1
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. High fat diet consumption and social instability stress impair stress adaptation and maternal care in C57Bl/6 dams. Psychoneuroendocrinology 2024; 169:107168. [PMID: 39146876 DOI: 10.1016/j.psyneuen.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Poor maternal diet and psychosocial stress represent two environmental factors that can significantly impact maternal health during pregnancy. While various mouse models have been developed to study the relationship between maternal and offspring health and behaviour, few incorporate multiple sources of stress that mirror the complexity of human experiences. Maternal high-fat diet (HF) models in rodents are well-established, whereas use of psychosocial stress interventions in female mice are still emerging. The social instability stress (SIS) paradigm, serves as a chronic and unpredictable form of social stress. To evaluate the combined effects of a poor maternal diet and intermittent social stress on maternal health and behaviour, we developed a novel maternal stress model using adult female C57Bl/6 mice. We observed that all HF+ mice demonstrated rapid weight gain, elevated fasting blood glucose levels and impaired glucose tolerance independent of the presence (+) or absence (-) of SIS. Behavioural testing output revealed anxiety-like behaviours remained similar across all groups prior to pregnancy. However, integrated anxiety z-scores revealed a mixed anxious profile amongst HF+/SIS+ females prior to pregnancy. HF+/SIS+ females also did not show reduced plasma ACTH and corticosterone levels that were observed in our other HF+ and HF- stress groups after SIS exposure. Further, HF+/SIS+ females demonstrated significant postpartum maternal neglect, resulting in fewer numbers of live offspring. These findings suggest that prolonged maternal HF diet consumption, coupled with previous exposure to SIS, places a significant burden on the maternal stress response system, resulting in reduced parental investment and negative postpartum behaviour towards offspring.
Collapse
Affiliation(s)
- Morgan C Bucknor
- School of Life and Environmental Sciences, Faculty of Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Anand Gururajan
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia.
| | - Russell C Dale
- The Children's Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Markus J Hofer
- School of Life and Environmental Sciences, Faculty of Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
da C. Pinaffi-Langley AC, Melia E, Hays FA. Exploring the Gut-Mitochondrial Axis: p66Shc Adapter Protein and Its Implications for Metabolic Disorders. Int J Mol Sci 2024; 25:3656. [PMID: 38612468 PMCID: PMC11011581 DOI: 10.3390/ijms25073656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites' impacts on host cellular pathways. The results underscore a complex interplay between microbial metabolites, p66Shc activation, and mitochondrial dysfunction, highlighting the significance of the gut microbiome in influencing disease outcomes through oxidative stress pathways. Conclusively, the review posits that targeting the gut microbiota-p66Shc-mitochondrial axis could offer novel therapeutic strategies for mitigating the development and progression of metabolic diseases. This underscores the potential of dietary interventions and microbiota modulation in managing oxidative stress and inflammation, pivotal factors in chronic disease etiology.
Collapse
Affiliation(s)
- Ana Clara da C. Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA; (A.C.d.C.P.-L.); (E.M.)
| | - Elizabeth Melia
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA; (A.C.d.C.P.-L.); (E.M.)
| | - Franklin A. Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA; (A.C.d.C.P.-L.); (E.M.)
- Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| |
Collapse
|
3
|
Musillo C, Creutzberg KC, Collacchi B, Ajmone-Cat MA, De Simone R, Lepre M, Amrein I, Riva MA, Berry A, Cirulli F. Bdnf-Nrf-2 crosstalk and emotional behavior are disrupted in a sex-dependent fashion in adolescent mice exposed to maternal stress or maternal obesity. Transl Psychiatry 2023; 13:399. [PMID: 38105264 PMCID: PMC10725882 DOI: 10.1038/s41398-023-02701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Maternal obesity has been recognized as a stressor affecting the developing fetal brain, leading to long-term negative outcomes comparable to those resulting from maternal psychological stress, although the mechanisms have not been completely elucidated. In this study, we tested the hypothesis that adverse prenatal conditions as diverse as maternal stress and maternal obesity might affect emotional regulation and stress response in the offspring through common pathways, with a main focus on oxidative stress and neuroplasticity. We contrasted and compared adolescent male and female offspring in two mouse models of maternal psychophysical stress (restraint during pregnancy - PNS) and maternal obesity (high-fat diet before and during gestation - mHFD) by combining behavioral