1
|
Sniffen SE, Ryu SE, Kokoska MM, Bhattarai J, Wang Y, Thomas ER, Skates GM, Johnson NL, Chavez AA, Iaconis SR, Janke E, Ma M, Wesson DW. Bidirectional modulation of negative emotional states by parallel genetically-distinct basolateral amygdala pathways to ventral striatum subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599749. [PMID: 38948716 PMCID: PMC11213032 DOI: 10.1101/2024.06.19.599749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Distinct basolateral amygdala (BLA) cell populations influence emotional responses in manners thought important for anxiety and anxiety disorders. The BLA contains numerous cell types which can broadcast information into structures that may elicit changes in emotional states and behaviors. BLA excitatory neurons can be divided into two main classes, one of which expresses Ppp1r1b (encoding protein phosphatase 1 regulatory inhibitor subunit 1B) which is downstream of the genes encoding the D1 and D2 dopamine receptors (drd1 and drd2 respectively). The role of drd1+ or drd2+ BLA neurons in learned and unlearned emotional responses is unknown. Here, we identified that the drd1+ and drd2+ BLA neuron populations form two parallel pathways for communication with the ventral striatum. These neurons arise from the basal nucleus of the BLA, innervate the entire space of the ventral striatum, and are capable of exciting ventral striatum neurons. Further, through three separate behavioral assays, we found that the drd1+ and drd2+ parallel pathways bidirectionally influence both learned and unlearned emotional states when they are activated or suppressed, and do so depending upon where they synapse in the ventral striatum - with unique contributions of drd1+ and drd2+ circuitry on negative emotional states. Overall, these results contribute to a model whereby parallel, genetically-distinct BLA to ventral striatum circuits inform emotional states in a projection-specific manner.
Collapse
Affiliation(s)
- Sarah E. Sniffen
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sang Eun Ryu
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Milayna M. Kokoska
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Janardhan Bhattarai
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingqi Wang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellyse R. Thomas
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Graylin M. Skates
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Natalie L. Johnson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Andy A. Chavez
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Sophia R. Iaconis
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Emma Janke
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Walker JJ, Meunier E, Garcia S, Messaoudi B, Mouly AM, Veyrac A, Buonviso N, Courtiol E. State-dependent alteration of respiration in a rat model of Parkinson's disease. Exp Neurol 2024; 375:114740. [PMID: 38395215 DOI: 10.1016/j.expneurol.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered. Importantly, breathing patterns are highly correlated with the animal's behavioral states. This raises the question of the potential impact of behavioral state on respiration deficits in PD. To answer this question, we first characterized the respiratory parameters in a neurotoxin-induced rat model of PD (6-OHDA) across three different vigilance states: sleep, quiet waking and exploration. We noted a significantly higher respiratory frequency in 6-OHDA rats during quiet waking compared to Sham rats. A higher respiratory amplitude was also observed in 6-OHDA rats during both quiet waking and exploration. No effect of the treatment was noted during sleep. Given the relation between respiration and olfaction and the presence of olfactory deficits in PD patients, we then investigated the odor-evoked sniffing response in PD rats, using an odor habituation/cross-habituation paradigm. No substantial differences were observed in olfactory abilities between the two groups, as assessed through sniffing frequency. These results corroborate the hypothesis that respiratory impairments in 6-OHDA rats are vigilance-dependent. Our results also shed light on the importance of considering the behavioral state as an impacting factor when analyzing respiration.
Collapse
Affiliation(s)
- Jean Jacques Walker
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Estelle Meunier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France
| | - Samuel Garcia
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Belkacem Messaoudi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Anne-Marie Mouly
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Alexandra Veyrac
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Nathalie Buonviso
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Emmanuelle Courtiol
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
3
|
Gonzalez-Palomares E, Boulanger-Bertolus J, Dupin M, Mouly AM, Hechavarria JC. Amplitude modulation pattern of rat distress vocalisations during fear conditioning. Sci Rep 2023; 13:11173. [PMID: 37429931 PMCID: PMC10333300 DOI: 10.1038/s41598-023-38051-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
In humans, screams have strong amplitude modulations (AM) at 30 to 150 Hz. These AM correspond to the acoustic correlate of perceptual roughness. In bats, distress calls can carry AMs, which elicit heart rate increases in playback experiments. Whether amplitude modulation occurs in fearful vocalisations of other animal species beyond humans and bats remains unknown. Here we analysed the AM pattern of rats' 22-kHz ultrasonic vocalisations emitted in a fear conditioning task. We found that the number of vocalisations decreases during the presentation of conditioned stimuli. We also observed that AMs do occur in rat 22-kHz vocalisations. AMs are stronger during the presentation of conditioned stimuli, and during escape behaviour compared to freezing. Our results suggest that the presence of AMs in vocalisations emitted could reflect the animal's internal state of fear related to avoidance behaviour.
Collapse
Affiliation(s)
| | - Julie Boulanger-Bertolus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Maryne Dupin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Anne-Marie Mouly
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France.
| | - Julio C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Johnson NL, Wesson DW. The development of sniffing. Chem Senses 2023; 48:bjad017. [PMID: 37217304 PMCID: PMC10263111 DOI: 10.1093/chemse/bjad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Sniffing is a commonly displayed behavior in rodents, yet how this important behavior adjusts throughout development to meet the sensory demands of the animals has remained largely unexplored. In this issue of Chemical Senses, Boulanger-Bertolus et al. investigates the ontogeny of odor-evoked sniffing through a longitudinal study of rats engaged in several olfactory paradigms from infancy to adulthood. The results of this study yield a cohesive picture of sniffing behavior across three developmental stages, while also providing direct comparisons within subjects between these timepoints. As we discuss herein, these results advance the field in relation to existing literature on the development of odor-evoked sniffing behavior in several important ways.
Collapse
Affiliation(s)
- Natalie L Johnson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| |
Collapse
|
5
|
Sounding the Alarm: Sex Differences in Rat Ultrasonic Vocalizations during Pavlovian Fear Conditioning and Extinction. eNeuro 2022; 9:ENEURO.0382-22.2022. [PMID: 36443006 PMCID: PMC9797209 DOI: 10.1523/eneuro.0382-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Pavlovian fear conditioning is a prevalent tool in the study of aversive learning, which is a key component of stress-related psychiatric disorders. Adult rats can exhibit various threat-related behaviors, including freezing, motor responses, and ultrasonic vocalizations (USVs). While these responses can all signal aversion, we know little about how they relate to one another. Here we characterize USVs emitted by male and female rats during cued fear acquisition and extinction, and assess the relationship between different threat-related behaviors. We found that males consistently emitted >22 kHz calls (referred to here as "alarm calls") than females, and that alarm call frequency in males, but not females, related to the intensity of the shock stimulus. Interestingly, 25% of males and 45% of females did not emit any alarm calls at all. Males that did make alarm calls had significantly higher levels of freezing than males who did not, while no differences in freezing were observed between female Alarm callers and Non-alarm callers. Alarm call emission was also affected by the predictability of the shock; when unpaired from a tone cue, both males and females started emitting alarm calls significantly later. During extinction learning and retrieval sessions, males were again more likely than females to emit alarm calls, which followed an extinction-like reduction in frequency. Collectively these data suggest sex dependence in how behavioral readouts relate to innate and conditioned threat responses. Importantly, we suggest that the same behaviors can signal sex-dependent features of aversion.
