1
|
Davis MP. Novel drug treatments for pain in advanced cancer and serious illness: a focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat Care Soc Pract 2024; 18:26323524241266603. [PMID: 39086469 PMCID: PMC11289827 DOI: 10.1177/26323524241266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Drugs that are commercially available but have novel mechanisms of action should be explored as analgesics. This review will discuss haloperidol, miragabalin, palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors act as a chaperone protein, which downmodulates opioid receptor activities and opens several ion channels. Clinically, there is only low-grade evidence that haloperidol improves pain when combined with morphine, methadone, or tramadol in patients who have cancer, pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury antagonist amides), which have a sense role in modulating numerous biological processes in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA's effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug Administration approved for attention deficit hyperactivity disorder in children, Tourette's syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill patients with poorly controlled symptoms, in particular pain and agitation.
Collapse
Affiliation(s)
- Mellar P. Davis
- Geisinger Commonwealth School of Medicine, 100 North Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
2
|
Qiu XT, Guo C, Ma LT, Li XN, Zhang QY, Huang FS, Zhang MM, Bai Y, Liang GB, Li YQ. Transcriptomic and proteomic profiling of the anterior cingulate cortex in neuropathic pain model rats. Front Mol Neurosci 2023; 16:1164426. [PMID: 37396788 PMCID: PMC10311218 DOI: 10.3389/fnmol.2023.1164426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Neuropathic pain (NP) takes a heavy toll on individual life quality, yet gaps in its molecular characterization persist and effective therapy is lacking. This study aimed to provide comprehensive knowledge by combining transcriptomic and proteomic data of molecular correlates of NP in the anterior cingulate cortex (ACC), a cortical hub responsible for affective pain processing. Methods The NP model was established by spared nerve injury (SNI) in Sprague-Dawley rats. RNA sequencing and proteomic data from the ACC tissue isolated from sham and SNI rats 2 weeks after surgery were integrated to compare their gene and protein expression profiles. Bioinformatic analyses were performed to figure out the functions and signaling pathways of the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) enriched in. Results Transcriptomic analysis identified a total of 788 DEGs (with 49 genes upregulated) after SNI surgery, while proteomic analysis found 222 DEPs (with 89 proteins upregulated). While Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the DEGs suggested that most of the altered genes were involved in synaptic transmission and plasticity, bioinformatics analysis of the DEPs revealed novel critical pathways associated with autophagy, mitophagy, and peroxisome. Notably, we noticed functionally important NP-related changes in the protein that occurred in the absence of corresponding changes at the level of transcription. Venn diagram analysis of the transcriptomic and proteomic data identified 10 overlapping targets, among which only three genes (XK-related protein 4, NIPA-like domain-containing 3, and homeodomain-interacting protein kinase 3) showed concordance in the directions of change and strong correlations between mRNA and protein levels. Conclusion The present study identified novel pathways in the ACC in addition to confirming previously reported mechanisms for NP etiology, and provided novel mechanistic insights for future research on NP treatment. These findings also imply that mRNA profiling alone fails to provide a complete landscape of molecular pain in the ACC. Therefore, explorations of changes at the level of protein are necessary to understand NP processes that are not transcriptionally modulated.
Collapse
Affiliation(s)
- Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
| | - Chen Guo
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Li-Tian Ma
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xin-Ning Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Qi-Yan Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fen-Sheng Huang
- Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guo-Biao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|
3
|
Vezza T, Molina-Tijeras JA, González-Cano R, Rodríguez-Nogales A, García F, Gálvez J, Cobos EJ. Minocycline Prevents the Development of Key Features of Inflammation and Pain in DSS-induced Colitis in Mice. THE JOURNAL OF PAIN 2023; 24:304-319. [PMID: 36183969 DOI: 10.1016/j.jpain.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
Abdominal pain is a common feature in inflammatory bowel disease (IBD) patients, and greatly compromises their quality of life. Therefore, the identification of new therapeutic tools to reduce visceral pain is one of the main goals for IBD therapy. Minocycline, a broad-spectrum tetracycline antibiotic, has gained attention in the scientific community because of its immunomodulatory and anti-inflammatory properties. The aim of this study was to evaluate the potential of this antibiotic as a therapy for the management of visceral pain in dextran sodium sulfate (DSS)-induced colitis in mice. Preemptive treatment with minocycline markedly reduced histological features of intestinal inflammation and the expression of inflammatory markers (Tlr4, Tnfα, Il1ß, Ptgs2, Inos, Cxcl2, and Icam1), and attenuated the decrease of markers of epithelial integrity (Tjp1, Ocln, Muc2, and Muc3). In fact, minocycline restored normal epithelial permeability in colitic mice. Treatment with the antibiotic also reversed the changes in the gut microbiota profile induced by colitis. All these ameliorative effects of minocycline on both inflammation and dysbiosis correlated with a decrease in ongoing pain and referred hyperalgesia, and with the improvement of physical activity induced by the antibiotic in colitic mice. Minocycline might constitute a new therapeutic approach for the treatment of IBD-induced pain. PERSPECTIVE: This study found that the intestinal anti-inflammatory effects of minocycline ameliorate DSS-associated pain in mice. Therefore, minocycline might constitute a novel therapeutic strategy for the treatment of IBD-induced pain.