assays, evaluation of the hypothalamic-pituitary-adrenal (HPA) axis reactivity, immunohistochemistry and gene expression analysis of selected markers of neuronal function and neuroinflammation in the hippocampus, a key region involved in stress appraisal. Prenatal administration of the antioxidant N-acetyl-cysteine (NAC) was used as a strategy to protect fetal neurodevelopment from the negative effects of PNS and mHFD. Our findings show that these two stressors produce overlapping effects, reducing brain anti-oxidant defenses (Nrf-2) and leading to sex-dependent impairments of hippocampal Bdnf expression and alterations of the emotional behavior and HPA axis functionality. Prenatal NAC administration, by restoring the redox balance, was able to exert long-term protective effects on brain development, suggesting that the modulation of redox pathways might be an effective strategy to target common shared mechanisms between different adverse prenatal conditions.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Ph.D. Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
| | - Kerstin C Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Marcello Lepre
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zurich, Switzerland
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
4
|
Karbaschi R, Zardooz H. Pancreatic GLUT2 protein expression and isolated islets insulin secretion decreased in high-fat fed rat dams. J Diabetes Metab Disord 2023; 22:1511-1518. [PMID: 37975089 PMCID: PMC10638334 DOI: 10.1007/s40200-023-01274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/30/2023] [Indexed: 11/19/2023]
Abstract
Purpose Chronic consumption of high-fat foods during the reproductive period may endanger the dams' metabolic homeostasis and might adversely affect pregnancy outcome. In this regard the present study aimed to investigate the effect of long-term high-fat feeding on pancreatic glucose transporter-2 (GLUT2) protein expression and isolated islets glucose-stimulated insulin secretion in Wistar rat dams. Materials and methods Female rats were randomly divided into normal (N) and high-fat (HF; containing cow butter) diet groups and consumed their respective diets for 10 weeks (from prepregnancy to the end of lactation). After lactation, fasting plasma concentrations of glucose and insulin were measured to calculate HOMA-IR index, then intraperitoneal glucose tolerance test (IPGTT) was performed. Moreover, the pancreatic GLUT2 protein expression and insulin secretion from isolated islets at basal (5.6 mM) and stimulated (16.7 mM) glucose concentrations were assessed. Results In HF group compared to N group, the plasma insulin level increased, whereas the plasma glucose level did not change in fasting state. Accordingly, the HOMA-IR index increased in HF fed animals. Furthermore, the IPGTT revealed glucose intolerance based on the plasma glucose and insulin results. Also, the pancreatic GLUT2 expression and isolated islets insulin secretion, in response to high glucose concentration, were decreased. Conclusion The chronic consumption of high-fat foods during prepregnancy, pregnancy, and lactation periods can lead to glucose intolerance, insulin resistance, and inhibition of pancreatic GLUT2 expression, which impairs glucose homeostasis. Therefore, it is crucial to carefully monitor the diet composition of dams during this critical period. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01274-6.
Collapse
Affiliation(s)
- Roxana Karbaschi
- Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gallardo Paffetti M, Cárcamo JG, Azócar-Aedo L, Parra A. Effect of a Diet-Induced Obesity on the Progeny Response in a Murine Model. Nutrients 2023; 15:4970. [PMID: 38068828 PMCID: PMC10708177 DOI: 10.3390/nu15234970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Diet-induced obesity could have detrimental effects on adults and their progeny. The aim of this study was to determine the effect of a high-energy diet on both F1 mice body weight and tissue/organ weight and F2 offspring growth. A simple murine model for obesity was developed using a high-energy diet and mice reared in litters of five or ten, from 30 dams receiving a cafeteria diet of either commercial chow (low energy), or a mixture of commercial chow, chocolate (50% cacao), and salty peanuts (high energy). This diet continued from mating until weaning, when the pups were allocated according to sex into eight groups based on maternal diet, litter size, and post-weaning diet. On day 74, the males were slaughtered, and the females were bred then slaughtered after lactation. As a result, the high-energy maternal diet increased the F1 offspring growth during lactation, while the high-energy post-weaning diet increased the F1 adult body weight and tissue/organ weight. The high-energy maternal diet could negatively affect the onset of the F1 but not the maintenance of breastfeeding of F1 and F2 offspring. For F2 offspring growth, the high energy overlapped the low-energy post-weaning diet, due to problems of gaining weight during lactation.
