1
|
Vazirian F, Tian J, Jane Alty, Aitken D, Callisaya ML, Cicuttini F, Jones G, Pan F. Chronic Musculoskeletal Pain and Risk of Incident Parkinson's Disease: A 13-Year Longitudinal Study. Mov Disord 2024. [PMID: 39487703 DOI: 10.1002/mds.30046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Chronic musculoskeletal pain often co-occurs with Parkinson's disease (PD); however, whether individuals with chronic pain have a higher risk of developing PD is unclear. OBJECTIVES To investigate the associations between chronic pain and incident risk of three neurodegenerative parkinsonism categories including PD, multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). METHODS This study included 355,890 participants (mean [standard deviation] age, 56.51 [8.07] years, 48.40% male) who did not have parkinsonism at baseline from a population-based cohort. Musculoskeletal pain in the hip, neck/shoulder, back, knee, or "all over the body" was assessed. Chronic pain was defined if pain lasted ≥3 months. Participants were categorized into four groups: no chronic pain, having one or two, three or four sites, and pain "all over the body." The diagnosis of PD, MSA, and PSP used self-reports, hospital records, and death registries. Multivariable-adjusted Cox regression was performed for the analyses. RESULTS Over a median follow-up of 13.0 years, 2044 participants developed PD, 77 participants developed MSA, and 126 participants developed PSP. In multivariable analyses, there was a dose-response relationship between number of chronic pain sites and incident risk of PD (hazard ratio, 1.15; 95% confidence interval, 1.07-1.23). Participants with one or two pain sites and three or four pain sites had an 11% and 49% increased risk of developing PD, respectively. There were no associations between chronic pain and MSA or PSP. CONCLUSIONS Chronic musculoskeletal pain was independently associated with PD, suggesting that chronic pain could be used to identify individuals at risk of developing PD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fatemeh Vazirian
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jing Tian
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
- School of Medicine, University of Tasmania, Hobart, Australia
- Department of Neurology, Royal Hobart Hospital, Hobart, Australia
| | - Dawn Aitken
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michele L Callisaya
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Flavia Cicuttini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Katzdobler S, Nübling G, Klietz M, Fietzek UM, Palleis C, Bernhardt AM, Wegner F, Huber M, Rogozinski S, Schneider LS, Spruth EJ, Beyle A, Vogt IR, Brandt M, Hansen N, Glanz W, Brockmann K, Spottke A, Hoffmann DC, Peters O, Priller J, Wiltfang J, Düzel E, Schneider A, Falkenburger B, Klockgether T, Gasser T, Nuscher B, Haass C, Höglinger G, Levin J. GFAP and NfL as fluid biomarkers for clinical disease severity and disease progression in multiple system atrophy (MSA). J Neurol 2024; 271:6991-6999. [PMID: 39254698 PMCID: PMC11447157 DOI: 10.1007/s00415-024-12647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Multiple system atrophy (MSA), an atypical parkinsonian syndrome, is a rapidly progressive neurodegenerative disease with currently no established fluid biomarkers available. MSA is characterized by an oligodendroglial α-synucleinopathy, progressive neuronal cell loss and concomitant astrocytosis. Here, we investigate glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as fluid biomarkers for differential diagnosis, assessment of clinical disease severity and prediction of disease progression in MSA. METHODS GFAP and NfL levels were analyzed in plasma and CSF samples of 47 MSA patients as well as 24 Parkinson's disease (PD) and 25 healthy controls (HC) as reference cohorts. In MSA, biomarker levels were correlated to baseline and longitudinal clinical disease severity (UMSARS scores). RESULTS In MSA, GFAP levels in CSF and plasma predicted baseline clinical disease severity as indicated by UMSARS scores, while NfL levels predicted clinical disease progression as indicated by longitudinal changes in UMSARS scores. Cross-sectionally, NfL levels in CSF and plasma were significantly elevated in MSA compared to both PD and HC. Receiver operating curves (ROC) indicated high diagnostic accuracy of NfL for distinguishing MSA from PD (CSF: AUC = 0.97, 95% CI 0.90-1.00; plasma: AUC = 0.90, 95% CI 0.81-1.00). DISCUSSION In MSA, GFAP shows promise as novel biomarker for assessing current clinical disease severity, while NfL might serve as biomarker for prediction of disease progression and differential diagnosis of MSA against PD.
Collapse
Affiliation(s)
- Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Georg Nübling
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
| | - Martin Klietz
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Urban M Fietzek
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
| | - Alexander M Bernhardt
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
- Clinical Mass Spectrometry Center Munich, Munich, Germany
| | - Florian Wegner
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Meret Huber
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | | | - Luisa-Sophie Schneider
- Department of psychiatry and neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Aline Beyle
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Ina R Vogt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Moritz Brandt
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University, Magdeburg, Germany
- Clinic for Neurology, Medical Faculty, University Hospital Magdeburg, Magdeburg, Germany
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- Department of Neurology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Daniel C Hoffmann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Oliver Peters
- Department of psychiatry and neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Neuropsychiatry Unit and Laboratory of Molecular Psychiatry, Charité, Universitätsmedizin Berlin and DZNE, Berlin, Germany
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
- Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Björn Falkenburger
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Christian Haass
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Günter Höglinger
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany.
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
- Clinical Mass Spectrometry Center Munich, Munich, Germany.
| |
Collapse
|
3
|
Chen X, Chen S, Lai X, Fu J, Yang J, Ou R, Zhang L, Wei Q, Guo X, Shang H. Diagnostic value and correlation analysis of serum cytokine levels in patients with multiple system atrophy. Front Cell Neurosci 2024; 18:1459884. [PMID: 39295596 PMCID: PMC11409425 DOI: 10.3389/fncel.2024.1459884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Background The association between cytokines in peripheral blood and clinical symptoms of multiple system atrophy (MSA) has been explored in only a few studies with small sample size, and the results were obviously controversial. Otherwise, no studies have explored the diagnostic value of serum cytokines in MSA. Methods Serum cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α), were measured in 125 MSA patients and 98 healthy controls (HCs). Correlations of these serum cytokines with clinical variables were analyzed in MSA patients. Diagnostic value of cytokines for MSA was plotted by receiver operating curves. Results No significant differences were found in sex and age between the MSA group and the HCs. TNF-α in MSA patients were significantly higher than those in HCs (area under the curve (AUC) 0.768), while IL-6 and IL-8 were not. Only Hamilton Anxiety Scale (HAMA) has a positive correlation between with TNF-α in MSA patients with age and age at onset as covariates. Serum IL-6 was associated with HAMA, Hamilton Depression Scale (HAMD), the Unified MSA Rating Scale I (UMSARS I) scores, the UMSARS IV and the Instrumental Activity of Daily Living scores. However, IL-8 was not associated with all clinical variables in MSA patients. Regression analysis showed that HAMA and age at onset were significantly associated with TNF-α, and only HAMA was mild related with IL-6 levels in MSA patients. Conclusion Serum TNF-α and IL-6 levels in MSA patients may be associated with anxiety symptom; however, only TNF-α was shown to be a useful tool in distinguishing between MSA and HCs.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Lai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Guo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Sian-Hulsmann J, Riederer P. The 'α-synucleinopathy syndicate': multiple system atrophy and Parkinson's disease. J Neural Transm (Vienna) 2024; 131:585-595. [PMID: 37227594 PMCID: PMC11192696 DOI: 10.1007/s00702-023-02653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Multiple System Atrophy (MSA) and Parkinson's diseases (PD) are elite members of the α-synucleinopathy organization. Aberrant accumulations of the protein α-synuclein characterize them. A plethora of evidence indicates the involvement of these rogue inclusions in a cascade of events that disturb cellular homeostasis resulting in neuronal dysfunction. These two neurodegenerative diseases share many features both clinically and pathologically. Cytotoxic processes commonly induced by reactive free radical species have been associated with oxidative stress and neuroinflammation, frequently reported in both diseases. However, it appears they have characteristic and distinct α-synuclein inclusions. It is glial cytoplasmic inclusions in the case of MSA while Lewy bodies manifest in PD. This is probably related to the etiology of the illness. At present, precise mechanism(s) underlying the characteristic configuration of neurodegeneration are unclear. Furthermore, the "prion-like" transmission from cell to cell prompts the suggestion that perhaps these α-synucleinopathies are prion-like diseases. The possibility of some underlying genetic foul play remains controversial. But as major culprits of pathological processes or even single triggers of PD and MSA are the same-like oxidative stress, iron-induced pathology, mitochondriopathy, loss of respiratory activity, loss of proteasomal function, microglial activation, neuroinflammation-it is not farfetched to assume that in sporadic PD and also in MSA a variety of combinations of susceptibility genes contribute to the regional specificity of pathological onset. These players of pathology, as mentioned above, in a synergistic combination, are responsible for driving the progression of PD, MSA and other neurodegenerative disorders. Elucidating the triggers and progression factors is vital for advocating disease modification or halting its progression in both, MSA and PD.
