1
|
Alnefeesi Y, Sukhanov I, Gainetdinov RR. Ligands of the trace amine-associated receptors (TAARs): A new class of anxiolytics. Pharmacol Biochem Behav 2024; 242:173817. [PMID: 39002806 DOI: 10.1016/j.pbb.2024.173817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Most cases of anxiety are currently treated with either benzodiazepines or serotonin reuptake inhibitors. These drugs carry with them risks for a multitude of side effects, and patient compliance suffers for this reason. There is thus a need for novel anxiolytics, and among the most compelling prospects in this vein is the study of the TAARs. The anxiolytic potential of ulotaront, a full agonist at the human TAAR1, is currently being investigated in patients with generalized anxiety disorder. Irrespective of whether this compound succeeds in clinical trials, a growing body of preclinical literature underscores the relevance of modulating the TAARs in anxiety. Multiple behavioral paradigms show anxiolytic-like effects in rodents, possibly due to increased neurogenesis and plasticity, in addition to a panoply of interactions between the TAARs and other systems. Crucially, multiple lines of evidence suggest that the TAARs, particularly TAAR1, TAAR2, and TAAR5, are expressed in the extended amygdala and hippocampus. These regions are central in the actuation of anxiety, and are particularly susceptible to neurogenic and neuroplastic effects which the TAARs are now known to regulate. The TAARs also regulate the dopamine and serotonin systems, both of which are implicated in anxiety. Ligands of the TAARs may thus constitute a new class of anxiolytics.
Collapse
Affiliation(s)
- Yazen Alnefeesi
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia.
| |
Collapse
|
2
|
Scarano N, Espinoza S, Brullo C, Cichero E. Computational Methods for the Discovery and Optimization of TAAR1 and TAAR5 Ligands. Int J Mol Sci 2024; 25:8226. [PMID: 39125796 PMCID: PMC11312273 DOI: 10.3390/ijms25158226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored. In addition, the discovery of different chemo-types as selective murine and/or human TAAR1 ligands has helped in the understanding of the species-specificity preferences. The availability of TAAR1-ligand complexes sheds light on how different ligands bind TAAR1. TAAR5 is considered an olfactory receptor but has specific involvement in some brain functions. In this case, the drug discovery effort has been limited. Here, we review the successful computational efforts developed in the search for novel TAAR1 and TAAR5 ligands. A specific focus on applying structure-based and/or ligand-based methods has been done. We also give a perspective of the experimental data available to guide the future drug design of new ligands, probing species-specificity preferences towards more selective ligands. Hints for applying repositioning approaches are also discussed.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| |
Collapse
|
3
|
Shemiakova TS, Efimova EV, Gainetdinov RR. TAARs as Novel Therapeutic Targets for the Treatment of Depression: A Narrative Review of the Interconnection with Monoamines and Adult Neurogenesis. Biomedicines 2024; 12:1263. [PMID: 38927470 PMCID: PMC11200894 DOI: 10.3390/biomedicines12061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Depression is a common mental illness of great concern. Current therapy for depression is only suitable for 80% of patients and is often associated with unwanted side effects. In this regard, the search for and development of new antidepressant agents remains an urgent task. In this review, we discuss the current available evidence indicating that G protein-coupled trace amine-associated receptors (TAARs) might represent new targets for depression treatment. The most frequently studied receptor TAAR1 has already been investigated in the treatment of schizophrenia, demonstrating antidepressant and anxiolytic properties. In fact, the TAAR1 agonist Ulotaront is currently undergoing phase 2/3 clinical trials testing its safety and efficacy in the treatment of major depressive disorder and generalized