Collapse
Affiliation(s)
- Maria Gallardo Paffetti
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile
| | - Juan G. Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Lucía Azócar-Aedo
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt 5480000, Chile;
| | - Angel Parra
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| |
Collapse
|
6
|
Musillo C, Giona L, Ristow M, Zarse K, Siems K, Di Francesco A, Collacchi B, Raggi C, Cirulli F, Berry A. Rosmarinic Acid Improves Cognitive Abilities and Glucose Metabolism in Aged C57Bl/6N Mice While Disrupting Lipid Profile in Young Adults in a Sex-Dependent Fashion. Nutrients 2023; 15:3366. [PMID: 37571303 PMCID: PMC10421458 DOI: 10.3390/nu15153366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A growing body of evidence suggests that regular consumption of natural products might promote healthy aging; however, their mechanisms of action are still unclear. Rosmarinic acid (RA) is a polyphenol holding anti-inflammatory, antioxidant and neuroprotective properties. The aim of this study was to characterise the efficacy of an oral administration of RA in promoting healthspan in a mouse model of physiological aging. Aged C57Bl/6 male and female (24-month-old) mice were either administered with RA (500 mg/Kg) or a vehicle in drinking bottles for 52 days while 3-month-old mice receiving the same treatment were used as controls. All subjects were assessed for cognitive abilities in the Morris water maze (MWM) and for emotionality in the elevated-plus maze test (EPM). Brain-derived Neurotrophic Factor (BDNF) protein levels were evaluated in the hippocampus. Since the interaction between metabolic signals and cerebral functions plays a pivotal role in the etiopathogenesis of cognitive decline, the glycaemic and lipid profiles of the mice were also assessed. RA enhanced learning and memory in 24-month-old mice, an effect that was associated to improved glucose homeostasis. By contrast, the lipid profile was disrupted in young adults. This effect was associated with worse glycaemic control in males and with reduced BDNF levels in females, suggesting powerful sex-dependent effects and raising a note of caution for RA administration in young healthy adult subjects.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.M.); (L.G.); (A.D.F.); (B.C.)
| | - Letizia Giona
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.M.); (L.G.); (A.D.F.); (B.C.)
| | - Michael Ristow
- Institute of Experimental Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (M.R.); (K.Z.)
| | - Kim Zarse
- Institute of Experimental Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (M.R.); (K.Z.)
| | | | - Alessia Di Francesco
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.M.); (L.G.); (A.D.F.); (B.C.)
| | - Barbara Collacchi
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.M.); (L.G.); (A.D.F.); (B.C.)
| | - Carla Raggi
- National Center for the Control and Evaluation of Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Francesca Cirulli
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.M.); (L.G.); (A.D.F.); (B.C.)
| | - Alessandra Berry
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.M.); (L.G.); (A.D.F.); (B.C.)
| |
Collapse
|
7
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Gawlińska K, Gawliński D, Kowal-Wiśniewska E, Jarmuż-Szymczak M, Filip M. Alteration of the Early Development Environment by Maternal Diet and the Occurrence of Autistic-like Phenotypes in Rat Offspring. Int J Mol Sci 2021; 22:ijms22189662. [PMID: 34575826 PMCID: PMC8472469 DOI: 10.3390/ijms22189662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and preclinical studies suggest that maternal obesity increases the risk of autism spectrum disorder (ASD) in offspring. Here, we assessed the effects of exposure to modified maternal diets limited to pregnancy and lactation on brain development and behavior in rat offspring of both sexes. Among the studied diets, a maternal high-fat diet (HFD) disturbed the expression of ASD-related genes (Cacna1d, Nlgn3, and Shank1) and proteins (SHANK1 and TAOK2) in the prefrontal cortex of male offspring during adolescence. In addition, a maternal high-fat diet induced epigenetic changes by increasing cortical global DNA methylation and the expression of miR-423 and miR-494. As well as the molecular changes, behavioral studies have shown male-specific disturbances in social interaction and an increase in repetitive behavior during adolescence. Most of the observed changes disappeared in adulthood. In conclusion, we demonstrated the contribution of a maternal HFD to the predisposition to an ASD-like phenotype in male adolescent offspring, while a protective effect occurred in females.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
- Correspondence:
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| | - Ewelina Kowal-Wiśniewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Jarmuż-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| |
Collapse
|
9
|
Berry A, Collacchi B, Masella R, Varì R, Cirulli F. Curcuma Longa, the "Golden Spice" to Counteract Neuroinflammaging and Cognitive Decline-What Have We Learned and What Needs to Be Done. Nutrients 2021; 13:1519. [PMID: 33946356 PMCID: PMC8145550 DOI: 10.3390/nu13051519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the global increase in lifespan, the proportion of people showing cognitive impairment is expected to grow exponentially. As target-specific drugs capable of tackling dementia are lagging behind, the focus of preclinical and clinical research has recently shifted towards natural products. Curcumin, one of the best investigated botanical constituents in the biomedical literature, has been receiving increased interest due to its unique molecular structure, which targets inflammatory and antioxidant pathways. These pathways have been shown to be critical for neurodegenerative disorders such as Alzheimer's disease and more in general for cognitive decline. Despite the substantial preclinical literature on the potential biomedical effects of curcumin, its relatively low bioavailability, poor water solubility and rapid metabolism/excretion have hampered clinical trials, resulting in mixed and inconclusive findings. In this review, we highlight current knowledge on the potential effects of this natural compound on cognition. Furthermore, we focus on new strategies to overcome current limitations in its use and improve its efficacy, with attention also on gender-driven differences.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Masella
