1
|
Pinna G, Ponomareva O, Stalcup GL, Rasmusson AM. Neuroactive steroids and the pathophysiology of PTSD: Biomarkers for treatment targeting. Neurosci Biobehav Rev 2025; 172:106085. [PMID: 40024353 DOI: 10.1016/j.neubiorev.2025.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that arises after acute or chronic exposure to threatened death, serious injury, or sexual violence. The pathophysiology of PTSD is complex and involves dysregulation of multiple interacting brain regions and neurobiological systems including the sympathetic nervous system, the hypothalamic-pituitary-adrenal (HPA) axis, and the immune system. Deficient biosynthesis of neurosteroids that positively modulate GABAA receptor function, including allopregnanolone (Allo) and its equipotent stereoisomer pregnanolone (PA), also affects a subpopulation of individuals with PTSD and is associated with increased PTSD risk, severity, chronicity and treatment resistance. The synthesis of these neuroactive steroids by the brain, adrenal glands, and gonads may be influenced by stress, drugs, social isolation and other factors with impact on the balance of inhibitory versus excitatory (I/E) neurotransmission in brain. These neuroactive steroids are thus considered a potential target for new PTSD therapeutics. In this review, we first present studies in humans and rodents performed over the past 20 years that have shaped our current understanding of the role of Allo and PA in the pathophysiology of PTSD. We will also discuss the means by which rigorous measurement of neurosteroids can be used to identify individually-variable dysfunctional patterns of neurosteroidogenesis that could be targeted to prevent or treat PTSD. This broadened precision medicine approach to diagnosis of neuroendocrinopathies associated with PTSD may aid in reducing PTSD risk and facilitating the effective prescribing of PTSD therapeutics. We hope that such an approach will also forestall development of individually variable but common psychiatric, substance abuse, and medical PTSD-comorbidities.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA.
| | - Olga Ponomareva
- McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - George L Stalcup
- OAA Psychiatry/Neuroscience Research Fellow in the Neuropsychiatry Translational Research Fellowship (NeTReF) Program, VA Boston Healthcare System, USA
| | - Ann M Rasmusson
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
2
|
Divya, Faruq M, Nazir SS, Kaushik P, Parvez S, Vohora D. Ganaxolone Reverses the Effect of Amyloid β-Induced Neurotoxicity by Regulating the Liver X Receptor Expression in APP Transfected SH-SY5Y Cells and Murine Model of Alzheimer's Disease. J Neurochem 2025; 169:e70007. [PMID: 39936324 DOI: 10.1111/jnc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Inhibiting β-amyloid aggregation and enhancing its clearance are the key strategies in Alzheimer's disease (AD) treatment. Liver X receptors (LXRs) plays a crucial role in cholesterol homeostasis and inflammation, and their activation can clear Aβ aggregates in AD. Allopregnanolone, a neurosteroid, positively influences AD through LXR regulation, while ganaxolone, its synthetic analog, is known for its neuroprotective properties. This study explores the effect of ganaxolone on LXR activation and regulation of genes involved in mitigating Aβ toxicity and tauopathy in SH-SY5Y cells transfected with APP695 Swe/Ind plasmid and an Aβ1-42 induced AD mouse model. Molecular docking stimulations indicated ganaxolone's binding and interaction with LXRβ. Subsequently, transfected neuronal cells exhibited increased mRNA levels of APP, TNF-α and IL-1β, decreased cell viability, reduced MMP and altered protein expression of Aβ, LXR, BCL-2, APOE, ABCA1, along with increased levels of mROS, Bax, and caspase 3 activity. Ganaxolone treatment significantly abrogated Aβ-induced effect in transfected neuronal cells by enhancing LXRβ expression, inducing LXR:RXR colocalization, thereby increasing APOE and ABCA1 expression. It also decreased tau mRNA levels in transfected cells. Importantly, in AD mice, ganaxolone ameliorated cognitive impairment, reduced Aβ toxicity, tau levels, and neuroinflammatory markers, restored mitochondrial function, and decreased neuronal apoptosis. Taken together, these novel results highlight the central role of LXR in mediating Aβ-induced toxicity and provide preclinical evidence for ganaxolone as a potential agent to reduce toxicity in an LXR-dependent manner. This may serve as a promising treatment strategy to slow or prevent neurodegeneration in AD patients.
Collapse
Affiliation(s)
- Divya
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammed Faruq
- Division of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Sheikh Sana Nazir
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Amir Hamzah K, Lipp OV, Ney LJ. Allopregnanolone and intrusive memories: A potential therapeutic target for PTSD treatment? Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111168. [PMID: 39369808 DOI: 10.1016/j.pnpbp.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Significant amounts of research have been devoted to treatment of post-traumatic stress disorder (PTSD) and the understanding of its fear and stress-related symptoms. However, current interventions are only effective in 60 % of the patient population. Allopregnanolone has become a topic of interest for PTSD due to its influences on inhibitory neurotransmission and the physiological stress response. This review explores available literature that suggests that allopregnanolone has an influence on (a) chronic stress and anxiety-like symptoms, (b) fear conditioning and contextual fear, and (c) intrusive and emotional memories. A relationship between allopregnanolone and PTSD is suggested, postulating that allopregnanolone is a potential target for the treatment of PTSD. This very exciting prospect calls for the expansion of research investigating a direct relationship between allopregnanolone and PTSD.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia
| |
Collapse
|
4
|
Niwa M, Lockhart S, Wood DJ, Yang K, Francis-Oliveira J, Kin K, Ahmed A, Wand GS, Kano SI, Payne JL, Sawa A. Prolonged HPA axis dysregulation in postpartum depression associated with adverse early life experiences: A cross-species translational study. NATURE. MENTAL HEALTH 2024; 2:593-604. [PMID: 38736646 PMCID: PMC11087073 DOI: 10.1038/s44220-024-00217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/21/2024] [Indexed: 05/14/2024]
Abstract
Childhood and adolescent stress increase the risk of postpartum depression (PPD), often providing an increased probability of treatment refractoriness. Nevertheless, the mechanisms linking childhood/adolescent stress to PPD remain unclear. Our study investigated the longitudinal effects of adolescent stress on the hypothalamic-pituitary-adrenal (HPA) axis and postpartum behaviors in mice and humans. Adolescent social isolation prolonged glucocorticoid elevation, leading to long-lasting postpartum behavioral changes in female mice. These changes were unresponsive to current PPD treatments but improved with post-delivery glucocorticoid receptor antagonist treatment. Childhood/adolescent stress significantly impacted HPA axis dysregulation and PPD in human females. Repurposing glucocorticoid receptor antagonists for some cases of treatment-resistant PPD may be considered.
Collapse
Affiliation(s)
- Minae Niwa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
| | - Sedona Lockhart
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J. Wood
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Kyohei Kin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Adeel Ahmed
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Gary S. Wand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shin-ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jennifer L. Payne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlotte, VA, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
5
|
Norred MA, Zuschlag ZD, Hamner MB. A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder. Drugs 2024; 84:149-164. [PMID: 38413493 DOI: 10.1007/s40265-023-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/29/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder inflicting high degrees of symptomatic and socioeconomic burdens. The development of PTSD results from a cascade of events with contributions from multiple processes and the underlying pathophysiology is complex, involving neurotransmitters, neurocircuitry, and neuroanatomical pathways. Presently, only two medications are US FDA-approved for the treatment of PTSD, both selective serotonin reuptake inhibitors (SSRIs). However, the complex underlying pathophysiology suggests a number of alternative pathways and mechanisms that may be targets for potential drug development. Indeed, investigations and drug development are proceeding in a number of these alternative, non-serotonergic pathways in an effort to improve the management of PTSD. In this manuscript, the authors introduce novel and emerging treatments for PTSD, including drugs in various stages of development and clinical testing (BI 1358894, BNC-210, PRAX-114, JZP-150, LU AG06466, NYV-783, PH-94B, SRX246, TNX-102), established agents and known compounds being investigated for their utility in PTSD (brexpiprazole, cannabidiol, doxasoin, ganaxolone, intranasal neuropeptide Y, intranasal oxytocin, tianeptine oxalate, verucerfont), and emerging psychedelic interventions (ketamine, MDMA-assisted psychotherapy, psilocybin-assisted psychotherapy), with an aim to examine and integrate these agents into the underlying pathophysiological frameworks of trauma-related disorders.