anxiety disorder. Other members of the TAAR family (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) are not only involved in the innate olfaction of volatile amines, but are also expressed in the limbic brain areas. Furthermore, animal studies have shown that TAAR2 and TAAR5 regulate emotional behaviors and thus may hold promise as potential antidepressant targets. Of particular interest is their connection with the dopamine and serotonin systems of the brain and their involvement in the regulation of adult neurogenesis, known to be affected by the antidepressant drugs currently in use. Further non-clinical and clinical studies are necessary to validate TAAR1 (and potentially other TAARs) as novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Taisiia S. Shemiakova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
- Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Moiseenko VI, Apryatina VA, Gainetdinov RR, Apryatin SA. Trace Amine-Associated Receptors' Role in Immune System Functions. Biomedicines 2024; 12:893. [PMID: 38672247 PMCID: PMC11047934 DOI: 10.3390/biomedicines12040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of the TAAR family of receptors is also observed in various populations of cells in the immune system. This review is focused on the basic information of the interaction of trace amines and their receptors with cells of the general immune systems of humans and other mammals. We also overview the available data on TAARs' role in the function of individual populations of myeloid and lymphoid cells. With further research on the regulatory role of the trace amine system in immune functions and on uncovering the contribution of these processes to the pathogenesis of the immune response, a significant advance in the field could be expected. Furthermore, the determination of the molecular mechanisms of TAARs' involvement in immune system regulation and the further investigation of their potential chemotactic role could bring about the development of new approaches for the treatment of disorders related to immune system dysfunctions.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
5
|
Grossi G, Scarano N, Musumeci F, Tonelli M, Kanov E, Carbone A, Fossa P, Gainetdinov RR, Cichero E, Schenone S. Discovery of a Novel Chemo-Type for TAAR1 Agonism via Molecular Modeling. Molecules 2024; 29:1739. [PMID: 38675561 PMCID: PMC11052455 DOI: 10.3390/molecules29081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to identify novel promising chemo-types for the discovery of more active TAAR1 agonists. In particular, the oxazoline-based compound S18616 has been taken as a reference compound for the computational study, leading to the development of quite flat and conformationally locked ligands. The choice of a "Y-shape" conformation was suggested for the design of TAAR1 ligands, interacting with the protein cavity delimited by ASP103 and aromatic residues such as PHE186, PHE195, PHE268, and PHE267. The obtained results allowed us to preliminary in silico screen an in-house series of pyrimidinone-benzimidazoles (1a-10a) as a novel scaffold to target TAAR1. Combined ligand-based (LBCM) and structure based (SBCM) computational methods suggested the biological evaluation of compounds 1a-10a, leading to the identification of derivatives 1a-3a (hTAAR1 EC50 = 526.3-657.4 nM) as promising novel TAAR1 agonists.
Collapse
Affiliation(s)
- Giancarlo Grossi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna Carbone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| |
Collapse
|
6
|
Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, Audano PA, Rozanski A, Yang X, Zhang S, Yoo D, Gordon DS, Fair T, Wei X, Logsdon GA, Haukness M, Dishuck PC, Jeong H, Del Rosario R, Bauer VL, Fattor WT, Wilkerson GK, Mao Y, Shi Y, Sun Q, Lu Q, Paten B, Bakken TE, Pollen AA, Feng G, Sawyer SL, Warren WC, Carbone L, Eichler EE. Structurally divergent and recurrently mutated regions of primate genomes. Cell 2024; 187:1547-1562.e13. [PMID: 38428424 PMCID: PMC10947866 DOI: 10.1016/j.cell.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.
