psychopathology, neurophysiology of human empathy, neuroimaging evidence about psychotherapeutic treatment, and somatoform disorders connecting the brain and the body. In the present article, we critically examined sectorial literature and claimed that psychotherapy has to referred to a neuroscience-based approach in order to adopt the most tailored interventions for specific groups of patients or therapy settings. We also provided recommendations for care implementation in clinical practice and illustrated challenges of future research.
Collapse
Affiliation(s)
| | - Gianluca Castelnuovo
- Department of Psychology, Catholic University, Milan, Italy,Psychology Research Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy,*Correspondence: Gianluca Castelnuovo ✉
| |
Collapse
|
28
|
Solntseva SV, Nikitin VP, Kozyrev SA, Nikitin PV. DNA methylation inhibition participates in the anterograde amnesia key mechanism through the suppression of the transcription of genes involved in memory formation in grape snails. Behav Brain Res 2023; 437:114118. [PMID: 36116736 DOI: 10.1016/j.bbr.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The study of the amnesia mechanisms is of both theoretical and practical importance. The mechanisms of anterograde amnesia are the least studied, due to the lack of an experimental model that allows studying this amnesia type molecular and cellular mechanisms. Previously, we found that conditional food aversion memory reconsolidation impairment in snails by NMDA glutamate receptor antagonists led to the amnesia induction, in the late stages of which (>10 days) repeated training did not cause long-term memory formation. In the same animals, long-term memory aversion to a new food type was formed. We characterized this amnesia as specific anterograde amnesia. In the present work we studied the role of epigenetic DNA methylation processes as well as protein and mRNA synthesis in the mechanisms of anterograde amnesia and memory recovery. DNMT methyltransferase inhibitors (iDNMT: zebularine, RG108 (N-Phthalyl-1-tryptophan), and 5-AZA (5-Aza-2'-deoxycytidine)) were used to alter DNA methylation. It was found that in amnesic animals the iDNMT administration before or after shortened repeated training led to the rapid long-term conditional food aversion formation (Ebbinghaus saving effect). This result suggests that amnestic animals retain a latent memory, which is the basis for accelerated memory formation during repeated training. Protein synthesis inhibitors administration (cycloheximide) before or immediately after repeated training or administration of RNA synthesis inhibitor (actinomycin D) after repeated training prevented memory formation under iDNMT action. The earlier protein synthesis inhibitor effect suggests that the proteins required for memory formation are translated from the pre-existing, translationally repressed mRNAs. Thus, we have shown for the first time that the anterograde amnesia key mechanism is DNMT-dependent suppression of the transcription of genes involved in memory mechanisms. Inhibition of DNMT during repeated training reversed these genes expression blockade, opening access to them by transcription factors synthesized during training from the pre-existing mRNAs.
Collapse
Affiliation(s)
- S V Solntseva
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - V P Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - S A Kozyrev
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - P V Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| |
Collapse
|
29
|
Tavares TF, Bueno JLO, Doyère V. Temporal prediction error triggers amygdala-dependent memory updating in appetitive operant conditioning in rats. Front Behav Neurosci 2023; 16:1060587. [PMID: 36703723 PMCID: PMC9873233 DOI: 10.3389/fnbeh.2022.1060587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Reinforcement learning theories postulate that prediction error, i.e., a discrepancy between the actual and expected outcomes, drives reconsolidation and new learning, inducing an updating of the initial memory. Pavlovian studies have shown that prediction error detection is a fundamental mechanism in triggering amygdala-dependent memory updating, where the temporal relationship between stimuli plays a critical role. However, in contrast to the well-established findings in aversive situations (e.g., fear conditioning), only few studies exist on prediction error in appetitive operant conditioning, and even less with regard to the role of temporal parameters. To explore if temporal prediction error in an appetitive operant paradigm could generate an updating and consequent reconsolidation and/or new learning of temporal association, we ran four experiments in adult male rats. Experiment 1 verified whether an unexpected delay in the time of reward's availability (i.e., a negative temporal prediction error) in a single session produces an updating in long-term memory of temporal expectancy in an appetitive operant conditioning. Experiment 2 showed that negative prediction errors, either due to the temporal change or through reward omission, increased in the basolateral amygdala nucleus (BLA) the activation of a protein that is critical for memory formation. Experiment 3 revealed that the presence of a protein synthesis inhibitor (anisomycin) in the BLA during the session when the reward was delayed (Error session) affected the temporal updating. Finally, Experiment 4 showed that anisomycin, when infused immediately after the Error session, interfered with the long-term memory of the temporal updating. Together, our study demonstrated an involvement of BLA after a change in temporal and reward contingencies, and in the resulting updating in long-term memory in appetitive operant conditioning.
