1
|
Park S, Cho S, Kim KM, Chu MK, Kim CH, Jeong KH, Kim WJ. Honokiol-induced SIRT3 upregulation protects hippocampal neurons by suppressing inflammatory processes in pilocarpine-induced status epilepticus. Neurochem Int 2024; 180:105873. [PMID: 39362498 DOI: 10.1016/j.neuint.2024.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Status epilepticus (SE), a continuous and self-sustaining epileptic seizure lasting more than 30 min, is a neurological emergency that can cause severe brain injuries and increase the risk for the development of epilepsy. Over the past few decades, accumulating evidence has suggested the importance of brain inflammation in the pathogenesis of epilepsy. Honokiol (HNK), a pharmacological activator of sirtuin 3 (SIRT3), is a bioactive compound extracted from the bark or leaves of Magnolia plants that possesses therapeutic benefits for preventing the development of inflammatory injury. However, the therapeutic effects of HNK against epileptic brain injury via regulating molecular mechanisms related to neuroinflammation remains elusive. Therefore, the present study investigated the effects of HNK on pilocarpine-induced status epilepticus (PCSE) and the therapeutic benefits of HNK in regulating inflammatory processes in the hippocampus. Treatment with HNK before PCSE induction attenuated the initiation of behavioral seizures. Post-treatment with HNK after SE onset increased SIRT3 expression, which mitigated glial activation, including reactive astrocytes and activated microglia, in the hippocampus following PCSE. Moreover, HNK treatment reduced the activation of the nuclear factor-κB/nucleotide-binding domain leucine-rich repeat with a pyrin-domain containing 3 inflammasome pathway, thereby inhibiting the production of interleukin-1β pro-inflammatory cytokine, subsequently alleviating PCSE-triggered apoptotic neuronal death in the hippocampus. These results indicate that HNK-induced SIRT3 upregulation has the potential to prevent the progression of epileptic neuropathology through its anti-inflammatory properties. Therefore, the present study suggests that HNK is a natural therapeutic agent for epileptic brain injury.
Collapse
Affiliation(s)
- Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soomi Cho
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung Min Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| |
Collapse
|
2
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Chen HQ, Zhang QG, Zhang XY, Zeng XB, Xu JW, Ling S. 4'-O-methylbavachalcone alleviates ischemic stroke injury by inhibiting parthanatos and promoting SIRT3. Eur J Pharmacol 2024; 972:176557. [PMID: 38574839 DOI: 10.1016/j.ejphar.2024.176557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.
Collapse
Affiliation(s)
- Hong-Qing Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing-Guang Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin-Yuan Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiang-Bing Zeng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Walsh AP, Simon DJ. Sugar-free synapses run on mitochondrial Sirtuin 3. J Cell Biol 2024; 223:e202312035. [PMID: 38091013 PMCID: PMC10720655 DOI: 10.1083/jcb.202312035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Metabolic plasticity of neurons ensures their activity continues when glucose is limited. Walsh and Simon discuss new work by Ashrafi and colleagues (https://doi.org/10.1083/jcb.202305048) that finds Sirtuin 3 directs local metabolic adaptation at synapses during sustained glucose deprivation.