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Rosaria Varì
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
10
|
Wang Z, Zhao Y, Zhao H, Zhou J, Feng D, Tang F, Li Y, Lv L, Chen Z, Ma X, Tian X, Yao J. Inhibition of p66Shc Oxidative Signaling via CA-Induced Upregulation of miR-203a-3p Alleviates Liver Fibrosis Progression. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:751-763. [PMID: 32781430 PMCID: PMC7417942 DOI: 10.1016/j.omtn.2020.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
We previously found that inhibition of p66Shc confers protection against hepatic stellate cell (HSC) activation during liver fibrosis. However, the effect of p66Shc on HSC proliferation, as well as the mechanism by which p66Shc is modulated, remains unknown. Here, we elucidated the effect of p66Shc on HSC proliferation and evaluated microRNA (miRNA)-p66Shc-mediated reactive oxidative species (ROS) generation in liver fibrosis. An in vivo model of carbon tetrachloride (CCl4)-induced liver fibrosis in rats and an LX-2 cell model were developed. p66Shc expression was significantly upregulated in rats with CCl4-induced liver fibrosis and in human fibrotic livers. Additionally, p66Shc knockdown in vitro attenuated mitochondrial ROS generation and HSC proliferation. Interestingly, p66Shc promoted HSC proliferation via β-catenin dephosphorylation in vitro. MicroRNA (miR)-203a-3p, which was identified by microarray and bioinformatics analyses, directly inhibited p66Shc translation and attenuated HSC proliferation in vitro. Importantly, p66Shc was found to play an indispensable role in the protective effect of miR-203a-3p. Furthermore, carnosic acid (CA), the major antioxidant compound extracted from rosemary leaves, protected against CCl4-induced liver fibrosis through the miR-203a-3p/p66Shc axis. Collectively, these results suggest that p66Shc, which is directly suppressed by miR-203a-3p, is a key regulator of liver fibrosis. This finding may lead to the development of therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Huanyu Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Dongcheng Feng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Fan Tang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yang Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
11
|
Cirulli F, Musillo C, Berry A. Maternal Obesity as a Risk Factor for Brain Development and Mental Health in the Offspring. Neuroscience 2020; 447:122-135. [PMID: 32032668 DOI: 10.1016/j.neuroscience.2020.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022]
Abstract
Maternal obesity plays a key role in the health trajectory of the offspring. Although research on this topic has largely focused on the potential of this condition to increase the risk for child obesity, it is becoming more and more evident that it can also significantly impact cognitive function and mental health. The mechanisms underlying these effects are starting to be elucidated and point to the placenta as a critical organ that may mediate changes in the response to stress, immune function and oxidative stress. Long-term effects of maternal obesity may rely upon epigenetic changes in selected genes that are involved in metabolic and trophic regulations of the brain. More recent evidence also indicates the gut microbiota as a potential mediator of these effects. Overall, understanding cause-effect relationships can allow the development of preventive measures that could rely upon dietary changes in the mother and the offspring. Addressing diets appears more feasible than developing new pharmacological targets and has the potential to affect the multiple interconnected physiological pathways engaged by these complex regulations, allowing prevention of both metabolic and mental disorders.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
13
|
John RM. Prenatal Adversity Modulates the Quality of Maternal Care Via the Exposed Offspring. Bioessays 2019; 41:e1900025. [PMID: 31094007 DOI: 10.1002/bies.201900025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/11/2019] [Indexed: 12/17/2022]
Abstract
Adversities in pregnancy, including poor diet and stress, are associated with increased risk of developing both metabolic and mental health disorders later in life, a phenomenon described as fetal programming or developmental origins of disease. Predominant hypotheses proposed to explain this relationship suggest that the adversity imposes direct changes to the developing fetus which are maintained after birth resulting in an increased susceptibility to ill health. However, during pregnancy the mother, the developing fetus, and the placenta are all exposed to the adversity. The same adversities linked to altered offspring outcome can also result in suboptimal maternal care, which is considered an independent adverse exposure for the offspring. Recent key experiments in mice reveal the potential of prenatal adversity to drive alterations in maternal care through abnormal maternal-pup interactions and via alterations in placental signaling. Together, these data highlight the critical importance of viewing fetal programming holistically paying attention to the intimate, bidirectional, and reiterative relationship between mothers and their offspring.