Collapse
|
6
|
Kamimura S, Masaoka Y, Yoshikawa A, Kamijo S, Ohtaki H, Koiwa N, Honma M, Sakikawa K, Kobayashi H, Izumizaki M. New granule cells in the olfactory bulb are associated with high respiratory input in an enriched odor environment. Neurosci Res 2022; 182:52-59. [DOI: 10.1016/j.neures.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
7
|
Lawrenson C, Paci E, Pickford J, Drake RAR, Lumb BM, Apps R. Cerebellar modulation of memory encoding in the periaqueductal grey and fear behaviour. eLife 2022; 11:76278. [PMID: 35287795 PMCID: PMC8923669 DOI: 10.7554/elife.76278] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 01/02/2023] Open
Abstract
The pivotal role of the periaqueductal grey (PAG) in fear learning is reinforced by the identification of neurons in male rat ventrolateral PAG (vlPAG) that encode fear memory through signalling the onset and offset of an auditory-conditioned stimulus during presentation of the unreinforced conditioned tone (CS+) during retrieval. Some units only display CS+ onset or offset responses, and the two signals differ in extinction sensitivity, suggesting that they are independent of each other. In addition, understanding cerebellar contributions to survival circuits is advanced by the discovery that (i) reversible inactivation of the medial cerebellar nucleus (MCN) during fear consolidation leads in subsequent retrieval to (a) disruption of the temporal precision of vlPAG offset, but not onset responses to CS+, and (b) an increase in duration of freezing behaviour. And (ii) chemogenetic manipulation of the MCN-vlPAG projection during fear acquisition (a) reduces the occurrence of fear-related ultrasonic vocalisations, and (b) during subsequent retrieval, slows the extinction rate of fear-related freezing. These findings show that the cerebellum is part of the survival network that regulates fear memory processes at multiple timescales and in multiple ways, raising the possibility that dysfunctional interactions in the cerebellar-survival network may underlie fear-related disorders and comorbidities. Anxiety disorders are a cluster of mental health conditions characterised by persistent and excessive amounts of fear and worry. They affect millions of people worldwide, but treatments can sometimes be ineffective and have unwanted side effects. Understanding which brain regions are involved in fear and anxiety-related behaviours, and how those areas are connected, is the first step towards designing more effective treatments. A region known as the periaqueductal grey (or PAG) sits at the centre of the brain’s fear and anxiety network, regulating pain, encoding fear memories and responding to threats and stressors. It also controls survival behaviours such as the ‘freeze’ response, when an animal is frightened. A more recent addition to the fear and anxiety network is the cerebellum, which sits at the base of the brain. Two-way connections between this region and the PAG have been well described, but how the cerebellum might influence fear and anxiety-related behaviours remains unclear. To explore this role, Lawrenson, Paci et al. investigated whether the cerebellum modulates brain activity within the PAG and if so, how this relates to fear behaviours. Rats had electrodes implanted in their brains to record the activity of nerve cells within the PAG. A common fear-conditioning task was then used to elicit ‘freeze’ responses: a sound was paired with mild foot shocks until the animals learned to fear the auditory signal. In the rats, a subset of neurons within the PAG responded to the tone, consistent with those cells encoding a fear memory. But when a drug blocked the cerebellum’s output during fear conditioning, the timing of the PAG response was less precise and the rats’ freeze response lasted longer. Lawrenson, Paci et al. concluded that the cerebellum, through its interactions with the brain’s fear and anxiety network, might be responsible for coordinating the most appropriate behavioural response to fear, and how long ‘freezing’ lasts. In summary, these findings show that the cerebellum is a part of the brain’s survival network which regulates fear-memory processes. It raises the possibility that disruption of the cerebellum might underlie anxiety and other fear-related disorders, thereby providing a new target for future therapies.
Collapse
Affiliation(s)
- Charlotte Lawrenson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Elena Paci
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jasmine Pickford
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Robert A R Drake
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bridget M Lumb
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Håkansson J, Jiang W, Xue Q, Zheng X, Ding M, Agarwal AA, Elemans CPH. Aerodynamics and motor control of ultrasonic vocalizations for social communication in mice and rats. BMC Biol 2022; 20:3. [PMID: 34996429 PMCID: PMC8742360 DOI: 10.1186/s12915-021-01185-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent ultrasonic vocalizations (USVs) are crucial to their social communication and a widely used translational tool for linking gene mutations to behavior. To maximize the causal interpretation of experimental treatments, we need to understand how neural control affects USV production. However, both the aerodynamics of USV production and its neural control remain poorly understood. RESULTS Here, we test three intralaryngeal whistle mechanisms-the wall and alar edge impingement, and shallow cavity tone-by combining in vitro larynx physiology and individual-based 3D airway reconstructions with fluid dynamics simulations. Our results show that in the mouse and rat larynx, USVs are produced by a glottal jet impinging on the thyroid inner wall. Furthermore, we implemented an empirically based motor control model that predicts motor gesture trajectories of USV call types. CONCLUSIONS Our results identify wall impingement as the aerodynamic mechanism of USV production in rats and mice. Furthermore, our empirically based motor control model shows that both neural and anatomical components contribute to USV production, which suggests that changes in strain specific USVs or USV changes in disease models can result from both altered motor programs and laryngeal geometry. Our work provides a quantitative neuromechanical framework to evaluate the contributions of brain and body in shaping USVs and a first step in linking descending motor control to USV production.
Collapse
Affiliation(s)
- Jonas Håkansson
- Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Weili Jiang
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Qian Xue
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Xudong Zheng
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Anurag A Agarwal
- Department of Engineering, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
9
|
Mouly AM, Bouillot C, Costes N, Zimmer L, Ravel N, Litaudon P. PET Metabolic Imaging of Time-Dependent Reorganization of Olfactory Cued Fear Memory Networks in Rats. Cereb Cortex 2021; 32:2717-2728. [PMID: 34668524 DOI: 10.1093/cercor/bhab376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Memory consolidation involves reorganization at both the synaptic and system levels. The latter involves gradual reorganization of the brain regions that support memory and has been mostly highlighted using hippocampal-dependent tasks. The standard memory consolidation model posits that the hippocampus becomes gradually less important over time in favor of neocortical regions. In contrast, this reorganization of circuits in amygdala-dependent tasks has been less investigated. Moreover, this question has been addressed using primarily lesion or cellular imaging approaches thus precluding the comparison of recent and remote memory networks in the same animals. To overcome this limitation, we used microPET imaging to characterize, in the same animals, the networks activated during the recall of a recent versus remote memory in an olfactory cued fear conditioning paradigm. The data highlighted the drastic difference between the extents of the two networks. Indeed, although the recall of a recent odor fear memory activates a large network of structures spanning from the prefrontal cortex to the cerebellum, significant activations during remote memory retrieval are limited to the piriform cortex. These results strongly support the view that amygdala-dependent memories also undergo system-level reorganization, and that sensory cortical areas might participate in the long-term storage of emotional memories.
Collapse
Affiliation(s)
- Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France.,CERMEP-Life Imaging, Bron Cedex 69677, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Nadine Ravel
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| |
Collapse
|
10
|
Willadsen M, Uengoer M, Schwarting RKW, Homberg JR, Wöhr M. Reduced emission of alarm 22-kHz ultrasonic vocalizations during fear conditioning in rats lacking the serotonin transporter. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110072. [PMID: 32800867 DOI: 10.1016/j.pnpbp.2020.110072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Rats display a rich social behavioral repertoire. An important component of this repertoire is the emission of whistle-like calls in the ultrasonic range, so-called ultrasonic vocalizations (USV). Long low-frequency 22-kHz USV occur in aversive situations, including aggressive interactions, predator exposure, and electric shocks during fear conditioning. They are believed to reflect a negative affective state akin to anxiety and fear. A prominent theory suggests that 22-kHz USV function as alarm calls to warn conspecifics. Serotonin (5-hydroxytryptamine, 5-HT) is strongly implicated in the regulation of affective states, particularly anxiety and fear. A key component of the system is the 5-HT transporter (5-HTT, also known as SERT), regulating 5-HT availability in the synaptic cleft. In the present experiment, we studied the effects of SERT deficiency on overt fear-related behavior and alarm 22-kHz USV during fear conditioning in male and female rats. While overt fear-related behavior was not affected by SERT deficiency and sex, the emission of alarm 22-kHz USV was clearly reduced in homozygous SERT-/- but not heterozygous SERT+/- mutants, as compared to their wildtype SERT+/+ littermate controls. Genotype effects were particularly prominent in females. Females in general emitted fewer alarm 22-kHz USV than males. This supports the view that 22-kHz USV are, at least partly, independently regulated from anxiety or fear and as socially mediated alarm calls do not simply express a negative affective state. Reduced 22-kHz USV emission in rats lacking SERT might be due to social deficits in the use of 22-kHz USV as a socio-affective signal to warn conspecifics about threats.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Metin Uengoer
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
11
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
12
|
Boulanger-Bertolus J, Parrot S, Doyère V, Mouly AM. Dorsal striatum and the temporal expectancy of an aversive event in Pavlovian odor fear learning. Neurobiol Learn Mem 2021; 182:107446. [PMID: 33915299 DOI: 10.1016/j.nlm.2021.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
Interval timing, the ability to encode and retrieve the memory of intervals from seconds to minutes, guides fundamental animal behaviors across the phylogenetic tree. In Pavlovian fear conditioning, an initially neutral stimulus (conditioned stimulus, CS) predicts the arrival of an aversive unconditioned stimulus (US, generally a mild foot-shock) at a fixed time interval. Although some studies showed that temporal relations between CS and US events are learned from the outset of conditioning, the question of the memory of time and its underlying neural network in fear conditioning is still poorly understood. The aim of the present study was to investigate the role of the dorsal striatum in timing intervals in odor fear conditioning in male rats. To assess the animal's interval timing ability in this paradigm, we used the respiratory frequency. This enabled us to detect the emergence of temporal patterns related to the odor-shock time interval from the early stage of learning, confirming that rats are able to encode the odor-shock time interval after few training trials. We carried out reversible inactivation of the dorsal striatum before the acquisition session and before a shift in the learned time interval, and measured the effects of this treatment on the temporal pattern of the respiratory rate. In addition, using intracerebral microdialysis, we monitored extracellular dopamine level in the dorsal striatum throughout odor-shock conditioning and in response to a shift of the odor-shock time interval. Contrary to our initial predictions based on the existing literature on interval timing, we found evidence suggesting that transient inactivation of the dorsal striatum may favor a more precocious buildup of the respiratory frequency's temporal pattern during the odor-shock interval in a manner that reflected the duration of the interval. Our data further suggest that the conditioning and the learning of a novel time interval were associated with a decrease in dopamine level in the dorsal striatum, but not in the nucleus accumbens. These findings prompt a reassessment of the role of the striatum and striatal dopamine in interval timing, at least when considering Pavlovian aversive conditioning.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, Lyon 69366, France.