Collapse
Affiliation(s)
| | - David J. Simon
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Sanz-Alcázar A, Britti E, Delaspre F, Medina-Carbonero M, Pazos-Gil M, Tamarit J, Ros J, Cabiscol E. Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models. Cell Mol Life Sci 2023; 81:12. [PMID: 38129330 PMCID: PMC10739563 DOI: 10.1007/s00018-023-05064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease. However, its effect on mitochondrial function remains to be elucidated. In the present study, we found that in primary cultures of DRG neurons as well as in DRGs from the FXNI151F mouse model, frataxin deficiency resulted in lower activity and levels of the electron transport complexes, mainly complexes I and II. In addition, altered mitochondrial morphology, indicative of degeneration was observed in DRGs from FXNI151F mice. Moreover, the NAD+/NADH ratio was reduced and sirtuin activity was impaired. We identified alpha tubulin as the major acetylated protein from DRG homogenates whose levels were increased in FXNI151F mice compared to WT mice. In the mitochondria, superoxide dismutase (SOD2), a SirT3 substrate, displayed increased acetylation in frataxin-deficient DRG neurons. Since SOD2 acetylation inactivates the enzyme, and higher levels of mitochondrial superoxide anion were detected, oxidative stress markers were analyzed. Elevated levels of hydroxynonenal bound to proteins and mitochondrial Fe2+ accumulation was detected when frataxin decreased. Honokiol, a SirT3 activator, restores mitochondrial respiration, decreases SOD2 acetylation and reduces mitochondrial superoxide levels. Altogether, these results provide data at the molecular level of the consequences of electron transport chain dysfunction, which starts negative feedback, contributing to neuron lethality. This is especially important in sensory neurons which have greater susceptibility to frataxin deficiency compared to other tissues.
Collapse
Affiliation(s)
- Arabela Sanz-Alcázar
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elena Britti
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Fabien Delaspre
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Marta Medina-Carbonero
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Maria Pazos-Gil
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
6
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Chen C, McDonald D, Blain A, Mossman E, Atkin K, Marusich MF, Capaldi R, Bone L, Smith A, Filby A, Erskine D, Russell O, Hudson G, Vincent AE, Reeve AK. Parkinson's disease neurons exhibit alterations in mitochondrial quality control proteins. NPJ Parkinsons Dis 2023; 9:120. [PMID: 37553379 PMCID: PMC10409763 DOI: 10.1038/s41531-023-00564-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.
Collapse
Affiliation(s)
- Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - David McDonald
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Mossman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kiera Atkin
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Laura Bone
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Smith
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Filby
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver Russell
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Kim H, Moon S, Lee D, Park J, Kim CH, Kim YM, Choi YK. Korean Red Ginseng-Induced SIRT3 Promotes the Tom22-HIF-1α Circuit in Normoxic Astrocytes. Cells 2023; 12:1512. [PMID: 37296633 PMCID: PMC10252242 DOI: 10.3390/cells12111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Astrocytes play a key role in brain functioning by providing energy to neurons. Increased astrocytic mitochondrial functions by Korean red ginseng extract (KRGE) have been investigated in previous studies. KRGE administration induces hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in astrocytes in the adult mouse brain cortex. VEGF expression can be controlled by transcription factors, such as the HIF-1α and estrogen-related receptor α (ERRα). However, the expression of ERRα is unchanged by KRGE in astrocytes of the mouse brain cortex. Instead, sirtuin 3 (SIRT3) expression is induced by KRGE in astrocytes. SIRT3 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that resides in the mitochondria and maintains mitochondrial homeostasis. Mitochondrial maintenance requires oxygen, and active mitochondria enhance oxygen consumption, resulting in hypoxia. The effects of SIRT3 on HIF-1α-mediated mitochondria functions induced by KRGE are not well established. We aimed to investigate the relationship between SIRT3 and HIF-1α in KRGE-treated normoxic astrocyte cells. Without changing the expression of the ERRα, small interfering ribonucleic acid targeted for SIRT3 in astrocytes substantially lowers the amount of KRGE-induced HIF-1α proteins. Reduced proline hydroxylase 2 (PHD2) expression restores HIF-1α protein levels in SIRT3-depleted astrocytes in normoxic cells treated with KRGE. The translocation of outer mitochondrial membranes 22 (Tom22) and Tom20 is controlled by the SIRT3-HIF-1α axis, which is activated by KRGE. KRGE-induced Tom22 increased oxygen consumption and mitochondrial membrane potential, as well as HIF-1α stability through PHD2. Taken together, in normoxic astrocytes, KRGE-induced SIRT3 activated the Tom22-HIF-1α circuit by increasing oxygen consumption in an ERRα-independent manner.