Collapse
Affiliation(s)
- Michael A Norred
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Zachary D Zuschlag
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Mark B Hamner
- Behavioral Health Service, Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC, 29401, USA.
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
6
|
Burback L, Brémault-Phillips S, Nijdam MJ, McFarlane A, Vermetten E. Treatment of Posttraumatic Stress Disorder: A State-of-the-art Review. Curr Neuropharmacol 2024; 22:557-635. [PMID: 37132142 PMCID: PMC10845104 DOI: 10.2174/1570159x21666230428091433] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
This narrative state-of-the-art review paper describes the progress in the understanding and treatment of Posttraumatic Stress Disorder (PTSD). Over the last four decades, the scientific landscape has matured, with many interdisciplinary contributions to understanding its diagnosis, etiology, and epidemiology. Advances in genetics, neurobiology, stress pathophysiology, and brain imaging have made it apparent that chronic PTSD is a systemic disorder with high allostatic load. The current state of PTSD treatment includes a wide variety of pharmacological and psychotherapeutic approaches, of which many are evidence-based. However, the myriad challenges inherent in the disorder, such as individual and systemic barriers to good treatment outcome, comorbidity, emotional dysregulation, suicidality, dissociation, substance use, and trauma-related guilt and shame, often render treatment response suboptimal. These challenges are discussed as drivers for emerging novel treatment approaches, including early interventions in the Golden Hours, pharmacological and psychotherapeutic interventions, medication augmentation interventions, the use of psychedelics, as well as interventions targeting the brain and nervous system. All of this aims to improve symptom relief and clinical outcomes. Finally, a phase orientation to treatment is recognized as a tool to strategize treatment of the disorder, and position interventions in step with the progression of the pathophysiology. Revisions to guidelines and systems of care will be needed to incorporate innovative treatments as evidence emerges and they become mainstream. This generation is well-positioned to address the devastating and often chronic disabling impact of traumatic stress events through holistic, cutting-edge clinical efforts and interdisciplinary research.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Mirjam J. Nijdam
- ARQ National Psychotrauma Center, Diemen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
7
|
Smalheiser NR. Mobile circular DNAs regulating memory and communication in CNS neurons. Front Mol Neurosci 2023; 16:1304667. [PMID: 38125007 PMCID: PMC10730651 DOI: 10.3389/fnmol.2023.1304667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Stimuli that stimulate neurons elicit transcription of immediate-early genes, a process which requires local sites of chromosomal DNA to form double-strand breaks (DSBs) generated by topoisomerase IIb within a few minutes, followed by repair within a few hours. Wakefulness, exploring a novel environment, and contextual fear conditioning also elicit turn-on of synaptic genes requiring DSBs and repair. It has been reported (in non-neuronal cells) that extrachromosomal circular DNA can form at DSBs as the sites are repaired. I propose that activated neurons may generate extrachromosomal circular DNAs during repair at DSB sites, thus creating long-lasting "markers" of that activity pattern which contain sequences from their sites of origin and which regulate long-term gene expression. Although the population of extrachromosomal DNAs is diverse and overall associated with pathology, a subclass of small circular DNAs ("microDNAs," ∼100-400 bases long), largely derives from unique genomic sequences and has attractive features to act as stable, mobile circular DNAs to regulate gene expression in a sequence-specific manner. Circular DNAs can be templates for the transcription of RNAs, particularly small inhibitory siRNAs, circular RNAs and other non-coding RNAs that interact with microRNAs. These may regulate translation and transcription of other genes involved in synaptic plasticity, learning and memory. Another possible fate for mobile DNAs is to be inserted stably into chromosomes after new DSB sites are generated in response to subsequent activation events. Thus, the insertions of mobile DNAs into activity-induced genes may tend to inactivate them and aid in homeostatic regulation to avoid over-excitation, as well as providing a "counter" for a neuron's activation history. Moreover, activated neurons release secretory exosomes that can be transferred to recipient cells to regulate their gene expression. Mobile DNAs may be packaged into exosomes, released in an activity-dependent manner, and transferred to recipient cells, where they may be templates for regulatory RNAs and possibly incorporated into chromosomes. Finally, aging and neurodegenerative diseases (including Alzheimer's disease) are also associated with an increase in DSBs in neurons. It will become important in the future to assess how pathology-associated DSBs may relate to activity-induced mobile DNAs, and whether the latter may potentially contribute to pathogenesis.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
9
|
Velasco ER, Florido A, Perez-Caballero L, Marin I, Andero R. The Impacts of Sex Differences and Sex Hormones on Fear Extinction. Curr Top Behav Neurosci 2023; 64:105-132. [PMID: 37528309 DOI: 10.1007/7854_2023_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Fear extinction memories are strongly modulated by sex and hormonal status, but the exact mechanisms are still being discovered. In humans, there are some basal and task-related features in which male and female individuals differ in fear conditioning paradigms. However, analyses considering the effects of sex hormones demonstrate a role for estradiol in fear extinction memory consolidation. Translational studies are taking advantage of the convergent findings between species to understand the brain structures implicated. Nevertheless, the human brain is complex and the transfer of these findings into the clinics remains a challenge. The promising advances in the field together with the standardization of fear extinction methodologies in humans will benefit the design of new personalized therapies.
Collapse
Affiliation(s)
- Eric Raul Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Marin
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
10
|
Ponomareva OY, Fenster RJ, Ressler KJ. Enhancing Fear Extinction: Pharmacological Approaches. Curr Top Behav Neurosci 2023; 64:289-305. [PMID: 37584834 DOI: 10.1007/7854_2023_443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Extinction is the process by which the memory of a learned conditioned association decreases over time and with introduction of new associations. It is a vital part of fear learning, and it is critical to recovery in multiple fear-related disorders, including Specific and Social Phobias, Panic Disorder, Obsessive Compulsive Disorder (OCD), and Posttraumatic Stress Disorder (PTSD). The process of extinction is also the underlying mechanism for recovery in gold-standard therapies for PTSD, including prolonged exposure, cognitive processing therapy, eye movement desensitization and procession, as well as other empirically-based paradigms. Pharmacological modulators of extinction are thus promising targets for treatment of fear-related disorders. We focus here on emerging psychopharmacological treatments to facilitate extinction: D-cycloserine, scopolamine, losartan, ketamine, and 3,4-methylenedioxymethamphetamine. We also provide an overview of recent advances in molecular pathways that show promise as targets for extincion and inhibitory learning, including pathways related to cannabinoid, brain-derived neurotrophic factor, hypothalamic-pituitary-adrenal signaling, and promising work in neurosteroid compounds.
Collapse
|
11
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
12
|
Evidence on the impairing effects of Ayahuasca on fear memory reconsolidation. Psychopharmacology (Berl) 2022; 239:3325-3336. [PMID: 36069952 DOI: 10.1007/s00213-022-06217-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE To uncover whether psychedelic drugs attenuate fear memory responses would advance the development of better psychedelic-based treatments for posttraumatic stress disorder (PTSD). Ayahuasca (AYA), a psychedelic brew containing indolamine N, N-dimethyltryptamine (DMT) and β-carbolines, facilitates fear extinction and improves neural plasticity. Upon retrieval, fear memory undergoes labilization and reconsolidation; however, the effects of AYA on this memory stabilization phase are unknown. OBJECTIVES We aimed to investigate the effects of AYA treatment on fear memory reconsolidation. METHODS Fear-conditioned Wistar rats received AYA (60, 120, or 240 mg/kg) or H2O orally via gavage o.g. 20 min before, immediately, or 3 h after a short retrieval session. Analysis of AYA through liquid chromatography-tandem mass spectrometry was used to determine the content of DMT and β-carbolines in AYA. RESULTS AYA impaired fear memory reconsolidation when given 20 min before or 3 h after memory retrieval, with the dose of 60 mg/kg being effective at both moments. This dose of AYA was devoid of anxiolytic effect. Importantly, during retrieval, AYA did not change fear expression. The lack of retrieval abolished the reconsolidation impairing effect of AYA. The effects of AYA treatment 20 min before or 3 h after memory retrieval lasted at least 22 days, suggesting no spontaneous recovery of fear memory. Fear memory impairments induced by AYA treatment, at both moments, do not show reinstatement. CONCLUSIONS Our findings support the view that a low dose of AYA treatment impairs early and late stages of memory reconsolidation instead of facilitating fear extinction.