Collapse
Affiliation(s)
- Tatiane Ferreira Tavares
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil,Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,*Correspondence: Tatiane Ferreira Tavares,
| | - José Lino Oliveira Bueno
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil
| | - Valérie Doyère
- Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,Valérie Doyère,
| |
Collapse
|
30
|
Gilley RR. The Role of Sleep in Cognitive Function: The Value of a Good Night's Rest. Clin EEG Neurosci 2023; 54:12-20. [PMID: 35369784 DOI: 10.1177/15500594221090067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As a universal, evolutionarily conserved phenomenon, sleep serves many roles, with an integral role in memory. This interplay has been examined in a variety of research. The purpose of this article will be to review the literature of sleep, aging, cognition, and the impact of two common clinical conditions (obstructive sleep apnea and insomnia) on cognitive impairment. This article will review data from meta-analyses, population studies, smaller cohort studies, neuropsychological studies, imaging, and bench data. Considerations are given to the current data trends and their limitations. This paper will explore the impact of sleep on cognitive impairment. Finally, we will conclude with integrating the separate mechanisms towards more generalized common pathways: disruption of sleep quality and reduction in sleep quantity lead to excessive neuronal activity without sufficient time for homeostasis. Sleep apnea and chronic insomnia can lead to oxidative stress and neuronal damage. These changes predispose and culminate in the development of cognitive impairment.
Collapse
Affiliation(s)
- Ronald R Gilley
- Sleep Medicine Disorders, Psychiatry & Behavioral Sciences, 4534Baptist Health Hospital, Madisonville, Kentucky, USA.,Department of Psychiatry and Behavioral Sciences, 12254University of Louisville, School of Medicine, Madisonville, Kentucky, USA
| |
Collapse
|
31
|
Dai Z, Liu Y, Nie L, Chen W, Xu X, Li Y, Zhang J, Shen F, Sui N, Liang J. Locus coeruleus input-modulated reactivation of dentate gyrus opioid-withdrawal engrams promotes extinction. Neuropsychopharmacology 2023; 48:327-340. [PMID: 36302846 PMCID: PMC9751301 DOI: 10.1038/s41386-022-01477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/26/2022]
Abstract
Extinction training during the reconsolidation window following memory recall is an effective behavioral pattern for promoting the extinction of pathological memory. However, promoted extinction by recall-extinction procedure has not been universally replicated in different studies. One potential reason for this may relate to whether initially acquired memory is successfully activated. Thus, the methods for inducing the memory into an active or plastic condition may contribute to promoting its extinction. The aim of this study is to find and demonstrate a manipulatable neural circuit that engages in the memory recall process and where its activation improves the extinction process through recall-extinction procedure. Here, naloxone-precipitated conditioned place aversion (CPA) in morphine-dependent mice was mainly used as a pathological memory model. We found that the locus coeruleus (LC)-dentate gyrus (DG) circuit was necessary for CPA memory recall and that artificial activation of LC inputs to the DG just prior to initiating a recall-extinction procedure significantly promoted extinction learning. We also found that activating this circuit caused an increase in the ensemble size of DG engram cells activated during the extinction, which was confirmed by a cFos targeted strategy to label cells combined with immunohistochemical and in vivo calcium imaging techniques. Collectively, our data uncover that the recall experience is important for updating the memory during the reconsolidation window; they also suggest a promising neural circuit or target based on the recall-extinction procedure for weakening pathological aversion memory, such as opioid withdrawal memory and fear memory.