Collapse
Affiliation(s)
- Hyungsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Sunhong Moon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Dohyung Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Jinhong Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| |
Collapse
|
9
|
Szabo L, Grimm A, García-León JA, Verfaillie CM, Eckert A. Genetically Engineered Triple MAPT-Mutant Human-Induced Pluripotent Stem Cells (N279K, P301L, and E10+16 Mutations) Exhibit Impairments in Mitochondrial Bioenergetics and Dynamics. Cells 2023; 12:1385. [PMID: 37408218 DOI: 10.3390/cells12101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Pathological abnormalities in the tau protein give rise to a variety of neurodegenerative diseases, conjointly termed tauopathies. Several tau mutations have been identified in the tau-encoding gene MAPT, affecting either the physical properties of tau or resulting in altered tau splicing. At early disease stages, mitochondrial dysfunction was highlighted with mutant tau compromising almost every aspect of mitochondrial function. Additionally, mitochondria have emerged as fundamental regulators of stem cell function. Here, we show that compared to the isogenic wild-type triple MAPT-mutant human-induced pluripotent stem cells, bearing the pathogenic N279K, P301L, and E10+16 mutations, exhibit deficits in mitochondrial bioenergetics and present altered parameters linked to the metabolic regulation of mitochondria. Moreover, we demonstrate that the triple tau mutations disturb the cellular redox homeostasis and modify the mitochondrial network morphology and distribution. This study provides the first characterization of disease-associated tau-mediated mitochondrial impairments in an advanced human cellular tau pathology model at early disease stages, ranging from mitochondrial bioenergetics to dynamics. Consequently, comprehending better the influence of dysfunctional mitochondria on the development and differentiation of stem cells and their contribution to disease progression may thus assist in the potential prevention and treatment of tau-related neurodegeneration.
Collapse
Affiliation(s)
- Leonora Szabo
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Juan Antonio García-León
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
10
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
11
|
Mishra Y, Kumar Kaundal R. Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discov Today 2023; 28:103583. [PMID: 37028501 DOI: 10.1016/j.drudis.2023.103583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
Sirtuin 3 (SIRT3), a mitochondrial deacetylase expressed preferentially in high-metabolic-demand tissues including the brain, requires NAD+ as a cofactor for catalytic activity. It regulates various processes such as energy homeostasis, redox balance, mitochondrial quality control, mitochondrial unfolded protein response (UPRmt), biogenesis, dynamics and mitophagy by altering protein acetylation status. Reduced SIRT3 expression or activity causes hyperacetylation of hundreds of mitochondrial proteins, which has been linked with neurological abnormalities, neuro-excitotoxicity and neuronal cell death. A body of evidence has suggested, SIRT3 activation as a potential therapeutic modality for age-related brain abnormalities and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India.