Collapse
Affiliation(s)
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
5
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Shibata M, Makioka K, Nakamura T, Kasahara H, Yamazaki T, Takatama M, Okamoto K, Ikeda Y. Role of complement activation and disruption of the blood-brain barrier in the pathogenesis of multiple system atrophy. Neurosci Lett 2024; 822:137642. [PMID: 38228218 DOI: 10.1016/j.neulet.2024.137642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Multiple system atrophy (MSA) is a progressive and sporadic neurodegenerative disorder characterized by the histological appearance of glial cytoplasmic inclusions primarily composed of α-synuclein. Recently, complement-mediated neuroinflammation has been proposed as a key factor in the pathogenesis of numerous neurodegenerative disorders. We conducted immunohistochemical/immunofluorescent assays targeting a number of complements to explore the role of complements in MSA pathogenesis using brain samples from deceased patients and controls. Complement deposition was notably increased in the cerebral vasculature and myelin sheath in the MSA brains. Furthermore, fibrinogen leakage resulting from the disruption of the blood-brain barrier (BBB) was observed, along with the presence of C1q-positive microglia clusters surrounding the MSA brain vessels. These immunohistochemical/immunofluorescent findings suggest that complement activation and BBB disruption play critical roles in MSA progression.
Collapse
Affiliation(s)
- Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | - Koichi Okamoto
- Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
7
|
Yuan X, Wan L, Chen Z, Long Z, Chen D, Liu P, Fu Y, Zhu S, Peng L, Qiu R, Tang B, Jiang H. Peripheral Inflammatory and Immune Landscape in Multiple System Atrophy: A Cross-Sectional Study. Mov Disord 2024; 39:391-399. [PMID: 38155513 DOI: 10.1002/mds.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Neuroinflammation might contribute to the pathogenesis of multiple systemic atrophy (MSA). However, specific alterations in the peripheral inflammatory and immune profiles of patients with MSA remain unclear. OBJECTIVES To determine the peripheral inflammatory and immune profiles of patients with MSA and their potential value as biomarkers for facilitating clinical diagnosis and monitoring disease severity. METHODS This cross-sectional study included 235, 240, and 235 patients with MSA, patients with Parkinson's disease (PD), and healthy controls (HCs), respectively. Inflammatory and immune parameters were measured in peripheral blood, differences between groups were assessed, and clusters were analyzed. Associations between the parameters and clinical characteristics of MSA were assessed using Spearman and partial correlation analyses. RESULTS Significant differences were observed especially in monocytes, neutrophils-to-lymphocyte ratio (NLR) and neutrophils-to-lymphocyte ratio (MPV) between MSA patients and HCs (P < 0.01). Monocytes and uric acid (UA) levels were also significantly different between the MSA and PD patients (P < 0.05). The combination of NLR and MPV distinguished MSA-P patients from HCs (areas under the curve = 0.824). In addition, complement components C4 and C3 were significantly correlated with the Scale Outcomes in PD for Autonomic Symptoms and Wexner scale, whereas immunoglobulin G (IgG) was significantly correlated with scores of Unified Multiple System Atrophy Rating Scale (P < 0.05). CONCLUSIONS In MSA patients, monocytes, NLR and MPV might serve as potential diagnostic biomarkers, whereas MLR, C3, C4, and IgG significantly correlate with disease severity. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Panyan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - You Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Andersen AM, Kaalund SS, Marner L, Salvesen L, Pakkenberg B, Olesen MV. Quantitative cellular changes in multiple system atrophy brains. Neuropathol Appl Neurobiol 2023; 49:e12941. [PMID: 37812040 DOI: 10.1111/nan.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.
Collapse
Affiliation(s)
- Alberte M Andersen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Sanne S Kaalund
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel V Olesen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
10
|
Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, von Hörsten S, Zunke F, Winkler J, Xiang W. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res 2023; 452:114574. [PMID: 37423320 DOI: 10.1016/j.bbr.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Martin Weidenfeller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lara Savannah Ebbinghaus
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
11
|
Readman MR, Wan F, Fairman I, Linkenauger SA, Crawford TJ, Plack CJ. Is Hearing Loss a Risk Factor for Idiopathic Parkinson's Disease? An English Longitudinal Study of Ageing Analysis. Brain Sci 2023; 13:1196. [PMID: 37626551 PMCID: PMC10452744 DOI: 10.3390/brainsci13081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Observations that hearing loss is a substantial risk factor for dementia may be accounted for by a common pathology. Mitochondrial oxidative stress and alterations in α-synuclein pathology may be common pathology candidates. Crucially, these candidate pathologies are implicated in Parkinson's disease (PD). Consequently, hearing loss may be a risk factor for PD. Subsequently, this prospective cohort study of the English Longitudinal Study of Ageing examines whether hearing loss is a risk factor for PD longitudinally. Participants reporting self-reported hearing capabilities and no PD diagnosis prior to entry (n = 14,340) were used. A joint longitudinal and survival model showed that during a median follow up of 10 years (SD = 4.67 years) increased PD risk (p < 0.001), but not self-reported hearing capability (p = 0.402). Additionally, an exploratory binary logistic regression modelling the influence of hearing loss identified using a screening test (n = 4812) on incident PD indicated that neither moderate (p = 0.794), nor moderately severe/severe hearing loss (p = 0.5210), increased PD risk, compared with normal hearing. Whilst discrepancies with prior literature may suggest a neurological link between hearing loss and PD, further large-scale analyses using clinically derived hearing loss are needed.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool L69 3BX, UK
- NIHR ARC NWC, Liverpool L7 8XP, UK
| | - Fang Wan
- Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YW, UK
| | - Ian Fairman
- Public Advisor, Associated with Lancaster University Psychology Department, Lancaster LA1 4YF, UK
| | | | | | - Christopher J. Plack
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
12
|
Leńska-Mieciek M, Madetko-Alster N, Alster P, Królicki L, Fiszer U, Koziorowski D. Inflammation in multiple system atrophy. Front Immunol 2023; 14:1214677. [PMID: 37426656 PMCID: PMC10327640 DOI: 10.3389/fimmu.2023.1214677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Misfolding protein aggregation inside or outside cells is the major pathological hallmark of several neurodegenerative diseases. Among proteinopathies are neurodegenerative diseases with atypical Parkinsonism and an accumulation of insoluble fibrillary alpha-synuclein (synucleinopathies) or hyperphosphorylated tau protein fragments (tauopathies). As there are no therapies available to slow or halt the progression of these disea ses, targeting the inflammatory process is a promising approach. The inflammatory biomarkers could also help in the differential diagnosis of Parkinsonian syndromes. Here, we review inflammation's role in multiple systems atrophy pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Marta Leńska-Mieciek
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Fiszer
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
13
|
Chatterjee S, Nalla LV, Sharma M, Sharma N, Singh AA, Malim FM, Ghatage M, Mukarram M, Pawar A, Parihar N, Arya N, Khairnar A. Association of COVID-19 with Comorbidities: An Update. ACS Pharmacol Transl Sci 2023; 6:334-354. [PMID: 36923110 PMCID: PMC10000013 DOI: 10.1021/acsptsci.2c00181] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 03/03/2023]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
Collapse
Affiliation(s)
- Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Fehmina Mushtaque Malim
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Manasi Ghatage
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Mohd Mukarram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Abhijeet Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS), Bhopal, Bhopal 462020, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 602 00, Czech Republic.,ICRC-FNUSA Brno 656 91, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 62500 Brno, Czechia
| |
Collapse
|
14
|
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. SCIENCE ADVANCES 2023; 9:eabq1141. [PMID: 36791205 PMCID: PMC9931221 DOI: 10.1126/sciadv.abq1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glial cells, and neurons. As a fundamental functional module in the central nervous system, the NVU maintains homeostasis in the microenvironment and the integrity of the blood-brain barrier. Disruption of the NVU and interactions among its components are involved in the pathophysiology of synucleinopathies, which are characterized by the pathological accumulation of α-synuclein. Neuroinflammation contributes to the pathophysiology of synucleinopathies, including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. This review aims to summarize the neuroinflammatory response of glial cells and vascular cells in the NVU. We also review neuroinflammation in the context of the cross-talk between glial cells and vascular cells, between glial cells and pericytes, and between microglia and astroglia. Last, we discuss how α-synuclein affects neuroinflammation and how neuroinflammation influences the aggregation and spread of α-synuclein and analyze different properties of α-synuclein in synucleinopathies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Karolinska Institutet, Department of Odontology, 171 77 Solna, Sweden
- Faculty of Medical Sciences, Sunway University, Subang Jaya, 47500 Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
15
|
Tseng FS, Foo JQX, Mai AS, Tan EK. The genetic basis of multiple system atrophy. J Transl Med 2023; 21:104. [PMID: 36765380 PMCID: PMC9912584 DOI: 10.1186/s12967-023-03905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there is a possible genetic component that is poorly understood. This review summarizes current literature on genetic risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been associated with MSA including genes related to Parkinson's disease (PD), oxidative stress, inflammation, and tandem gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that modulate MSA risk, including complex gene-gene and gene-environment interactions, which influence the disease phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification of novel pathophysiologic clues, and pave the way for translational research into the development of disease-modifying therapeutic targets.