Collapse
Affiliation(s)
- Zhonghua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
Miano A, Schulze K, Moritz S, Wingenfeld K, Roepke S. False memory in posttraumatic stress disorder and borderline personality disorder. Psychiatry Res 2022; 314:114547. [PMID: 35779483 DOI: 10.1016/j.psychres.2022.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) and borderline personality disorder (BPD) have been associated with an increased generation of false memories. We aimed to disentangle disorder-specific false memory in individuals with PTSD and BPD using the Deese-Roediger-McDermott (DRM) paradigm. It measures the tendency to mistakenly remember stimuli that are associated with actually presented material, but have not been presented. Participants with BPD without comorbid PTSD (n = 32), participants with PTSD without comorbid BPD (n = 28), and mentally healthy controls (HC, n = 30) were given a word recognition test after hearing neutral, emotionally negative, BPD-related and PTSD-related word lists. Compared to HC, participants with PTSD showed fewer false memories for neutral word material and no other differences. Participants with BPD showed no differences in false memory formation compared to HC, only more false memories for a BPD-related and a PTSD-related word list compared to PTSD. Our results indicate, that in the absence of BPD, increased false memory in PTSD cannot be observed. In addition, our findings do not suggest that individuals with BPD and HC differ in their false memory formation. More trauma-individualized material should be used in future studies on false memory in PTSD.
Collapse
Affiliation(s)
| | - Katrin Schulze
- Department of Psychology, Heidelberg University, Germany
| | - Steffen Moritz
- University Medical Center Hamburg-Eppendorf, Department for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Roepke
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
33
|
Choi KY. Valproate Adjuvant Cognitive Behavioral Therapy in Panic Disorder Patients With Comorbid Bipolar Disorder: Case Series and Review of the Literature. Psychiatry Investig 2022; 19:614-625. [PMID: 36059050 PMCID: PMC9441465 DOI: 10.30773/pi.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
Anxiety disorders are the most common comorbid psychiatric disorders in patients with bipolar disorder. Managing anxiety symptoms in comorbid conditions is challenging and has received little research interest. The findings from preclinical research on fear conditioning, an animal model of anxiety disorder, have suggested that memory reconsolidation updating (exposure-based therapy) combined with valproate might facilitate the amelioration of fear memories. Here, three cases of successful amelioration of agoraphobia and panic symptoms through valproate adjuvant therapy for cognitive behavioral therapy in patients who failed to respond to two to three consecutive standard pharmacotherapy trials over several years are described. To the best of the author's knowledge, this is the first attempt to combine CBT with valproate in patients with panic disorder, agoraphobia, and comorbid bipolar disorder. Additionally, the background preclinical research on this combination therapy based on the reconsolidation-updating mechanism, the inhibition of histone deacetylase 2, and critical period reopening, off-label use of valproate in panic disorder, plasticity-augmented psychotherapy, and how to combine valproate with CBT is discussed.
Collapse
Affiliation(s)
- Kwang-Yeon Choi
- Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Polack CW, Miller RR. Testing improves performance as well as assesses learning: A review of the testing effect with implications for models of learning. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2022; 48:222-241. [PMID: 35446091 PMCID: PMC10229024 DOI: 10.1037/xan0000323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Taking a test of previously studied material has been shown to improve long-term subsequent test performance in a large variety of well controlled experiments with both human and nonhuman subjects. This phenomenon is called the testing effect. The promise that this benefit has for the field of education has biased research efforts to focus on applied instances of the testing effect relative to efforts to provide detailed accounts of the effect. Moreover, the phenomenon and its theoretical implications have gone largely unacknowledged in the basic associative learning literature, which historically and currently focuses primarily on the role of information processing at the time of acquisition while ignoring the role of processing at the time of testing. Learning is still widely considered to be something that happens during initial training, prior to testing, and tests are viewed as merely assessments of learning. However, the additional processing that occurs during testing has been shown to be relevant for future performance. The present review offers an introduction to the historical development, application, and modern issues regarding the role of testing as a learning opportunity (i.e., the testing effect). We conclude that the testing effect is seen to be sufficiently robust across tasks and parameters to serve as a compelling challenge for theories of learning to address. Our hope is that this review will inspire new research, particularly with nonhuman subjects, aimed at identifying the basic underlying mechanisms which are engaged during retrieval processes and will fuel new thinking about the learning-performance distinction. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
35
|
Abstract
The study and use of resilience is of the utmost importance to psychodynamic psychiatry. It is deeply ingrained in ideas about well-being and the treatment and care of patients. However, its neurobiology is incompletely understood, its terminology and relation to trauma and coping not well defined, and its efficacy underutilized in clinical practice. This article reviews the scientific literature on resilience, especially as it relates to trauma and coping. It also attempts to point the way for its greater application in psychiatry and mental health by utilizing resilience in more informed and individualized approaches.