| |
Collapse
|
12
|
Akter M, Ma H, Hasan M, Karim A, Zhu X, Zhang L, Li Y. Exogenous L-lactate administration in rat hippocampus increases expression of key regulators of mitochondrial biogenesis and antioxidant defense. Front Mol Neurosci 2023; 16:1117146. [PMID: 37008779 PMCID: PMC10062455 DOI: 10.3389/fnmol.2023.1117146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
L-lactate plays a critical role in learning and memory. Studies in rats showed that administration of exogenous L-lactate into the anterior cingulate cortex and hippocampus (HPC) improved decision-making and enhanced long-term memory formation, respectively. Although the molecular mechanisms by which L-lactate confers its beneficial effect are an active area of investigations, one recent study found that L-lactate supplementation results in a mild reactive oxygen species burst and induction of pro-survival pathways. To further investigate the molecular changes induced by L-lactate, we injected rats with either L-lactate or artificial CSF bilaterally into the dorsal HPC and collected the HPC after 60 minutes for mass spectrometry. We identified increased levels of several proteins that include SIRT3, KIF5B, OXR1, PYGM, and ATG7 in the HPC of the L-lactate treated rats. SIRT3 (Sirtuin 3) is a key regulator of mitochondrial functions and homeostasis and protects cells against oxidative stress. Further experiments identified increased expression of the key regulator of mitochondrial biogenesis (PGC-1α) and mitochondrial proteins (ATPB, Cyt-c) as well as increased mitochondrial DNA (mtDNA) copy number in the HPC of L-lactate treated rats. OXR1 (Oxidation resistance protein 1) is known to maintain mitochondrial stability. It mitigates the deleterious effects of oxidative damage in neurons by inducing a resistance response against oxidative stress. Together, our study suggests that L-lactate can induce expression of key regulators of mitochondrial biogenesis and antioxidant defense. These findings create new research avenues to explore their contribution to the L-lactate’s beneficial effect in cognitive functions as these cellular responses might enable neurons to generate more ATP to meet energy demand of neuronal activity and synaptic plasticity as well as attenuate the associated oxidative stress.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Haiying Ma
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaowei Zhu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong, Futian Research Institute, Shenzhen, Guangdong, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Ying Li,
| |
Collapse
|
13
|
Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats. J Ginseng Res 2023; 47:199-209. [PMID: 36926612 PMCID: PMC10014186 DOI: 10.1016/j.jgr.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.
Collapse
|
14
|
Esplugas R, Linares V, Bellés M, Domingo JL, Schuhmacher M. In vitro neurotoxic potential of emerging flame retardants on neuroblastoma cells in an acute exposure scenario. Toxicol In Vitro 2023; 87:105523. [PMID: 36427757 DOI: 10.1016/j.tiv.2022.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Since 2004, some legacy flame retardants (FRs) were restricted or removed from the European markets due to their concern on human health. Both organophosphorus FRs (OPFRs) and novel brominated FRs (NBFRs) have replaced them because they are presumably safer and less persistent emerging FRs (EFRs) and their exposure is currently occurring in indoor environments at high levels. Little is known about the neurotoxic potential risk of these EFRs in humans. The present study was aimed at assessing the acute neurotoxicity potential of Tris(1, 3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPhP), Bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) on human neuroblastoma cells (SH-SY5Y). SH-SY5Y were exposed to these EFRs at low concentrations -ranging 2.5-20 μM. during 2-24 h. We investigated viability, mitochondrial function, oxidative stress, inflammatory response, as well as neural plasticity and development. The results have demonstrated that selected EFRs (TDCPP, TPhP, EH-TBB and BEH-TBP) did not impair neural function on SH-SY5Y as acute response. To the best of our knowledge, this has been the first study focused on evaluating the neural affection of TPhP on SH-SY5Y cells and of EH-TBB and BEH-TBP on neural cells. We also assessed for the first time almost all endpoints after FR exposure on neural cell lines.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Victoria Linares
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Montserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
15
|
Tyagi A, Pugazhenthi S. A Promising Strategy to Treat Neurodegenerative Diseases by SIRT3 Activation. Int J Mol Sci 2023; 24:ijms24021615. [PMID: 36675125 PMCID: PMC9866791 DOI: 10.3390/ijms24021615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
SIRT3, the primary mitochondrial deacetylase, regulates the functions of mitochondrial proteins including metabolic enzymes and respiratory chain components. Although SIRT3's functions in peripheral tissues are well established, the significance of its downregulation in neurodegenerative diseases is beginning to emerge. SIRT3 plays a key role in brain energy metabolism and provides substrate flexibility to neurons. It also facilitates metabolic coupling between fuel substrate-producing tissues and fuel-consuming tissues. SIRT3 mediates the health benefits of lifestyle-based modifications such as calorie restriction and exercise. SIRT3 deficiency is associated with metabolic syndrome (MetS), a precondition for diseases including obesity, diabetes, and cardiovascular disease. The pure form of Alzheimer's disease (AD) is rare, and it has been reported to coexist with these diseases in aging populations. SIRT3 downregulation leads to mitochondrial dysfunction, neuroinflammation, and inflammation, potentially triggering factors of AD pathogenesis. Recent studies have also suggested that SIRT3 may act through multiple pathways to reduce plaque formation in the AD brain. In this review, we give an overview of SIRT3's roles in brain physiology and pathology and discuss several activators of SIRT3 that can be considered potential therapeutic agents for the treatment of dementia.