| | - Sandrine Parrot
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Valérie Doyère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France; NYU Child Study Center Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, NY, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, Lyon 69366, France
| |
Collapse
|
13
|
Girin B, Juventin M, Garcia S, Lefèvre L, Amat C, Fourcaud-Trocmé N, Buonviso N. The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci Rep 2021; 11:7044. [PMID: 33782487 PMCID: PMC8007577 DOI: 10.1038/s41598-021-86525-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
A respiration-locked activity in the olfactory brain, mainly originating in the mechano-sensitivity of olfactory sensory neurons to air pressure, propagates from the olfactory bulb to the rest of the brain. Interestingly, changes in nasal airflow rate result in reorganization of olfactory bulb response. By leveraging spontaneous variations of respiratory dynamics during natural conditions, we investigated whether respiratory drive also varies with nasal airflow movements. We analyzed local field potential activity relative to respiratory signal in various brain regions during waking and sleep states. We found that respiration regime was state-specific, and that quiet waking was the only vigilance state during which all the recorded structures can be respiration-driven whatever the respiratory frequency. Using CO2-enriched air to alter respiratory regime associated to each state and a respiratory cycle based analysis, we evidenced that the large and strong brain drive observed during quiet waking was related to an optimal trade-off between depth and duration of inspiration in the respiratory pattern, characterizing this specific state. These results show for the first time that changes in respiration regime affect cortical dynamics and that the respiratory regime associated with rest is optimal for respiration to drive the brain.
Collapse
Affiliation(s)
- Baptiste Girin
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Samuel Garcia
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Corine Amat
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Nicolas Fourcaud-Trocmé
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France.
| |
Collapse
|
14
|
Respiration and brain neural dynamics associated with interval timing during odor fear learning in rats. Sci Rep 2020; 10:17643. [PMID: 33077831 PMCID: PMC7573637 DOI: 10.1038/s41598-020-74741-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 12/03/2022] Open
Abstract
In fear conditioning, where a conditioned stimulus predicts the arrival of an aversive stimulus, the animal encodes the time interval between the two stimuli. Here we monitored respiration to visualize anticipatory behavioral responses in an odor fear conditioning in rats, while recording theta (5–15 Hz) and gamma (40–80 Hz) brain oscillatory activities in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), dorsomedial striatum (DMS) and olfactory piriform cortex (PIR). We investigated the temporal patterns of respiration frequency and of theta and gamma activity power during the odor-shock interval, comparing two interval durations. We found that akin to respiration patterns, theta temporal curves were modulated by the duration of the odor-shock interval in the four recording sites, and respected scalar property in mPFC and DMS. In contrast, gamma temporal curves were modulated by the interval duration only in the mPFC, and in a manner that did not respect scalar property. This suggests a preferential role for theta rhythm in interval timing. In addition, our data bring the novel idea that the respiratory rhythm might take part in the setting of theta activity dynamics related to timing.
Collapse
|
15
|
Measuring learning in human classical threat conditioning: Translational, cognitive and methodological considerations. Neurosci Biobehav Rev 2020; 114:96-112. [DOI: 10.1016/j.neubiorev.2020.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
|
16
|
Johnson ME, Bergkvist L, Mercado G, Stetzik L, Meyerdirk L, Wolfrum E, Madaj Z, Brundin P, Wesson DW. Deficits in olfactory sensitivity in a mouse model of Parkinson's disease revealed by plethysmography of odor-evoked sniffing. Sci Rep 2020; 10:9242. [PMID: 32514004 PMCID: PMC7280205 DOI: 10.1038/s41598-020-66201-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
Hyposmia is evident in over 90% of Parkinson’s disease (PD) patients. A characteristic of PD is intraneuronal deposits composed in part of α-synuclein fibrils. Based on the analysis of post-mortem PD patients, Braak and colleagues suggested that early in the disease α-synuclein pathology is present in the dorsal motor nucleus of the vagus, as well as the olfactory bulb and anterior olfactory nucleus, and then later affects other interconnected brain regions. Here, we bilaterally injected α-synuclein preformed fibrils into the olfactory bulbs of wild type male and female mice. Six months after injection, the anterior olfactory nucleus and piriform cortex displayed a high α-synuclein pathology load. We evaluated olfactory perceptual function by monitoring odor-evoked sniffing behavior in a plethysmograph at one-, three- and six-months after injection. No overt impairments in the ability to engage in sniffing were evident in any group, suggesting preservation of the ability to coordinate respiration. At all-time points, females injected with fibrils exhibited reduced odor detection sensitivity, which was observed with the semi-automated plethysmography apparatus, but not a buried pellet test. In future studies, this sensitive methodology for assessing olfactory detection deficits could be used to define how α-synuclein pathology affects other aspects of olfactory perception and to clarify the neuropathological underpinnings of these deficits.
Collapse
Affiliation(s)
- Michaela E Johnson
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Liza Bergkvist
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Gabriela Mercado
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Lucas Stetzik
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Lindsay Meyerdirk
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, US
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, US.
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Gurel NZ, Jeong HK, Kloefkorn H, Hochman S, Inan OT. Unobtrusive Heartbeat Detection from Mice Using Sensors Embedded in the Nest. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:1604-1607. [PMID: 30440699 DOI: 10.1109/embc.2018.8512611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unobtrusive monitoring of physio-behavioral variables from animals can minimize variability in preclinical research and thereby maximize the potential for clinical translation. In this paper, we present the design, implementation, and validation of an instrumented nest providing continuous recordings of seismocardiogram (SCG) signals and skin temperature. SCG represents the chest-wall vibrations associated with the heartbeat, and can potentially provide a measure by which individual heartbeats can be detected without the need for electrodes or implantable devices. A non-contact electric field sensor placed in proximity to the animal in the nest was also used to detect respiratory dynamics. The setup was tested with a total of six anesthetized mice. To understand the effects of mouse positioning within the nest on signal quality, the error in heartbeat detection at different positions of the sensor on the body was quantified, with a simultaneously-obtained electrocardiogram (ECG) as the reference standard. At the optimal placement determined with this approach, multiple perturbations were performed such as pinching, changing ambient temperature, and norepinephrine injection to modulate physiology and assess measurement capability. Heartbeat intervals obtained from the ECG and SCG during the perturbations were correlated (R2=0.82) and were in agreement according to Bland-Altman methods (bias: 0.006ms, 95% confidence interval: [-3.79, 3.78]ms) suggesting that SCG can be reliably used for unobtrusive heartbeat detection. Accordingly, the setup can provide a means by which individual heartbeats - and thereby heart rate and heart rate variability indices - can be quantified without the need for any sensors to be attached to the body of the animal.
Collapse
|
18
|
Ultrasonic Vocalizations Emitted during Defensive Behavior Alter the Influence of the Respiratory Rhythm on Brain Oscillatory Dynamics in the Fear Circuit of Rats. eNeuro 2019; 6:6/5/ENEURO.0280-19.2019. [PMID: 31506357 PMCID: PMC6749141 DOI: 10.1523/eneuro.0280-19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Highlighted Research Paper:New Insights from 22-kHz Ultrasonic Vocalizations to Characterize Fear Responses: Relationship with Respiration and Brain Oscillatory Dynamics, by Maryne Dupin, Samuel Garcia, Julie Boulanger-Bertolus, Nathalie Buonviso, and Anne-Marie Mouly
Collapse
|
19
|
Merle L, Person O, Bonnet P, Grégoire S, Soubeyre V, Grosmaitre X, Jarriault D. Maternal high fat high sugar diet disrupts olfactory behavior but not mucosa sensitivity in the offspring. Psychoneuroendocrinology 2019; 104:249-258. [PMID: 30904822 DOI: 10.1016/j.psyneuen.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/24/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
The influence of maternal diet on progeny's metabolic health has been thoroughly investigated, but the impact on sensory systems remains unexplored. Neurons of the olfactory system start to develop during the embryonic life and carry on their maturation after birth. Besides, these neurons are under metabolic influences, and it has recently been shown that adult mice exposed to an obesogenic or diabetogenic diet display reduced olfactory abilities. However, whether or not Folfactory function is affected by the perinatal nutritional environment is unknown. Here we investigated the effect of a high fat high sucrose (HFHS) maternal diet (46% of total energy brought by lipids, 26.6% by sucrose) on progeny's olfactory system in mice. In male offspring at weaning stage, maternal HFHS diet induced overweight and increased gonadal fat, associated with hyperleptinemia. The progeny of HFHS diet fed dams showed reduced sniffing behavior in the presence of low doses of phenylethanol (an attractive odorant for mice), compared to the progeny of standard diet fed dams. Furthermore, they exhibited increased time to retrieve a piece of breakfast cereals hidden beneath the bedding in a buried food test. Meanwhile, electroolfactogram recordings revealed no change in the sensitivity of olfactory mucosa. mRNA levels for elements of the olfactory transduction cascade were not affected either. Our results demonstrate that maternal HFHS diet during gestation and lactation strongly modulates olfactory perception in the offspring, without impairing odor detection by the olfactory epithelium. Maternal HFHS diet starting two months before gestation did not induce additional impairments in progeny.