Collapse
Affiliation(s)
- Teresa Vezza
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas (CIBER-EHD)
| | - Enrique J Cobos
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Abozaid OAR, El-Sonbaty SM, Hamam NMA, Farrag MA, Kodous AS. Chitosan-Encapsulated Nano-selenium Targeting TCF7L2, PPARγ, and CAPN10 Genes in Diabetic Rats. Biol Trace Elem Res 2023; 201:306-323. [PMID: 35237941 PMCID: PMC9823051 DOI: 10.1007/s12011-022-03140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/26/2022] [Indexed: 01/11/2023]
Abstract
This study investigates the antidiabetic and antioxidant potential of chitosan-encapsulated selenium nanoparticles in streptozotocin-induced diabetic model. Glibenclamide was used as a reference antidiabetic drug. Forty-eight adult male Wistar rats were used along the study and divided equally into 6 groups of (I) normal control, (II) chitosan-encapsulated selenium nanoparticles (CTS-SeNPs), (III) glibenclamide, (IV) streptozotocin (STZ), (V) STZ + CTS-SeNPs, and (VI) STZ + Glib. The animals were sacrificed on the 35th day of the experiment. Serum glucose, insulin, IGF-1, ALT, AST, CK-MB, oxidative stress, lipid profile, and inflammatory parameters were subsequently assessed. Also, the expression level of TCF7L2, CAPN10, and PPAR-γ genes were evaluated using qPCR. In addition, histopathological studies on pancreatic tissue were carried out. The results revealed that STZ induced both diabetes and oxidative stress in normal rats, manifested by the significant changes in the studied parameters and in the physical structure of pancreatic tissue. Oral administration of CTS-SeNPs or Glib results in a significant amelioration of the levels of serum fasting blood glucose, insulin, IGF-1, AST, ATL, and CK-MB as compared with STZ-induced diabetic rats. CTS-SeNPs and Glib diminished the level of lipid peroxidation, increased total antioxidant capacity level, as well as possessed strong inhibition against serum α-amylase and α-glucosidase activities. Diabetic animals received CTS-SeNPs, or Glib demonstrated a significant (p < 0.05) decrease in the expression level of TCF7L2 and CAPN10 genes with a significant increase in the expression level of PPAR-γ gene, compared to STZ group. The above findings clarify the promising antidiabetic and antioxidant effect of CTS-SeNPs, recommending its inclusion in the currently used protocols for the treatment of diabetes and in the prevention of its related complications.
Collapse
Affiliation(s)
- Omayma A. R. Abozaid
- Clinical Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Sawsan M. El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Neama M. A. Hamam
- Clinical Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Moustafa A. Farrag
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmad S. Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Li X, Wang X, Li Z, Mao Y, Liu Z, Liu X, Zhu X, Zhang J. A Metabolomic Study of the Analgesic Effect of Lappaconitine Hydrobromide (LAH) on Inflammatory Pain. Metabolites 2022; 12:923. [PMID: 36295824 PMCID: PMC9606904 DOI: 10.3390/metabo12100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2023] Open
Abstract
Lappaconitine (LA) is a C-18 diterpene alkaloid isolated from Aconitum sinomontanum Nakai that has been shown to relieve mild to moderate discomfort. Various researchers have tried to explain the underlying mechanism of LA's effects on chronic pain. This article uses metabolomics technology to investigate the metabolite alterations in the dorsal root ganglion (DRG) when lappaconitine hydrobromide (LAH) was injected in an inflammatory pain model, to explain the molecular mechanism of its analgesia from a metabolomics perspective. The pain model used in this study was a complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats. There were two treatment groups receiving different dosages of LAH (4 mg/kg LAH and 8 mg/kg LAH). The analgesic mechanism of LAH was investigated with an analgesic behavioral test, tissue sections, and metabolomics. The results of the analgesic behavioral experiment showed that both 4 mg/kg LAH and 8 mg/kg LAH could significantly improve the paw withdrawal latency (PWL) of rats. The tissue section results showed that LAH could reduce the inflammatory response and enlargement of the paw and ankle of rats and that there was no significant difference in the tissue sections of the DRG. The metabolomics results showed that retinol metabolism and glycerophospholipid metabolism in the CFA-induced inflammatory pain model were significantly affected and may exacerbate the inflammatory reactions and initiate persistent pain; in addition, the linoleic acid metabolism, arachidonic acid metabolism, and alanine, aspartate, and glutamate metabolism were also slightly affected. Among them, the alpha-linolenic acid metabolism was up-regulated after LAH treatment, while the retinol metabolism was down-regulated. These results suggest that LAH could effectively reduce inflammatory pain and might achieve this by regulating the lipid metabolism in the rat DRG.
Collapse
Affiliation(s)
- Xu Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
- Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Zhao Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Xiaoxiao Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
- Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
- Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| |
Collapse
|
6
|
Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush model. Pain 2022; 163:e106-e120. [PMID: 33941753 PMCID: PMC8556407 DOI: 10.1097/j.pain.0000000000002321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Peripheral nerve regeneration is associated with pain in several preclinical models of neuropathic pain. Some neuropathic pain conditions and preclinical neuropathic pain behaviors are improved by sympathetic blockade. In this study, we examined the effect of a localized "microsympathectomy," ie, cutting the gray rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, which is more analogous to clinically used sympathetic blockade compared with chemical or surgical sympathectomy. We also examined manipulations of CCL2 (monocyte chemoattractant protein 1), a key player in both regeneration and pain. We used rat tibial nerve crush as a neuropathic pain model in which peripheral nerve regeneration can occur successfully. CCL2 in the sensory ganglia was increased by tibial nerve crush and reduced by microsympathectomy. Microsympathectomy and localized siRNA-mediated knockdown of CCL2 in the lumbar dorsal root ganglion had very similar effects: partial improvement of mechanical hypersensitivity and guarding behavior, reduction of regeneration markers growth-associated protein 43 and activating transcription factor 3, and reduction of macrophage density in the sensory ganglia and regenerating nerve. Microsympathectomy reduced functional regeneration as measured by myelinated action potential propagation through the injury site and denervation-induced atrophy of the tibial-innervated gastrocnemius muscle at day 10. Microsympathectomy plus CCL2 knockdown had behavioral effects similar to microsympathectomy alone. The results show that local sympathetic effects on neuropathic pain may be mediated in a large part by the effects on expression of CCL2, which in turn regulates the regeneration process.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jingdong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
7
|
Therapeutic Potential of Polyphenols in the Management of Diabetic Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9940169. [PMID: 34093722 PMCID: PMC8137294 DOI: 10.1155/2021/9940169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy (DN) is a common and serious diabetes-associated complication that primarily takes place because of neuronal dysfunction in patients with diabetes. Use of current therapeutic agents in DN treatment is quite challenging because of their severe adverse effects. Therefore, there is an increased need of identifying new safe and effective therapeutic agents. DN complications are associated with poor glycemic control and metabolic imbalances, primarily oxidative stress (OS) and inflammation. Various mediators and signaling pathways such as glutamate pathway, activation of channels, trophic factors, inflammation, OS, advanced glycation end products, and polyol pathway have a significant contribution to the progression and pathogenesis of DN. It has been indicated that polyphenols have the potential to affect DN pathogenesis and could be used as potential alternative therapy. Several polyphenols including kolaviron, resveratrol, naringenin, quercetin, kaempferol, and curcumin have been administered in patients with DN. Furthermore, chlorogenic acid can provide protection against glutamate neurotoxicity via its hydrolysate, caffeoyl acid group, and caffeic acid through regulating the entry of calcium into neurons. Epigallocatechin-3-gallate treatment can protect motor neurons by regulating the glutamate level. It has been demonstrated that these polyphenols can be promising in combating DN-associated damaging pathways. In this article, we have summarized DN-associated metabolic pathways and clinical manifestations. Finally, we have also focused on the roles of polyphenols in the treatment of DN.