Collapse
Affiliation(s)
- Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Allison Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David S Gordon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaoxi Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ricardo Del Rosario
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vanessa L Bauer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Bouder, CO, USA
| | - Will T Fattor
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Bouder, CO, USA
| | - Gregory K Wilkerson
- Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA; Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yuxiang Mao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Bouder, CO, USA
| | - Wesley C Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA; Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Nicoli A, Weber V, Bon C, Steuer A, Gustincich S, Gainetdinov RR, Lang R, Espinoza S, Di Pizio A. Structure-Based Discovery of Mouse Trace Amine-Associated Receptor 5 Antagonists. J Chem Inf Model 2023; 63:6667-6680. [PMID: 37847527 PMCID: PMC10647090 DOI: 10.1021/acs.jcim.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 10/18/2023]
Abstract
Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Verena Weber
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Institute
for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine
(INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany
- Faculty
of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062 Germany
| | - Carlotta Bon
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
| | - Alexandra Steuer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | | | - Raul R. Gainetdinov
- Institute
of Translational Biomedicine and Saint Petersburg University Hospital,
Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Roman Lang
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| | - Stefano Espinoza
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
- Dipartimento
di Scienze della Salute, Università
del Piemonte Orientale, 28100 Novara, Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Katolikova NV, Vaganova AN, Shafranskaya DD, Efimova EV, Malashicheva AB, Gainetdinov RR. Expression Pattern of Trace Amine-Associated Receptors during Differentiation of Human Pluripotent Stem Cells to Dopaminergic Neurons. Int J Mol Sci 2023; 24:15313. [PMID: 37894992 PMCID: PMC10607858 DOI: 10.3390/ijms242015313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Trace amine-associated receptors (TAARs), which were discovered only in 2001, are known to be involved in the regulation of a spectrum of neuronal processes and may play a role in the pathogenesis of a number of neuropsychiatric diseases, such as schizophrenia and others. We have previously shown that TAARs also have interconnections with the regulation of neurogenesis and, in particular, with the neurogenesis of dopamine neurons, but the exact mechanisms of this are still unknown. In our work we analyzed the expression of TAARs (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8 and TAAR9) in cells from the human substantia nigra and ventral tegmental areas and in human pluripotent stem cells at consecutive stages of their differentiation to dopaminergic neurons, using RNA sequencing data from open databases, and TaqMan PCR data from the differentiation of human induced pluripotent stem cells in vitro. Detectable levels of TAARs expression were found in cells at the pluripotent stages, and the dynamic of their expression had a trend of increasing with the differentiation and maturation of dopamine neurons. The expression of several TAAR types (particularly TAAR5) was also found in human dopaminergic neuron-enriched zones in the midbrain. This is the first evidence of TAARs expression during neuronal differentiation, which can help to approach an understanding of the role of TAARs in neurogenesis.
Collapse
Affiliation(s)
- Nataliia V. Katolikova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia (R.R.G.)
| | - Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia (R.R.G.)
- Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Daria D. Shafranskaya
- Center for Algorithmic Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia (R.R.G.)
| | - Anna B. Malashicheva
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia (R.R.G.)
- Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Rutigliano G, Bertolini A, Grittani N, Frascarelli S, Carnicelli V, Ippolito C, Moscato S, Mattii L, Kusmic C, Saba A, Origlia N, Zucchi R. Effect of Combined Levothyroxine (L-T 4) and 3-Iodothyronamine (T 1AM) Supplementation on Memory and Adult Hippocampal Neurogenesis in a Mouse Model of Hypothyroidism. Int J Mol Sci 2023; 24:13845. [PMID: 37762153 PMCID: PMC10530993 DOI: 10.3390/ijms241813845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (T1AM) brain levels back to normal. T1AM is a thyroid hormone derivative with cognitive effects. Using a pharmacological hypothyroid mouse model, we investigated whether augmenting levothyroxine (L-T4) with T1AM improves behavioural correlates of depression, anxiety, and memory and has an effect on hippocampal neurogenesis. Hypothyroid mice showed impaired performance in the novel object recognition test as compared to euthyroid mice (discrimination index (DI): 0.02 ± 0.09 vs. 0.29 ± 0.06; t = 2.515, p = 0.02). L-T4 and L-T4+T1AM rescued memory (DI: 0.27 ± 0.08 and 0.34 ± 0.08, respectively), while T1AM had no effect (DI: -0.01 ± 0.10). Hypothyroidism reduced the number of neuroprogenitors in hippocampal neurogenic niches by 20%. L-T4 rescued the number of neuroprogenitors (mean diff = 106.9 ± 21.40, t = 4.99, pcorr = 0.003), while L-T4+T1AM produced a 30.61% rebound relative to euthyroid state (mean diff = 141.6 ± 31.91, t = 4.44, pcorr = 0.004). We performed qPCR analysis of 88 genes involved in neurotrophic signalling pathways and found an effect of treatment on the expression of Ngf, Kdr, Kit, L1cam, Ntf3, Mapk3, and Neurog2. Our data confirm that L-T4 is necessary and sufficient for recovering memory and hippocampal neurogenesis deficits associated with hypothyroidism, while we found no evidence to support the role of non-canonical TH signalling.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Institute of Clinical Science, Imperial College London, London SW7 2AZ, UK