Collapse
Affiliation(s)
- Alpna Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-720-857-5629
| |
Collapse
|
16
|
Kabir F, Atkinson R, Cook AL, Phipps AJ, King AE. The role of altered protein acetylation in neurodegenerative disease. Front Aging Neurosci 2023; 14:1025473. [PMID: 36688174 PMCID: PMC9845957 DOI: 10.3389/fnagi.2022.1025473] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Acetylation is a key post-translational modification (PTM) involved in the regulation of both histone and non-histone proteins. It controls cellular processes such as DNA transcription, RNA modifications, proteostasis, aging, autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation is essential to maintain neuronal plasticity and therefore essential for memory and learning. Homeostasis of acetylation is maintained through the activities of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, with alterations to these tightly regulated processes reported in several neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Both hyperacetylation and hypoacetylation can impair neuronal physiological homeostasis and increase the accumulation of pathophysiological proteins such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, respectively. Additionally, dysregulation of acetylation is linked to impaired axonal transport, a key pathological mechanism in ALS. This review article will discuss the physiological roles of protein acetylation and examine the current literature that describes altered protein acetylation in neurodegenerative disorders.
Collapse
|
17
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
18
|
Li Y, Li J, Wu G, Yang H, Yang X, Wang D, He Y. Role of SIRT3 in neurological diseases and rehabilitation training. Metab Brain Dis 2023; 38:69-89. [PMID: 36374406 PMCID: PMC9834132 DOI: 10.1007/s11011-022-01111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Sirtuin3 (SIRT3) is a deacetylase that plays an important role in normal physiological activities by regulating a variety of substrates. Considerable evidence has shown that the content and activity of SIRT3 are altered in neurological diseases. Furthermore, SIRT3 affects the occurrence and development of neurological diseases. In most cases, SIRT3 can inhibit clinical manifestations of neurological diseases by promoting autophagy, energy production, and stabilization of mitochondrial dynamics, and by inhibiting neuroinflammation, apoptosis, and oxidative stress (OS). However, SIRT3 may sometimes have the opposite effect. SIRT3 can promote the transfer of microglia. Microglia in some cases promote ischemic brain injury, and in some cases inhibit ischemic brain injury. Moreover, SIRT3 can promote the accumulation of ceramide, which can worsen the damage caused by cerebral ischemia-reperfusion (I/R). This review comprehensively summarizes the different roles and related mechanisms of SIRT3 in neurological diseases. Moreover, to provide more ideas for the prognosis of neurological diseases, we summarize several SIRT3-mediated rehabilitation training methods.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Jing Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Guangbin Wu
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Hua Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Xiaosong Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Dongyu Wang
- Department of Neurology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Yanhui He
- Department of Radiology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| |
Collapse
|
19
|