Collapse
Affiliation(s)
- Ahron Friedberg
- Clinical Professor of Psychiatry at Mount Sinai in New York City
| | | |
Collapse
|
36
|
Horan A, Kondas C, Dinsell V. Integrating Peripartum Mental Health Education into the Psychiatry Clerkship: a Multimodal Approach. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2022; 46:175-179. [PMID: 34268676 PMCID: PMC8282175 DOI: 10.1007/s40596-021-01501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Allison Horan
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Cathy Kondas
- New York University Grossman School of Medicine, New York, NY, USA
| | - Victoria Dinsell
- New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Mello e Souza T. Unraveling molecular and system processes for fear memory. Neuroscience 2022; 497:14-29. [DOI: 10.1016/j.neuroscience.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
|
38
|
Fisher LR, Bailey AJ, Mayer HM, Finn PR. Slower rates of learning to inhibit behavior in alcohol use disorder. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2022; 36:39-43. [PMID: 33370127 PMCID: PMC8236501 DOI: 10.1037/adb0000599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Alcohol use disorder (AUD) is associated with passive avoidance learning (PAL) deficits. This study investigated PAL deficits in AUD by using a novel growth model approach to quantify patterns of PAL as changes in false alarms over time, rather than the typical index of total false alarms in a PAL task. METHOD Subjects, 112 (58 men; 54 women) with an AUD and 110 controls (44 men; 66 women), were administered a monetary incentive Go/No-Go task. Subjects could win $0.25 for a hit (response after a GO) or lose $0.25 for a false alarm. RESULTS PAL rate was quantified as the slope of initial learning phase (across the first 5 blocks) on the Go/No-Go task. The PAL curves indicated rapid learning in first 5 blocks followed by a later slower learning across blocks 6-9 (consolidation phase). A piecewise growth model with random intercepts indicated that AUD status was significantly associated with a slower initial PAL (i.e. learning phase), with B = -0.69, p < 0.001 for the control group and a PAL slope of 0.13 higher for the AUD group indicating a slower learning rate in the AUD group. This effect was not observed in the consolidation phase. CONCLUSIONS The results suggest that those with an AUD have greater difficulty learning to avoid negative consequences compared with controls. The results also suggest that measuring PAL rate by focusing on the rate of learning early in the task may be a better index of PAL learning than simply looking at overall false alarm rate. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
39
|
Koffman EE, Kruse CM, Singh K, Naghavi FS, Curtis MA, Egbo J, Houdi M, Lin B, Lu H, Debiec J, Du J. Acid-sensing ion channel 1a regulates the specificity of reconsolidation of conditioned threat responses. JCI Insight 2022; 7:155341. [PMID: 35025766 PMCID: PMC8876458 DOI: 10.1172/jci.insight.155341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
Abstract
Recent research on altering threat memory has focused on a reconsolidation window. During reconsolidation, threat memories are retrieved and become labile. Reconsolidation of distinct threat memories is synapse dependent, whereas the underlying regulatory mechanism of the specificity of reconsolidation is poorly understood. We designed a unique behavioral paradigm in which a distinct threat memory can be retrieved through the associated conditioned stimulus. In addition, we proposed a regulatory mechanism by which the activation of acid-sensing ion channels (ASICs) strengthens the distinct memory trace associated with the memory reconsolidation to determine its specificity. The activation of ASICs by CO2 inhalation, when paired with memory retrieval, triggers the reactivation of the distinct memory trace, resulting in greater memory lability. ASICs potentiate the memory trace by altering the amygdala-dependent synaptic transmission and plasticity at selectively targeted synapses. Our results suggest that inhaling CO2 during the retrieval event increases the lability of a threat memory through a synapse-specific reconsolidation process.