Collapse
|
8
|
Li X, Guo Q, Ye Z, Wang E, Zou W, Sun Z, He Z, Zhong T, Weng Y, Pan Y. PPAR γ Prevents Neuropathic Pain by Down-Regulating CX3CR1 and Attenuating M1 Activation of Microglia in the Spinal Cord of Rats Using a Sciatic Chronic Constriction Injury Model. Front Neurosci 2021; 15:620525. [PMID: 33841075 PMCID: PMC8024527 DOI: 10.3389/fnins.2021.620525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background Previous studies have proved that peripheral nerve injury is involved in the pathogenesis of neuropathic pain (NP). The peripheral nerve injury primes spinal M1 microglia phenotype and produces pro-inflammatory cytokines, which are responsible for neurotoxic and neuronal hyper-excitable outcomes. Spinal peroxisome proliferator-activated receptor gamma (PPAR γ) has been shown to play an anti-inflammatory role in the development of NP. However, the role of PPAR γ in attenuating the pathological pathway of spinal microgliosis is still unknown. Methods Sprague-Dawley rats (male, aged 8-10 weeks) were randomly divided into three groups, i.e., a control group, a NP group, and a NP + lentivirus encoding PPAR γ (LV-PPAR γ) group. The sciatic chronic constriction injury (CCI) model was used to induce NP in rats. Pain behavior was assessed by monitoring the rat hind-paw withdrawal threshold to mechanical stimuli and withdrawal latency to radiant heat. The LV-PPAR γ was intrathecally infused 1 day before CCI. Western blot analysis and real-time qPCR were used to detect the microglia phenotypic molecules and CX3CR1 expression in the spinal cord. In vitro, BV-2 microglia cells were transfected with LV-PPAR γ and incubated with lipopolysaccharides (LPS), and the levels of M1 microglia phenotypic molecules and CX3CR1 in BV-2 microglia cells were assessed by western blot analysis, real-time qPCR, and enzyme-linked immunosorbent assay. Results Preoperative intrathecal infusion of LV-PPAR γ attenuated pain in rats 7 days post-CCI. The M1-microglia marker, CX3CR1, and pro-inflammatory signaling factors were increased in the spinal cord of CCI rats, while the preoperative intrathecal infusion of LV-PPAR γ attenuated these changes and increased the expression of IL-10. In vitro, the overexpression of PPAR γ in BV-2 cells reduced LPS-induced M1 microglia polarization and the levels of CX3CR1 and pro-inflammatory cytokines. Conclusion Intrathecal infusion of LV-PPAR γ exerts a protective effect on the development of NP induced by CCI in rats. The overexpression of PPAR γ may produce both analgesic and anti-inflammatory effects due to inhibition of the M1 phenotype and CX3CR1 signaling pathway in spinal microglia.
Collapse
Affiliation(s)
- Xilei Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhihua Sun
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhenghua He
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yundan Pan
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
9
|
Amorfrutins Relieve Neuropathic Pain through the PPAR γ/CCL2 Axis in CCI Rats. PPAR Res 2021; 2021:8894752. [PMID: 33552153 PMCID: PMC7846402 DOI: 10.1155/2021/8894752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is a public health problem. Although many pharmaceuticals are used to treat neuropathic pain, effective and safe drugs do not yet exist. In this study, we tested nociceptive responses in CCI rats, and ELISA assay was performed to examine the expression of proinflammatory cytokines. We found that amorfrutins significantly reduce the pain behaviors in CCI rats and suppress the expression of proinflammatory cytokines (TNFα, IL-6, and IL-1β) and chemokines (CCL2/CCR2) in the spinal cord. However, concurrent administration of a PPARγ antagonist, GW9662, reversed the antihyperalgesic effect induced by amorfrutins. The results indicate that amorfrutins inhibit the inflammation and chemokine expression by activating PPARγ, thus relieving neuropathic pain in CCI rats. Therefore, PPARγ-CCL2/CCR2 pathway might represent a new treatment option for neuropathic pain.
Collapse
|
10
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
11
|
Farooq S, Khan AU, Iqbal MS. Computational and Pharmacological Investigation of (E)-2-(4-Methoxybenzylidene)Cyclopentanone for Therapeutic Potential in Neurological Disorders. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3601-3614. [PMID: 32982169 PMCID: PMC7490097 DOI: 10.2147/dddt.s234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
Abstract
Purpose This study involved the computational and pharmacological evaluation of (E)-2-(4-methoxybenzylidene)cyclopentan-1-one (A2K10). Methods In silico studies were conducted through virtual screening. Morris water and Y-maze tests were conducted to evaluate Alzheimer’s disease. Acute epilepsy haloperidol,and hyperalgesia were used to calculate the epilepsy model, with Parkinson’s disease and mechanical allodynia at a dose of 1–10 mg/kg in the mouse model. Results A2K10 exhibited the highest binding affinity against α7 nicotinic acetylcholine receptors (−256.02 kcal/mol). A2K10 decreased escape latency in the Morris water test during different trials. In the Y-maze test, A2K10 dose-dependently increased spontaneous alteration behavior, with maximum effect of 75.5%±0.86%. Furthermore, A2K10 delayed onset of pentylenetetrazole-induced myoclonic jerks and tonic–clonic seizures and decreased duration of tonic–clonic convulsions in mice, with maximum effect of 93.8±5.30, 77.8±2.91, and 12.9±1.99 seconds, respectively. In the haloperidol-induced Parkinson’s disease model, A2K10 significantly prolonged hanging time and reduced tardive dyskinesia. Moreover, A2K10 extended latency in hot-plate hyperalgesia and increased the paw-withdrawal threshold in mechanical allodynia. In toxicity studies, no mortality was observed. Conclusion Overall, the results indicated that A2K10 has potential as an anti-Alzheimer’s, antiepileptic, antiparkinsonian, and analgesic therapeutic compound.