Collapse
Affiliation(s)
- Fan Shuen Tseng
- grid.163555.10000 0000 9486 5048Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joel Qi Xuan Foo
- grid.276809.20000 0004 0636 696XDepartment of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
16
|
Gong Z, Gao R, Ba L, Liu Y, Hou H, Zhang M. The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy. Brain Sci 2023; 13:brainsci13020205. [PMID: 36831748 PMCID: PMC9953988 DOI: 10.3390/brainsci13020205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence suggests immune involvement in the pathology of multiple system atrophy (MSA). Research on detailed peripheral immune indices, however, is relatively sparse, and is one of the intriguing aspects of MSA yet to be elucidated. A total of 26 MSA patients and 56 age-and sex-matched healthy controls (HC) were enrolled in the current case-control study to delineate the peripheral immune traits of MSA patients. The ratio of CD4+/CD8+ T cells, natural killer cells, CD28 expression on both CD4+ T cells and CD8+ T cells increased in MSA patients compared to HC, but CD8+ T cells and active marker (HLA-DR) expression on total T cells decreased (p < 0.05). This study sheds light on the dysregulation of cellular immunity in MSA, pointing to future mechanistic research.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| |
Collapse
|
17
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
18
|
Sidoroff V, Bower P, Stefanova N, Fanciulli A, Stankovic I, Poewe W, Seppi K, Wenning GK, Krismer F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? JOURNAL OF PARKINSON'S DISEASE 2022; 12:1369-1387. [PMID: 35491799 PMCID: PMC9398078 DOI: 10.3233/jpd-223183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pam Bower
- The Multiple System Atrophy Coalition, Inc., McLean, VA, USA
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:32. [PMID: 35332154 PMCID: PMC8948240 DOI: 10.1038/s41531-022-00293-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration in the substantia nigra with collateral striatal dopamine signaling deficiency. Microglial NLRP3 inflammasome activation has been linked independently to each of these facets of PD pathology. The voltage-gated potassium channel Kv1.3, upregulated in microglia by α-synuclein and facilitating potassium efflux, has also been identified as a modulator of neuroinflammation and neurodegeneration in models of PD. Evidence increasingly suggests that microglial Kv1.3 is mechanistically coupled with NLRP3 inflammasome activation, which is contingent on potassium efflux. Potassium conductance also influences dopamine release from midbrain dopaminergic neurons. Dopamine, in turn, has been shown to inhibit NLRP3 inflammasome activation in microglia. In this review, we provide a literature framework for a hypothesis in which Kv1.3 activity-induced NLRP3 inflammasome activation, evoked by stimuli such as α-synuclein, could lead to microglia utilizing dopamine from adjacent dopaminergic neurons to counteract this process and fend off an activated state. If this is the case, a sufficient dopamine supply would ensure that microglia remain under control, but as dopamine is gradually siphoned from the neurons by microglial demand, NLRP3 inflammasome activation and Kv1.3 activity would progressively intensify to promote each of the three major facets of PD pathology: α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration. Risk factors overlapping to varying degrees to render brain regions susceptible to such a mechanism would include a high density of microglia, an initially sufficient supply of dopamine, and poor insulation of the dopaminergic neurons by myelin.
Collapse
|
20
|
Zeng Q, Cui M. Current Progress in the Development of Probes for Targeting α-Synuclein Aggregates. ACS Chem Neurosci 2022; 13:552-571. [PMID: 35167269 DOI: 10.1021/acschemneuro.1c00877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein aggregates abnormally into intracellular inclusions in Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and many other neurological disorders, closely connecting with their pathogenesis. The accurate tracking of α-synuclein by targeting probes is of great significance for early diagnosis, disease monitoring, and drug development. However, there have been no promising α-synuclein targeting probes for clinical application reported so far. This overview focuses on various potential α-synuclein targeting probes reported in the past two decades, including small-molecule fluorescent probes and radiolabeled probes. We provide the current status of the development of the small molecular α-synuclein imaging probes, including properties of promising imaging molecules, strategies of processing new probes, limited progress, and growth prospects in this field, expecting to help in the further development of α-synuclein targeting probes.
Collapse
Affiliation(s)
- Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
21
|
High neutrophil-to-lymphocyte ratio predicts short survival in multiple system atrophy. NPJ Parkinsons Dis 2022; 8:11. [PMID: 35058467 PMCID: PMC8776861 DOI: 10.1038/s41531-021-00267-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR), an inflammatory marker, can predict the prognosis of neurodegenerative diseases. However, the significance of NLR for the prognosis of multiple system atrophy (MSA) has not been reported. We aimed to examine the prognostic significance of NLR in MSA. A total of 169 MSA patients and 163 matched healthy controls (HCs) were enrolled. MSA patients were divided into three groups according to the tertiles of their NLR. Kaplan–Meier survival analysis and Cox regression model were used to assessing the effect of NLR on survival. An independent validation cohort of 56 consecutive patients with probable MSA who met the inclusion criteria was included. The NLR was significantly higher in patients with MSA than that in HCs. The survival duration in patients with MSA in group 3 was shorter than that in patients in the other two groups (P = 0.013). In the multivariable Cox regression model, a higher NLR increased the risk of mortality in patients with MSA after adjusting for confounding factors (HR = 1.922, P = 0.035). Additionally, a higher NLR increased the risk of mortality in MSA with predominant cerebellar ataxia (MSA-C) (HR = 2.398, P = 0.033) and in men (HR = 3.483, P = 0.027). The concordance index for the multivariate Cox regression model was more than 0.7 both in the primary cohort and external validation cohort. Patients with MSA had a higher NLR than did HCs. A high NLR increased the risk of mortality with MSA, especially in MSA-C and in men.
Collapse
|
22
|
Malfertheiner K, Stefanova N, Heras-Garvin A. The Concept of α-Synuclein Strains and How Different Conformations May Explain Distinct Neurodegenerative Disorders. Front Neurol 2021; 12:737195. [PMID: 34675870 PMCID: PMC8523670 DOI: 10.3389/fneur.2021.737195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive. Hence, the hypothesis that structurally distinct fibrillary assemblies of α-synuclein could have a causative role in the different disease phenotypes and explain, at least to some extent, their specific neurodegenerative, disease progression, and clinical presentation patterns is very appealing. Moreover, the presence of different α-synuclein strains might represent a potential biomarker for the diagnosis of these neurodegenerative disorders. In this regard, the recent use of super resolution techniques and protein aggregation assays has offered the possibility, on the one hand, to elucidate the conformation of α-synuclein pathogenic strains and, on the other hand, to cyclically amplify to detectable levels low amounts of α-synuclein strains in blood, cerebrospinal fluid and peripheral tissue from patients. Thus, the inclusion of these techniques could facilitate the differentiation between α-synucleinopathies, even at early stages, which is crucial for successful therapeutic intervention. This mini-review summarizes the current knowledge on α-synuclein strains and discusses its possible applications and potential benefits.