Collapse
Affiliation(s)
- Erin E Koffman
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Charles M Kruse
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Kritika Singh
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Farzaneh Sadat Naghavi
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Melissa A Curtis
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Jennifer Egbo
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Mark Houdi
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Boren Lin
- Department of Biological Sciences, The University of Toledo, Toledo, United States of America
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States of America
| | - Jacek Debiec
- Department of Psychiatry, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Jianyang Du
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, United States of America
| |
Collapse
|
40
|
Dietz CD, Malaspina M, Albonico A, Barton JJS. The persistence of remote visual semantic memory following ocular blindness. Neuropsychologia 2021; 165:108110. [PMID: 34890692 DOI: 10.1016/j.neuropsychologia.2021.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Subjects with complete ocular blindness in both eyes provide a unique opportunity to study the long-term durability of visual semantic memory. In this cross-sectional study we recruited eleven subjects who had acquired blindness for between 1 and 36 years. For comparison, we studied four subjects with congenital blindness and seventeen age- and sex-matched sighted control subjects. We administered ten forced-choice questionnaires that probed one auditory category and four visual categories, namely object shape and size; object hue and lightness; word and letter shape; and the shape and features of famous faces. Subjects with congenital blindness performed worse than controls on all visual categories, but nevertheless performed better than chance on object structure or colour, suggesting that the answers to some questions about visual properties can be derived from haptic or non-visual semantic information. Subjects with acquired blindness performed similarly to controls on all categories except for facial memory, particularly for facial features. We conclude that there is a substantial "permastore" of visual semantic memory but that facial memories are less durable, perhaps indicating that they are either less over-learned or more dependent on visual representations than other forms of visual object information.
Collapse
Affiliation(s)
- Connor D Dietz
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology) and Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada.
| | - Manuela Malaspina
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology) and Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Andrea Albonico
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology) and Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Jason J S Barton
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology) and Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
A flavonoid, quercetin, is capable of enhancing long-term memory formation if encountered at different times in the learning, memory formation, and memory recall continuum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:253-265. [PMID: 34820709 DOI: 10.1007/s00359-021-01522-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
A major extrinsic factor influencing memory and neuro-cognitive performances across taxa is diet. Studies from vertebrates have shown the effects of a flavonoid rich diet on cognitive performance, but the mechanism underlying this action is still poorly understood. A common and abundant flavonoid present in numerous food substances is quercetin (Q). The present study provides the first support for Q-modulated enhancement of cognitive function in an invertebrate model, the pond snail Lymnaea stagnalis, after an operant conditioning procedure. We found that when snails were exposed to Q 3 h before or after a single 0.5 h training session, which typically results in memory lasting ~ 3 h, they formed a long-term memory (LTM) lasting for at least 24 h. Additionally, we assessed the effects of the combined presentation of a single reinforcing stimulus (at 24 h post-training or 24 h before training) and Q-exposure on both LTM formation and reconsolidation. That is, when applied within 3 h of critical periods of memory, Q regulates four different phases: (1) acquisition (i.e., a learning event), (2) consolidation processes after acquisition, (3) memory recall, and (4) memory reconsolidation. In all these phases Q-exposure enhanced LTM persistence.