Collapse
|
13
|
Rasmusson AM, Novikov O, Brown KD, Pinna G, Pineles SL. Pleiotropic endophenotypic and phenotype effects of GABAergic neurosteroid synthesis deficiency in posttraumatic stress disorder. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100359. [PMID: 36909842 PMCID: PMC10004350 DOI: 10.1016/j.coemr.2022.100359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PTSD is associated with deficits in synthesis of progesterone metabolites such as allopregnanolone and pregnanolone that potently facilitate gamma-amino-butyric acid (GABA) effects at GABAA receptors. These neurosteroids modulate neuronal firing rate, regional brain connectivity, and activation of amygdala-mediated autonomic nervous system, hypothalamic-pituitary-adrenal axis, and behavioral reactions to unconditioned and conditioned threat. They also play critical roles in learning and memory processes such as extinction and extinction retention and inhibit toll-like receptor activation of intracellular pro-inflammatory pathways. Deficient synthesis of these neurosteroids thus may contribute to individually variable PTSD clinical phenotypes encompassing symptom severity, capacity for PTSD recovery, and vulnerability to common PTSD-comorbidities such as major depression, chronic pain, alcohol and nicotine dependence, cardiovascular disease, metabolic syndrome, reproductive disorders, and autoimmune conditions.
Collapse
Affiliation(s)
- Ann M Rasmusson
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Olga Novikov
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.,Boston University School of Medicine, Psychiatry Residency Program, Boston, MA 02118, USA
| | - Kayla D Brown
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.,Behavioral Neurosciences Ph.D. Program, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Suzanne L Pineles
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
14
|
Shaw JC, Dyson RM, Palliser HK, Sixtus RP, Barnes H, Pavy CL, Crombie GK, Berry MJ, Hirst JJ. Examining Neurosteroid-Analogue Therapy in the Preterm Neonate For Promoting Hippocampal Neurodevelopment. Front Physiol 2022; 13:871265. [PMID: 35514343 PMCID: PMC9062084 DOI: 10.3389/fphys.2022.871265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm birth can lead to brain injury and currently there are no targeted therapies to promote postnatal brain development and protect these vulnerable neonates. We have previously shown that the neurosteroid-analogue ganaxolone promotes white matter development and improves behavioural outcomes in male juvenile guinea pigs born preterm. Adverse side effects in this previous study necessitated this current follow-up dosing study, where a focus was placed upon physical wellbeing during the treatment administration and markers of neurodevelopment at the completion of the treatment period. Methods: Time-mated guinea pigs delivered preterm (d62) by induction of labour or spontaneously at term (d69). Preterm pups were randomized to receive no treatment (Prem-CON) or ganaxolone at one of three doses [0.5 mg/kg ganaxolone (low dose; LOW-GNX), 1.0 mg/kg ganaxolone (mid dose; MID-GNX), or 2.5 mg/kg ganaxolone (high dose; HIGH-GNX) in vehicle (45% β-cyclodextrin)] daily until term equivalence age. Physical parameters including weight gain, ponderal index, supplemental feeding, and wellbeing (a score based on respiration, activity, and posture) were recorded throughout the preterm period. At term equivalence, brain tissue was collected, and analysis of hippocampal neurodevelopment was undertaken by immunohistochemistry and RT-PCR. Results: Low and mid dose ganaxolone had some impacts on early weight gain, supplemental feeding, and wellbeing, whereas high dose ganaxolone significantly affected all physical parameters for multiple days during the postnatal period when compared to the preterm control neonates. Deficits in the preterm hippocampus were identified using neurodevelopmental markers including mRNA expression of oligodendrocyte lineage cells (CSPG4, MBP), neuronal growth (INA, VEGFA), and the GABAergic/glutamatergic system (SLC32A1, SLC1A2, GRIN1, GRIN2C, DLG4). These deficits were not affected by ganaxolone at the doses used at the equivalent of normal term. Conclusion: This is the first study to investigate the effects of a range of doses of ganaxolone to improve preterm brain development. We found that of the three doses, only the highest dose of ganaxolone (2.5 mg/kg) impaired key indicators of physical health and wellbeing over extended periods of time. Whilst it may be too early to see improvements in markers of neurodevelopment, further long-term study utilising the lower doses are warranted to assess functional outcomes at ages when preterm birth associated behavioural disorders are observed.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ryan P Sixtus
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Heather Barnes
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
15
|
Raut SB, Marathe PA, van Eijk L, Eri R, Ravindran M, Benedek DM, Ursano RJ, Canales JJ, Johnson LR. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol Ther 2022; 239:108195. [PMID: 35489438 DOI: 10.1016/j.pharmthera.2022.108195] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing memories, is a chronic debilitating condition in need of new treatment options. Current treatment guidelines recommend psychotherapy as first line management with only two drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related to depression and anxiety without producing permanent remission. PTSD remains a significant public health problem with high morbidity and mortality requiring major advances in therapeutics. Early evidence has emerged for the beneficial effects of psychedelics particularly in combination with psychotherapy for management of PTSD, including psilocybin, MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to therapy by increasing trust between therapist and patient, thus allowing for modification of trauma related memories. Furthermore, research into the memory reconsolidation mechanisms has allowed for identification of various pharmacological targets to disrupt abnormally persistent memories. A number of pre-clinical and clinical studies have investigated novel and re-purposed pharmacological agents to disrupt fear memory in PTSD. Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids have also shown potential for PTSD treatment. Here, we focus on the role of fear memory in the pathophysiology of PTSD and propose that many of these new therapeutic strategies produce benefits through the effect on fear memory. Evaluation of recent research findings suggests that while a number of drugs have shown promising results in preclinical studies and pilot clinical trials, the evidence from large scale clinical trials would be needed for these drugs to be incorporated in clinical practice.
Collapse
Affiliation(s)
- Sanket B Raut
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Padmaja A Marathe
- Department of Pharmacology and Therapeutics, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400 012, India
| | - Liza van Eijk
- Department of Psychology, College of Healthcare Sciences, James Cook University, QLD 4811, Australia
| | - Rajaraman Eri
- Health Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Manoj Ravindran
- Medicine, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Department of Psychiatry, North-West Private Hospital, Burnie TAS 7320, Australia
| | - David M Benedek
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Robert J Ursano
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Juan J Canales
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Luke R Johnson
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
16
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
17
|
Rasmusson AM, Pineles SL, Brown KD, Pinna G. A role for deficits in GABAergic neurosteroids and their metabolites with NMDA receptor antagonist activity in the pathophysiology of posttraumatic stress disorder. J Neuroendocrinol 2022; 34:e13062. [PMID: 34962690 PMCID: PMC9233411 DOI: 10.1111/jne.13062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 02/03/2023]
Abstract
Trauma-focused psychotherapies show general efficacy in post-traumatic stress disorder (PTSD), although outcomes vary substantially among individuals with PTSD and many patients do not achieve clinically meaningful symptom improvement. Several factors may contribute to poor treatment response, including genetic or environmental (e.g., stress) effects on neurobiological factors involved in learning and memory processes critical to PTSD recovery. In this review, we discuss the relationship between deficient GABAergic neurosteroid metabolites of progesterone, allopregnanolone (Allo) and pregnanolone (PA), and PTSD symptoms in men and women or PTSD-like behavioral abnormalities observed in male rodent models of PTSD. We also review the role and molecular underpinnings of learning and memory processes relevant to PTSD recovery, including extinction, extinction retention, reconsolidation of reactivated aversive memories and episodic non-aversive memory. We then discuss preclinical and clinical research that supports a role in these learning and memory processes for GABAergic neurosteroids and sulfated metabolites of Allo and PA that allosterically antagonize NMDA receptor function. Studies supporting the possible therapeutic impact of appropriately timed, acutely administered Allo or Allo analogs to facilitate extinction retention and/or block reconsolidation of aversive memories are also reviewed. Finally, we discuss important future directions for research in this area. Examining the varied and composite effects in PTSD of these metabolites of progesterone, as well as neuroactive derivatives of other parent steroids produced in the brain and the periphery, will likely enable a broadening of targets for treatment development. Defining contributions of these neuroactive steroids to common PTSD-comorbid psychiatric and medical conditions, as well as subpopulation-specific underlying dysfunctional physiological processes such as hypothalamic-pituitary-adrenal axis and immune system dysregulation, may also enable development of more effective multisystem precision medicines to prevent and treat the broader, polymorbid sequelae of extreme and chronic stress.