Collapse
Affiliation(s)
- Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
14
|
Rouschop SH, Karl T, Risch A, van Ewijk PA, Schrauwen-Hinderling VB, Opperhuizen A, van Schooten FJ, Godschalk RW. Gene expression and DNA methylation as mechanisms of disturbed metabolism in offspring after exposure to a prenatal HF diet. J Lipid Res 2019; 60:1250-1259. [PMID: 31064776 PMCID: PMC6602131 DOI: 10.1194/jlr.m092593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Exposure to a prenatal high-fat (HF) diet leads to an impaired metabolic phenotype in mouse offspring. The underlying mechanisms, however, are not yet fully understood. Therefore, this study investigated whether the impaired metabolic phenotype may be mediated through altered hepatic DNA methylation and gene expression. We showed that exposure to a prenatal HF diet altered the offspring’s hepatic gene expression of pathways involved in lipid synthesis and uptake (SREBP), oxidative stress response [nuclear factor (erythroid-derived 2)-like 2 (Nrf2)], and cell proliferation. The downregulation of the SREBP pathway related to previously reported decreased hepatic lipid uptake and postprandial hypertriglyceridemia in the offspring exposed to the prenatal HF diet. The upregulation of the Nrf2 pathway was associated with increased oxidative stress levels in offspring livers. The prenatal HF diet also induced hypermethylation of transcription factor (TF) binding sites upstream of lipin 1 (Lpin1), a gene involved in lipid metabolism. Furthermore, DNA methylation of Lpin1 TF binding sites correlated with mRNA expression of Lpin1. These findings suggest that the effect of a prenatal HF diet on the adult offspring’s metabolic phenotype are regulated by changes in hepatic gene expression and DNA methylation.
Collapse
Affiliation(s)
- Sven H Rouschop
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tanja Karl
- Department of Biosciences University of Salzburg, Salzburg, Austria
| | - Angela Risch
- Department of Biosciences University of Salzburg, Salzburg, Austria
| | - Petronella A van Ewijk
- Department of Radiology and Nuclear Medicine Maastricht University Medical Center, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - Frederik J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Roger W Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Niu X, Wu X, Ying A, Shao B, Li X, Zhang W, Lin C, Lin Y. Maternal high fat diet programs hypothalamic-pituitary-adrenal function in adult rat offspring. Psychoneuroendocrinology 2019; 102:128-138. [PMID: 30544004 DOI: 10.1016/j.psyneuen.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/04/2023]
Abstract
Maternal environmental factors such as diet have profound effects on offspring development and later health. The hypothalamic-pituitary-adrenal (HPA) axis is an important stress neuroendocrine system that is subject to programming by early life challenges. The present study was further to investigate whether maternal high fat diet (HFD) exposure during rat pregnancy and lactation can alter the HPA axis activity in adult male offspring. We observed that maternal HFD consumption exerted long-term effects on the basal activity of the HPA axis in adult offspring, with increased mean plasma corticosterone levels that result from elevated steroid pulse frequence and pulse amplitude. More importantly, maternal HFD offspring displayed enhanced corticosterone responses to restraint (1 h) and lipopolysaccharide (25 μg/kg, iv) but not insulin-induced hypoglycemia (0.3U/kg, iv) stress, suggesting a stressor-specific effect of maternal diet on the hyperresponsiveness of the HPA axis to stress. Additionally, maternal HFD exposure markedly attenuated the habituation of HPA responses to repeated restraint stress. These findings demonstrate that perinatal HFD exposure has a potent and long-lasting influence on development of neuroendocrine regulatory mechanisms. Maternal HFD consumption significantly increased basal corticotropin-releasing factor (CRF) mRNA expression in the paraventricular nucleus; nevertheless, similar increments in CRF mRNA levels following restraint were observed between maternal HFD offspring and control rats. Furthermore, the medial and central nuclei of amygdala played a pivotal role in maternal HFD-induced sensitization of the HPA response to psychological and systemic stress, respectively, suggesting that different neural pathways may mediate maternal HFD-induced HPA hyperresponsivity to different types of stressors. Take together, the long-term effects of maternal HFD challenge on the central regulation of the HPA axis, therefore, expose the adult offspring to greater HPA function throughout lifespan, in stressor-specific and region-specific manner.
Collapse
Affiliation(s)
- XiaoTing Niu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - XiaoYun Wu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - AnNa Ying
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bei Shao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - XiaoFeng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - WanLi Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - ChengCheng Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
16
|
Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 2019; 14:215-235. [PMID: 30865571 PMCID: PMC6557546 DOI: 10.1080/15592294.2019.1582277] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is the most common metabolic condition during pregnancy and may result in short- and long-term complications for both mother and offspring. The complexity of phenotypic outcomes seems influenced by genetic susceptibility, nutrient-gene interactions and lifestyle interacting with clinical factors. There is strong evidence that not only the adverse genetic background but also the epigenetic modifications in response to nutritional and environmental factors could influence the maternal hyperglycemia in pregnancy and the foetal metabolic programming. In this view, the correlation between epigenetic modifications and their transgenerational effects represents a very interesting field of study. The present review gives insight into the role of gene variants and their interactions with nutrients in GDM. In addition, we provide an overview of the epigenetic changes and their role in the maternal-foetal transmission of chronic diseases. Overall, the knowledge of epigenetic modifications induced by an adverse intrauterine and perinatal environment could shed light on the potential pathophysiological mechanisms of long-term disease development in the offspring and provide useful tools for their prevention.