Collapse
Affiliation(s)
- Laëtitia Merle
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Ophélie Person
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Pierre Bonnet
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - David Jarriault
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E boulevard Jeanne d'Arc, F-21000 Dijon, France.
| |
Collapse
|
20
|
New Insights from 22-kHz Ultrasonic Vocalizations to Characterize Fear Responses: Relationship with Respiration and Brain Oscillatory Dynamics. eNeuro 2019; 6:ENEURO.0065-19.2019. [PMID: 31064837 PMCID: PMC6506822 DOI: 10.1523/eneuro.0065-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/30/2022] Open
Abstract
Fear behavior depends on interactions between the medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA), and the expression of fear involves synchronized activity in θ and γ oscillatory activities. In addition, freezing, the most classical measure of fear response in rodents, temporally coincides with the development of sustained 4-Hz oscillations in prefrontal-amygdala circuits. Interestingly, these oscillations were recently shown to depend on the animal’s respiratory rhythm, supporting the growing body of evidence pinpointing the influence of nasal breathing on brain rhythms. During fearful states, rats also emit 22-kHz ultrasonic vocalizations (USVs) which drastically affect respiratory rhythm. However, the relationship between 22-kHz USV, respiration, and brain oscillatory activities is still unknown. Yet such information is crucial for a comprehensive understanding of how the different components of fear response collectively modulate rat’s brain neural dynamics. Here, we trained male rats in an odor fear conditioning task, while recording simultaneously local field potentials (LFPs) in BLA, mPFC, and olfactory piriform cortex (PIR), together with USV calls and respiration. We show that USV calls coincide with an increase in delta and gamma power and a decrease in theta power. In addition, during USV emission in contrast to silent freezing, there is no coupling between respiratory rate and delta frequency, and the modulation of fast oscillations amplitude relative to the phase of respiration is modified. We propose that sequences of USV calls could result in a differential gating of information within the network of structures sustaining fear behavior, thus potentially modulating fear expression/memory.
Collapse
|
21
|
Tao C, Zhang Y, Gao K. Machine vision analysis on abnormal respiratory conditions of mice inhaling particles containing cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:600-610. [PMID: 30576895 DOI: 10.1016/j.ecoenv.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Inhalable environmental toxicants can induce pulmonary malfunction resulting abnormal respiratory conditions. The traditional methods currently available to detect the respiratory condition of animals rely on differential pressure transducers and signal amplifiers. In comparison, current machine vision application requires little hardware. But it is unsuitable for respiratory condition tests of experimental animals reflecting respiratory toxicities of inhalable pollutants. In this study, we establish a new automatic method of machine vision analysis using a model that has mice inhaling aqueous aerosol with different concentrations of CdCl2 (0, 1, 3, 5 mM 2 h/day) for 7 days as simulant occupational exposure of inhalable Cd and analyze respiratory conditions such as respiratory rate, rhythm index, drive index and exchange index. Additionally, the models with different degrees of lung damage in mice are further tested and verified by the concentrations of cadmium accumulated in the lungs and the analyses on pulmonary porosity, fibrosis and inflammation. Machine vision analysis can identify the abnormal respiratory conditions of mice. Respiratory rate and rhythm index increase after exposure to cadmium. In the individuals with mild lung damage, respiratory drive index and exchange index in treatment group are higher than that in the control group, and in individuals with severe lung damage, these indices are similar to that of the control group. These abnormal respiratory conditions related to variable lung damage in mice demonstrate that the respiration is synchronously influenced by inhalable Cd and respiratory compensation according to normal physiological regulation, suggesting the present method is effective.
Collapse
Affiliation(s)
- Chen Tao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ke Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Acute and long-lasting effects of oxytocin in cortico-limbic circuits: consequences for fear recall and extinction. Psychopharmacology (Berl) 2019; 236:339-354. [PMID: 30302511 DOI: 10.1007/s00213-018-5030-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
The extinction of conditioned fear responses entrains the formation of safe new memories to decrease those behavioral responses. The knowledge in neuronal mechanisms of extinction is fundamental in the treatment of anxiety and fear disorders. Interestingly, the use of pharmacological compounds that reduce anxiety and fear has been shown as a potent co-adjuvant in extinction therapy. However, the efficiency and mechanisms by which pharmacological compounds promote extinction of fear memories remains still largely unknown and would benefit from a validation based on functional neuronal circuits, and the neurotransmitters that modulate them. From this perspective, oxytocin receptor signaling, which has been shown in cortical and limbic areas to modulate numerous functions (Eliava et al. Neuron 89(6):1291-1304, 2016), among them fear and anxiety circuits, and to enhance the salience of social stimuli (Stoop Neuron 76(1):142-59, 2012), may offer an interesting perspective. Experiments in animals and humans suggest that oxytocin could be a promising pharmacological agent at adjusting memory consolidation to boost fear extinction. Additionally, it is possible that long-term changes in endogenous oxytocin signaling can also play a role in reducing expression of fear at different brain targets. In this review, we summarize the effects reported for oxytocin in cortico-limbic circuits and on fear behavior that are of relevance for the modulation and potential extinction of fear memories.
Collapse
|
23
|
Ashbrook DG, Roy S, Clifford BG, Riede T, Scattoni ML, Heck DH, Lu L, Williams RW. Born to Cry: A Genetic Dissection of Infant Vocalization. Front Behav Neurosci 2018; 12:250. [PMID: 30420800 PMCID: PMC6216097 DOI: 10.3389/fnbeh.2018.00250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
Infant vocalizations are one of the most fundamental and innate forms of behavior throughout avian and mammalian orders. They have a critical role in motivating parental care and contribute significantly to fitness and reproductive success. Dysregulation of these vocalizations has been reported to predict risk of central nervous system pathologies such as hypoxia, meningitis, or autism spectrum disorder. Here, we have used the expanded BXD family of mice, and a diallel cross between DBA/2J and C57BL/6J parental strains, to begin the process of genetically dissecting the numerous facets of infant vocalizations. We calculate heritability, estimate the role of parent-of-origin effects, and identify novel quantitative trait loci (QTLs) that control ultrasonic vocalizations (USVs) on postnatal days 7, 8, and 9; a stage that closely matches human infants at birth. Heritability estimates for the number and frequency of calls are low, suggesting that these traits are under high selective pressure. In contrast, duration and amplitude of calls have higher heritabilities, indicating lower selection, or their importance for kin recognition. We find suggestive evidence that amplitude of infant calls is dependent on the maternal genotype, independent of shared genetic variants. Finally, we identify two loci on Chrs 2 and 14 influencing call frequency, and a third locus on Chr 8 influencing the amplitude of vocalizations. All three loci contain strong candidate genes that merit further analysis. Understanding the genetic control of infant vocalizations is not just important for understanding the evolution of parent–offspring interactions, but also in understanding the earliest innate behaviors, the development of parent–offspring relations, and the early identification of behavioral abnormalities.
Collapse
Affiliation(s)
- David George Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Snigdha Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany G Clifford
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tobias Riede
- Department of Physiology, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
24
|
Al Koborssy D, Palouzier-Paulignan B, Canova V, Thevenet M, Fadool DA, Julliard AK. Modulation of olfactory-driven behavior by metabolic signals: role of the piriform cortex. Brain Struct Funct 2018; 224:315-336. [PMID: 30317390 DOI: 10.1007/s00429-018-1776-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
Olfaction is one of the major sensory modalities that regulates food consumption and is in turn regulated by the feeding state. Given that the olfactory bulb has been shown to be a metabolic sensor, we explored whether the anterior piriform cortex (aPCtx)-a higher olfactory cortical processing area-had the same capacity. Using immunocytochemical approaches, we report the localization of Kv1.3 channel, glucose transporter type 4, and the insulin receptor in the lateral olfactory tract and Layers II and III of the aPCtx. In current-clamped superficial pyramidal (SP) cells, we report the presence of two populations of SP cells: glucose responsive and non-glucose responsive. Using varied glucose concentrations and a glycolysis inhibitor, we found that insulin modulation of the instantaneous and spike firing frequency are both glucose dependent and require glucose metabolism. Using a plethysmograph to record sniffing frequency, rats microinjected with insulin failed to discriminate ratiometric enantiomers; considered a difficult task. Microinjection of glucose prevented discrimination of odorants of different chain-lengths, whereas injection of margatoxin increased the rate of habituation to repeated odor stimulation and enhanced discrimination. These data suggest that metabolic signaling pathways that are present in the aPCtx are capable of neuronal modulation and changing complex olfactory behaviors in higher olfactory centers.