Collapse
Affiliation(s)
- Ann M. Rasmusson
- VA National Center for PTSD, Women’s Health Science Division, Department of Veterans Affairs, Boston, MA 02130, U.S.A
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118
| | - Suzanne L. Pineles
- VA National Center for PTSD, Women’s Health Science Division, Department of Veterans Affairs, Boston, MA 02130, U.S.A
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118
| | - Kayla D. Brown
- Behavioral Neurosciences PhD Program, Boston University Medical Campus, Boston, MA, 02118, U.S.A
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, U.S.A
| |
Collapse
|
18
|
Matrisciano F, Pinna G. PPAR-α Hypermethylation in the Hippocampus of Mice Exposed to Social Isolation Stress Is Associated with Enhanced Neuroinflammation and Aggressive Behavior. Int J Mol Sci 2021; 22:ijms221910678. [PMID: 34639019 PMCID: PMC8509148 DOI: 10.3390/ijms221910678] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.
Collapse
|
19
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
20
|
Almeida FB, Pinna G, Barros HMT. The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD. Int J Mol Sci 2021; 22:5495. [PMID: 34071053 PMCID: PMC8197074 DOI: 10.3390/ijms22115495] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Under stressful conditions, the hypothalamic-pituitary-adrenal (HPA) axis acts to promote transitory physiological adaptations that are often resolved after the stressful stimulus is no longer present. In addition to corticosteroids (e.g., cortisol), the neurosteroid allopregnanolone (3α,5α-tetrahydroprogesterone, 3α-hydroxy-5α-pregnan-20-one) participates in negative feedback mechanisms that restore homeostasis. Chronic, repeated exposure to stress impairs the responsivity of the HPA axis and dampens allopregnanolone levels, participating in the etiopathology of psychiatric disorders, such as major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). MDD and PTSD patients present abnormalities in the HPA axis regulation, such as altered cortisol levels or failure to suppress cortisol release in the dexamethasone suppression test. Herein, we review the neurophysiological role of allopregnanolone both as a potent and positive GABAergic neuromodulator but also in its capacity of inhibiting the HPA axis. The allopregnanolone function in the mechanisms that recapitulate stress-induced pathophysiology, including MDD and PTSD, and its potential as both a treatment target and as a biomarker for these disorders is discussed.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Chronic Disease
- Corticosterone/metabolism
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/physiopathology
- Feedback, Physiological
- Female
- GABA-A Receptor Agonists/therapeutic use
- Humans
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Models, Biological
- Pituitary-Adrenal System/physiopathology
- Pregnanolone/biosynthesis
- Pregnanolone/physiology
- Receptors, GABA-A/physiology
- Sex Characteristics
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Physiological
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; (F.B.A.); (H.M.T.B.)
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; (F.B.A.); (H.M.T.B.)
| |
Collapse
|
21
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
Lattanzi S, Riva A, Striano P. Ganaxolone treatment for epilepsy patients: from pharmacology to place in therapy. Expert Rev Neurother 2021; 21:1317-1332. [PMID: 33724128 DOI: 10.1080/14737175.2021.1904895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Nonsulfated neurosteroids can provide phasic and tonic inhibition through activation of synaptic and extra-synaptic γ-aminobutyric acid (GABA)A receptors, exhibiting a greater potency for the latter. These actions occur by interacting with modulatory sites that are distinct from those bound by benzodiazepines and barbiturates. Ganaxolone (GNX) is a synthetic analog of the endogenous neurosteroid allopregnanolone and a member of a novel class of neuroactive steroids called epalons.Areas covered: The authors review the pharmacology of GNX, summarize the main clinical evidence about its antiseizure efficacy and tolerability, and suggest implications for clinical practice and future research.Expert opinion: The clinical development of GNX is mainly oriented to target unmet needs and focused on status epilepticus and rare genetic epilepsies that have few or no treatment options.The availability of oral and intravenous formulations allows reaching adult and pediatric patients in acute and chronic care settings. Further evidence will complement the understanding of the potentialities of GNX and possibly lead to indications for use in clinical practice.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| |
Collapse
|
23
|
Effects of ∆ 9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry 2020; 20:420. [PMID: 32842985 PMCID: PMC7448997 DOI: 10.1186/s12888-020-02813-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) may stem from the formation of aberrant and enduring aversive memories. Some PTSD patients have recreationally used Cannabis, probably aiming at relieving their symptomatology. However, it is still largely unknown whether and how Cannabis or its psychotomimetic compound Δ9-tetrahydrocannabinol (THC) attenuates the aversive/traumatic memory outcomes. Here, we seek to review and discuss the effects of THC on aversive memory extinction and anxiety in healthy humans and PTSD patients. METHODS Medline, PubMed, Cochrane Library, and Central Register for Controlled Trials databases were searched to identify peer-reviewed published studies and randomized controlled trials in humans published in English between 1974 and July 2020, including those using only THC and THC combined with cannabidiol (CBD). The effect size of the experimental intervention under investigation was calculated. RESULTS At low doses, THC can enhance the extinction rate and reduce anxiety responses. Both effects involve the activation of cannabinoid type-1 receptors in discrete components of the corticolimbic circuitry, which could couterbalance the low "endocannabinoid tonus" reported in PTSD patients. The advantage of associating CBD with THC to attenuate anxiety while minimizing the potential psychotic or anxiogenic effect produced by high doses of THC has been reported. The effects of THC either alone or combined with CBD on aversive memory reconsolidation, however, are still unknown. CONCLUSIONS Current evidence from healthy humans and PTSD patients supports the THC value to suppress anxiety and aversive memory expression without producing significant adverse effects if used in low doses or when associated with CBD. Future studies are guaranteed to address open questions related to their dose ratios, administration routes, pharmacokinetic interactions, sex-dependent differences, and prolonged efficacy.
Collapse
|
24
|
Froger N. [New therapeutic avenues for neurosteroids in psychiatric diseases]. Biol Aujourdhui 2020; 213:131-140. [PMID: 31829933 DOI: 10.1051/jbio/2019023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 12/28/2022]
Abstract
Discovered in the eighties by Pr Baulieu and colleagues, neurosteroids are a class of neuroactive brain-born steroids, which comprises the steroid hormones, their biosynthesis precursors and their metabolites. They can act through genomic as well as non-genomic pathways. Genomic pathways, only triggered by the neurosteroid hormones, are, in the brain, the same as those largely described in the periphery: the binding of these steroid hormones to nuclear receptors leads to transcription regulations. On the other hand, their precursors and metabolites, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), their respective sulfate esters, pregnenolone sulfate (PREG-S) and DHEA sulfate (DHEA-S) and allopregnanolone (ALLOP), are defined as neurosteroids, but no corresponding nuclear receptors have been identified so far. In fact, they trigger non-genomic pathways which consist in (i) inhibitory ionotropic receptors, (ii) excitatory ionotropic receptors and (iii) the microtubular system. Hence, inhibitory neurosteroids, whose mostly studied representative is ALLOP, positively modulate, or directly activate, the ionotropic GABA-A receptors. In contrast, excitatory neurosteroids, represented by PREG-S, DHEA-S and DHEA, inhibit the GABA-A receptors, and activate, directly or indirectly, through the sigma-1 receptors, the NMDA glutamate receptors. Neurosteroids of the third group, the microtubular neurosteroids, are able to bind microtubule associated proteins, in particular MAP2, to promote microtubule assembly, neurite outgrowth and in fine structural neuroplasticity. So far, PREG, DHEA and progesterone are the three identified microtubular neurosteroids. The pharmacological properties of neurosteroids have led to specific investigations for assessing their therapeutic potentialities in psychiatric diseases, using validated animal models. In some cases, clinical trials were also performed. These studies showed that ALLOP, the main inhibitory neurosteroid, displayed clear-cut anxiolytic-like and antidepressant-like efficacy in animals. It has been subsequently developed as Brexanolone and tested with success in phase III of clinical trials for the treatment of post-partum depression. Although showing pro-cognitive properties in animals, the sulfated neurosteroids, PREG-S and DHEA-S, were, in contrast, never tested in clinical trials, probably due to their poor stability and proconvulsivant side effects. Their respective non-sulfated forms, PREG and DHEA, showed antidepressant and antipsychotic efficacies in clinical trials, but these drugs never reached the phase III of clinical development because their therapeutic uses would have led to an overproduction of active metabolites responsible for intolerable side effects. The alternative strategy which has been selected consists of the development of non-metabolizable synthetic derivatives of these natural steroids, which keep the same neuroactive properties as their parent molecules, but are devoid of any hormonal side effects. An example of such innovative drugs is MAP4343, a synthetic derivative of PREG, which exhibits potent antidepressant-like efficacy in validated animal models. It is currently tested in depressed patients.