Collapse
Affiliation(s)
- Katja Malfertheiner
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Zhang L, Cao B, Hou Y, Gu X, Wei QQ, Ou R, Zhao B, Song W, Shang H. Fatigue in Patients With Multiple System Atrophy: A Prospective Cohort Study. Neurology 2021; 98:e73-e82. [PMID: 34663646 DOI: 10.1212/wnl.0000000000012968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Non-motor symptoms are common in patients with multiple system atrophy (MSA), but there is limited knowledge regarding fatigue in MSA. This study aimed to investigate the frequency and evolution of fatigue and the factors related to fatigue and its progression in patients with MSA at an early stage. METHODS Patients with probable MSA were comprehensively evaluated at both baseline and the 1-year follow-up, including their motor and non-motor symptoms. Fatigue and anxiety were assessed using the fatigue severity scale (FSS) and Hamilton anxiety rating scale (HARS), respectively. Orthostatic hypotension (OH) was defined as a decrease in the systolic and/or diastolic blood pressure by at least 30 mmHg and 15 mmHg, respectively. The binary logistic regression model and linear regression model were used to analyze the factors related to fatigue and its progression, respectively. RESULTS This study enrolled 146 patients with MSA. The frequency of fatigue was 60.3%, 55.1%, and 64.9% in MSA, MSA with predominant parkinsonism (MSA-P), and MSA with predominant cerebellar ataxia (MSA-C), respectively. The frequency of fatigue and the FSS score in MSA patients increased from baseline to the 1-year follow-up (P < 0.05). Young age (OR 0.939, 95% CI 0.894-0.987), OH (OR 2.806, 95% CI 1.253-6.286), and high HARS score (OR 1.014, 95% CI 1.035-1.177) were associated with fatigue in MSA. OH was associated with fatigue in MSA-P (OR 3.391, 95% CI 1.066-10.788), while high HARS score was associated with fatigue in MSA-C (OR 1.159, 95% CI 1.043-1.287). Additionally, only low FSS scores at baseline were associated with the annual progression rate of FSS scores in MSA, MSA-P, and MSA-C (P<0.05). Neurofilament light chain, α-synuclein, glial fibrillary acidic protein, brain-derived neurotrophic factor, and triggering receptor expressed on myeloid cell-2 were not significantly associated with fatigue and its progression in MSA. CONCLUSION Fatigue was prevalent in early-stage MSA, and it increased and remained persistent over time. This study demonstrated that OH and anxiety were associated with fatigue in MSA patients.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Xiaojing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, China
| |
Collapse
|
24
|
Current experimental disease-modifying therapeutics for multiple system atrophy. J Neural Transm (Vienna) 2021; 128:1529-1543. [PMID: 34398313 PMCID: PMC8528757 DOI: 10.1007/s00702-021-02406-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Multiple system atrophy (MSA) is a challenging neurodegenerative disorder with a difficult and often inaccurate early diagnosis, still lacking effective treatment. It is characterized by a highly variable clinical presentation with parkinsonism, cerebellar ataxia, autonomic dysfunction, and pyramidal signs, with a rapid progression and an aggressive clinical course. The definite MSA diagnosis is only possible post-mortem, when the presence of distinctive oligodendroglial cytoplasmic inclusions (GCIs), mainly composed of misfolded and aggregated α-Synuclein (α-Syn) is demonstrated. The process of α-Syn accumulation and aggregation within oligodendrocytes is accepted one of the main pathological events underlying MSA. However, MSA is considered a multifactorial disorder with multiple pathogenic events acting together including neuroinflammation, oxidative stress, and disrupted neurotrophic support, among others. The discussed here treatment approaches are based on our current understanding of the pathogenesis of MSA and the results of preclinical and clinical therapeutic studies conducted over the last 2 decades. We summarize leading disease-modifying approaches for MSA including targeting α-Syn pathology, modulation of neuroinflammation, and enhancement of neuroprotection. In conclusion, we outline some challenges related to the need to overcome the gap in translation between preclinical and clinical studies towards a successful disease modification in MSA.
Collapse
|
25
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
26
|
Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D, Wang X, Li H. "Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicol Rep 2021; 8:607-616. [PMID: 33816123 PMCID: PMC8010213 DOI: 10.1016/j.toxrep.2021.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Essential metals including iron (Fe) and manganese (Mn) with known physiological functions in human body play an important role in cell homeostasis. Excessive exposure to these essential as well as non-essential metals including mercury (Hg) and Aluminum (Al) may contribute to pathological conditions, including PD. Each metal could be toxic through specific pathways. Epidemiological evidences from occupational and ecological studies besides various in vivo and in vitro studies have revealed the possible pathogenic role and neurotoxicity of different metals. Pesticides are substances that aim to mitigate the harm done by pests to plants and crops, and are extensively used to boost agricultural production. This review provides an outline of our current knowledge on the possible association between metals and PD. We have discussed the potential association between these two, furthermore the chemical properties, biological and toxicological aspects as well as possible mechanisms of Fe, Mn, Cu, Zn, Al, Ca, Pb, Hg and Zn in PD pathogenesis. In addition, we review recent evidence on deregulated microRNAs upon pesticide exposure and possible role of deregulated miRNA and pesticides to PD pathogenesis.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, China
| | - Yang Hai
- School of Pharmacy, Lanzhou University, China
| | | | | | - Xin Wang
- School of Pharmacy, Lanzhou University, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, China
- School of Pharmacy, Lanzhou University, China
| |
Collapse
|
27
|
Del Campo N, Phillips O, Ory‐Magne F, Brefel‐Courbon C, Galitzky M, Thalamas C, Narr KL, Joshi S, Singh MK, Péran P, Pavy‐LeTraon A, Rascol O. Broad white matter impairment in multiple system atrophy. Hum Brain Mapp 2021; 42:357-366. [PMID: 33064319 PMCID: PMC7776008 DOI: 10.1002/hbm.25227] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 11/11/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disorder characterized by the widespread aberrant accumulation of α-synuclein (α-syn). MSA differs from other synucleinopathies such as Parkinson's disease (PD) in that α-syn accumulates primarily in oligodendrocytes, the only source of white matter myelination in the brain. Previous MSA imaging studies have uncovered focal differences in white matter. Here, we sought to build on this work by taking a global perspective on whole brain white matter. In order to do this, in vivo structural imaging and diffusion magnetic resonance imaging were acquired on 26 MSA patients, 26 healthy controls, and 23 PD patients. A refined whole brain approach encompassing the major fiber tracts and the superficial white matter located at the boundary of the cortical mantle was applied. The primary observation was that MSA but not PD patients had whole brain deep and superficial white matter diffusivity abnormalities (p < .001). In addition, in MSA patients, these abnormalities were associated with motor (Unified MSA Rating Scale, Part II) and cognitive functions (Mini-Mental State Examination). The pervasive whole brain abnormalities we observe suggest that there is widespread white matter damage in MSA patients which mirrors the widespread aggregation of α-syn in oligodendrocytes. Importantly, whole brain white matter abnormalities were associated with clinical symptoms, suggesting that white matter impairment may be more central to MSA than previously thought.
Collapse
Affiliation(s)
- Natalia Del Campo
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Owen Phillips
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
- Division of Child and Adolescent Psychiatry, Department of PsychiatryStanford University School of MedicineStanfordCaliforniaUSA
- BrainKeySan FranciscoCaliforniaUSA
| | - Françoise Ory‐Magne
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Christine Brefel‐Courbon
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Monique Galitzky
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Claire Thalamas
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Katherine L. Narr
- Department of NeurologyAhmanson Lovelace Brain Mapping Center, David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Shantanu Joshi
- Department of NeurologyAhmanson Lovelace Brain Mapping Center, David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Manpreet K. Singh
- Division of Child and Adolescent Psychiatry, Department of PsychiatryStanford University School of MedicineStanfordCaliforniaUSA
| | - Patrice Péran
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Anne Pavy‐LeTraon
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Olivier Rascol
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| |
Collapse
|
28
|
Shadrin AA, Mucha S, Ellinghaus D, Makarious MB, Blauwendraat C, Sreelatha AAK, Heras-Garvin A, Ding J, Hammer M, Foubert-Samier A, Meissner WG, Rascol O, Pavy-Le Traon A, Frei O, O'Connell KS, Bahrami S, Schreiber S, Lieb W, Müller-Nurasyid M, Schminke U, Homuth G, Schmidt CO, Nöthen MM, Hoffmann P, Gieger C, Wenning G, Gibbs JR, Franke A, Hardy J, Stefanova N, Gasser T, Singleton A, Houlden H, Scholz SW, Andreassen OA, Sharma M. Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease. Mov Disord 2020; 36:449-459. [PMID: 33107653 PMCID: PMC8985479 DOI: 10.1002/mds.28338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. Methods: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. Results: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. Conclusion: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology.
Collapse
Affiliation(s)
- Alexey A Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sören Mucha
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Mary B Makarious
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and, Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashwin A K Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | | | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Monia Hammer
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandra Foubert-Samier
- Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux, Bordeaux, France.,Inserm, UMR1219, Bordeaux Population Health Research Center, Bordeaux University, ISPED, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux, Bordeaux, France.,Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France
| | - Olivier Rascol
- Centre de Reference Maladie Rare Atrophie MultiSystématisée, Centre d'Investigation, Clinique CIC 1436, Services de Pharmacologie Clinique et Neurosciences, NeuroToul COEN Center, Toulouse, France.,Centre Hospitalo-Universitaire de Toulouse, 3, INSERM, Toulouse, France
| | - Anne Pavy-Le Traon
- Neurology Department, French Reference Centre for MSA, University Hospital of Toulouse and INSERM U 1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.,First Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Ulf Schminke
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, Study of Health in Pomerania/KEF, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Gregor Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - John Hardy
- Rita Lila Weston Institute, University College London, London, UK
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Henry Houlden
- Rita Lila Weston Institute, University College London, London, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and, Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neurology, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Extracellular Alpha-Synuclein Promotes a Neuroinhibitory Secretory Phenotype in Astrocytes. Life (Basel) 2020; 10:life10090183. [PMID: 32911644 PMCID: PMC7555668 DOI: 10.3390/life10090183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) are α-synucleinopathies that exhibit widespread astrogliosis as a component of the neuroinflammatory response. Munc18, a protein critical to vesicle exocytosis, was previously found to strongly mark morphologically activated astrocytes in brain tissue of MSA patients. Immunofluorescence of MSA, DLB and normal brain tissue sections was combined with cell culture and co-culture experiments to investigate the relationship between extracellular α-synuclein and the transition to a secretory astrocyte phenotype. Increased Munc18-positive vesicles were resolved in activated astrocytes in MSA and DLB tissue compared to controls, and they were also significantly upregulated in the human 1321N1 astrocytoma cell line upon treatment with α-synuclein, with parallel increases in GFAP expression and IL-6 secretion. In co-culture experiments, rat primary astrocytes pretreated with α-synuclein inhibited the growth of neurites of co-cultured primary rat neurons and upregulated chondroitin sulphate proteoglycan. Taken together, these results indicate that the secretory machinery is significantly upregulated in the astrocyte response to extracellular α-synuclein and may participate in the release of neuroinhibitory and proinflammatory factors in α-synucleinopathies.