Gao R, Chen Z, Wu Y, Chen R, Zheng W, Qi L, Liu X, Liu X, Liu L. SIRT3 alleviates mitochondrial dysfunction induced by recurrent low glucose and improves the supportive function of astrocytes to neurons. Free Radic Biol Med 2022; 193:405-420. [PMID: 36306990 DOI: 10.1016/j.freeradbiomed.2022.10.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Hypoglycemia is an independent risk factor of cognitive impairment in patients with diabetes. Our previous study indicated that dysfunction of astrocytic mitochondria induced by recurrent low glucose (RLG) may account for hypoglycemia-associated neuronal injury and cognitive decline. Sirtuin 3 (SIRT3) is a key deacetylase for mitochondrial proteins and has recently been demonstrated to be an important regulator of mitochondrial function. However, whether mitochondrial dysfunction due to hypoglycemia is associated with astrocytic SIRT3 remains unclear, and few studies have focused on the impact of astrocytic SIRT3 on neuronal survival. In the present work, primary mouse cortical astrocytes cultured in normal glucose (5.5 mM) and high glucose (16.5 mM) were treated with five rounds of RLG (0.1 mM). The results showed that RLG suppressed SIRT3 expression in a glucose-dependent manner. High-glucose culture considerably increased the vulnerability of SIRT3 to RLG, leading to disrupted mitochondrial morphology in astrocytes. Overexpression of SIRT3 markedly improved astrocytic mitochondrial function and reduced RLG-induced oxidative stress. Moreover, SIRT3 suppressed a shift towards a neuroinflammatory A1-like reactive phenotype of astrocytes in response to RLG with reduced IL-1β, IL-6, and TNFα levels. Furthermore, it elevated brain-derived neurotrophic factor (BDNF) levels and promoted neurite growth by activating BDNF/TrkB signaling in the co-cultured neurons. The present study reveals the probable crosstalk between neurons and astrocytes after hypoglycemic exposure and provides a potential target in treating hypoglycemia-associated neuronal injury.
Collapse
Affiliation(s)
- Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Yubin Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruiyu Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Wenrong Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Liqin Qi
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
20
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
21
|
Sidorova-Darmos E, Fallah MS, Logan R, Lin CY, Eubanks JH. Mitochondrial brain proteome acetylation levels and behavioural responsiveness to amphetamine are altered in mice lacking Sirt3. Front Physiol 2022; 13:948387. [PMID: 36148309 PMCID: PMC9489219 DOI: 10.3389/fphys.2022.948387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Post-translational modification of mitochondrial proteins represents one mechanism by which the functional activity of mitochondria can be regulated. In the brain, these modifications can influence the functional properties of different neural circuitries. Given that the sirtuin family member Sirt3 represents the primary protein deacetylase enzyme in mitochondria, we tested whether brain mitochondrial proteome acetylation would increase in male or female mice lacking Sirt3. Our results confirm that whole brain mitochondrial proteome acetylation levels are indeed elevated in both sexes of Sirt3-KO mice relative to controls. Consistently, we found the mitochondria of mouse embryonic fibroblast (MEF) cells derived from Sirt3-KO mice were smaller in size, and fewer in number than in wild-type MEFs, and that mitochondrial free calcium levels were elevated within the mitochondria of these cells. As protein acetylation can influence mitochondrial function, and changes in mitochondrial function have been linked to alterations in neural circuit function regulating motor activity and anxiety-like behavior, we tested whether Sirt3-deficient mice would display sensitized responsiveness to the stimulant amphetamine. Both male and female Sirt3-KO mice displayed hyper-locomotion and attenuated anxiety-like behavior in response to a dose of amphetamine that was insufficient to promote any behavioural responses in wild-type mice. Collectively, these results confirm that Sirt3 regulates mitochondrial proteome acetylation levels in brain tissue, and that the absence of Sirt3 increases the sensitivity of neural systems to amphetamine-induced behavioural responses.