Collapse
Affiliation(s)
- Nicolas Froger
- MAPREG SAS, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
25
|
Pineles SL, Nillni YI, Pinna G, Webb A, Arditte Hall KA, Fonda JR, Irvine J, King MW, Hauger RL, Resick PA, Orr SP, Rasmusson AM. Associations between PTSD-Related extinction retention deficits in women and plasma steroids that modulate brain GABA A and NMDA receptor activity. Neurobiol Stress 2020; 13:100225. [PMID: 32490055 PMCID: PMC7256058 DOI: 10.1016/j.ynstr.2020.100225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/25/2022] Open
Abstract
Several studies have demonstrated poor retention of extinction learning among individuals with posttraumatic stress disorder (PTSD). Gonadal hormone signaling in brain appears to influence the retention of extinction learning differently in women with and without PTSD. Women with PTSD, compared to trauma-exposed women without PTSD, show relative deficits in extinction retention during the mid-luteal phase (mLP) of the menstrual cycle, compared to the early follicular phase (eFP). A PTSD-related reduction in conversion of progesterone to its GABAergic metabolites allopregnanolone (Allo) and pregnanolone (PA) may contribute to these findings. The current study in trauma-exposed women with (n = 9) and without (n = 9) PTSD investigated associations between extinction retention and plasma Allo + PA levels, as well as the ratio of Allo + PA to 5α-dihydroprogesterone (5α-DHP), the immediate steroid precursor for Allo. The study also investigated the relationship between extinction retention and the ratio of Allo + PA to dehydroepiandrosterone (DHEA), an adrenally-derived GABAA receptor antagonist. Study participants completed differential fear-conditioning during both the eFP and mLP of the menstrual cycle. Analyses revealed a strong positive relationship between resting plasma Allo + PA levels and extinction retention during the mLP in the women with, but not without, PTSD (e.g., diagnosis X Allo + PA interaction controlling for early extinction: β = −.0008, p = .003). A similar pattern emerged for the Allo + PA to 5α-DHP ratio (β = -.165, p = .071), consistent with a PTSD-related block in production of Allo and PA at the enzyme 3α-hydroxysteroid dehydrogenase. The ratio of Allo + PA to DHEA appeared to influence extinction retention only during the eFP when Allo + PA and DHEA levels are comparable and thus may compete for effects on GABAA receptor function. This study aligns with male rodent PTSD models linking experimental reductions in brain Allo levels to deficits in extinction retention and suggests that targeting PTSD-related deficits in GABAergic neurosteroid synthesis may be therapeutic.
Collapse
Affiliation(s)
- Suzanne L Pineles
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yael I Nillni
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Andrea Webb
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Jennifer R Fonda
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System Boston, MA, 02130, USA.,Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
| | - John Irvine
- The MITRE Corporation, Bedford, MA, 01730, USA
| | - Matthew W King
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Richard L Hauger
- Center of Excellence for Stress and Mental Health, San Diego VA Healthcare System, San Diego, CA, 9216, USA.,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Patricia A Resick
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27701, USA
| | - Scott P Orr
- Psychiatry Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ann M Rasmusson
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
26
|
Kim BK, Fonda JR, Hauger RL, Pinna G, Anderson GM, Valovski IT, Rasmusson AM. Composite contributions of cerebrospinal fluid GABAergic neurosteroids, neuropeptide Y and interleukin-6 to PTSD symptom severity in men with PTSD. Neurobiol Stress 2020; 12:100220. [PMID: 32435669 PMCID: PMC7231970 DOI: 10.1016/j.ynstr.2020.100220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Given that multiple neurobiological systems, as well as components within these systems are impacted by stress, and may interact in additive, compensatory and synergistic ways to promote or mitigate PTSD risk, severity, and recovery, we thought that it would be important to consider the collective, as well as separate effects of these neurobiological systems on PTSD risk. With this goal in mind, we conducted a proof-of-concept study utilizing cerebrospinal fluid (CSF) collected from unmedicated, tobacco- and illicit substance-free men with PTSD (n = 13) and trauma-exposed healthy controls (TC) (n = 17). Thirteen neurobiological factors thought to contribute to PTSD risk or severity based on previous studies were assayed. As the small but typical sample size of this lumbar puncture study limited the number of factors that could be considered in a hierarchical regression model, we included only those five factors with at least a moderate correlation (Spearman rho > 0.30) with total Clinician-Administered PTSD Scale (CAPS-IV) scores, and that did not violate multicollinearity criteria. Three of the five factors meeting these criteria—CSF allopregnanolone and pregnanolone (Allo + PA: equipotent GABAergic metabolites of progesterone), neuropeptide Y (NPY), and interleukin-6 (IL-6)—were found to account for over 75% of the variance in the CAPS-IV scores (R2 = 0.766, F = 8.75, p = 0.007). CSF Allo + PA levels were negatively associated with PTSD severity (β = −0.523, p = 0.02) and accounted for 47% of the variance in CAPS-IV scores. CSF NPY was positively associated with PTSD severity (β = 0.410, p = 0.04) and accounted for 14.7% of the CAPS-IV variance. There was a trend for a positive association between PTSD severity and CSF IL-6 levels, which accounted for 15.3% of the variance in PTSD severity (β = 0.423, p = 0.05). Z-scores were then computed for each of the three predictive factors and used to depict the varying relative degrees to which each contributed to PTSD severity at the individual PTSD patient level. This first of its kind, proof-of-concept study bears replication in larger samples. However, it highlights the collective effects of dysregulated neurobiological systems on PTSD symptom severity and the heterogeneity of potential biological treatment targets across individual PTSD patients—thus supporting the need for precision medicine approaches to treatment development and prescribing in PTSD.
Collapse
Key Words
- 3α-HSD, 3α-hydroxysteroid dehydrogenase
- Allo + PA, sum of allopregnanolone and pregnanolone
- EIA, enzyme immunoassay
- GC-MS, gas chromatography-mass spectrometry
- HPLC, high pressure liquid chromatography
- LP, lumbar puncture
- PE, prolonged exposure therapy
- PFC, prefrontal cortex
- RIA, radioimmunoassay
- TC, trauma-exposed control
Collapse
Affiliation(s)
- Byung Kil Kim
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA
| | - Jennifer R Fonda
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), 150 South Huntington Ave., Boston, MA, 02130, USA.,Boston University School of Medicine, 72 E. Concord Street, Boston, MA, 02118, USA
| | - Richard L Hauger
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,Center for Behavior Genetics of Aging, Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, 1601 W Taylor St. MC912 Chicago, IL, 60612, USA
| | - George M Anderson
- Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine S. Frontage Rd. New Haven, CT, 06519, USA
| | - Ivan T Valovski
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Harvard Medical School, 25 Shattuck St. Boston, MA, 02115, USA
| | - Ann M Rasmusson
- VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Boston University School of Medicine, 72 E. Concord Street, Boston, MA, 02118, USA.,VA National Center for PTSD Women's Health Science Division, 150 South Huntington Ave., Boston, MA, 02130, USA
| |
Collapse
|
27
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
28
|
Shang C, Guo Y, Yao JQ, Fang XX, Sun LJ, Jiang XY, Ding ZC, Ran YH, Wang HL, Zhang LM, Li YF. Rapid anti-PTSD-like activity of the TSPO agonist YL-IPA08: Emphasis on brain GABA, neurosteroids and HPA axis function. Behav Brain Res 2020; 379:112320. [DOI: 10.1016/j.bbr.2019.112320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
|
29
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
30
|
Uniyal A, Singh R, Akhtar A, Dhaliwal J, Kuhad A, Sah SP. Pharmacological rewriting of fear memories: A beacon for post-traumatic stress disorder. Eur J Pharmacol 2019; 870:172824. [PMID: 31778672 DOI: 10.1016/j.ejphar.2019.172824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological response that develops after exposure to an extreme life-threatening traumatic event. Its prevalence ranges from 0.5% to 14.5% worldwide. Due to the complex pathophysiology of PTSD, currently available treatment approaches are associated with high chances of failure, thus further research to identify better pharmacotherapeutic approaches is needed. The traumatic event associated with fear memories plays an important role in the development of PTSD and could be considered as the main culprit. PTSD patient feels frightened in a safe environment as the memories of the traumatic event are revisited. Neurocircuit involving normal processing of fear memories get disturbed in PTSD hence making a fear memory to remain to dominate even after years of trauma. Persistence of fear memories could be explained by acquisition, re-(consolidation) and extinction triad as all of these processes have been widely explored in preclinical as well as clinical studies and set a therapeutic platform for fear memory associated disorders. This review focuses on neurocircuit and pathophysiology of PTSD in context to fear memories and pharmacological targeting of fear memory for the management of PTSD.