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Andrea Bertolini
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Nicoletta Grittani
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Sabina Frascarelli
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Vittoria Carnicelli
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Stefania Moscato
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Claudia Kusmic
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Alessandro Saba
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | | | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| |
Collapse
|
11
|
Kuvarzin SR, Sukhanov I, Onokhin K, Zakharov K, Gainetdinov RR. Unlocking the Therapeutic Potential of Ulotaront as a Trace Amine-Associated Receptor 1 Agonist for Neuropsychiatric Disorders. Biomedicines 2023; 11:1977. [PMID: 37509616 PMCID: PMC10377193 DOI: 10.3390/biomedicines11071977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Savelii R Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov Medical University, 197022 Saint Petersburg, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Accellena Research and Development Inc., 199106 Saint Petersburg, Russia
| | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
12
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, Audano PA, Rozanski A, Yang X, Zhang S, Gordon DS, Wei X, Logsdon GA, Haukness M, Dishuck PC, Jeong H, Del Rosario R, Bauer VL, Fattor WT, Wilkerson GK, Lu Q, Paten B, Feng G, Sawyer SL, Warren WC, Carbone L, Eichler EE. Structurally divergent and recurrently mutated regions of primate genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531415. [PMID: 36945442 PMCID: PMC10028934 DOI: 10.1101/2023.03.07.531415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
To better understand the pattern of primate genome structural variation, we sequenced and assembled using multiple long-read sequencing technologies the genomes of eight nonhuman primate species, including New World monkeys (owl monkey and marmoset), Old World monkey (macaque), Asian apes (orangutan and gibbon), and African ape lineages (gorilla, bonobo, and chimpanzee). Compared to the human genome, we identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. Across 50 million years of primate evolution, we estimate that 819.47 Mbp or ~27% of the genome has been affected by SVs based on analysis of these primate lineages. We identify 1,607 structurally divergent regions (SDRs) wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (CARDs, ABCD7, OLAH) and new lineage-specific genes are generated (e.g., CKAP2, NEK5) and have become targets of rapid chromosomal diversification and positive selection (e.g., RGPDs). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species for the first time.
Collapse
Affiliation(s)
- Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Allison Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - David S Gordon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Xiaoxi Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ricardo Del Rosario
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vanessa L Bauer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Will T Fattor
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Gregory K Wilkerson
- Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Wesley C Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
- Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Gut Microbiota Alterations in Trace Amine-Associated Receptor 9 (TAAR9) Knockout Rats. Biomolecules 2022; 12:biom12121823. [PMID: 36551251 PMCID: PMC9775382 DOI: 10.3390/biom12121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Trace amine-associated receptors (TAAR1-TAAR9) are a family of G-protein-coupled monoaminergic receptors which might have great pharmacological potential. It has now been well established that TAAR1 plays an important role in the central nervous system. Interestingly, deletion of TAAR9 in rats leads to alterations in the periphery. Previously, we found that knockout of TAAR9 in rats (TAAR9-KO rats) decreased low-density lipoprotein cholesterol levels in the blood. TAAR9 was also identified in intestinal tissues, and it is known that it responds to polyamines. To elucidate the role of TAAR9 in the intestinal epithelium, we analyzed TAAR9-co-expressed gene clusters in public data for cecum samples. As identified by gene ontology enrichment analysis, in the intestine, TAAR9 is co-expressed with genes involved in intestinal mucosa homeostasis and function, including cell organization, differentiation, and death. Additionally, TAAR9 was co-expressed with genes implicated in dopamine signaling, which may suggest a role for this receptor in the regulation of peripheral dopaminergic transmission. To further investigate how TAAR9 might be involved in colonic mucosal homeostasis, we analyzed the fecal microbiome composition in TAAR9-KO rats and their wild-type littermates. We identified a significant difference in the number of observed taxa between the microbiome of TAAR9-KO and wild-type rats. In TAAR9-KO rats, the gut microbial community became more variable compared with the wild-type rats. Furthermore, it was found that the family Saccharimonadaceae, which is one of the top 10 most abundant families in TAAR9-KO rat feces, is almost completely absent in wild-type animal fecal samples. Taken together, these data indicate a role of TAAR9 in intestinal function.