Collapse
Affiliation(s)
- Sabah Farooq
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
12
|
Cordaro M, Cuzzocrea S, Crupi R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants (Basel) 2020; 9:antiox9030216. [PMID: 32150935 PMCID: PMC7139331 DOI: 10.3390/antiox9030216] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO 63103, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
13
|
Yi D, Wang K, Zhu B, Li S, Liu X. Identification of neuropathic pain-associated genes and pathways via random walk with restart algorithm. J Neurosurg Sci 2020; 65:414-420. [PMID: 32536116 DOI: 10.23736/s0390-5616.20.04920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neuropathic pain (NP) develops from neuropathic lesions or diseases affecting the nervous system, and has become a serious public health issue due to its complex symptoms, high incidence and long duration. At present, the exact pathogenesis of NP is still unclear. In this study, we sought to identify the genes as well as the related molecular mechanisms associated with NP occurrence and development. METHODS We firstly identified the differentially expressed genes between NP spinal nerve ligation (SNL) rats and control sham rats and then projected them onto a STRING network for functional association analysis. Then, Random Walk with Restart (RWR) was conducted to find some new NP-related genes, with their potential functions sequentially analyzed by GO annotation and KEGG pathway analysis. RESULTS Some new NP-related genes, like Gng13, C3 and Cxcl2, were identified by RWR analysis. Meanwhile, some biological functions like inflammatory responses, chemotaxis and immune responses, as well as some signaling pathways, such as those involved in neuroactive ligand-receptor interactions, complement and blood coagulation cascade reactions, and cytokine-receptor interactions that the new NP- related genes were most activated were found to be associated with NP occurrence and development. CONCLUSIONS This study extends our knowledge of NP occurrence and development and provides new therapeutic targets for future NP treatment.
Collapse
Affiliation(s)
- Duan Yi
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Kai Wang
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Bin Zhu
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Shuiqing Li
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Xiaoguang Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing China -
| |
Collapse
|
14
|
Naseri R, Farzaei F, Fakhri S, El-Senduny FF, Altouhamy M, Bahramsoltani R, Ebrahimi F, Rahimi R, Farzaei MH. Polyphenols for diabetes associated neuropathy: Pharmacological targets and clinical perspective. Daru 2019; 27:781-798. [PMID: 31352568 PMCID: PMC6895369 DOI: 10.1007/s40199-019-00289-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Diabetic neuropathy (DNP) is a widespread and debilitating complication with complex pathophysiology that is caused by neuronal dysfunction in diabetic patients. Conventional therapeutics for DNP are quite challenging due to their serious adverse effects. Hence, there is a need to investigate novel effective and safe options. The novelty of the present study was to provide available therapeutic approaches, emerging molecular mechanisms, signaling pathways and future directions of DNP as well as polyphenols' effect, which accordingly, give new insights for paving the way for novel treatments in DNP. EVIDENCE ACQUISITION A comprehensive review was done in electronic databases including Medline, PubMed, Web of Science, Scopus, national database (Irandoc and SID), and related articles regarding metabolic pathways on the pathogenesis of DNP as well as the polyphenols' effect. The keywords "diabetic neuropathy" and "diabetes mellitus" in the title/abstract and "polyphenol" in the whole text were used. Data were collected from inception until May 2019. RESULTS DNP complications is mostly related to a poor glycemic control and metabolic imbalances mainly inflammation and oxidative stress. Several signaling and molecular pathways play key roles in the pathogenesis and progression of DNP. Among natural entities, polyphenols are suggested as multi-target alternatives affecting most of these pathogenesis mechanisms in DNP. CONCLUSION The findings revealed novel pathogenicity signaling pathways of DNP and affirmed the auspicious role of polyphenols to tackle these destructive pathways in order to prevent, manage, and treat various diseases. Graphical Abstract .
Collapse
Affiliation(s)
- Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Miram Altouhamy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy students` research committee, School of pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Quintão NLM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Front Neurosci 2019; 13:907. [PMID: 31555078 PMCID: PMC6722212 DOI: 10.3389/fnins.2019.00907] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is one of the most severe side effects of anticancer agents, such as platinum- and taxanes-derived drugs (oxaliplatin, cisplatin, carboplatin and paclitaxel). CINP may even be a factor of interruption of treatment and consequently increasing the risk of death. Besides that, it is important to take into consideration that the incidence of cancer is increasing worldwide, including colorectal, gastric, lung, cervical, ovary and breast cancers, all treated with the aforementioned drugs, justifying the concern of the medical community about the patient’s quality of life. Several physiopathological mechanisms have already been described for CINP, such as changes in axonal transport, mitochondrial damage, increased ion channel activity and inflammation in the central nervous system (CNS). Another less frequent event that may occur after chemotherapy, particularly under oxaliplatin treatment, is the central neurotoxicity leading to disorders such as mental confusion, catatonia, hyporeflexia, etc. To date, no pharmacological therapy has shown satisfactory effect in these cases. In this scenario, duloxetine is the only drug currently in clinical use. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors and are present in several tissues, mainly participating in lipid and glucose metabolism and inflammatory response. There are three PPAR isoforms: α, β/δ and γ. PPARγ, the protagonist of this review, is expressed in adipose tissue, large intestine, spleen and neutrophils. This subtype also plays important role in energy balance, lipid biosynthesis and adipogenesis. The effects of PPARγ agonists, known for their positive activity on type II diabetes mellitus, have been explored and present promising effects in the control of neuropathic pain, including CINP, and also cancer. This review focuses largely on the mechanisms involved in chemotherapy-induced neuropathy and the effects of the activation of PPARγ to treat CINP. It is the aim of this review to help understanding and developing novel CINP therapeutic strategies integrating PPARγ signalling.