Collapse
Affiliation(s)
- Marica Franzago
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy.,b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy
| | - Federica Fraticelli
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Liborio Stuppia
- b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy.,c Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Ester Vitacolonna
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| |
Collapse
|
17
|
Menting MD, van de Beek C, Mintjens S, Wever KE, Korosi A, Ozanne SE, Limpens J, Roseboom TJ, Hooijmans C, Painter RC. The link between maternal obesity and offspring neurobehavior: A systematic review of animal experiments. Neurosci Biobehav Rev 2019; 98:107-121. [DOI: 10.1016/j.neubiorev.2018.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
|
18
|
Modulation of Obesity and Insulin Resistance by the Redox Enzyme and Adaptor Protein p66 Shc. Int J Mol Sci 2019; 20:ijms20040985. [PMID: 30813483 PMCID: PMC6412263 DOI: 10.3390/ijms20040985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
Initially reported as a longevity-related protein, the 66 kDa isoform of the mammalian Shc1 locus has been implicated in several metabolic pathways, being able to act both as an adaptor protein and as a redox enzyme capable of generating reactive oxygen species (ROS) when it localizes to the mitochondrion. Ablation of p66Shc has been shown to be protective against obesity and the insurgence of insulin resistance, but not all the studies available in the literature agree on these points. This review will focus in particular on the role of p66Shc in the modulation of glucose homeostasis, obesity, body temperature, and respiration/energy expenditure. In view of the obesity and diabetes epidemic, p66Shc may represent a promising therapeutic target with enormous implications for human health.
Collapse
|
19
|
Long-term behavioural effects of maternal obesity in C57BL/6J mice. Physiol Behav 2019; 199:306-313. [DOI: 10.1016/j.physbeh.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022]
|
20
|
Sex-associated preventive effects of low-dose aspirin on obesity and non-alcoholic fatty liver disease in mouse offspring with over-nutrition in utero. J Transl Med 2019; 99:244-259. [PMID: 30413815 PMCID: PMC6354253 DOI: 10.1038/s41374-018-0144-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023] Open
Abstract
Aspirin has been found to diminish hypertriglyceridemia and hyperglycemia in both obese rodents and patients with type 2 diabetes mellitus. We aimed to test whether low-dose aspirin can prevent obesity and the progression of non-alcoholic fatty liver disease (NAFLD) in high-risk subjects. We used offspring mice with maternal over-nutrition as a high-risk model of obesity and NAFLD. The offspring were given postnatal HF-diet and diethylnitrosamine (DEN) to induce obesity and NAFLD, and were treated with or without a low dose of aspirin for 12 weeks (ASP or CTL groups). Aspirin treatment reduced body weight gain, reversed glucose intolerance, and depressed hepatic lipid accumulation in female, but not in male mice. Female mice displayed re-sensitized insulin/Akt signaling and overactivated AMPK signaling, with enhanced level of hepatic PPAR-γ, Glut4, and Glut2, while male mice only enhanced hepatic PPAR-α and PPAR-γ levels. The female ASP mice had inhibited p44/42 MAPK activity and enhanced Pten expression, while male displayed activated p38 MAPK signaling. Furthermore, the female but not the male ASP mice reduced Wnt-signaling activity via both the epigenetic regulation of Apc expression and the post-transcriptional regulation of β-catenin degradation. In summary, our study demonstrates a sex-associated effect of low-dose aspirin on obesity and NAFLD prevention in female but not in male mice.
Collapse
|
21
|
Keleher MR, Zaidi R, Patel K, Ahmed A, Bettler C, Pavlatos C, Shah S, Cheverud JM. The effect of dietary fat on behavior in mice. J Diabetes Metab Disord 2018; 17:297-307. [PMID: 30918865 DOI: 10.1007/s40200-018-0373-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Purpose Obesity is linked to cognitive dysfunction in humans and rodents, and its effects can be passed on to the next generation. However, the extent of these effects is not well understood. The purpose of this study was to determine the effect of a prenatal maternal high-fat diet and an individual high-fat diet in inbred mice. Methods We varied maternal diet and offspring diet to test the hypothesis that a high-fat diet would increase anxiety, reduce activity levels, and impair nest-building. First, we fed a high-fat (HF) or low-fat (LF) diet to genetically identical female Small (SM/J) mice and mated them with LF males. We cross-fostered all offspring to LF-fed SM/J nurses and weaned them onto an HF or LF diet. We weighed the mice weekly and we tested anxiety with the Open Field Test, activity levels with instantaneous scan sampling, and nest building using the Deacon Scale. Results Diet significantly affected weight, with HF females weighing 28.2 g (± 1.4 g SE) and LF females weighing 15.1 g (± 1.6 g SE) at 17 weeks old. The offspring's own diet had major behavioral effects. HF mice produced more fecal boli and urinations in the Open Field Test, built lower-quality nests, and had lower activity in adulthood than LF mice. The only trait that a prenatal maternal diet significantly affected was whether the offspring built their nests inside or outside of a hut. Conclusions Offspring diet, but not prenatal maternal diet, affected a wide range of behaviors in these mice.