Collapse
|
30
|
Fouka M, Mavroeidi P, Tsaka G, Xilouri M. In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Front Cell Dev Biol 2020; 8:559791. [PMID: 33015057 PMCID: PMC7500083 DOI: 10.3389/fcell.2020.559791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD), multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders characterized by the pathological aggregation of the neuronal protein α-synuclein. PD and DLB are characterized by the abnormal accumulation and aggregation of α-synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence of pathologically aggregated α-synuclein along with components of the protein degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to underlie the pathogenic cascade that eventually leads to the severe neurodegeneration and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is proposed to undergo pathogenic misfolding and oligomerization into higher-order structures, revealing self-templating conformations, and to exert the ability of "prion-like" spreading between cells. Therefore, the manner in which the protein is produced, is modified within neural cells and is degraded, represents a major focus of current research efforts in the field. Given that α-synuclein protein load is critical to disease pathogenesis, the identification of means to limit intracellular protein burden and halt α-synuclein propagation represents an obvious therapeutic approach in synucleinopathies. However, up to date the development of effective therapeutic strategies to prevent degeneration in synucleinopathies is limited, due to the lack of knowledge regarding the precise mechanisms underlying the observed pathology. This review critically summarizes the recent developed strategies to counteract α-synuclein toxicity, including those aimed to increase protein degradation, to prevent protein aggregation and cell-to-cell propagation, or to engage antibodies against α-synuclein and discuss open questions and unknowns for future therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
31
|
Fatoba O, Itokazu T, Yamashita T. Microglia as therapeutic target in central nervous system disorders. J Pharmacol Sci 2020; 144:102-118. [PMID: 32921391 DOI: 10.1016/j.jphs.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic microglial activation is associated with the pathogenesis of several CNS disorders. Microglia show phenotypic diversity and functional complexity in diseased CNS. Thus, understanding the pathology-specific heterogeneity of microglial behavior is crucial for the future development of microglia-modulating therapy for variety of CNS disorders. This review summarizes up-to-date knowledge on how microglia contribute to CNS homeostasis during development and throughout adulthood. We discuss the heterogeneity of microglial phenotypes in the context of CNS disorders with an emphasis on neurodegenerative diseases, demyelinating diseases, CNS trauma, and epilepsy. We conclude this review with a discussion about the disease-specific heterogeneity of microglial function and how it could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
32
|
Conway KS, Camelo-Piragua S, Fisher-Hubbard A, Perry WR, Shakkottai VG, Venneti S. Multiple system atrophy pathology is associated with primary Sjögren's syndrome. JCI Insight 2020; 5:138619. [PMID: 32644976 PMCID: PMC7455075 DOI: 10.1172/jci.insight.138619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/01/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Our objective was to investigate whether primary Sjögren’s syndrome (pSS) is associated with multiple system atrophy (MSA). METHODS We performed a retrospective cohort study assessing (a) rates of MSA in a cohort of patients with pSS and (b) rates of pSS in a cohort of patients with MSA. These data were compared with rates in respective control groups. We additionally reviewed the neuropathologic findings in 2 patients with pSS, cerebellar degeneration, parkinsonism, and autonomic dysfunction. RESULTS Our cohort of 308 patients with pSS had a greater incidence of MSA compared with 4 large population-based studies and had a significantly higher prevalence of at least probable MSA (1% vs. 0%, P = 0.02) compared with 776 patients in a control cohort of patients with other autoimmune disorders. Our cohort of 26 autopsy-proven patients with MSA had a significantly higher prevalence of pSS compared with a cohort of 115 patients with other autopsy-proven neurodegenerative disorders (8% vs. 0%, P = 0.03). The 2 patients we described with pSS and progressive neurodegenerative disease showed classic MSA pathology at autopsy. CONCLUSION Our findings provide evidence for an association between MSA and pSS that is specific to both pSS, among autoimmune disorders, and MSA, among neurodegenerative disorders. The 2 cases we describe of autopsy-proven MSA support that MSA pathology can explain neurologic disease in a subset of patients with pSS. These findings together support the hypothesis that systemic autoimmune disease plays a role in neurodegeneration. FUNDING The Michigan Brain Bank is supported in part through NIH grant P30AG053760. This single-center retrospective cohort study shows an association between primary Sjogren’s syndrome and multiple system atrophy pathology.
Collapse
Affiliation(s)
- Kyle S Conway
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sandra Camelo-Piragua
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda Fisher-Hubbard
- Department of Pathology, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, Michigan, USA
| | - William R Perry
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vikram G Shakkottai
- Department of Neurology, Department of Molecular and Integrative Physiology Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sriram Venneti
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Mészáros L, Hoffmann A, Wihan J, Winkler J. Current Symptomatic and Disease-Modifying Treatments in Multiple System Atrophy. Int J Mol Sci 2020; 21:E2775. [PMID: 32316335 PMCID: PMC7215736 DOI: 10.3390/ijms21082775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare, severe, and rapidly progressive neurodegenerative disorder categorized as an atypical parkinsonian syndrome. With a mean life expectancy of 6-9 years after diagnosis, MSA is clinically characterized by parkinsonism, cerebellar ataxia, autonomic failure, and poor l-Dopa responsiveness. Aside from limited symptomatic treatment, there is currently no disease-modifying therapy available. Consequently, distinct pharmacological targets have been explored and investigated in clinical studies based on MSA-related symptoms and pathomechanisms. Parkinsonism, cerebellar ataxia, and autonomic failure are the most important symptoms targeted by symptomatic treatments in current clinical trials. The most prominent pathological hallmark is oligodendroglial cytoplasmic inclusions containing alpha-synuclein, thus classifying MSA as synucleinopathy. Additionally, myelin and neuronal loss accompanied by micro- and astrogliosis are further distinctive features of MSA-related neuropathology present in numerous brain regions. Besides summarizing current symptomatic treatment strategies in MSA, this review critically reflects upon potential cellular targets and disease-modifying approaches for MSA such as (I) targeting α-syn pathology, (II) intervening neuroinflammation, and (III) neuronal loss. Although these single compound trials are aiming to interfere with distinct pathogenetic steps in MSA, a combined approach may be necessary to slow down the rapid progression of the oligodendroglial associated synucleinopathy.
Collapse
Affiliation(s)
| | | | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.); (A.H.); (J.W.)
| |
Collapse
|
34
|
Insights into the pathogenesis of multiple system atrophy: focus on glial cytoplasmic inclusions. Transl Neurodegener 2020; 9:7. [PMID: 32095235 PMCID: PMC7025408 DOI: 10.1186/s40035-020-0185-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple system atrophy (MSA) is a debilitating and fatal neurodegenerative disorder. The disease severity warrants urgent development of disease-modifying therapy, but the disease pathogenesis is still enigmatic. Neurodegeneration in MSA brains is preceded by the emergence of glial cytoplasmic inclusions (GCIs), which are insoluble α-synuclein accumulations within oligodendrocytes (OLGs). Thus, preventive strategies against GCI formation may suppress disease progression. However, although numerous studies have tried to elucidate the molecular pathogenesis of GCI formation, difficulty remains in understanding the pathological interaction between the two pivotal aspects of GCIs; α-synuclein and OLGs. The difficulty originates from several enigmas: 1) what triggers the initial generation and possible propagation of pathogenic α-synuclein species? 2) what contributes to OLG-specific accumulation of α-synuclein, which is abundantly expressed in neurons but not in OLGs? and 3) how are OLGs and other glial cells affected and contribute to neurodegeneration? The primary pathogenesis of GCIs may involve myelin dysfunction and dyshomeostasis of the oligodendroglial cellular environment such as autophagy and iron metabolism. We have previously reported that oligodendrocyte precursor cells are more prone to develop intracellular inclusions in the presence of extracellular fibrillary α-synuclein. This finding implies a possibility that the propagation of GCI pathology in MSA brains is mediated through the internalization of pathological α-synuclein into oligodendrocyte precursor cells. In this review, in order to discuss the pathogenesis of GCIs, we will focus on the composition of neuronal and oligodendroglial inclusions in synucleinopathies. Furthermore, we will introduce some hypotheses on how α-synuclein pathology spreads among OLGs in MSA brains, in the light of our data from the experiments with primary oligodendrocyte lineage cell culture. While various reports have focused on the mysterious source of α-synuclein in GCIs, insights into the mechanism which regulates the uptake of pathological α-synuclein into oligodendroglial cells may yield the development of the disease-modifying therapy for MSA. The interaction between glial cells and α-synuclein is also highlighted with previous studies of post-mortem human brains, cultured cells, and animal models, which provide comprehensive insight into GCIs and the MSA pathomechanisms.