Collapse
Affiliation(s)
| | | | | | | | - Jéssica Melato
- School of Heath Science, Universidade do Vale do Itajaí, Itajaí, Brazil
| | - Robson Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Zhou G, Yan M, Guo G, Tong N. Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions. Dose Response 2019; 17:1559325819862449. [PMID: 31360147 PMCID: PMC6636227 DOI: 10.1177/1559325819862449] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Neonatal-streptozotocin (n-STZ)-induced diabetes mimics most of the clinicopathological symptoms of type 2 diabetes mellitus (T2DM) peripheral neuropathy. Berberine, a plant alkaloid, is reported to have antidiabetic, antioxidant, anti-inflammatory, and neuroprotective potential. The aim of the present study was to investigate the potential of berberine against n-STZ-induced painful diabetic peripheral polyneuropathy by assessing various biochemical, electrophysiological, morphological, and ultrastructural studies. Type 2 diabetes mellitus was produced neonatal at the age of 2 days (10-12 g) by STZ (90 mg/kg intraperitoneal). After confirmation of neuropathy at 6 weeks, rats were treated with berberine (10, 20, and 40 mg/kg). Administration of n-STZ resulted in T2DM-induced neuropathic pain reflected by a significant alterations (P < .05) in hyperalgesia, allodynia, and motor as well as sensory nerve conduction velocities whereas berberine (20 and 40 mg/kg) treatment significantly attenuated (P < .05) these alterations. Berberine treatment significantly inhibited (P < .05) STZ-induced alterations in aldose reductase, glycated hemoglobin, serum insulin, hepatic cholesterol, and triglyceride levels. The elevated oxido-nitrosative stress and decreased Na-K-ATPase and pulse Ox levels were significantly attenuated (P < .05) by berberine. It also significantly downregulated (P < .05) neural tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 messenger RNA (mRNA), and protein expressions both. Streptozotocin-induced downregulated mRNA expressions of brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1), and peroxisome proliferator-activated receptors-γ (PPAR-γ) in sciatic nerve were significantly upregulated (P < .05) by berberine. Western blot analysis revealed that STZ-induced alterations in adenosine monophosphate protein kinase (AMPK; Thr-172) and protein phosphatase 2C-α protein expressions in dorsal root ganglia were inhibited by berberine. It also attenuated histological and ultrastructural alterations induced in sciatic nerve by STZ. In conclusion, berberine exerts its neuroprotective effect against n-STZ-induced diabetic peripheral neuropathy via modulation of pro-inflammatory cytokines (TNF α, IL-1β, and IL-6), oxido-nitrosative stress, BDNF, IGF-1, PPAR-γ, and AMPK expression to ameliorate impaired allodynia, hyperalgesia, and nerve conduction velocity during T2DM.
Collapse
Affiliation(s)
- Guangju Zhou
- Department of Endocrinology and Metabolism, West China Hospital of
Sichuan University, Chengdu, China
| | - Mingzhu Yan
- Department of Neurology, Xijing Hospital, Fourth Military Medical
University (FMMU), Shaanxi, China
| | - Gang Guo
- Department of Talent Highland, Department of General Surgery, The
First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital of
Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Khorasani A, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling. Int J Neurosci 2019; 129:1053-1065. [PMID: 31215291 DOI: 10.1080/00207454.2019.1634067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: Alzheimer's disease (AD) is characterized by oxidative stress, neuroinflammation and progressive cognitive decline. Abscisic acid (ABA) is produced in a variety of mammalian tissues, including brain. It has anti-inflammatory and antioxidant effects and elicits a positive effect on spatial learning and memory performance. Here, the possible protective effect of ABA was evaluated in streptozotocin (STZ)-induced AD rat model which were injected intracerebroventriculary (i.c.v.) with STZ (3 mg/kg). Material and Methods: The STZ-treated animals received ABA (10 μg/rat, i.c.v.), ABA plus PPARβ/δ receptor antagonist (GSK0660, 80 nM/rat) or ABA plus selective inhibitor of PKA (KT5720, 0.5 μg/rat) for 14 d. Learning and memory were determined using Morris water maze (MWM) and passive avoidance (PA) tests. Results: The data showed that STZ produced a significant learning and memory deficit in both MWM and PA tests. ABA significantly prevented the learning and memory impairment in STZ-treated rats. However, ABA effects were blocked by GSK0660 and KT5720. Conclusion: The data indicated that ABA attenuates STZ-induced learning and memory impairment and PPAR-β/δ receptors and PKA signaling are involved, at least in part, in the ABA mechanism.
Collapse
Affiliation(s)
- Ali Khorasani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| |
Collapse
|
18
|
Onesti E, Frasca V, Ceccanti M, Tartaglia G, Gori MC, Cambieri C, Libonati L, Palma E, Inghilleri M. Short-Term Ultramicronized Palmitoylethanolamide Therapy in Patients with Myasthenia Gravis: a Pilot Study to Possible Future Implications of Treatment. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:232-238. [DOI: 10.2174/1871527318666190131121827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Background: The cannabinoid system may be involved in the humoral mechanisms at the
neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been
shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients
modifying the stability of ACh receptor (AChR) function.
<p>
Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis
(MG) on muscular fatigue and neurophysiological changes.
<p>
Method: The duration of this open pilot study, which included an intra-individual control, was three
weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A
neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the
axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients
every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a
possible immunomodulatory effect of PEA in MG patients.
<p>
Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric
nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response.
Antibody titers did not change significantly after treatment.
<p>
Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular
response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct
effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines
also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that
PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Emanuela Onesti
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Vittorio Frasca
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Marco Ceccanti
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giorgio Tartaglia
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Maria Cristina Gori
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Chiara Cambieri
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Laura Libonati
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Institute Pasteur- Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Maurizio Inghilleri
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Losartan treatment attenuates the development of neuropathic thermal hyperalgesia induced by peripheral nerve injury in rats. Life Sci 2019; 220:147-155. [DOI: 10.1016/j.lfs.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
20
|
The role of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptors-α in mediating the antinociceptive effects of palmitoylethanolamine in rats. Neuroreport 2019; 30:32-37. [PMID: 30418420 DOI: 10.1097/wnr.0000000000001161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Palmitoylethanolamine (PEA) is a ligand at peroxisome proliferator-activated receptors-α (PPARα), a nuclear receptor that has anti-inflammatory effects. Herein, complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats and in-vitro calcium imaging studies were used to evaluate the mechanisms that underlie the antinociceptive effects of PEA, including modulating the activity of the transient receptor potential vanilloid receptor 1, which is a key receptor involved in the development of inflammatory pain. Adult male Sprague-Dawley rats (180-250 g) received subcutaneous injections of CFA (0.1 ml) into the plantar surface of the left hind paw. Von Frey filaments were used to determine the paw withdrawal threshold. PEA (50 µg), WY14643 (50 µg, a selective PPARα agonist) were injected into the plantar surface of the left hind paw at day 7 after CFA injection, and behavioral tests were repeated 6 h after drug administration. Rats were killed and dorsal root ganglia neurons were dissected and prepared for calcium imaging. Neurons were loaded with the calcium-sensitive ratiometric dye Fura-2AM. Changes in [Ca]i were measured as ratios of peak florescence at excitation wavelengths of 340 and 380 nm and expressed as a percentage of the KCl (60 mM) response. Both PEA and WY14643 significantly restored the paw withdrawal threshold in a PPARα-dependent fashion (P<0.01). Capsaicin of 15 nM produced 63.9±13.4% of KCl response. Preincubation of dorsal root ganglia neurons with PEA 6 h before stimulation with capsaicin, significantly reduce capsaicin-evoked calcium responses (42.9±6.4% of KCl response, n=54, P<0.001). In conclusion, modulating transient receptor potential vanilloid receptor 1 activity could provide the mechanism that underlies PEA antinociceptive effects observed in vivo.