Collapse
Affiliation(s)
- Madeline Rose Keleher
- 1Department of Evolution, Ecology, and Population Biology, Washington University in St. Louis, St. Louis, MO USA.,2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| | - Rabab Zaidi
- 2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| | - Kayna Patel
- 2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| | - Amer Ahmed
- 2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| | - Carlee Bettler
- 2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| | - Cassondra Pavlatos
- 2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| | - Shyam Shah
- 2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| | - James M Cheverud
- 2Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660 USA
| |
Collapse
|
22
|
Berry A, Bellisario V, Panetta P, Raggi C, Magnifico MC, Arese M, Cirulli F. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet. Front Behav Neurosci 2018; 12:48. [PMID: 29599711 PMCID: PMC5862866 DOI: 10.3389/fnbeh.2018.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother’s body weight and offspring’s weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females) and in the central nervous system (males). Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important long-term consequences on metabolic and behavioral endpoints.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Veronica Bellisario
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Pamela Panetta
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria C Magnifico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring. PLoS One 2018; 13:e0192606. [PMID: 29447215 PMCID: PMC5813940 DOI: 10.1371/journal.pone.0192606] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.
Collapse
|
24
|
Karbaschi R, Sadeghimahalli F, Zardooz H. Maternal high-fat diet inversely affects insulin sensitivity in dams and young adult male rat offspring. J Zhejiang Univ Sci B 2017; 17:728-32. [PMID: 27604865 DOI: 10.1631/jzus.b1600131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study attempts to further clarify the potential effects of maternal high-fat (HF) diet on glucose homeostasis in dams and young adult male rat offspring. Female rats were divided into control (CON dams) and HF (HF dams) diet groups, which received the diet 4 weeks prior to and through pregnancy and lactation periods. Blood samples were taken to determine metabolic parameters, then an intraperitoneal glucose tolerance test (IPGTT) was performed. Maternal HF diet increased intra-abdominal fat mass and plasma corticosterone level, but decreased leptin concentration in dams. In HF offspring intra-abdominal fat mass, plasma leptin, and corticosterone levels decreased. Following IPGTT, the plasma insulin level of HF dams was higher than the controls. In HF offspring plasma insulin level was not significantly different from the controls, but a steeper decrease of their plasma glucose concentration was observed.
Collapse
Affiliation(s)
- Roxana Karbaschi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Cirulli F. Interactions between early life stress and metabolic stress in programming of mental and metabolic health. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Review on intrauterine programming: Consequences in rodent models of mild diabetes and mild fat overfeeding are not mild. Placenta 2017; 52:21-32. [DOI: 10.1016/j.placenta.2017.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
|
27
|
Karbaschi R, Zardooz H, Khodagholi F, Dargahi L, Salimi M, Rashidi F. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring. Nutr Metab (Lond) 2017; 14:20. [PMID: 28261314 PMCID: PMC5329934 DOI: 10.1186/s12986-017-0177-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. METHODS Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. RESULTS According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. CONCLUSION Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.
Collapse
Affiliation(s)
- Roxana Karbaschi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178 Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178 Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178 Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178 Tehran, Iran
| | - FatemehSadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
The Relationship between Maternal Plasma Leptin and Adiponectin Concentrations and Newborn Adiposity. Nutrients 2017; 9:nu9030182. [PMID: 28241462 PMCID: PMC5372845 DOI: 10.3390/nu9030182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
Increased maternal blood concentrations of leptin and decreased adiponectin levels, which are common disturbances in obesity, may be involved in offspring adiposity by programming fetal adipose tissue development. The aim of this study was to assess the relationship between maternal leptin and adiponectin concentrations and newborn adiposity. This was a cross-sectional study involving 210 healthy mother-newborn pairs from a public maternity hospital in São Paulo, Brazil. Maternal blood samples were collected after delivery and leptin and adiponectin concentrations were measured by enzyme-linked immunosorbent assay. Newborn body composition was estimated by air displacement plethysmography. The association between maternal leptin and adiponectin concentrations and newborn adiposity (fat mass percentage, FM%) was evaluated by multiple linear regression, controlling for maternal age, socioeconomic status, parity, pre-pregnancy body mass index (BMI), weight gain, gestational age, and newborn age at the time of measurement. No relationship was found between maternal leptin and FM% of male or female newborn infants. Maternal adiponectin (p = 0.001) and pre-pregnancy BMI (p < 0.001; adj. R² = 0.19) were positively associated with FM% of newborn males, indicating that maternal adiponectin is involved in fetal fat deposition in a sex-specific manner. Large-scale epidemiological, longitudinal studies are necessary to confirm our results.