Collapse
Affiliation(s)
- Ankit Uniyal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi, 221005, Uttar Pradesh, India
| | - Raghunath Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
31
|
Ravi M, Stevens JS, Michopoulos V. Neuroendocrine pathways underlying risk and resilience to PTSD in women. Front Neuroendocrinol 2019; 55:100790. [PMID: 31542288 PMCID: PMC6876844 DOI: 10.1016/j.yfrne.2019.100790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Women are twice as likely than men to suffer from posttraumatic stress disorder (PTSD). While women have increased exposure to traumatic events of many types and have greater prevalence of comorbid psychiatric disorders compared to men, these differences do not account for the overall sex difference in the prevalence of PTSD. The current review summarizes significant findings that implicate the role of estradiol, progesterone, and allopregnanolone in female risk for PTSD symptoms and dysregulation of fear psychophysiology that is cardinal to PTSD. We also discuss how these steroid hormones influence the stress axis and neural substrates critical for the regulation of fear responses. Understanding the role of ovarian steroid hormones in risk and resilience for trauma-related adverse mental health outcomes across the lifespan in women has important translational, clinical, and intergenerational implications for mitigating the consequences of trauma exposure.
Collapse
Affiliation(s)
- Meghna Ravi
- Emory University Graduate Program in Neuroscience, Atlanta, GA, United States
| | - Jennifer S Stevens
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States.
| |
Collapse
|
32
|
Tomaselli G, Vallée M. Stress and drug abuse-related disorders: The promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol 2019; 55:100789. [PMID: 31525393 DOI: 10.1016/j.yfrne.2019.100789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The pregnenolone-progesterone-allopregnanolone pathway is receiving increasing attention in research on the role of neurosteroids in pathophysiology, particularly in stress-related and drug use disorders. These disorders involve an allostatic change that may result from deficiencies in allostasis or adaptive responses, and may be downregulated by adjustments in neurotransmission by neurosteroids. The following is an overview of findings that assess how pregnenolone and/or allopregnanolone concentrations are altered in animal models of stress and after consumption of alcohol or cannabis-type drugs, as well as in patients with depression, anxiety, post-traumatic stress disorder or psychosis and/or in those diagnosed with alcohol or cannabis use disorders. Preclinical and clinical evidence shows that pregnenolone and allopregnanolone, operating according to a different or common pharmacological profile involving GABAergic and/or endocannabinoid system, may be relevant biomarkers of psychiatric disorders for therapeutic purposes. Hence, ongoing clinical trials implicate synthetic analogs of pregnenolone or allopregnanolone, and also modulators of neurosteroidogenesis.
Collapse
Affiliation(s)
- Giovanni Tomaselli
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
33
|
Locci A, Pinna G. Stimulation of Peroxisome Proliferator-Activated Receptor-α by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry 2019; 85:1036-1045. [PMID: 30955840 DOI: 10.1016/j.biopsych.2019.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/31/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The endocannabinoid and neurosteroid systems regulate emotions and stress responses. Activation of peroxisome proliferator-activated receptor (PPAR)-α by the endocannabinoid congener N-palmitoylethanolamine (PEA) regulates pathophysiological systems (e.g., inflammation, oxidative stress) and induces peripheral biosynthesis of allopregnanolone, a gamma-aminobutyric acidergic neurosteroid implicated in mood disorders. However, effects of PPAR-α on emotional behavior are poorly understood. METHODS We studied the impact of PPAR-α activation on emotional behavior in a mouse model of posttraumatic stress disorder. Neurosteroid levels before and after PEA treatment were measured by gas chromatography-mass spectrometry in relevant brain regions of socially isolated versus group-housed mice exposed to the contextual fear conditioning test, elevated plus maze test, forced swim test, and tail suspension test. Neurosteroidogenic enzyme levels were quantified in hippocampus by Western blot. RESULTS PEA administered in a model of conditioned contextual fear reconsolidation blockade facilitated fear extinction and fear extinction retention and induced marked antidepressive- and anxiolytic-like effects in socially isolated mice with reduced brain allopregnanolone levels. These effects were mimicked by the PPAR-α synthetic agonists, fenofibrate and GW7647, and were prevented by PPAR-α deletion, PPAR-α antagonists, and neurosteroid-enzyme inhibitors. Behavioral improvements correlated with PEA-induced upregulation of PPAR-α, neurosteroidogenic enzyme expression, and normalization of corticolimbic allopregnanolone levels. CONCLUSIONS This evidence supports a previously unknown role for PPAR-α in behavior regulation and suggests new strategies for the treatment of neuropsychopathologies characterized by deficient neurosteroidogenesis, including posttraumatic stress disorder and major depressive disorder.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
34
|
Pinna G. Animal Models of PTSD: The Socially Isolated Mouse and the Biomarker Role of Allopregnanolone. Front Behav Neurosci 2019; 13:114. [PMID: 31244621 PMCID: PMC6579844 DOI: 10.3389/fnbeh.2019.00114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating undertreated condition that affects 8%-13% of the general population and 20%-30% of military personnel. Currently, there are no specific medications that reduce PTSD symptoms or biomarkers that facilitate diagnosis, inform treatment selection or allow monitoring drug efficacy. PTSD animal models rely on stress-induced behavioral deficits that only partially reproduce PTSD neurobiology. PTSD heterogeneity, including comorbidity and symptoms overlap with other mental disorders, makes this attempt even more complicated. Allopregnanolone, a neurosteroid that positively, potently and allosterically modulates GABAA receptors and, by this mechanism, regulates emotional behaviors, is mainly synthesized in brain corticolimbic glutamatergic neurons. In PTSD patients, allopregnanolone down-regulation correlates with increased PTSD re-experiencing and comorbid depressive symptoms, CAPS-IV scores and Simms dysphoria cluster scores. In PTSD rodent models, including the socially isolated mouse, decrease in corticolimbic allopregnanolone biosynthesis is associated with enhanced contextual fear memory and impaired fear extinction. Allopregnanolone, its analogs or agents that stimulate its synthesis offer treatment approaches for facilitating fear extinction and, in general, for neuropsychopathologies characterized by a neurosteroid biosynthesis downregulation. The socially isolated mouse model reproduces several other deficits previously observed in PTSD patients, including altered GABAA receptor subunit subtypes and lack of benzodiazepines pharmacological efficacy. Transdiagnostic behavioral features, including expression of anxiety-like behavior, increased aggression, a behavioral component to reproduce behavioral traits of suicidal behavior in humans, as well as alcohol consumption are heightened in socially isolated rodents. Potentials for assessing novel biomarkers to predict, diagnose, and treat PTSD more efficiently are discussed in view of developing a precision medicine for improved PTSD pharmacological treatments.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:243-259. [PMID: 30586627 DOI: 10.1016/j.pnpbp.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by drastic alterations in mood, emotions, social abilities and cognition. Notably, one aspect of PTSD, particularly in veterans, is its comorbidity with suicide. Elevated aggressiveness predicts high-risk to suicide in humans and despite the difficulty in reproducing a complex human suicidal behavior in rodents, aggressive behavior is a well reproducible behavioral trait of suicide. PTSD animal models are based on a peculiar phenotype, including exaggerated fear memory and impaired fear extinction associated with neurochemical dysregulations in the brain circuitry regulating emotion. The endocannabinoid and the neurosteroid systems regulate emotions and stress responses, and recent evidence shows these two systems are interrelated and critically compromised in neuropsychiatric disorders. For instance, levels of the neurosteroid, allopregnanolone, as well as those of the endocannabinoids, anandamide and its congener, palmitoylethanolamide are decreased in PTSD. Similarly, the endocannabinoid system and neurosteroid biosynthesis are altered in suicidal individuals. Selective serotonin reuptake inhibitors (SSRIs), the only FDA-approved treatments for PTSD, fail to help half of the treatment-seeking patients. This highlights the need for developing biomarker-based efficient therapies. One promising alternative to SSRIs points to stimulation of allopregnanolone biosynthesis as a treatment and a valid end-point to predict treatment response in PTSD patients. This review highlights running findings on the role of the endocannabinoid and neurosteroid systems in PTSD and suicidal behavior both in a preclinical and clinical perspective. A specific focus is given to predictive PTSD/suicide animal models. Ultimately, we discuss the idea that disruption of neurosteroid and endocannabinoid biosynthesis may offer a novel promising biomarker axis to develop new treatments for PTSD and, perhaps, suicidal behavior.