Collapse
|
21
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
22
|
Macías-González M, Martín-Núñez GM, Garrido-Sánchez L, García-Fuentes E, Tinahones FJ, Morcillo S. Decreased blood pressure is related to changes in NF-kB promoter methylation levels after bariatric surgery. Surg Obes Relat Dis 2018; 14:1327-1334. [PMID: 30057095 DOI: 10.1016/j.soard.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity is characterized by a chronic, low-grade inflammation, and bariatric surgery is proposed as an effective treatment for reducing the obesity-related co-morbidities. Epigenetic modifications could be involved in the metabolic improvement after surgery. OBJECTIVE The main aim of this study was to evaluate whether DNA methylation pattern from genes related to inflammation and insulin response is associated with the metabolic improvement after bariatric surgery in morbidly obese patients and if these changes depend on the surgical procedure. SETTING University hospital, Spain. METHODS We studied 60 severely obese patients; 31 underwent Roux-en-Y gastric bypass and 29 underwent laparoscopic sleeve gastrectomy. All patients were examined before and at 6 months after bariatric surgery. DNA methylation profile of genes related to the inflammatory response and insulin sensitivity was measured by pyrosequencing. RESULTS The promoter methylation levels of the NFKB1 gene were increased significantly after surgery (2.16 ± .9 versus 2.8 ± 1.03). The decrease in blood pressure, both systolic and diastolic, after surgery was significantly associated with the changes in the promoter methylation levels of the NFKB1 gene (β = -.513, P = .003 and β = -.543, P = .004, respectively). A decrease in inflammation status, measured by high sensitivity C-reactive protein values, was associated with changes in SLC19A1 methylation levels. CONCLUSION Our study shows for the first time an association between NFKB1 methylation levels and blood pressure after bariatric surgery, highlighting the possible function of this gene in the regulation of arterial pressure. Regarding SLC19A1, this gene could position as a potential target linking inflammation and insulin resistance.
Collapse
Affiliation(s)
- Manuel Macías-González
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Gracia María Martín-Núñez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Eduardo García-Fuentes
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Francisco José Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| |
Collapse
|
23
|
Sałat K, Gryzło B, Kulig K. Experimental Drugs for Neuropathic Pain. Curr Neuropharmacol 2018; 16:1193-1209. [PMID: 29745335 PMCID: PMC6187752 DOI: 10.2174/1570159x16666180510151241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/02/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Neuropathic pain (NP) is an important public health problem and despite recent progress in the understanding, diagnosis, pathophysiological mechanisms and the treatment of NP, many patients remain refractory to pharmacotherapy. OBJECTIVE Currently used drugs have limited efficacy and dose-limiting adverse effects, and thus there is a substantial need for further development of novel medications for its treatment. Alternatively, drugs approved for use in diseases other than NP can be applied as experimental for NP conditions. This paper covers advances in the field of NP treatment. RESULTS The prime focus of this paper is on drugs with well-established pharmacological activity whose current therapeutic applications are distinct from NP. These drugs could be a potential novel treatment of NP. Data from preclinical studies and clinical trials on these experimental drugs are presented. The development of advanced methods of genomics enabled to propose new targets for drugs which could be effective in the NP treatment. CONCLUSION Experimental drugs for NP can be a treatment option which should be tailor-made for each individual on the basis of pain features, previous therapies, associated clinical conditions, recurrence of pain, adverse effects, contraindications and patients' preferences. At present, there are only some agents which may have potential as novel treatments. Increasing knowledge about mechanisms underlying NP, mechanisms of drug action, as well as available data from preclinical and clinical studies make botulinum toxin A, minocycline, ambroxol, statins and PPAR agonists (ATx086001) promising potential future treatment options.
Collapse
Affiliation(s)
- Kinga Sałat
- Address correspondence to this author at the Faculty of Pharmacy,
Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland; Tel: + 48 12 6205 555; Fax: + 48 12 6205 554; E-mail:
| | | | | |
Collapse
|
24
|
Suryavanshi SV, Kulkarni YA. NF-κβ: A Potential Target in the Management of Vascular Complications of Diabetes. Front Pharmacol 2017; 8:798. [PMID: 29163178 PMCID: PMC5681994 DOI: 10.3389/fphar.2017.00798] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Diabetes is a metabolic disorder affecting large percentage of population worldwide. NF-κβ plays key role in pathogenesis of vascular complications of diabetes. Persistent hyperglycemia activates NF-κβ that triggers expression of various cytokines, chemokines and cell adhesion molecules. Over-expression of TNF-α, interleukins, TGF-β, Bcl2 and other pro-inflammatory proteins and pro-apoptotic genes by NF-κβ is key risk factor in vascular dysfunction. NF-κβ over-expression also triggers calcification of endothelial cells leading to endothelial dysfunction and further vascular complications. Inhibition of NF-κβ pro-inflammatory pathway is upcoming novel target for management of vascular complications of diabetes. Various natural and synthetic inhibitors of NF-κβ have been studied in management of diabetic complications. Recent preclinical and clinical studies validate NF-κβ as promising target in the management of vascular complications of diabetes.