Collapse
Affiliation(s)
- Dolly Al Koborssy
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Brigitte Palouzier-Paulignan
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Vincent Canova
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Marc Thevenet
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Debra Ann Fadool
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Andrée Karyn Julliard
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France.
| |
Collapse
|
25
|
Dynamics of Defensive Response Mobilization to Approaching External Versus Interoceptive Threat. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:525-538. [DOI: 10.1016/j.bpsc.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022]
|
26
|
Effects of Selective Serotonin Reuptake Inhibitors on the Shock-Induced Ultrasonic Vocalization of Rats in Different Experimental Designs. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-809600-0.00029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Riede T. Peripheral Vocal Motor Dynamics and Combinatory Call Complexity of Ultrasonic Vocal Production in Rats. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Boulanger-Bertolus J, Rincón-Cortés M, Sullivan RM, Mouly AM. Understanding pup affective state through ethologically significant ultrasonic vocalization frequency. Sci Rep 2017; 7:13483. [PMID: 29044126 PMCID: PMC5647438 DOI: 10.1038/s41598-017-13518-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
Throughout life, rats emit ultrasonic vocalizations (USV) when confronted with an aversive situation. However, the conditions classically used to elicit USV vary greatly with the animal's age (isolation from the dam in infancy, versus nociceptive stimulation in adults). The present study is the first to characterize USV responses to the same aversive event throughout development. Specifically, infant, juvenile and adult rats were presented with mild foot-shocks and their USV frequency, duration, and relationship with respiration and behavior were compared. In juvenile and adult rats, a single class of USV is observed with an age-dependent main frequency and duration (30 kHz/400 ms in juveniles, 22 kHz/900 ms in adults). In contrast, infant rat USV were split into two classes with specific relationships with respiration and behavior: 40 kHz/300 ms and 66 kHz/21 ms. Next, we questioned if these infant USV were also emitted in a more naturalistic context by exposing pups to interactions with the mother treating them roughly. This treatment enhanced 40-kHz USV while leaving 66-kHz USV unchanged suggesting that the use of USV goes far beyond a signal studied in terms of amount of emission, and can inform us about some aspects of the infant's affective state.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France.
- University of Michigan, Ann Arbor, USA.
| | - Millie Rincón-Cortés
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| |
Collapse
|
29
|
Hernandez C, Sabin M, Riede T. Rats concatenate 22 kHz and 50 kHz calls into a single utterance. ACTA ACUST UNITED AC 2017; 220:814-821. [PMID: 28250176 DOI: 10.1242/jeb.151720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Traditionally, the ultrasonic vocal repertoire of rats is differentiated into 22 kHz and 50 kHz calls, two categories that contain multiple different call types. Although both categories have different functions, they are sometimes produced in the same behavioral context. Here, we investigated the peripheral mechanisms that generate sequences of calls from both categories. Male rats, either sexually experienced or naïve, were exposed to an estrous female. The majority of sexually naïve male rats produced 22 kHz and 50 kHz calls on their first encounter with a female. We recorded subglottal pressure and electromyographic activity of laryngeal muscles and found that male rats sometimes concatenate long 22 kHz calls and 50 kHz trill calls into an utterance produced during a single breath. The qualitatively different laryngeal motor patterns for both call types were produced serially during the same breathing cycle. The finding demonstrates flexibility in the laryngeal-respiratory coordination during ultrasonic vocal production, which has not been previously documented physiologically in non-human mammals. Since only naïve males produced the 22 kHz-trills, it is possible that the production is experience dependent.
Collapse
Affiliation(s)
- Christine Hernandez
- College of Veterinary Medicine, Midwestern University, 19555 N 59th Ave, Glendale, AZ 85308, USA
| | - Mark Sabin
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N 59th Ave, Glendale, AZ 85308, USA
| | - Tobias Riede
- College of Veterinary Medicine, Midwestern University, 19555 N 59th Ave, Glendale, AZ 85308, USA .,Arizona College of Osteopathic Medicine, Midwestern University, 19555 N 59th Ave, Glendale, AZ 85308, USA.,Department of Physiology, Midwestern University, 19555 N 59th Ave, Glendale, AZ 85308, USA
| |
Collapse
|
30
|
Boulanger Bertolus J, Mouly AM, Sullivan RM. Ecologically relevant neurobehavioral assessment of the development of threat learning. Learn Mem 2016; 23:556-66. [PMID: 27634146 PMCID: PMC5026204 DOI: 10.1101/lm.042218.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
Abstract
As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor-shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10-15 d old), pups have access to both networks: odor-shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat.
Collapse
Affiliation(s)
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York 10010, USA
| |
Collapse
|
31
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Similowski T, Sévoz-Couche C. Long-lasting bradypnea induced by repeated social defeat. Am J Physiol Regul Integr Comp Physiol 2016; 311:R352-64. [DOI: 10.1152/ajpregu.00021.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Repeated social defeat in the rat induces long-lasting cardiovascular changes associated with anxiety. In this study, we investigated the effects of repeated social defeat on breathing. Respiratory rate was extracted from the respiratory sinus arrhythmia (RSA) peak frequency of the ECG in rats subjected to social defeat for 4 consecutive days. Respiratory rate was recorded under anesthesia 6 days (D+10) or 26 days (D+30) after social defeat. At D+10, defeated (D) rats spent less time in the open arms of the elevated plus maze test, had heavier adrenal glands, and displayed bradypnea, unlike nondefeated animals. At D+30, all signs of anxiety had disappeared. However, one-half of the rats still displayed bradypnea (DL rats, for low respiratory rate indicated by a lower RSA frequency), whereas those with higher respiratory rate (DH rats) had recovered. Acute blockade of the dorsomedial hypothalamus (DMH) or nucleus tractus solitarii (NTS) 5-HT3 receptors reversed bradypnea in all D rats at D+10 and in DL rats at D+30. Respiratory rate was also recorded in conscious animals implanted with radiotelemetric ECG probes. DH rats recovered between D+10 and D+18, whereas DL rats remained bradypneic until D+30. In conclusion, social stress induces sustained chronic bradypnea mediated by DMH neurons and NTS 5-HT3 receptors. These changes are associated with an anxiety-like state that persists until D+10, followed by recovery. However, bradypnea may persist in one-half of the population up until D+30, despite apparent recovery of the anxiety-like state.
Collapse
Affiliation(s)
- Charly Brouillard
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, University Pierre and Marie Curie University Paris 06, Institut National de la Santé et de la Recherche Médicale, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Françoise Camus
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
| | - Jean-Jacques Bénoliel
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
| | - Thomas Similowski
- Sorbonne Universités, University Pierre and Marie Curie University Paris 06, Institut National de la Santé et de la Recherche Médicale, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Service de Pneumologie et Réanimation Médicale, Paris, France; and
| | - Caroline Sévoz-Couche
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, University Pierre and Marie Curie University Paris 06, Institut National de la Santé et de la Recherche Médicale, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
32
|
Rezaei B, Lowe J, Yee JR, Porges S, Ostadabbas S. Non-contact automatic respiration monitoring in restrained rodents. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:4946-4950. [PMID: 28269378 DOI: 10.1109/embc.2016.7591837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Prairie voles are socially monogamous rodents that form social bonds similar to those seen in primates. Social behavior investigation in these species, that include studying their breathing regulation, can provide us with an invaluable psychological model to understand social and emotional functions in both animals and humans. There have been several studies associated with the respiratory pattern of these species in the state of fear-induced defense. However, non-invasive measurement methods employed so far suffer from the lack of a natural experiment environment for the rodents. In this paper, we present a remote depth-based system, which applies a modified autocorrelation algorithm to automatically extract respiration patterns in small rodents. We evaluated our estimation accuracy through a series of experiments and comparing the extracted results with breathing rates obtained from visual inspection of synchronously collected RGB videos. In a preliminary test on a human participant, breathing rate was estimated with 100% accuracy, while the estimation accuracy was 94.8% for a restrained vole. Finally, we monitored the respiratory alternations of three voles in transition from a baseline, to a fearful state, and back to a normal state; the estimated breathing rates confirmed the existing hypothesis regarding animal defense strategies.