Collapse
|
35
|
Heras-Garvin A, Refolo V, Reindl M, Wenning GK, Stefanova N. High-salt diet does not boost neuroinflammation and neurodegeneration in a model of α-synucleinopathy. J Neuroinflammation 2020; 17:35. [PMID: 31980040 PMCID: PMC6982394 DOI: 10.1186/s12974-020-1714-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
AIM Pre-clinical studies in models of multiple sclerosis and other inflammatory disorders suggest that high-salt diet may induce activation of the immune system and potentiate inflammation. However, high-salt diet constitutes a common non-pharmacological intervention to treat autonomic problems in synucleinopathies such as Parkinson's disease and multiple system atrophy. Since neuroinflammation plays an important pathogenic role in these neurodegenerative disorders, we asked here whether high-salt diet may aggravate the disease phenotype in a transgenic model of multiple system atrophy. METHODS Nine-month-old PLP-hαSyn and matched wildtype mice received normal or high-salt diet for a period of 3 months. Behavioral, histological, and molecular analyses were performed to evaluate the effect of high-salt diet on motor decline, neuroinflammation, neurodegeneration, and α-synuclein accumulation in these mice. RESULTS Brain subregion-specific molecular and histological analyses showed no deleterious effects of high-salt diet on the level of microglial activation. Moreover, neuroinflammation-related cytokines and chemokines, T cell recruitment or astrogliosis were unaffected by high-salt diet exposure. Behavioral testing showed no effect of diet on motor decline. High-salt diet was not related to the deterioration of neurodegeneration or α-synuclein accumulation in PLP-hαSyn mice. CONCLUSIONS Here, we demonstrate that high-salt diet does not aggravate neuroinflammation and neurodegeneration in PLP-hαSyn mice. Our findings discard a deleterious pro-neuroinflammatory effect of high-salt diet in multiple system atrophy.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Violetta Refolo
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Markus Reindl
- Department of Neurology, Neuroimmunology Research Group, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
36
|
Heras-Garvin A, Stefanova N. MSA: From basic mechanisms to experimental therapeutics. Parkinsonism Relat Disord 2020; 73:94-104. [PMID: 32005598 DOI: 10.1016/j.parkreldis.2020.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 01/16/2023]
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder characterized by rapidly progressive autonomic and motor dysfunction. Pathologically, MSA is mainly characterized by the abnormal accumulation of misfolded α-synuclein in the cytoplasm of oligodendrocytes, which plays a major role in the pathogenesis of the disease. Striatonigral degeneration and olivopontecerebellar atrophy underlie the motor syndrome, while degeneration of autonomic centers defines the autonomic failure in MSA. At present, there is no treatment that can halt or reverse its progression. However, over the last decade several studies in preclinical models and patients have helped to better understand the pathophysiological events underlying MSA. The etiology of this fatal disorder remains unclear and may be multifactorial, caused by a combination of factors which may serve as targets for novel therapeutic approaches. In this review, we summarize the current knowledge about the etiopathogenesis and neuropathology of MSA, its different preclinical models, and the main disease modifying therapies that have been used so far or that are planned for future clinical trials.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Austria.
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Austria.
| |
Collapse
|
37
|
Lee HJ, Ricarte D, Ortiz D, Lee SJ. Models of multiple system atrophy. Exp Mol Med 2019; 51:1-10. [PMID: 31740682 PMCID: PMC6861264 DOI: 10.1038/s12276-019-0346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis. Studies on MSA pathogenesis are scarce relative to studies on the pathogenesis of other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies. However, recent developments in cellular and animal models of MSA, especially α-synuclein transgenic models, have driven advancements in research on this disease. Here, we review the currently available models of MSA, which include toxicant-induced animal models, α-synuclein-overexpressing cellular models, and mouse models that express α-synuclein specifically in oligodendrocytes through cell type-specific promoters. We will also discuss the results of studies in recently developed transmission mouse models, into which MSA brain extracts were intracerebrally injected. By reviewing the findings obtained from these model systems, we will discuss what we have learned about the disease and describe the strengths and limitations of the models, thereby ultimately providing direction for the design of better models and future research. A review of the models available for studying multiple system atrophy (MSA), a Parkinson’s-like disease, may help identify new treatment options. MSA is difficult to diagnose and unresponsive to drugs. Similar to Parkinson’s disease, it involves accumulation of protein aggregates in brain and spinal cord cells, but the causes are poorly understood. He-Jin Lee at Konkuk University, and Seung-Jae Lee at Seoul National University College of Medicine in South Korea and coworkers have reviewed the models available to study the disease, including toxin-induced and transgenic animal models, and recent evidence that transferring the protein aggregates into cells causes MSA symptoms. Each model mimics some aspects of the disease, but none captures the full range of symptoms. This review helps highlight research pathways that may illuminate treatments for this complex and debilitating adult-onset disease.
Collapse
Affiliation(s)
- He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea. .,Research Institute of Medical Science, Konkuk University, Seoul, 05029, South Korea. .,IBST, Konkuk University, Seoul, 05029, South Korea.
| | - Diadem Ricarte
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Darlene Ortiz
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Seung-Jae Lee
- Department of Medicine and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
38
|
Selective vulnerability in α-synucleinopathies. Acta Neuropathol 2019; 138:681-704. [PMID: 31006067 PMCID: PMC6800835 DOI: 10.1007/s00401-019-02010-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are neurodegenerative disorders resulting in progressive motor/cognitive deficits among other symptoms. They are characterised by stereotypical brain cell loss accompanied by the formation of proteinaceous aggregations of the protein α-synuclein (α-syn), being, therefore, termed α-synucleinopathies. Although the presence of α-syn inclusions is a common hallmark of these disorders, the exact nature of the deposited protein is specific to each disease. Different neuroanatomical regions and cellular populations manifest a differential vulnerability to the appearance of protein deposits, cell dysfunction, and cell death, leading to phenotypic diversity. The present review describes the multiple factors that contribute to the selective vulnerability in α-synucleinopathies. We explore the intrinsic cellular properties in the affected regions, including the physiological and pathophysiological roles of endogenous α-syn, the metabolic and genetic build-up of the cells and their connectivity. These factors converge with the variability of the α-syn conformational strains and their spreading capacity to dictate the phenotypic diversity and regional vulnerability of each disease. Finally, we describe the exogenous and environmental factors that potentially contribute by igniting and modulating the differential pathology in α-synucleinopathies. In conclusion, we think that it is the confluence of this disruption of the cellular metabolic state and α-syn structural equilibrium through the anatomical connectivity which appears to initiate cascades of pathological processes triggered by genetic, environmental, or stochastic events that result in the "death by a thousand cuts" profile of α-synucleinopathies.
Collapse
|
39
|
Xiang C, Han S, Nao J, Cong S. MicroRNAs Dysregulation and Metabolism in Multiple System Atrophy. Front Neurosci 2019; 13:1103. [PMID: 31680837 PMCID: PMC6811505 DOI: 10.3389/fnins.2019.01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple system atrophy (MSA) is an adult onset, fatal disease, characterized by an accumulation of alpha-synuclein (α-syn) in oligodendroglial cells. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-translational regulation and several biological processes. Disruption of miRNA-related pathways in the central nervous system (CNS) plays an important role in the pathogenesis of neurodegenerative diseases, including MSA. While the exact mechanisms underlying miRNAs in the pathogenesis of MSA remain unclear, it is known that miRNAs can repress the translation of messenger RNAs (mRNAs) that regulate the following pathogenesis associated with MSA: autophagy, neuroinflammation, α-syn accumulation, synaptic transmission, oxidative stress, and apoptosis. In this review, the metabolism of miRNAs and their functional roles in the pathogenesis of MSA are discussed, thereby highlighting miRNAs as potential new biomarkers for the diagnosis of MSA and in increasing our understanding of the disease process.