Collapse
Affiliation(s)
- Sachin V Suryavanshi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
25
|
Wu J, Wang JJ, Liu TT, Zhou YM, Qiu CY, Shen DW, Hu WP. PPAR-α acutely inhibits functional activity of ASICs in rat dorsal root ganglion neurons. Oncotarget 2017; 8:93051-93062. [PMID: 29190977 PMCID: PMC5696243 DOI: 10.18632/oncotarget.21805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α), a lipid activated transcription factor of nuclear hormone receptor superfamily, can relieve pain through a rapid-response mechanism. However, little is known about the underlying mechanism. Herein, we report that PPAR-α activation acutely inhibits the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglion (DRG) neurons. Pre-application of PPAR-α agonist GW7647 for 2 min decreased the amplitude of proton-gated currents mediated by ASICs in a concentration-dependent manner. GW7647 shifted the concentration-response curve for proton downwards, with a decrease of 36.9 ± 2.3% in the maximal current response to proton. GW7647 inhibition of proton-gated currents can be blocked by GW6471, a selective PPAR-α antagonist. Moreover, PPAR-α activation decreased the number of acidosis-evoked action potentials in rat DRG neurons. Finally, peripheral administration of GW7647 dose-dependently relieved nociceptive responses to injection of acetic acid in rats. These results indicated that activation of peripheral PPAR-α acutely inhibited functional activity of ASICs in a non-genomic manner, which revealed a novel mechanism underlying rapid analgesia through peripheral PPAR-α.
Collapse
Affiliation(s)
- Jing Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Jia-Jia Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Yi-Mei Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Ding-Wen Shen
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| |
Collapse
|
26
|
Domingues RB, Duarte H, Senne C, Bruniera G, Brunale F, Rocha NP, Teixeira AL. Serum levels of adiponectin, CCL3/MIP-1α, and CCL5/RANTES discriminate migraine from tension-type headache patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 74:626-31. [PMID: 27556373 DOI: 10.1590/0004-282x20160096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/25/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Inflammatory molecules and neurotrophic factors are implicated in pain modulation; however, their role in primary headaches is not yet clear. The aim of this study was to compare the levels of serum biomarkers in migraine and tension-type headache. METHODS This was a cross-sectional study. We measured serum levels of adiponectin, chemokines, and neurotrophic factors in patients with migraine and tension-type headache. Depression and anxiety symptoms, headache impact and frequency, and allodynia were recorded. RESULTS We included sixty-eight patients with migraine and forty-eight with tension-type headache. Cutaneous allodynia (p = 0.035), CCL3/MIP-1α (p = 0.041), CCL5/RANTES (p = 0.013), and ADP (p = 0.017) were significantly higher in migraine than in tension-type headache. The differences occurred independently of anxiety and depressive symptoms, frequency and impact of headache, and the presence of pain. CONCLUSIONS This study showed higher CCL3/MIP-1α, CCL5/RANTES, and ADP levels in migraine in comparison with tension-type headache. Our findings suggest distinctive roles of these molecules in the pathophysiology of these primary headaches.
Collapse
Affiliation(s)
- Renan B Domingues
- Universidade Federal de Minas Gerais, Programa de Neurociências, Belo Horizonte MG, Brasil;,Senne Liquor Diagnóstico, São Paulo SP, Brasil
| | - Halina Duarte
- Universidade Federal de Minas Gerais, Programa de Neurociências, Belo Horizonte MG, Brasil
| | - Carlos Senne
- Senne Liquor Diagnóstico, São Paulo SP, Brasil;,Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Belo Horizonte MG, Brasil
| | - Gustavo Bruniera
- Senne Liquor Diagnóstico, São Paulo SP, Brasil;,Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Belo Horizonte MG, Brasil
| | - Fernando Brunale
- Senne Liquor Diagnóstico, São Paulo SP, Brasil;,Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Belo Horizonte MG, Brasil
| | - Natália P Rocha
- Hospital Israelita Albert Einstein, Laboratório de Patologia Clínica, São Paulo SP, Brasil
| | - Antonio L Teixeira
- Universidade Federal de Minas Gerais, Programa de Neurociências, Belo Horizonte MG, Brasil;,Hospital Israelita Albert Einstein, Laboratório de Patologia Clínica, São Paulo SP, Brasil
| |
Collapse
|
27
|
Zapata-Sudo G, da Costa Nunes IK, Araujo JSC, da Silva JS, Trachez MM, da Silva TF, da Costa FP, Sudo RT, Barreiro EJ, Lima LM. Synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazones designed as anti-diabetic agents. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2869-2879. [PMID: 27672310 PMCID: PMC5024769 DOI: 10.2147/dddt.s108327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neuropathy is a serious complication of diabetes that has a significant socioeconomic impact, since it frequently demands high levels of health care consumption and compromises labor productivity. Recently, LASSBio-1471 (3) was demonstrated to improve oral glucose tolerance, reduce blood glucose levels, and display an anti-neuropathy effect in a murine streptozotocin-induced diabetes model. In the present work, we describe the design, synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazone derivatives (referred to herein as compounds 4–9), which were designed by molecular modification based on the structure of the prototype LASSBio-1471 (3). Among the compounds tested, better plasma stability was observed with 4, 5, and 9 in comparison to compounds 6, 7, and 8. LASSBio-1773 (7), promoted not only hypoglycemic activity but also the reduction of thermal hyperalgesia and mechanical allodynia in a murine model of streptozotocin-induced diabetic neuropathic pain.