Collapse
|
42
|
Acute and Chronic Exercise Effects on Human Memory: What We Know and Where to Go from Here. J Clin Med 2021; 10:jcm10214812. [PMID: 34768329 PMCID: PMC8584999 DOI: 10.3390/jcm10214812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 01/23/2023] Open
Abstract
Although the acquisition, storage, and retrieval of memories was once thought to happen within a single memory system with multiple processes operating on it, it is now believed that memory is comprised of both distinct and interacting brain systems [...].
Collapse
|
43
|
Schechter DS. Traumatized Refugee Parents and Infants Considered from Within and Without: The Iraq and Afghanistan Wars as Unexpected Legacies of the September 11th Attacks 20 Years Later. PSYCHOANALYTIC STUDY OF THE CHILD 2021. [DOI: 10.1080/00797308.2021.1971905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Daniel S. Schechter
- Faculty of Biology and Medicine, Lausanne University Hospital
- Grossman School of Medicine, New York University
| |
Collapse
|
44
|
Comas Mutis R, Espejo PJ, Martijena ID, Molina VA, Calfa GD. Temporal dynamic of the hippocampal structural plasticity associated with the fear memory destabilization/reconsolidation process. Hippocampus 2021; 31:1080-1091. [PMID: 34190369 DOI: 10.1002/hipo.23374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 11/11/2022]
Abstract
Reconsolidation of a contextual fear memory is a protein synthesis-dependent process in which a previously destabilized memory returns to a stable state. This process has become the subject of many studies due to its importance in memory processing, maintenance and updating, and its potential role as a therapeutical target in fear memory disorders such as phobias and post-traumatic stress disorder. In this sense, understanding the underlying mechanisms of memory reconsolidation is paramount in developing potential treatments for such memory dysfunctions. In the present work, we studied the interaction between two key neural structures involved in the reconsolidation process: the basolateral amygdala complex of the amygdala (BLA) and the dorsal hippocampus (DH). Our results show changes in the structural plasticity of the CA1 region of the DH in the form of dendritic spines density changes associated with the destabilization/reconsolidation process. Furthermore, we demonstrate a modulatory role of BLA over such structural plasticity by infusing different drugs such as ifenprodil, a destabilization blocker, and propranolol, a reconsolidation disruptor, in this brain structure. Altogether our work shows a particular temporal dynamic in the CA1 region of DH that accompanies the destabilization/reconsolidation process and aims to provide new information on the underlying mechanisms of this process that potentially contributes for a better understanding of memory storage, maintenance, expression and updating, and its potential medical applications.
Collapse
Affiliation(s)
- Ramiro Comas Mutis
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Pablo Javier Espejo
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Irene Delia Martijena
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Victor Alejandro Molina
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Gastón Diego Calfa
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
45
|
Tobore TO. On the theory of mental representation block. a novel perspective on learning and behavior. Commun Integr Biol 2021; 14:41-50. [PMID: 33796209 PMCID: PMC7971303 DOI: 10.1080/19420889.2021.1898752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding the mechanisms behind memory, learning, and behavior is crucial to human development and significant research has been done in this area. Classical and operant conditioning and other theories of learning have elucidated different mechanisms of learning and how it modulates behavior. Even with advances in this area, questions remain on how to unlearn faulty ideas or extinguish maladaptive behaviors. In this paper, a novel theory to improve our understanding of this area is proposed. The theory proposes that as a consequence of the brain's energy efficiency evolutionary adaptations, all learning following memory consolidation, reconsolidation, and repeated reinforcements or strengthening over time, results in a phenomenon called mental representation block. The implications of this block on learning and behavior are significant and broad and include cognitive biases, belief in a creator or God, close-mindedness, dogmatism, physician misdiagnosis, racism, homophobia, and transphobia, susceptibility to deception and indoctrination, hate and love, artificial intelligence and creativity.