Collapse
|
33
|
Alves JA, Boerner BC, Laplagne DA. Flexible Coupling of Respiration and Vocalizations with Locomotion and Head Movements in the Freely Behaving Rat. Neural Plast 2016; 2016:4065073. [PMID: 27525126 PMCID: PMC4976156 DOI: 10.1155/2016/4065073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Quadrupedal mammals typically synchronize their respiration with body movements during rhythmic locomotion. In the rat, fast respiration is coupled to head movements during sniffing behavior, but whether respiration is entrained by stride dynamics is not known. We recorded intranasal pressure, head acceleration, instantaneous speed, and ultrasonic vocalizations from male and female adult rats while freely behaving in a social environment. We used high-speed video recordings of stride to understand how head acceleration signals relate to locomotion and developed techniques to identify episodes of sniffing, walking, trotting, and galloping from the recorded variables. Quantitative analysis of synchrony between respiration and head acceleration rhythms revealed that respiration and locomotion movements were coordinated but with a weaker coupling than expected from previous work in other mammals. We have recently shown that rats behaving in social settings produce high rates of ultrasonic vocalizations during locomotion bouts. Accordingly, rats emitted vocalizations in over half of the respiratory cycles during fast displacements. We present evidence suggesting that emission of these calls disrupts the entrainment of respiration by stride. The coupling between these two variables is thus flexible, such that it can be overridden by other behavioral demands.
Collapse
Affiliation(s)
- Joseph Andrews Alves
- Brain Institute, Federal University of Rio Grande do Norte, Avenida Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil
| | - Barbara Ciralli Boerner
- Brain Institute, Federal University of Rio Grande do Norte, Avenida Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil
| | - Diego Andrés Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Avenida Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil
| |
Collapse
|
34
|
Significance of sniffing pattern during the acquisition of an olfactory discrimination task. Behav Brain Res 2016; 312:341-54. [PMID: 27343936 DOI: 10.1016/j.bbr.2016.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022]
Abstract
Active sampling of olfactory environment consists of sniffing in rodents. The importance of sniffing dynamics is well established at the neuronal and behavioral levels. Patterns of sniffing have been shown to be modulated by the physicochemical properties of odorants, particularly concentration and sorption. Sniffing is also heavily impacted by higher processing related to the behavioral context, emotion and attentional demand. However, how the pattern of sniffing evolves over the course of learning of an experimental olfactory conditioning is still poorly understood. We tested this question by monitoring sniffing activity, using a whole-body plethysmograph, on rats performing a two-alternative choice odor discrimination task. We followed sniff variations at different learning stages (naïve, well-trained, expert). We found that during the acquisition of an odor discrimination task, rats acquired a global sniffing pattern, independent of the odor pair used. This pattern consists of a longer sampling duration, a higher sniffing frequency, and a larger amplitude. In parallel, subtle differences of sniffing between the two odors of a pair were also observed. This sniffing behavior was not only associated with a better and faster acquisition of the discrimination task but was also transferred to other odor sets and refined after a long-term pause so as to reduce the sampling duration and maintain a specific sniffing frequency. Our results provide additional arguments that sniffing is a complex sensorimotor act that is strongly affected by olfactory learning.
Collapse
|
35
|
Macchione AF, Anunziata F, Culleré ME, Haymal BO, Spear N, Abate P, Molina JC. Conditioned breathing depression during neonatal life as a function of associating ethanol odor and the drug's intoxicating effects. Dev Psychobiol 2016; 58:670-86. [DOI: 10.1002/dev.21398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Affiliation(s)
- A. F. Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
- Facultad de Odontología; Universidad Nacional de Córdoba; Córdoba Argentina
| | - F. Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
| | - M. E. Culleré
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
| | - B. O. Haymal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
| | - N. Spear
- Center for Development and Behavioral Neuroscience; Binghamton University; Binghamton NY
| | - P. Abate
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba Argentina
| | - J. C. Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
- Center for Development and Behavioral Neuroscience; Binghamton University; Binghamton NY
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
36
|
Minimally invasive highly precise monitoring of respiratory rhythm in the mouse using an epithelial temperature probe. J Neurosci Methods 2016; 263:89-94. [PMID: 26868731 DOI: 10.1016/j.jneumeth.2016.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Respiration is one of the essential rhythms of life. The precise measurement of respiratory behavior is of great importance in studies addressing olfactory sensory processing or the coordination of orofacial movements with respiration. An ideal method of measurement should reliably capture the distinct phases of respiration without interfering with behavior. NEW METHOD This new method involves chronic implantation of a thermistor probe in a previously undescribed hollow space located above the anterior portion of the nasal cavity without penetrating any soft epithelial tissues. RESULTS We demonstrate the reliability and precision of the method in head-fixed and freely moving mice by directly comparing recorded signals with simultaneous measurements of chest movements and plethysmographic measurements of respiration. COMPARISON WITH EXISTING METHODS Current methods have drawbacks in that they are either inaccurate or require invasive placement of temperature or pressure sensors into the sensitive nasal cavity, where they interfere with airflow and cause irritation and damage to the nasal epithelium. Furthermore, surgical placement within the posterior nasal cavity adjacent to the nasal epithelium requires extensive recovery time, which is not necessary with the described method. CONCLUSIONS Here, we describe a new method for recording the rhythm of respiration in awake mice with high precision, without damaging or irritating the nasal epithelium. This method will be effective for measurement of respiration during experiments requiring free movement, as well as those involving imaging or electrophysiology.
Collapse
|
37
|
Ågmo A, Snoeren EMS. Silent or Vocalizing Rats Copulate in a Similar Manner. PLoS One 2015; 10:e0144164. [PMID: 26633013 PMCID: PMC4669094 DOI: 10.1371/journal.pone.0144164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022] Open
Abstract
Both male and female rats produce 50 kHz ultrasonic vocalizations (USVs) in the presence of a sexual partner and during copulation. Previous studies showed that USVs have no incentive value for rats. In this study, we evaluated the role of USVs in behavior during copulation. Three groups of rats were used: sham males paired with sham females, devocalized females paired with sham males, and sham females paired with devocalized males. During the copulation test, the USVs emitted by the sham rat were recorded and the sexual behavior of both the male and the female were observed. The results revealed that devocalized and sham females showed similar patterns of sexual behavior and no difference was found in the copulatory behavior of devocalized and sham males. Also the behavior of the partner of a sham rat was comparable to the partner of a devocalized rat. In addition, almost no changes in USVs emission were found in the 5 seconds before and/or after a copulatory behavior. It can be concluded that USVs play no important role in rat copulatory behavior at least in sexually naïve rats.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Troms, Norway
| | | |
Collapse
|
38
|
Abstract
Vocal production, which requires the generation and integration of laryngeal and respiratory motor patterns, can be impaired in dystonia, a disorder believed due to dysfunction of sensorimotor pathways in the central nervous system. Herein, we analyze vocal and respiratory abnormalities in the dystonic (dt) rat, a well-characterized model of generalized dystonia. The dt rat is a recessive mutant with haploinsufficiency of Atcay which encodes the neuronally restricted protein caytaxin. Olivocerebellar functional abnormalities are central to the dt rat's truncal and appendicular dystonia and could also contribute to vocal and respiratory abnormalities in this model system. Differences in vocal repertoire composition were found between homozygote and wild-type dt rat pups developing after 3 weeks of life. Those spectro-temporal differences were not paralleled by differences in vocal activity or maximum lung pressures during quiet breathing and vocalization. However, breathing rhythm was slower in homozygote pups. This slower breathing rhythm persisted into adulthood. Given that cerebellectomy eliminates truncal and appendicular dystonia in the dt rat, we hypothesize that the altered breathing patterns stem either from a disturbance in the maturation of respiratory pattern generators or from deficient extracerebellar caytaxin expression affecting normal respiratory pattern generation. The altered breathing rhythm associated with vocal changes in the murine model resembles aspects of vocal dysfunction that are seen in humans with sporadic dystonia.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, Midwestern University, Glendale, Arizona
| | - Yu Zhao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mark S LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
39
|
Sirotin YB, Costa ME, Laplagne DA. Rodent ultrasonic vocalizations are bound to active sniffing behavior. Front Behav Neurosci 2014; 8:399. [PMID: 25477796 PMCID: PMC4235378 DOI: 10.3389/fnbeh.2014.00399] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/30/2014] [Indexed: 11/13/2022] Open
Abstract
During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5-10 Hz). During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, "50 kHz") were emitted within stretches of active sniffing (5-10 Hz) and were largely absent during periods of passive breathing (1-4 Hz). Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations.
Collapse
Affiliation(s)
- Yevgeniy B Sirotin
- Shelby White and Leon Levy Center for Brain, Mind and Behavior, The Rockefeller University, New York NY, USA
| | - Martín Elias Costa
- Integrative Neuroscience Lab, Department of Physics, University of Buenos Aires Buenos Aires, Argentina
| | - Diego A Laplagne
- Shelby White and Leon Levy Center for Brain, Mind and Behavior, The Rockefeller University, New York NY, USA ; Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
40
|
Hegoburu C, Parrot S, Ferreira G, Mouly AM. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory. ACTA ACUST UNITED AC 2014; 21:651-5. [PMID: 25403452 PMCID: PMC4236412 DOI: 10.1101/lm.036558.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation.