Collapse
|
15
|
Vaganova AN, Katolikova NV, Murtazina RZ, Kuvarzin SR, Gainetdinov RR. Public Transcriptomic Data Meta-Analysis Demonstrates TAAR6 Expression in the Mental Disorder-Related Brain Areas in Human and Mouse Brain. Biomolecules 2022; 12:biom12091259. [PMID: 36139098 PMCID: PMC9496192 DOI: 10.3390/biom12091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled trace amine-associated receptors (TAAR) recognize different classes of amine compounds, including trace amines or other exogenous and endogenous molecules. Yet, most members of the TAAR family (TAAR2-TAAR9) are considered olfactory receptors involved in sensing innate odors. In this study, TAAR6 mRNA expression was evaluated in the brain transcriptomic datasets available in the GEO, Allen Brain Atlas, and GTEx databases. Transcriptomic data analysis demonstrated ubiquitous weak TAAR6 mRNA expression in the brain, especially in the prefrontal cortex and nucleus accumbens. RNA sequencing of isolated cells from the nucleus accumbens showed that the expression of TAAR6 in some cell populations may be more pronounced than in whole-tissue samples. Curiously, in D1 and D2 medium spiny neurons of the nucleus accumbens, TAAR6 expression was co-regulated with genes involved in G protein-coupled receptor signaling. However, in cholinergic interneurons of the nucleus accumbens, TAAR6 expression was not associated with the activation of any specific biological process. Finally, TAAR6 expression in the mouse prefrontal cortex was validated experimentally by RT-PCR analysis. These data demonstrated that TAAR6 is expressed at low levels in the human and mouse brain, particularly in limbic structures involved in the pathogenesis of mental disorders, and thus might represent a new pharmacotherapeutic target.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Savelii R. Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
- St. Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
16
|
Leo D, Targa G, Espinoza S, Villers A, Gainetdinov RR, Ris L. Trace Amine Associate Receptor 1 (TAAR1) as a New Target for the Treatment of Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23147811. [PMID: 35887159 PMCID: PMC9318502 DOI: 10.3390/ijms23147811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Worldwide, approximately 27 million people are affected by Alzheimer’s disease (AD). AD pathophysiology is believed to be caused by the deposition of the β-amyloid peptide (Aβ). Aβ can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aβ seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aβ-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aβ infusion in Aβ-treated mice. In vitro data showed that Aβ 1–42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aβ. Further studies are needed to better understand the interplay between TAAR1/Aβ and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aβ-induced cognitive impairments, such as AD.
Collapse
Affiliation(s)
- Damiana Leo
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy;
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Agnès Villers
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
- Correspondence: ; Tel.: +32-6537-3570
| |
Collapse
|
17
|
Expression of Trace Amine-Associated Receptors in the Murine and Human Hippocampus Based on Public Transcriptomic Data. Cells 2022; 11:cells11111813. [PMID: 35681508 PMCID: PMC9180029 DOI: 10.3390/cells11111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Hippocampus is one of the neurogenic zones where adult neurogenesis takes place. This process is quite complex and has a multicomponent regulation. A family of G protein-coupled trace amine-associated receptors (TAARs) was discovered only in 2001, and most of them (TAAR2-TAAR9) were primarily considered olfactory. Recent studies have shown, however, that they are also expressed in the mouse brain, particularly in limbic formations, and can play a role in the regulation of emotional behaviors. The observations in knockout mice indicate that at least two members of the family, TAAR2 and TAAR5, have an impact on the regulation of adult neurogenesis. In the present study, we analyzed the expression of TAARs in the murine and human hippocampus using public RNAseq datasets. Our results indicate a low but detectable level of certain TAARs expression in the hippocampal cells in selected high-quality transcriptomic datasets from both mouse and human samples. At the same time, we observed the difference between humans, where TAAR6 expression was the highest, and murine samples, where TAAR1, TAAR2, TAAR3, TAAR4 and TAAR5 are more pronouncedly expressed. These observations provide further support to the data gained in knockout mice, indicating a role of TAARs in the regulation of adult neurogenesis in the hippocampus.
Collapse
|