Collapse
|
46
|
Solntseva SV, Nikitin PV, Kozyrev SA, Nikitin VP. Learning against the Background of DNA Methyltransferase Inhibition Leads to the Formation of Memory That Is Resistant to Reactivation and Impairment. Bull Exp Biol Med 2021; 170:288-293. [PMID: 33452638 DOI: 10.1007/s10517-021-05053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/31/2022]
Abstract
The involvement of DNA methylation in the mechanisms of formation of conditioned food aversion memory was studied on Helix lucorum snails. The dynamics of aversion formation in snails injected with DNA methyltransferase inhibitor RG108 did not differ from that in control snails. The memory was retained for more than one month after training following RG108 injection and the duration of memory persistence did not differ from that in control animals. However, the characteristics of memory in control and experimental snails differed significantly. In control snails, injections of glutamate NMDA-receptor antagonist or protein synthesis inhibitor before memory retrieval caused disorders in the memory reconsolidation and development of amnesia 2 days after training. By contrast, injections of these substances before retrieval to snails trained against the background of RG108 treatment caused no memory disorders. We hypothesized that inhibition of DNA methylation processes led to the formation of strong memory, not reactivated after retrieval and not transformed into a labile state sensitive to amnesic agents.
Collapse
Affiliation(s)
- S V Solntseva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - P V Nikitin
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - S A Kozyrev
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - V P Nikitin
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
47
|
Conelea CA, Jacob S, Redish AD, Ramsay IS. Considerations for Pairing Cognitive Behavioral Therapies and Non-invasive Brain Stimulation: Ignore at Your Own Risk. Front Psychiatry 2021; 12:660180. [PMID: 33912088 PMCID: PMC8072056 DOI: 10.3389/fpsyt.2021.660180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Multimodal approaches combining cognitive behavioral therapies (CBT) with non-invasive brain stimulation (NIBS) hold promise for improving the treatment of neuropsychiatric disorders. As this is a relatively new approach, it is a critical time to identify guiding principles and methodological considerations to enhance research rigor. In the current paper, we argue for a principled approach to CBT and NIBS pairings based on synergistic activation of neural circuits and identify key considerations about CBT that may influence pairing with NIBS. Careful consideration of brain-state interactions and CBT-related nuances will increase the potential for these combinations to be positively synergistic.
Collapse
Affiliation(s)
- Christine A Conelea
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
48
|
Kluen LM, Dandolo LC, Jocham G, Schwabe L. Dorsolateral Prefrontal Cortex Enables Updating of Established Memories. Cereb Cortex 2020; 29:4154-4168. [PMID: 30535262 DOI: 10.1093/cercor/bhy298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/18/2023] Open
Abstract
Updating established memories in light of new information is fundamental for memory to guide future behavior. However, little is known about the brain mechanisms by which existing memories can be updated. Here, we combined functional magnetic resonance imaging and multivariate representational similarity analysis to elucidate the neural mechanisms underlying the updating of consolidated memories. To this end, participants first learned face-city name pairs. Twenty-four hours later, while lying in the MRI scanner, participants were required to update some of these associations, but not others, and to encode entirely new pairs. Updating success was tested again 24 h later. Our results showed increased activity of the dorsolateral prefrontal cortex (dlPFC) specifically during the updating of existing associations that was significantly stronger than when simple retrieval or new encoding was required. The updating-related activity of the dlPFC and its functional connectivity with the hippocampus were directly linked to updating success. Furthermore, neural similarity for updated items was markedly higher in the dlPFC and this increase in dlPFC neural similarity distinguished individuals with high updating performance from those with low updating performance. Together, these findings suggest a key role of the dlPFC, presumably in interaction with the hippocampus, in the updating of established memories.