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Shaw JC, Berry MJ, Dyson RM, Crombie GK, Hirst JJ, Palliser HK. Reduced Neurosteroid Exposure Following Preterm Birth and Its' Contribution to Neurological Impairment: A Novel Avenue for Preventative Therapies. Front Physiol 2019; 10:599. [PMID: 31156466 PMCID: PMC6529563 DOI: 10.3389/fphys.2019.00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Children born preterm are at an increased risk of developing cognitive problems and neuro-behavioral disorders such as attention deficit hyperactivity disorder (ADHD) and anxiety. Whilst neonates born at all gestational ages, even at term, can experience poor cognitive outcomes due to birth-complications such as birth asphyxia, it is becoming widely known that children born preterm in particular are at significant risk for learning difficulties with an increased utilization of special education resources, when compared to their healthy term-born peers. Additionally, those born preterm have evidence of altered cerebral myelination with reductions in white matter volumes of the frontal cortex, hippocampus and cerebellum evident on magnetic resonance imaging (MRI). This disruption to myelination may underlie some of the pathophysiology of preterm-associated brain injury. Compared to a fetus of the same post-conceptional age, the preterm newborn loses access to in utero factors that support and promote healthy brain development. Furthermore, the preterm ex utero environment is hostile to the developing brain with a myriad of environmental, biochemical and excitotoxic stressors. Allopregnanolone is a key neuroprotective fetal neurosteroid which has promyelinating effects in the developing brain. Preterm birth leads to an abrupt loss of the protective effects of allopregnanolone, with a dramatic drop in allopregnanolone concentrations in the preterm neonatal brain compared to the fetal brain. This occurs in conjunction with reduced myelination of the hippocampus, subcortical white matter and cerebellum; thus, damage to neurons, astrocytes and especially oligodendrocytes of the developing nervous system can occur in the vulnerable developmental window prior to term as a consequence reduced allopregnanolone. In an effort to prevent preterm-associated brain injury a number of therapies have been considered, but to date, other than antenatal magnesium sulfate and corticosteroid therapy, none have become part of standard clinical care for vulnerable infants. Therefore, there remains an urgent need for improved therapeutic options to prevent brain injury in preterm neonates. The actions of the placentally derived neurosteroid allopregnanolone on GABAA receptor signaling has a major role in late gestation neurodevelopment. The early loss of this intrauterine neurotrophic support following preterm birth may be pivotal to development of neurodevelopmental morbidity. Thus, restoring the in utero neurosteroid environment for preterm neonates may represent a new and clinically feasible treatment option for promoting better trajectories of myelination and brain development, and therefore reducing neurodevelopmental disorders in children born preterm.
Collapse
Affiliation(s)
- Julia C. Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Mary J. Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Rebecca M. Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Gabrielle K. Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah K. Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
37
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
38
|
Rasmusson AM, King MW, Valovski I, Gregor K, Scioli-Salter E, Pineles SL, Hamouda M, Nillni YI, Anderson GM, Pinna G. Relationships between cerebrospinal fluid GABAergic neurosteroid levels and symptom severity in men with PTSD. Psychoneuroendocrinology 2019; 102:95-104. [PMID: 30529908 PMCID: PMC6584957 DOI: 10.1016/j.psyneuen.2018.11.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Allopregnanolone and pregnanolone (together termed allo + pregnan) are neurosteroid metabolites of progesterone that equipotently facilitate the action of gamma-amino-butyric acid (GABA) at GABAA receptors. The adrenal steroid dehydroepiandrosterone (DHEA) allosterically antagonizes GABAA receptors and facilitates N-methyl-D-aspartate (NMDA) receptor function. In prior research, premenopausal women with posttraumatic stress disorder (PTSD) displayed low cerebrospinal fluid (CSF) levels of allo + pregnan [undifferentiated by the gas chromatography-mass spectrometry (GC-MS) method used] that correlated strongly and negatively with PTSD reexperiencing and negative mood symptoms. A PTSD-related decrease in the ratio of allo + pregnan to 5α-dihydroprogesterone (5α-DHP: immediate precursor for allopregnanolone) suggested a block in synthesis of these neurosteroids at 3α-hydroxysteroid dehydrogenase (3α-HSD). In the current study, CSF was collected from unmedicated, tobacco-free men with PTSD (n = 13) and trauma-exposed healthy controls (n = 17) after an overnight fast. Individual CSF steroids were quantified separately by GC-MS. In the men with PTSD, allo + pregnan correlated negatively with Clinician-Administered PTSD Scale (CAPS-IV) total (ρ=-0.74, p = 0.006) and CAPS-IV derived Simms dysphoria cluster (ρ=-0.71, p = 0.01) scores. The allo+pregnan to DHEA ratio also was negatively correlated with total CAPS (ρ=-0.74, p = 0.006) and dysphoria cluster (ρ=-0.79, p = 0.002) scores. A PTSD-related decrease in the 5α-DHP to progesterone ratio indicated a block in allopregnanolone synthesis at 5α-reductase. This study suggests that CSF allo + pregnan levels correlate negatively with PTSD and negative mood symptoms in both men and women, but that the enzyme blocks in synthesis of these neurosteroids may be sex-specific. Consideration of sex, PTSD severity, and function of 5α-reductase and 3α-HSD thus may enable better targeting of neurosteroid-based PTSD treatments.
Collapse
Affiliation(s)
- Ann M Rasmusson
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States.
| | - Matthew W King
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Ivan Valovski
- VA Boston Healthcare System, Boston, MA, 02130, United States; Harvard Medical School, Boston, MA, 02115, United States
| | - Kristin Gregor
- VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Erica Scioli-Salter
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Suzanne L Pineles
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Mohamed Hamouda
- VA Boston Healthcare System, Boston, MA, 02130, United States; Harvard Medical School, Boston, MA, 02115, United States
| | - Yael I Nillni
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - George M Anderson
- Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, United States
| | - Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, United States
| |
Collapse
|
39
|
Saporito MS, Gruner JA, DiCamillo A, Hinchliffe R, Barker-Haliski M, White HS. Intravenously Administered Ganaxolone Blocks Diazepam-Resistant Lithium-Pilocarpine-Induced Status Epilepticus in Rats: Comparison with Allopregnanolone. J Pharmacol Exp Ther 2019; 368:326-337. [PMID: 30552296 DOI: 10.1124/jpet.118.252155] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/12/2018] [Indexed: 03/08/2025] Open
Abstract
Ganaxolone (GNX) is the 3β-methylated synthetic analog of the naturally occurring neurosteroid, allopregnanolone (ALLO). GNX is effective in a broad range of epilepsy and behavioral animal models and is currently in clinical trials designed to assess its anticonvulsant and antidepressant activities. The current studies were designed to broaden the anticonvulsant profile of GNX by evaluating its potential anticonvulsant activities following i.v. administration in treatment-resistant models of status epilepticus (SE), to establish a pharmacokinetic (PK)/pharmacodynamic (PD) relationship, and to compare its PK and anticonvulsant activities to ALLO. In PK studies, GNX had higher exposure levels, a longer half-life, slower clearance, and higher brain penetrance than ALLO. Both GNX and ALLO produced a sedating response as characterized by loss of righting reflex, but neither compound produced a full anesthetic response as animals still responded to painful stimuli. Consistent with their respective PK properties, the sedative effect of GNX was longer than that of ALLO. Unlike other nonanesthetizing anticonvulsant agents indicated for SE, both GNX and ALLO produced anticonvulsant activity in models of pharmacoresistant SE with administration delay times of up to 1 hour after seizure onset. Again, consistent with their respective PK properties, GNX produced a significantly longer anticonvulsant response. These studies show that GNX exhibited improved pharmacological characteristics versus other agents used as treatments for SE and position GNX as a uniquely acting treatment of this indication.