Collapse
Affiliation(s)
- Chunchen Xiang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shunchang Han
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Kana V, Desland FA, Casanova-Acebes M, Ayata P, Badimon A, Nabel E, Yamamuro K, Sneeboer M, Tan IL, Flanigan ME, Rose SA, Chang C, Leader A, Le Bourhis H, Sweet ES, Tung N, Wroblewska A, Lavin Y, See P, Baccarini A, Ginhoux F, Chitu V, Stanley ER, Russo SJ, Yue Z, Brown BD, Joyner AL, De Witte LD, Morishita H, Schaefer A, Merad M. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med 2019; 216:2265-2281. [PMID: 31350310 PMCID: PMC6781012 DOI: 10.1084/jem.20182037] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/04/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia. Cerebellar microglial identity was driven by the CSF-1R ligand CSF-1, independently of the alternate CSF-1R ligand, IL-34. Accordingly, CSF-1 depletion from Nestin+ cells led to severe depletion and transcriptional alterations of cerebellar microglia, while microglia in the forebrain remained intact. Strikingly, CSF-1 deficiency and alteration of cerebellar microglia were associated with reduced Purkinje cells, altered neuronal function, and defects in motor learning and social novelty interactions. These findings reveal a novel CSF-1-CSF-1R signaling-mediated mechanism that contributes to motor function and social behavior.
Collapse
Affiliation(s)
- Veronika Kana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fiona A Desland
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pinar Ayata
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Badimon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elisa Nabel
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kazuhiko Yamamuro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marjolein Sneeboer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - I-Li Tan
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samuel A Rose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christie Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hortense Le Bourhis
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric S Sweet
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aleksandra Wroblewska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Alessia Baccarini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhenyu Yue
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandra L Joyner
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hirofumi Morishita
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY .,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
41
|
Folke J, Rydbirk R, Løkkegaard A, Salvesen L, Hejl AM, Starhof C, Bech S, Winge K, Christensen S, Pedersen LØ, Aznar S, Pakkenberg B, Brudek T. Distinct Autoimmune Anti-α-Synuclein Antibody Patterns in Multiple System Atrophy and Parkinson's Disease. Front Immunol 2019; 10:2253. [PMID: 31616427 PMCID: PMC6769034 DOI: 10.3389/fimmu.2019.02253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
Aggregation of alpha-synuclein (α-syn) is considered to be the major pathological hallmark and driving force of Multiple System Atrophy (MSA) and Parkinson's disease (PD). Immune dysfunctions have been associated with both MSA and PD and recently we reported that the levels of natural occurring autoantibodies (NAbs) with high-affinity/avidity toward α-synuclein are reduced in MSA and PD patients. Here, we aimed to evaluate the plasma immunoglobulin (Ig) composition binding α-syn and other amyloidogenic neuropathological proteins, and to correlate them with disease severity and duration in MSA and PD patients. All participants were recruited from a single neurological unit and the plasma samples were stored for later research at the Bispebjerg Movement Disorder Biobank. All patients were diagnosed according to current consensus criteria. Using multiple variable linear regression analyses, we observed higher levels of anti-α-syn IgG1 and IgG3 NAbs in MSA vs. PD, higher levels of anti-α-syn IgG2 NAbs in PD compared to controls, whereas anti-α-syn IgG4 NAbs were reduced in PD compared to MSA and controls. Anti-α-syn IgM levels were decreased in both MSA and PD. Further our data supported that MSA patients' immune system was affected with reduced IgG1 and IgM global levels compared to PD and controls, with further reduced global IgG2 levels compared to PD. These results suggest distinct autoimmune patterns in MSA and PD. These findings suggest a specific autoimmune physiological mechanism involving responses toward α-syn, differing in neurodegenerative disease with overlapping α-syn pathology.
Collapse
Affiliation(s)
- Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Rasmus Rydbirk
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Charlotte Starhof
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Sára Bech
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Kristian Winge
- Novo Nordisk Foundation, Hellerup, Denmark.,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Lars Østergaard Pedersen
- Department of Immunology and Microbiology, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Ndayisaba A, Herrera-Vaquero M, Wenning GK, Stefanova N. Induced pluripotent stem cells in multiple system atrophy: recent developments and scientific challenges. Clin Auton Res 2019; 29:385-395. [PMID: 31187309 PMCID: PMC6695370 DOI: 10.1007/s10286-019-00614-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022]
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disease, with no known genetic cause to date. Oligodendroglial α-synuclein accumulation, neuroinflammation, and early myelin dysfunction are hallmark features of the disease and have been modeled in part in various preclinical models of MSA, yet the pathophysiology of MSA remains elusive. Here, we review the role and scientific challenges of induced pluripotent stem cells in the detection of novel biomarkers and druggable targets in MSA.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria
| | - Marcos Herrera-Vaquero
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| |
Collapse
|
43
|
Monzio Compagnoni G, Di Fonzo A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol Commun 2019; 7:113. [PMID: 31300049 PMCID: PMC6624923 DOI: 10.1186/s40478-019-0730-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple System Atrophy (MSA) is a severe neurodegenerative disease clinically characterized by parkinsonism, cerebellar ataxia, dysautonomia and other motor and non-motor symptoms. Although several efforts have been dedicated to understanding the causative mechanisms of the disease, MSA pathogenesis remains widely unknown. The aim of the present review is to describe the state of the art about MSA pathogenesis, with a particular focus on alpha-synuclein accumulation and mitochondrial dysfunction, and to highlight future possible perspectives in this field. In particular, this review describes the most widely investigated hypotheses explaining alpha-synuclein accumulation in oligodendrocytes, including SNCA expression, neuron-oligodendrocyte protein transfer, impaired protein degradation and alpha-synuclein spread mechanisms. Afterwards, several recent achievements in MSA research involving mitochondrial biology are described, including the role of COQ2 mutations, Coenzyme Q10 reduction, respiratory chain dysfunction and altered mitochondrial mass. Some hints are provided about alternative pathogenic mechanisms, including inflammation and impaired autophagy. Finally, all these findings are discussed from a comprehensive point of view, putative explanations are provided and new research perspectives are suggested. Overall, the present review provides a comprehensive and up-to-date overview of the mechanisms underlying MSA pathogenesis.
Collapse
|
44
|
Does peripheral inflammation contribute to multiple system atrophy? Parkinsonism Relat Disord 2019; 64:340-341. [DOI: 10.1016/j.parkreldis.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/02/2023]
|
45
|
Nemmi F, Pavy-Le Traon A, Phillips OR, Galitzky M, Meissner WG, Rascol O, Péran P. A totally data-driven whole-brain multimodal pipeline for the discrimination of Parkinson's disease, multiple system atrophy and healthy control. NEUROIMAGE-CLINICAL 2019; 23:101858. [PMID: 31128523 PMCID: PMC6531871 DOI: 10.1016/j.nicl.2019.101858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/17/2019] [Accepted: 05/11/2019] [Indexed: 01/10/2023]
Abstract
Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are two parkinsonian syndromes that share many symptoms, albeit having very different prognosis. Although previous studies have proposed multimodal MRI protocols combined with multivariate analysis to discriminate between these two populations and healthy controls, studies combining all MRI indexes relevant for these disorders (i.e. grey matter volume, fractional anisotropy, mean diffusivity, iron deposition, brain activity at rest and brain connectivity) with a completely data-driven voxelwise analysis for discrimination are still lacking. In this study, we used such a complete MRI protocol and adapted a fully-data driven analysis pipeline to discriminate between these populations and a healthy controls (HC) group. The pipeline combined several feature selection and reduction steps to obtain interpretable models with a low number of discriminant features that can shed light onto the brain pathology of PD and MSA. Using this pipeline, we could discriminate between PD and HC (best accuracy = 0.78), MSA and HC (best accuracy = 0.94) and PD and MSA (best accuracy = 0.88). Moreover, we showed that indexes derived from resting-state fMRI alone could discriminate between PD and HC, while mean diffusivity in the cerebellum and the putamen alone could discriminate between MSA and HC. On the other hand, a more diverse set of indexes derived by multiple modalities was needed to discriminate between the two disorders. We showed that our pipeline was able to discriminate between distinct pathological populations while delivering sparse model that could be used to better understand the neural underpinning of the pathologies. Structuro-functional MRI can discriminate between parkinsonian syndromes Discriminant MRI modalities vary as a function of the discrimination task fMRI is crucial in discriminating between Parkinson's disease patients and controls Structural MRI discriminate between Multiple System Atrophy patients and controls
Collapse
Affiliation(s)
- F Nemmi
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - A Pavy-Le Traon
- UMR Institut National de la Santé et de la Recherche Médicale 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Department of Neurology and Institute for Neurosciences, University Hospital of Toulouse, Toulouse, France