Collapse
Affiliation(s)
- Chloé Hegoburu
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, University Lyon1, Lyon, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, University Lyon1, Lyon, France
| | - Guillaume Ferreira
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France Université de Bordeaux, Nutrition et Neurobiologie Intégrée, Bordeaux, France
| | - Anne-Marie Mouly
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, University Lyon1, Lyon, France
| |
Collapse
|
41
|
Bondarenko E, Hodgson DM, Nalivaiko E. Prelimbic prefrontal cortex mediates respiratory responses to mild and potent prolonged, but not brief, stressors. Respir Physiol Neurobiol 2014; 204:21-7. [PMID: 25090960 DOI: 10.1016/j.resp.2014.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/12/2014] [Accepted: 07/12/2014] [Indexed: 11/17/2022]
Abstract
The prefrontal cortex is one of the key areas of the central mechanism of cardiovascular and respiratory control. Disinhibition of the prelimbic medial prefrontal cortex elicits tachypnoeic responses in anesthetized rats (Hassan et al., J. Physiol. 591: 6069-6088, 2013). The current study examines the effects of inhibition of the prelimbic prefrontal cortex during presentation of stressors of various lengths and intensities in conscious unrestrained rats. 8 Wistar rats were implanted with bilateral guide cannulas targeting the prelimbic prefrontal cortex and received microinjections of either saline of GABAA agonist muscimol prior to recording sessions. Inhibition of the prelimbic prefrontal cortex significantly attenuated respiratory responses to a novel environment stress, 30s light stimulus and restraint stress. It did not affect respiratory responses to 500 ms acoustic stimuli of varying intensities (40-90 dB). We conclude that the prelimbic prefrontal cortex contributes to generation of tachypnoeic responses to prolonged stressors, but does not contribute to respiratory arousal in response to brief stressors.
Collapse
Affiliation(s)
- E Bondarenko
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - D M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - E Nalivaiko
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
42
|
Carnevali L, Nalivaiko E, Sgoifo A. Respiratory patterns reflect different levels of aggressiveness and emotionality in Wild-type Groningen rats. Respir Physiol Neurobiol 2014; 204:28-35. [PMID: 25016179 DOI: 10.1016/j.resp.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/12/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022]
Abstract
Respiratory patterns represent a promising physiological index for assessing emotional states in preclinical studies. Since disturbed emotional regulation may lead to forms of excessive aggressiveness, in this study we investigated the hypothesis that rats that differ largely in their level of aggressive behavior display matching alterations in respiration. Respiration was recorded in male high-aggressive (HA, n = 8) and non-aggressive (NA, n = 8) Wild-type Groningen rats using whole-body plethysmography. Subsequently, anxiety-related behaviors were evaluated in the elevated plus maze and social avoidance-approach tests. During respiratory testing, HA rats showed elevated basal respiratory rate, reduced sniffing, exaggerated tachypnoeic response to an acoustic stimulus and a larger incidence of sighs. In addition, HA rats spent less time in the open arms of the plus maze and displayed higher levels of social avoidance behavior compared to NA rats. These findings indicate that HA rats are characterized by alterations in respiratory functioning and behavior that are overall indicative of an anxiety-like phenotype.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Laboratory, Department of Neuroscience, University of Parma, 43124 Parma, Italy
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, 2308 Callaghan, New South Wales, Australia
| | - Andrea Sgoifo
- Stress Physiology Laboratory, Department of Neuroscience, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
43
|
Boulanger Bertolus J, Hegoburu C, Ahers JL, Londen E, Rousselot J, Szyba K, Thévenet M, Sullivan-Wilson TA, Doyère V, Sullivan RM, Mouly AM. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning. Front Behav Neurosci 2014; 8:176. [PMID: 24860457 PMCID: PMC4030151 DOI: 10.3389/fnbeh.2014.00176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/25/2014] [Indexed: 11/24/2022] Open
Abstract
Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal (PN) week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days PN during odor fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.
Collapse
Affiliation(s)
| | - Chloe Hegoburu
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| | - Jessica L. Ahers
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Elizabeth Londen
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Juliette Rousselot
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| | - Karina Szyba
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Marc Thévenet
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| | - Tristan A. Sullivan-Wilson
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Valérie Doyère
- Centre de Neurosciences Paris-Sud, CNRS UMR 8195, University Paris-SudOrsay, France
| | - Regina M. Sullivan
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| |
Collapse
|
44
|
Courtiol E, Lefèvre L, Garcia S, Thévenet M, Messaoudi B, Buonviso N. Sniff adjustment in an odor discrimination task in the rat: analytical or synthetic strategy? Front Behav Neurosci 2014; 8:145. [PMID: 24834032 PMCID: PMC4017146 DOI: 10.3389/fnbeh.2014.00145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/10/2014] [Indexed: 12/04/2022] Open
Abstract
A growing body of evidence suggests that sniffing is not only the mode of delivery for odorant molecules but also contributes to olfactory perception. However, the precise role of sniffing variations remains unknown. The zonation hypothesis suggests that animals use sniffing variations to optimize the deposition of odorant molecules on the most receptive areas of the olfactory epithelium (OE). Sniffing would thus depend on the physicochemical properties of odorants, particularly their sorption. Rojas-Líbano and Kay (2012) tested this hypothesis and showed that rats used different sniff strategies when they had to target a high-sorption (HS) molecule or a low-sorption (LS) molecule in a binary mixture. Which sniffing strategy is used by rats when they are confronted to discrimination between two similarly sorbent odorants remains unanswered. Particularly, is sniffing adjusted independently for each odorant according to its sorption properties (analytical processing), or is sniffing adjusted based on the pairing context (synthetic processing)? We tested these hypotheses on rats performing a two-alternative choice discrimination of odorants with similar sorption properties. We recorded sniffing in a non-invasive manner using whole-body plethysmography during the behavioral task. We found that sniffing variations were not only a matter of odorant sorption properties and that the same odorant was sniffed differently depending on the odor pair in which it was presented. These results suggest that rather than being adjusted analytically, sniffing is instead adjusted synthetically and depends on the pair of odorants presented during the discrimination task. Our results show that sniffing is a specific sensorimotor act that depends on complex synthetic processes.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Centre de Recherche en Neurosciences de Lyon, Equipe Olfaction: du codage à la mémoire, CNRS UMR 5292-INSERM U1028-Université Lyon1 Lyon, France
| | - Laura Lefèvre
- Centre de Recherche en Neurosciences de Lyon, Equipe Olfaction: du codage à la mémoire, CNRS UMR 5292-INSERM U1028-Université Lyon1 Lyon, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon, Equipe Olfaction: du codage à la mémoire, CNRS UMR 5292-INSERM U1028-Université Lyon1 Lyon, France
| | - Marc Thévenet
- Centre de Recherche en Neurosciences de Lyon, Equipe Olfaction: du codage à la mémoire, CNRS UMR 5292-INSERM U1028-Université Lyon1 Lyon, France
| | - Belkacem Messaoudi
- Centre de Recherche en Neurosciences de Lyon, Equipe Olfaction: du codage à la mémoire, CNRS UMR 5292-INSERM U1028-Université Lyon1 Lyon, France
| | - Nathalie Buonviso
- Centre de Recherche en Neurosciences de Lyon, Equipe Olfaction: du codage à la mémoire, CNRS UMR 5292-INSERM U1028-Université Lyon1 Lyon, France
| |
Collapse
|
45
|
Shionoya K, Hegoburu C, Brown BL, Sullivan RM, Doyère V, Mouly AM. It's time to fear! Interval timing in odor fear conditioning in rats. Front Behav Neurosci 2013; 7:128. [PMID: 24098277 PMCID: PMC3784976 DOI: 10.3389/fnbeh.2013.00128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/09/2013] [Indexed: 12/02/2022] Open
Abstract
Time perception is crucial to goal attainment in humans and other animals, and interval timing also guides fundamental animal behaviors. Accumulating evidence has made it clear that in associative learning, temporal relations between events are encoded, and a few studies suggest this temporal learning occurs very rapidly. Most of these studies, however, have used methodologies that do not permit investigating the emergence of this temporal learning. In the present study we monitored respiration, ultrasonic vocalization (USV) and freezing behavior in rats in order to perform fine-grain analysis of fear responses during odor fear conditioning. In this paradigm an initially neutral odor (the conditioned stimulus, CS) predicted the arrival of an aversive unconditioned stimulus (US, footshock) at a fixed 20-s time interval. We first investigated the development of a temporal pattern of responding related to CS-US interval duration. The data showed that during acquisition with odor-shock pairings, a temporal response pattern of respiration rate was observed. Changing the CS-US interval duration from 20-s to 30-s resulted in a shift of the temporal response pattern appropriate to the new duration thus demonstrating that the pattern reflected the learning of the CS-US interval. A temporal pattern was also observed during a retention test 24 h later for both respiration and freezing measures, suggesting that the animals had stored the interval duration in long-term memory. We then investigated the role of intra-amygdalar dopaminergic transmission in interval timing. For this purpose, the D1 dopaminergic receptors antagonist SCH23390 was infused in the basolateral amygdala before conditioning. This resulted in an alteration of timing behavior, as reflected in differential temporal patterns between groups observed in a 24 h retention test off drug. The present data suggest that D1 receptor dopaminergic transmission within the amygdala is involved in temporal processing.