Collapse
Affiliation(s)
- Lisa Marieke Kluen
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, 20146 Hamburg, Germany
| | - Lisa Catherine Dandolo
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, 20146 Hamburg, Germany
| | - Gerhard Jocham
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
49
|
Houtekamer MC, Henckens MJAG, Mackey WE, Dunsmoor JE, Homberg JR, Kroes MCW. Investigating the efficacy of the reminder-extinction procedure to disrupt contextual threat memories in humans using immersive Virtual Reality. Sci Rep 2020; 10:16991. [PMID: 33046753 PMCID: PMC7550330 DOI: 10.1038/s41598-020-73139-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
Upon reactivation, consolidated memories can enter a temporary labile state and require restabilisation, known as reconsolidation. Interventions during this reconsolidation period can disrupt the reactivated memory. However, it is unclear whether different kinds of memory that depend on distinct brain regions all undergo reconsolidation. Evidence for reconsolidation originates from studies assessing amygdala-dependent memories using cue-conditioning paradigms in rodents, which were subsequently replicated in humans. Whilst studies providing evidence for reconsolidation of hippocampus-dependent memories in rodents have predominantly used context conditioning paradigms, studies in humans have used completely different paradigms such as tests for wordlists or stories. Here our objective was to bridge this paradigm gap between rodent and human studies probing reconsolidation of hippocampus-dependent memories. We modified a recently developed immersive Virtual Reality paradigm to test in humans whether contextual threat-conditioned memories can be disrupted by a reminder-extinction procedure that putatively targets reconsolidation. In contrast to our hypothesis, we found comparable recovery of contextual conditioned threat responses, and comparable retention of subjective measures of threat memory, episodic memory and exploration behaviour between the reminder-extinction and standard extinction groups. Our result provide no evidence that a reminder before extinction can prevent the return of context conditioned threat memories in humans.
Collapse
Affiliation(s)
- Maxime C Houtekamer
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, 6500 HB, Nijmegen, The Netherlands.
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, 6500 HB, Nijmegen, The Netherlands
| | - Wayne E Mackey
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, 6500 HB, Nijmegen, The Netherlands
| | - Marijn C W Kroes
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Romero T, Vargas CA, Alonso MÁ, Díez E, Fernandez A. Absence of post-learning motor activity effects on memory for motor-related words. Memory 2020; 30:217-228. [PMID: 33023367 DOI: 10.1080/09658211.2020.1826527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Drawing a hypothesis from embodied theories of memory, van Dam, Rueschemeyer, Bekkering and Lindemann [(2013). Embodied grounding of memory: Toward the effects of motor execution on memory consolidation. The Quarterly Journal of Experimental Psychology, 66(12), 2310-2328] showed that recognition performance for action words could be modulated by actions performed during the retention interval, suggesting that motor actions during the retention interval affect memory consolidation. The results of 4 experiments from two different laboratories, designed to replicate and extend the van Dam et al. motor consolidation effect, are presented here. Two of the experiments (n = 30 and n = 44) exactly and independently replicated the experimental design and conditions of the original experiment. Yes/No recognition scores plus additional analysis of response times showed no motor consolidation effects. A third experiment (n = 44) manipulating type of processing during encoding also failed to find significant motor consolidation effects. Finally, a fourth experiment (n = 120) following a more standard reconsolidation paradigm, involving 24-hour intervals between learning and motor behaviour, and a 24-hour delayed test, also found null effects. The absence of effects of motor execution on memory consolidation is discussed in terms of the implications of these findings for the embodiment approach to cognition.
Collapse
Affiliation(s)
- Tatiana Romero
- Departamento de Psicología Cognitiva, Social y Organizacional, Universidad de La Laguna, La Laguna, Spain
| | - Cecilia Alejandra Vargas
- Departamento de Psicología Básica, Psicobiología y Metodología de las CC. del Compto., Universidad de Salamanca, Salamanca, Spain
| | - María Ángeles Alonso
- Departamento de Psicología Cognitiva, Social y Organizacional, Universidad de La Laguna, La Laguna, Spain.,IUNE, Universidad de La Laguna, La Laguna, Spain.,INICO, Universidad de Salamanca, Salamanca, Spain
| | - Emiliano Díez
- Departamento de Psicología Básica, Psicobiología y Metodología de las CC. del Compto., Universidad de Salamanca, Salamanca, Spain.,IUNE, Universidad de La Laguna, La Laguna, Spain.,INICO, Universidad de Salamanca, Salamanca, Spain
| | - Angel Fernandez
- Departamento de Psicología Básica, Psicobiología y Metodología de las CC. del Compto., Universidad de Salamanca, Salamanca, Spain.,IUNE, Universidad de La Laguna, La Laguna, Spain.,INICO, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|