Collapse
|
29
|
He Z, Li J, Luo H, Zhang L, Ma L, Chen L, Wang H. Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet. Sci Rep 2015; 5:17679. [PMID: 26631430 PMCID: PMC4668390 DOI: 10.1038/srep17679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/02/2015] [Indexed: 02/02/2023] Open
Abstract
Prenatal ethanol exposure (PEE) is an established risk factor for intrauterine growth retardation. The present study was designed to determine whether PEE can increase the susceptibility of high-fat diet (HFD)-induced metabolic syndrome (MS) in adult offspring in a sex-specific manner, based on a generalized linear model analysis. Pregnant Wistar rats were administered ethanol (4 g/kg.d) from gestational day 11 until term delivery. All offspring were fed either a normal diet or a HFD after weaning and were sacrificed at postnatal week 20, and blood samples were collected. Results showed that PEE reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels but enhanced serum glucose, insulin, insulin resistant index (IRI), triglyceride and total cholesterol (TC) concentrations. Moreover, the analysis showed interactions among PEE, HFD and sex. In the PEE offspring, HFD aggravated the decrease in ACTH and corticosterone levels and further increased serum glucose, insulin, triglyceride and TC levels. The changes of serum ACTH, glucose and IRI levels in the female HFD rats were greater than those in the male HFD rats. Our findings suggest that PEE enhances the susceptibility to MS induced by HFD in a sex-specific manner, which might be primarily associated with the neuroendocrine metabolic programming by PEE.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jing Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Lu Ma
- Department of Epidemiology &Health Statistics, Public Health School of Wuhan University, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
30
|
Lin C, Shao B, Huang H, Zhou Y, Lin Y. Maternal high fat diet programs stress-induced behavioral disorder in adult offspring. Physiol Behav 2015; 152:119-27. [DOI: 10.1016/j.physbeh.2015.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
|
31
|
Bellisario V, Panetta P, Balsevich G, Baumann V, Noble J, Raggi C, Nathan O, Berry A, Seckl J, Schmidt M, Holmes M, Cirulli F. Maternal high-fat diet acts as a stressor increasing maternal glucocorticoids' signaling to the fetus and disrupting maternal behavior and brain activation in C57BL/6J mice. Psychoneuroendocrinology 2015; 60:138-50. [PMID: 26143538 DOI: 10.1016/j.psyneuen.2015.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022]
Abstract
Maternal diet during pregnancy can impact maternal behavior as well as the intrauterine environment, playing a critical role in programming offspring's physiology. In a preliminary study, we found a strong association between high-fat diet (HFD) during pregnancy and increased cannibalistic episodes and dams' mortality during late pregnancy and parturition. Based upon these data, we hypothesized that HFD during pregnancy could negatively affect neuroendocrine and metabolic regulations occurring during the final stages of pregnancy, thereby disrupting maternal behavior. To test this hypothesis, female C57BL/6J mice were fed HFD or control diet for 11 weeks until three days before the expected delivery date. Basal corticosterone plasma levels and brain levels of c-Fos were measured both before and after delivery, in addition to leptin levels in the adipose tissue. Dam's emotional behavior and social anxiety, in addition to locomotor activity were assessed before parturition. Data show that HFD led to aberrant maternal behavior, dams being characterized by behaviors related to aggression toward an unfamiliar social stimulus in the social avoidance test, in addition to decreased locomotor activity. Neural activity in HFD dams was reduced in the olfactory bulbs, a crucial brain region for social and olfactory recognition hence essential for maternal behavior. Furthermore, HFD feeding resulted in increased circulating levels of maternal corticosterone and decreased levels of leptin. In addition, the activity of the protective 11β-dehydrogenase-2 (11β-HSD-2) barrier in the placenta was decreased together with 11β-dehydrogenase-1 (11β-HSD-1) gene expression. Overall, these data suggest that HFD acts as a stressful challenge during pregnancy, impairing the neuroendocrine system and the neural activity of brain regions involved in the processing of relevant olfactory stimuli, with negative consequences on maternal physiology and behavior.
Collapse
Affiliation(s)
- Veronica Bellisario
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Pamela Panetta
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Georgia Balsevich
- Max Planck Institute of Psychiatry, Department Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Valentin Baumann
- Max Planck Institute of Psychiatry, Department Stress Neurobiology and Neurogenetics, Munich, Germany
| | - June Noble
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Carla Raggi
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Olivia Nathan
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Edinburgh, Scotland, UK
| | - Alessandra Berry
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Jonathan Seckl
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Mathias Schmidt
- Max Planck Institute of Psychiatry, Department Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Megan Holmes
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Francesca Cirulli
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|