Collapse
Affiliation(s)
- Kiseko Shionoya
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, University Lyon1 Lyon, France
| | | | | | | | | | | |
Collapse
|
46
|
Carnevali L, Sgoifo A, Trombini M, Landgraf R, Neumann ID, Nalivaiko E. Different patterns of respiration in rat lines selectively bred for high or low anxiety. PLoS One 2013; 8:e64519. [PMID: 23691240 PMCID: PMC3656864 DOI: 10.1371/journal.pone.0064519] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022] Open
Abstract
In humans, there is unequivocal evidence of an association between anxiety states and altered respiratory function. Despite this, the link between anxiety and respiration has been poorly evaluated in experimental animals. The primary objective of the present study was to investigate the hypothesis that genetic lines of rats that differ largely in their anxiety level would display matching alterations in respiration. To reach this goal, respiration was recorded in high-anxiety behavior (HAB, n = 10) and low-anxiety behavior (LAB, n = 10) male rats using whole-body plethysmography. In resting state, respiratory rate was higher in HABs (85 ± 2 cycles per minute, cpm) than LABs (67 ± 2 cpm, p<0.05). During initial testing into the plethysmograph and during a restraint test, HAB rats spent less time at high-frequency sniffing compared to LAB rats. In addition, HAB rats did not habituate in terms of respiratory response to repetitive acoustic stressful stimuli. Finally, HAB rats exhibited a larger incidence of sighs during free exploration of the plethysmograph and under stress conditions. We conclude that: i) HAB rats showed respiratory changes (elevated resting respiratory rate, reduced sniffing in novel environment, increased incidence of sighs, and no habituation of the respiratory response to repetitive stimuli) that resemble those observed in anxious and panic patients, and ii) respiratory patterns may represent a promising way for assessing anxiety states in preclinical studies.
Collapse
Affiliation(s)
- Luca Carnevali
- Department of Neuroscience, University of Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Testing the sorption hypothesis in olfaction: a limited role for sniff strength in shaping primary odor representations during behavior. J Neurosci 2013; 33:79-92. [PMID: 23283324 DOI: 10.1523/jneurosci.4101-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The acquisition of sensory information during behavior shapes the neural representation, central processing, and perception of external stimuli. In mammals, a sniff represents the basic unit of odor sampling, yet how sniffing shapes odor representations remains poorly understood. Perhaps the earliest hypothesis of the role of sniffing in olfaction arises from the fact that odorants with different physicochemical properties exhibit different patterns of deposition across the olfactory epithelium, and that these patterns are differentially affected by flow rate. However, whether sniff flow rates shape odor representations during natural sniffing remains untested, and whether animals make use of odorant sorption-airflow relationships as part of an active odor-sampling strategy remains unclear. We tested these ideas in the intact rat using a threefold approach. First, we asked whether sniff strength shapes odor representations in vivo by imaging from olfactory receptor neuron (ORN) terminals during controlled changes in inhalation flow in the anesthetized rat. Second, we asked whether sniff strength shapes odor representations by imaging from ORNs during natural sniffing in the awake rat. Third, we asked whether rats actively modulate sniff strength during an odor discrimination task. We found that, while artificial changes in flow rate can alter ORN responses, sniff strength has negligible effect on odor representations during natural sniffing, and behaving rats do not modulate flow rate to improve odor discrimination. These data suggest that modulating sniff strength does not shape odor representations sufficiently to be part of a strategy for active odor sensing in the behaving animal.
Collapse
|
48
|
Aimé P, Hegoburu C, Jaillard T, Degletagne C, Garcia S, Messaoudi B, Thevenet M, Lorsignol A, Duchamp C, Mouly AM, Julliard AK. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS One 2012; 7:e51227. [PMID: 23251461 PMCID: PMC3522659 DOI: 10.1371/journal.pone.0051227] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.
Collapse
Affiliation(s)
- Pascaline Aimé
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Chloé Hegoburu
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Tristan Jaillard
- Métabolisme Plasticité Mitochondrie, CNRS UMR 5241 - Université Paul Sabatier, Toulouse, France
- STROMALab, CNRS UMR 5273 - EFS - INSERM U1031- Université Paul Sabatier, Toulouse, France
| | - Cyril Degletagne
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), CNRS UMR 5023 - Université Lyon 1 – Université de Lyon, Villeurbanne, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Belkacem Messaoudi
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Marc Thevenet
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Anne Lorsignol
- Métabolisme Plasticité Mitochondrie, CNRS UMR 5241 - Université Paul Sabatier, Toulouse, France
- STROMALab, CNRS UMR 5273 - EFS - INSERM U1031- Université Paul Sabatier, Toulouse, France
| | - Claude Duchamp
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), CNRS UMR 5023 - Université Lyon 1 – Université de Lyon, Villeurbanne, France
| | - Anne-Marie Mouly
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Andrée Karyn Julliard
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
49
|
Esclassan F, Courtiol E, Thévenet M, Garcia S, Buonviso N, Litaudon P. Faster, deeper, better: the impact of sniffing modulation on bulbar olfactory processing. PLoS One 2012; 7:e40927. [PMID: 22815871 PMCID: PMC3398873 DOI: 10.1371/journal.pone.0040927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022] Open
Abstract
A key feature of mammalian olfactory perception is that sensory input is intimately related to respiration. Different authors have considered respiratory dynamics not only as a simple vector for odor molecules but also as an integral part of olfactory perception. Thus, rats adapt their sniffing strategy, both in frequency and flow rate, when performing odor-related tasks. The question of how frequency and flow rate jointly impact the spatio-temporal representation of odor in the olfactory bulb (OB) has not yet been answered. In the present paper, we addressed this question using a simulated nasal airflow protocol on anesthetized rats combined with voltage-sensitive dye imaging (VSDi) of odor-evoked OB glomerular maps. Glomerular responses displayed a tonic component during odor stimulation with a superimposed phasic component phase-locked to the sampling pattern. We showed that a high sniffing frequency (10 Hz) retained the ability to shape OB activity and that the tonic and phasic components of the VSDi responses were dependent on flow rate and inspiration volume, respectively. Both sniffing parameters jointly affected OB responses to odor such that the reduced activity level induced by a frequency increase was compensated by an increased flow rate.
Collapse
Affiliation(s)
- Frédéric Esclassan
- Centre de Recherche en Neurosciences de Lyon (CRNL) Equipe Olfaction : du codage à la mémoire, CNRS UMR 5292 - INSERM U1028 - Université Lyon 1 – Université de Lyon, Lyon, France
| | - Emmanuelle Courtiol
- Centre de Recherche en Neurosciences de Lyon (CRNL) Equipe Olfaction : du codage à la mémoire, CNRS UMR 5292 - INSERM U1028 - Université Lyon 1 – Université de Lyon, Lyon, France
| | - Marc Thévenet
- Centre de Recherche en Neurosciences de Lyon (CRNL) Equipe Olfaction : du codage à la mémoire, CNRS UMR 5292 - INSERM U1028 - Université Lyon 1 – Université de Lyon, Lyon, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon (CRNL) Equipe Olfaction : du codage à la mémoire, CNRS UMR 5292 - INSERM U1028 - Université Lyon 1 – Université de Lyon, Lyon, France
| | - Nathalie Buonviso
- Centre de Recherche en Neurosciences de Lyon (CRNL) Equipe Olfaction : du codage à la mémoire, CNRS UMR 5292 - INSERM U1028 - Université Lyon 1 – Université de Lyon, Lyon, France
| | - Philippe Litaudon
- Centre de Recherche en Neurosciences de Lyon (CRNL) Equipe Olfaction : du codage à la mémoire, CNRS UMR 5292 - INSERM U1028 - Université Lyon 1 – Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
50
|
Schwarting RKW, Wöhr M. On the relationships between ultrasonic calling and anxiety-related behavior in rats. Braz J Med Biol Res 2012; 45:337-48. [PMID: 22437483 PMCID: PMC3854164 DOI: 10.1590/s0100-879x2012007500038] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/08/2012] [Indexed: 11/22/2022] Open
Abstract
In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.
Collapse
Affiliation(s)
- R K W Schwarting
- Experimental and Physiological Psychology, Philipps-University of Marburg, Germany.
| | | |
Collapse
|