| | - O R Phillips
- Brain Key, Palo Alto, California, USA; NeuroToul COEN Center, INSERM, CHU de Toulouse, Université de Toulouse 3, Toulouse, France
| | - M Galitzky
- Centre d'Investigation Clinique (CIC), CHU de Toulouse, Toulouse, France
| | - W G Meissner
- French Reference Center for MSA, Department of Neurology, University Hospital Bordeaux, Bordeaux and Institute of Neurodegenerative Disorders, University Bordeaux, CNRS UMR 5293, 33000 Bordeaux, France; Dept. Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - O Rascol
- Departments of Clinical Pharmacology and Neurosciences, Clinical Investigation Center CIC 1436, NS-Park/FCRIN network and NeuroToul COEN Center, INSERM, CHU de Toulouse, Université de Toulouse 3, Toulouse, France
| | - P Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
46
|
Ndayisaba A, Jellinger K, Berger T, Wenning GK. TNFα inhibitors as targets for protective therapies in MSA: a viewpoint. J Neuroinflammation 2019; 16:80. [PMID: 30975183 PMCID: PMC6458780 DOI: 10.1186/s12974-019-1477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a unique and fatal α-synucleinopathy associated with oligodendroglial inclusions and secondary neurodegeneration affecting striatum, substantia nigra, pons, and cerebellum. The pathogenesis remains elusive; however, there is emerging evidence suggesting a prominent role of neuroinflammation. Here, we critically review the relationship between αS and microglial activation depending on its aggregation state and its role in neuroinflammation to explore the potential of TNFα inhibitors as a treatment strategy for MSA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Gregor K. Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
47
|
Kübler D, Wächter T, Cabanel N, Su Z, Turkheimer FE, Dodel R, Brooks DJ, Oertel WH, Gerhard A. Widespread microglial activation in multiple system atrophy. Mov Disord 2019; 34:564-568. [PMID: 30726574 PMCID: PMC6659386 DOI: 10.1002/mds.27620] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022] Open
Abstract
Background The pattern and role of microglial activation in multiple system atrophy is largely unclear. The objective of this study was to use [11C](R)‐PK11195 PET to determine the extent and correlation of activated microglia with clinical parameters in MSA patients. Methods Fourteen patients with the parkinsonian phenotype of MSA (MSA‐P) with a mean disease duration of 2.9 years (range 2‐5 years) were examined with [11C](R)‐PK11195 PET and compared with 10 healthy controls. Results Patients with the parkinsonian phenotype of MSA showed a significant (P ≤ 0.01) mean increase in binding potentials compared with healthy controls in the caudate nucleus, putamen, pallidum, precentral gyrus, orbitofrontal cortex, presubgenual anterior cingulate cortex, and the superior parietal gyrus. No correlations between binding potentials and clinical parameters were found. Conclusions In early clinical stages of the parkinsonian phenotype of MSA, there is widespread microglial activation as a marker of neuroinflammatory changes without correlation to clinical parameters in our patient population. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dorothee Kübler
- Movement Disorders Section, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Tobias Wächter
- Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology, Rehabilitation Centre Bad Gögging, Passauer Wolf, Bad Gögging, Germany
| | - Nicole Cabanel
- Vitos Clinical Centre for Psychiatry and Psychotherapy, Giessen-Marburg, Germany
| | - Zhangjie Su
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Richard Dodel
- Chair of Geriatrics, University Hospital Essen, Center for Geriatric Medicine Haus Berge, Essen, Germany
| | - David J Brooks
- Department of Nuclear Medicine and PET-Centre, Institute of Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.,Institute for Neurogenomics, Helmholtz Center for Health and Environment, München, Germany
| | - Alexander Gerhard
- Departments of Nulcear Medicine and Geriatric Medicine, University Hospital Essen, Germany.,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| |
Collapse
|
48
|
Hoffmann A, Ettle B, Battis K, Reiprich S, Schlachetzki JCM, Masliah E, Wegner M, Kuhlmann T, Riemenschneider MJ, Winkler J. Oligodendroglial α-synucleinopathy-driven neuroinflammation in multiple system atrophy. Brain Pathol 2019; 29:380-396. [PMID: 30444295 PMCID: PMC6850330 DOI: 10.1111/bpa.12678] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation and oligodendroglial cytoplasmic α‐synuclein (α‐syn) inclusions (GCIs) are important neuropathological characteristics of multiple system atrophy (MSA). GCIs are known to interfere with oligodendroglial maturation and consequently result in myelin loss. The neuroinflammatory phenotype in the context of MSA, however, remains poorly understood. Here, we demonstrate MSA‐associated neuroinflammation being restricted to myeloid cells and tightly linked to oligodendroglial α‐syncleinopathy. In human putaminal post‐mortem tissue of MSA patients, neuroinflammation was observed in white matter regions only. This locally restricted neuroinflammation coincided with elevated numbers of α‐syn inclusions, while gray matter with less α‐synucleinopathy remained unaffected. In order to analyze the temporal pattern of neuroinflammation, a transgenic mouse model overexpressing human α‐syn under the control of an oligodendrocyte‐specific myelin basic protein (MBP) promoter (MBP29‐hα‐syn mice) was assessed in a pre‐symptomatic and symptomatic disease stage. Strikingly, we detected an increased neuroinflammation in regions with a high α‐syn load, the corpus callosum and the striatum, of MBP29‐hα‐syn mice, already at a pre‐symptomatic stage. Furthermore, this inflammatory response was restricted to myeloid cells being highly proliferative and showing an activated, phagocytic phenotype. In contrast, severe astrogliosis was observed only in gray matter regions of MSA patients as well as MBP29‐hα‐syn mice. To further characterize the influence of oligodendrocytes on initiation of the myeloid immune response, we performed RNA sequencing analysis of α‐syn overexpressing primary oligodendrocytes. A distinct gene expression profile including upregulation of cytokines important for myeloid cell attraction and proliferation was detected in α‐syn overexpressing oligodendrocytes. Additionally, microdissected tissue of MBP29‐hα‐syn mice exhibited a similar cellular gene expression profile in white matter regions even pre‐symptomatically. Collectively, these results imply an early crosstalk between neuroinflammation and oligodendrocytes containing α‐syn inclusions leading to an immune response locally restricted to white matter regions in MSA.
Collapse
Affiliation(s)
- Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Ettle
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Battis
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Reiprich
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes C M Schlachetzki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Extracellular Interactions of Alpha-Synuclein in Multiple System Atrophy. Int J Mol Sci 2018; 19:ijms19124129. [PMID: 30572656 PMCID: PMC6320782 DOI: 10.3390/ijms19124129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Multiple system atrophy, characterized by atypical Parkinsonism, results from central nervous system (CNS) cell loss and dysfunction linked to aggregates of the normally pre-synaptic α-synuclein protein. Mostly cytoplasmic pathological α-synuclein inclusion bodies occur predominantly in oligodendrocytes in affected brain regions and there is evidence that α-synuclein released by neurons is taken up preferentially by oligodendrocytes. However, extracellular α-synuclein has also been shown to interact with other neural cell types, including astrocytes and microglia, as well as extracellular factors, mediating neuroinflammation, cell-to-cell spread and other aspects of pathogenesis. Here, we review the current evidence for how α-synuclein present in the extracellular milieu may act at the cell surface to drive components of disease progression. A more detailed understanding of the important extracellular interactions of α-synuclein with neuronal and non-neuronal cell types both in the brain and periphery may provide new therapeutic targets to modulate the disease process.
Collapse
|
50
|
Heras-Garvin A, Weckbecker D, Ryazanov S, Leonov A, Griesinger C, Giese A, Wenning GK, Stefanova N. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord 2018; 34:255-263. [PMID: 30452793 PMCID: PMC6492169 DOI: 10.1002/mds.27562] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
Background MSA is a fatal neurodegenerative disease characterized by autonomic failure and severe motor impairment. Its main pathological hallmark is the accumulation of α‐synuclein in oligodendrocytes, leading to glial and neuronal dysfunction and neurodegeneration. These features are recapitulated in the PLP‐hαSyn mouse model expressing human α‐synuclein in oligodendrocytes. At present, there is no effective disease‐modifying therapy. Previous experiments have shown that the aggregation inhibitor, anle138b, reduces neurodegeneration and behavioral deficits in mouse models of other proteinopathies. Objectives To test the therapeutic potential of anle138b in a mouse model of MSA. Methods Two‐month‐old PLP‐hαSyn mice were fed over a period of 4 months with pellets containing anle138b at two different doses (0.6 and 2 g/kg) and compared to healthy controls and PLP‐hαSyn mice fed with placebo pellets. At the end of the treatment, behavioral and histological analyses were performed. Results We observed a reversal of motor function to healthy control levels when PLP‐hαSyn mice were treated with both doses of anle138b. Histological and molecular analyses showed a significant reduction in α‐synuclein oligomers and glial cytoplasmic inclusions in animals fed with anle138b compared to nontreated mice. These animals also present preservation of dopaminergic neurons and reduction in microglial activation in SN correlating with the α‐synuclein reduction observed. Conclusions Anle138b reduces α‐synuclein accumulation in PLP‐hαSyn mice, leading to neuroprotection, reduction of microglial activation, and preservation of motor function supporting the use of anle138b in a future clinical trial for MSA. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sergey Ryazanov
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrei Leonov
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,MODAG GmbH, Wendelsheim, Germany
| | - Christian Griesinger
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gregor K Wenning
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|