Collapse
Affiliation(s)
- Gisele Zapata-Sudo
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabelle Karine da Costa Nunes
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josenildo Segundo Chaves Araujo
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline Soares da Silva
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Margarete Manhães Trachez
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Anesthesiology, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Tiago Fernandes da Silva
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil
| | - Filipe P da Costa
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Takashi Sudo
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lídia Moreira Lima
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
29
|
Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in Fibromyalgia: Results from Prospective and Retrospective Observational Studies. Pain Ther 2015; 4:169-78. [PMID: 26334329 PMCID: PMC4676767 DOI: 10.1007/s40122-015-0038-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction Fibromyalgia syndrome (FM) is characterized by persistent pain which is often refractory to common analgesic therapies and is particularly disabling. The objective of this study was to evaluate the therapeutic efficacy of duloxetine (DLX) + pregabalin (PGB) in patients suffering from FM and the possible added benefit of the lipid signaling molecule, palmitoylethanolamide (PEA). PEA is well-documented to exert anti-inflammatory, analgesic, and pain-relieving effects at both the preclinical and clinical level. Methods A total of 80 patients were recruited in two steps. The first was a retrospective observational study comprising 45 patients. This patient group received DLX + PGB for 6 months. The second step was a prospective observational study with 35 patients. Patients in this cohort began treatment with DLX + PGB at the same dosage as for the retrospective study plus micronized PEA (PEA-m®; Epitech Group, Italy) and ultramicronized PEA (PEA-um®; Epitech Group, Italy) for 3 months. Positive tender points (TPs), pain evoked, and pain intensity were evaluated at baseline and after 3 and 6 months in both studies. Statistical analyses were employed for comparison of data within the two studies and between them. Results The retrospective observational study (DLX + PGB), after 3 months of treatment showed a decrease of positive TPs, pain evoked, and pain intensity. After 6 months of treatment, these parameters had further improvement. In the prospective observational study (DLX + PGB + PEA), PEA introduction after 3 months of therapeutic regimen with DLX + PGB provided a significant improvement in pain symptoms, with a further reduction in the number of TPs and significant reduction in pain, compared to combined DLX + PGB only (p < 0.0001 for TPs and Visual Analog Scale comparisons). None of the patients experienced adverse side effects. Conclusion Our study confirms the efficacy of DLX + PGB and demonstrates as well the added benefit and safety of PEA in the treatment of pain in patients affected by FM. Electronic supplementary material The online version of this article (doi:10.1007/s40122-015-0038-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosaria Del Giorno
- Institute of Internal Medicine, Rheumatology and Medical Therapy of Pain, Perugia University, District of Terni, Perugia, Italy.
| | - Stephen Skaper
- Department of Pharmaceutical and Pharmacological Sciences, Padua University, Padua, Italy
| | - Antonella Paladini
- Institute of Anesthesiology and Pain Therapy, L'Aquila University, L'Aquila, Italy
| | - Giustino Varrassi
- Paolo Procacci Foundation, L'Aquila University, L'Aquila, Italy.,European League Against Pain, Zürich, Switzerland
| | - Stefano Coaccioli
- Institute of Internal Medicine, Rheumatology and Medical Therapy of Pain, Perugia University, District of Terni, Perugia, Italy.,European League Against Pain, Zürich, Switzerland
| |
Collapse
|
30
|
Pillarisetti S, Khanna I. A multimodal disease modifying approach to treat neuropathic pain--inhibition of soluble epoxide hydrolase (sEH). Drug Discov Today 2015; 20:1382-90. [PMID: 26259523 DOI: 10.1016/j.drudis.2015.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Both neuronal and non-neuronal mechanisms have been proposed to contribute to neuropathic pain (NP). All currently approved treatments for NP modulate neuronal targets and provide only symptomatic relief. Here we review evidence that inhibition of soluble epoxide hydrolase (sEH), the enzyme that degrades epoxyeicosatrienoic acids (EETs), has potential to be a multimodal, disease modifying approach to treat NP: (1) EET actions involve both endogenous opioid system and the GABAergic systems thus provide superior pain relief compared to morphine or gabapentin, (2) EETs are directly anti-inflammatory and inhibit expression of inflammatory cytokines and adhesion molecules thus can prevent continued nerve damage; and (3) EETs promote nerve regeneration in cultured neurons. Thus, an sEH inhibitor will not only provide effective pain relief, but would also block further nerve damage and promote healing.
Collapse
|
31
|
Abstract
Atherosclerosis is a chronic inflammatory disease with deposition of excessive cholesterol in the arterial intima. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor. Activation of PPARα plays an important role in the metabolism of multiple lipids, including high-density lipoprotein, cholesterol, low-density lipoprotein, triglyceride, phospholipid, bile acids, and fatty acids. Increased PPARα activity also mitigates atherosclerosis by blocking macrophage foam cell formation, vascular inflammation, vascular smooth muscle cell proliferation and migration, plaque instability, and thrombogenicity. Clinical use of synthetic PPARα agonist fibrate improved dyslipidemia and attenuated atherosclerosis-related disease risk. This review summarizes PPARα in lipid and lipoprotein metabolism and atherosclerosis, and also highlights its potential therapeutic benefits.
Collapse
|
32
|
Pottabathini R, Kumar A, Bhatnagar A, Garg S, Ekavali E. Ameliorative potential of pioglitazone and ceftriaxone alone and in combination in rat model of neuropathic pain: Targeting PPARγ and GLT-1 pathways. Pharmacol Rep 2015; 68:85-94. [PMID: 26721358 DOI: 10.1016/j.pharep.2015.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The relation between glutamate homeostasis and PPAR gamma has got tremendous importance in nerve trauma and pain. Present study has been designed to elucidate the interaction between the GLT-1 activator (ceftriaxone) and PPAR gamma agonist (pioglitazone) in the spinal nerve ligation induced neuropathic pain. METHODS Male SD rats were subjected to spinal nerve ligation to induce neuropathic pain. Pioglitazone, ceftriaxone and their combination treatments were given for 28 days. Various behavioral, biochemical, neuroinflammatory and apoptotic mediators were assessed subsequently. RESULTS In the present study, ligation of L5 and L6 spinal nerves resulted in marked hyperalgesia and allodynia to different mechanical and thermal stimuli. In addition there is marked increase in oxidative-nitrosative stress parameters, inflammatory and apoptotic markers in spinal cord of spinal nerve ligated rats. Treatment with pioglitazone and ceftriaxone significantly prevented these behavioral, biochemical, mitochondrial and cellular alterations in rats. Further, combination of pioglitazone (10mg/kg, ip) with ceftriaxone (100mg/kg, ip) significantly potentiated the protective effects as compared to their effects per se. CONCLUSION Based on these results we propose that possible interplay between the neuroprotective effects of pioglitazone and ceftriaxone exists in suppressing the behavioral, biochemical, mitochondrial, neuroinflammatory and apoptotic cascades in spinal nerve ligation induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Raghavender Pottabathini
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India.
| | | | - Sukant Garg
- Department of Pathology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - E Ekavali
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India
| |
Collapse
|
33
|
Ransohoff RM, Trettel F. Editorial Research Topic "Chemokines and chemokine receptors in brain homeostasis". Front Cell Neurosci 2015; 9:132. [PMID: 25904848 PMCID: PMC4389403 DOI: 10.3389/fncel.2015.00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/21/2015] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, University of Rome "Sapienza," Rome, Italy
| |
Collapse
|