Collapse
Affiliation(s)
- Michael S Saporito
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - John A Gruner
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - Amy DiCamillo
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - Richard Hinchliffe
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - Melissa Barker-Haliski
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - H Steven White
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| |
Collapse
|
40
|
Neurosteroid replacement therapy using the allopregnanolone-analogue ganaxolone following preterm birth in male guinea pigs. Pediatr Res 2019; 85:86-96. [PMID: 30237570 DOI: 10.1038/s41390-018-0185-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Children born preterm, especially boys, are at increased risk of developing attention deficit hyperactivity disorder (ADHD) and learning difficulties. We propose that neurosteroid-replacement therapy with ganaxolone (GNX) following preterm birth may mitigate preterm-associated neurodevelopmental impairment. METHODS Time-mated sows were delivered preterm (d62) or at term (d69). Male preterm pups were randomized to ganaxolone (Prem-GNX; 2.5 mg/kg subcutaneously twice daily until term equivalence), or preterm control (Prem-CON). Surviving male juvenile pups underwent behavioural testing at d25-corrected postnatal age (CPNA). Brain tissue was collected at CPNA28 and mature myelinating oligodendrocytes of the hippocampus and subcortical white matter were quantified by immunostaining of myelin basic protein (MBP). RESULTS Ganaxolone treatment returned the hyperactive behavioural phenotype of preterm-born juvenile males to a term-born phenotype. Deficits in MBP immunostaining of the preterm hippocampus and subcortical white matter were also ameliorated in animals receiving ganaxolone. However, during the treatment period weight gain was poor, and pups were sedated, ultimately increasing the neonatal mortality rate. CONCLUSION Ganaxolone improved neurobehavioural outcomes in males suggesting that neonatal treatment may be an option for reducing preterm-associated neurodevelopmental impairment. However, dosing studies are required to reduce the burden of unwanted side effects.
Collapse
|
41
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
42
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
43
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
44
|
Modulation of the endocannabinoid system by sex hormones: Implications for posttraumatic stress disorder. Neurosci Biobehav Rev 2018; 94:302-320. [DOI: 10.1016/j.neubiorev.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
45
|
Nisbett KE, Pinna G. Emerging Therapeutic Role of PPAR-α in Cognition and Emotions. Front Pharmacol 2018; 9:998. [PMID: 30356872 PMCID: PMC6190882 DOI: 10.3389/fphar.2018.00998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Khalin E Nisbett
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
46
|
Pinna G. Biomarkers for PTSD at the Interface of the Endocannabinoid and Neurosteroid Axis. Front Neurosci 2018; 12:482. [PMID: 30131663 PMCID: PMC6091574 DOI: 10.3389/fnins.2018.00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
47
|
Neurotransmitter, Peptide, and Steroid Hormone Abnormalities in PTSD: Biological Endophenotypes Relevant to Treatment. Curr Psychiatry Rep 2018; 20:52. [PMID: 30019147 DOI: 10.1007/s11920-018-0908-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review summarizes neurotransmitter, peptide, and other neurohormone abnormalities associated with posttraumatic stress disorder (PTSD) and relevant to development of precision medicine therapeutics for PTSD. RECENT FINDINGS As the number of molecular abnormalities associated with PTSD across a variety of subpopulations continues to grow, it becomes clear that no single abnormality characterizes all individuals with PTSD. Instead, individually variable points of molecular dysfunction occur within several different stress-responsive systems that interact to produce the clinical PTSD phenotype. Future work should focus on critical interactions among the systems that influence PTSD risk, severity, chronicity, comorbidity, and response to treatment. Effort also should be directed toward development of clinical procedures by which points of molecular dysfunction within these systems can be identified in individual patients. Some molecular abnormalities are more common than others and may serve as subpopulation biological endophenotypes for targeting of currently available and novel treatments.
Collapse
|
48
|
Pineles SL, Nillni YI, Pinna G, Irvine J, Webb A, Arditte Hall KA, Hauger R, Miller MW, Resick PA, Orr SP, Rasmusson AM. PTSD in women is associated with a block in conversion of progesterone to the GABAergic neurosteroids allopregnanolone and pregnanolone measured in plasma. Psychoneuroendocrinology 2018; 93:133-141. [PMID: 29727810 DOI: 10.1016/j.psyneuen.2018.04.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
Abstract
There is a need to identify new and more effective treatments for posttraumatic stress disorder (PTSD). Allopregnanolone and its stereoisomer pregnanolone (together termed ALLO) are metabolites of progesterone that positively and allosterically modulate GABA effects at GABAA receptors, thereby reducing anxiety and depression. Previous research revealed that women with PTSD had low cerebrospinal fluid (CSF) ALLO levels and a low ratio of ALLO to the allopregnanolone precursor 5α-DHP, consistent with deficient activity of the ALLO synthetic enzyme 3α-hydroxysteroid dehydrogenase (3α-HSD). The current study examined ALLO and the ratio of ALLO to 5α-DHP in plasma at rest and in response to psychophysiological stressors in trauma-exposed, medication-free women with and without PTSD. Participants were examined twice in random order during the early follicular phase (eFP) and mid-luteal phase (mLP) of the menstrual cycle. Plasma neurosteroids were measured using gas chromatography-mass spectrometry. Results indicate that the ALLO to 5α-DHP ratio in plasma increases between the eFP and mLP. In addition, women with PTSD have a lower ratio of ALLO to 5α-DHP than trauma-exposed healthy women, as well as blunted increases in this ratio in response to a moderately stressful laboratory procedure, i.e., differential fear conditioning, across the menstrual cycle. Clinically feasible testing for 3α-HSD dysfunction is critical to translating this line of research into clinical care. Measurement of this ratio in plasma could facilitate patient stratification in clinical treatment trials, as well as precision medicine targeting of treatments that address ALLO synthesis deficits in women with PTSD.
Collapse
Affiliation(s)
- S L Pineles
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Y I Nillni
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - G Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - J Irvine
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - A Webb
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - K A Arditte Hall
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - R Hauger
- Center of Excellence for Stress and Mental Health, San Diego VA Healthcare System, San Diego, CA, 9216, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - M W Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - P A Resick
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27701, USA
| | - S P Orr
- Psychiatry Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - A M Rasmusson
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
49
|
Abstract
SIGNIFICANCE Social and demographic changes have led to an increased prevalence of loneliness and social isolation in modern society. Recent Advances: Population-based studies have demonstrated that both objective social isolation and the perception of social isolation (loneliness) are correlated with a higher risk of mortality and that both are clearly risk factors for cardiovascular disease (CVD). Lonely individuals have increased peripheral vascular resistance and elevated blood pressure. Socially isolated animals develop more atherosclerosis than those housed in groups. CRITICAL ISSUES Molecular mechanisms responsible for the increased cardiovascular risk are poorly understood. In recent reports, loneliness and social stress were associated with activation of the hypothalamic-pituitary-adrenocortical axis and the sympathetic nervous system. Repeated and chronic social stress leads to glucocorticoid resistance, enhanced myelopoiesis, upregulated proinflammatory gene expression, and oxidative stress. However, the causal role of these mechanisms in the development of loneliness-associated CVD remains unclear. FUTURE DIRECTIONS Elucidation of the molecular mechanisms of how CVD is induced by loneliness and social isolation requires additional studies. Understanding of the pathomechanisms is essential for the development of therapeutic strategies to prevent the detrimental effects of social stress on health. Antioxid. Redox Signal. 28, 837-851.
Collapse
Affiliation(s)
- Ning Xia
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Huige Li
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany .,2 Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center , Mainz, Germany .,3 German Center for Cardiovascular Research (DZHK) , Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
50
|
Belelli D, Brown AR, Mitchell SJ, Gunn BG, Herd MB, Phillips GD, Seifi M, Swinny JD, Lambert JJ. Endogenous neurosteroids influence synaptic GABA A receptors during postnatal development. J Neuroendocrinol 2018; 30. [PMID: 28905487 DOI: 10.1111/jne.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.
Collapse
Affiliation(s)
- D Belelli
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - A R Brown
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - S J Mitchell
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - B G Gunn
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M B Herd
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - G D Phillips
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M Seifi
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J J Lambert
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|