Collapse
Affiliation(s)
- Elena Sidorova-Darmos
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Merrick S. Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Richard Logan
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Cheng Yu Lin
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
| | - James H. Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Surgery (Neurosurgery), University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- *Correspondence: James H. Eubanks,
| |
Collapse
|
22
|
Zhang S, Wu X, Wang J, Shi Y, Hu Q, Cui W, Bai H, Zhou J, Du Y, Han L, Li L, Feng D, Ge S, Qu Y. Adiponectin/AdiopR1 signaling prevents mitochondrial dysfunction and oxidative injury after traumatic brain injury in a SIRT3 dependent manner. Redox Biol 2022; 54:102390. [PMID: 35793583 PMCID: PMC9287731 DOI: 10.1016/j.redox.2022.102390] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 10/26/2022] Open
Abstract
Mitochondrial dysfunction and oxidative injury, which contribute to worsening of neurological deficits and poor clinical outcomes, are hallmarks of secondary brain injury after TBI. Adiponectin (APN), beyond its well-established regulatory effects on metabolism, is also essential for maintaining normal brain functions by binding APN receptors that are ubiquitously expressed in the brain. Currently, the significance of the APN/APN receptor (AdipoR) signaling pathway in secondary injury after TBI and the specific mechanisms have not been conclusively determined. In this study, we found that APN knockout aggravated brain functional deficits, increased brain edema and lesion volume, and exacerbated oxidative stress as well as apoptosis after TBI. These effects were significantly alleviated after APN receptor agonist (AdipoRon) treatment. Moreover, we found that AdipoR1, rather than AdipoR2, mediated the protective effects of APN/AdipoR signaling against oxidative stress and brain injury after TBI. In neuron-specific AdipoR1 knockout mice, mitochondrial damage was more severe after TBI, indicating a potential association between APN/AdipoR1 signaling inactivation and mitochondrial damage. Mechanistically, neuron-specific knockout of SIRT3, the most important deacetylase in the mitochondria, reversed the neuroprotective effects of AdipoRon after TBI. Then, PRDX3, a critical antioxidant enzyme in the mitochondria, was identified as a vital downstream target of the APN/SIRT3 axis to alleviate oxidative injury after TBI. Finally, we revealed that APN/AdipoR1 signaling promotes SIRT3 transcription by activating the AMPK-PGC pathway. In conclusion, APN/AdipoR1 signaling plays a protective role in post-TBI oxidative damage by restoring the SIRT3-mediated mitochondrial homeostasis and antioxidant system.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xun Wu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jin Wang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yingwu Shi
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qing Hu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wenxing Cui
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Bai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jinpeng Zhou
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yong Du
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Liying Han
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Leiyang Li
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shunnan Ge
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Yan Qu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
23
|
Clark JS, Kayed R, Abate G, Uberti D, Kinnon P, Piccirella S. Post-translational Modifications of the p53 Protein and the Impact in Alzheimer's Disease: A Review of the Literature. Front Aging Neurosci 2022; 14:835288. [PMID: 35572126 PMCID: PMC9096077 DOI: 10.3389/fnagi.2022.835288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Our understanding of Alzheimer's disease (AD) pathogenesis has developed with several hypotheses over the last 40 years, including the Amyloid and Tau hypotheses. More recently, the p53 protein, well-known as a genome guardian, has gained attention for its potential role in the early evolution of AD. This is due to the central involvement of p53's in the control of oxidative stress and potential involvement in the Amyloid and Tau pathways. p53 is commonly regulated by post-translational modifications (PTMs), which affect its conformation, increasing its capacity to adopt multiple structural and functional states, including those that can affect brain processes, thus contributing to AD development. The following review will explore the impact of p53 PTMs on its function and consequential involvement in AD pathogenesis. The greater understanding of the role of p53 in the pathogenesis of AD could result in more targeted therapies benefiting the many patients of this debilitating disease.
Collapse
Affiliation(s)
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurology, Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Giulia Abate
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | |
Collapse
|
24
|
Luo H, Peng C, Xu X, Peng Y, Shi F, Li Q, Dong J, Chen M. The Protective Effects of Mogroside V Against Neuronal Damages by Attenuating Mitochondrial Dysfunction via Upregulating Sirtuin3. Mol Neurobiol 2022; 59:2068-2084. [PMID: 35040040 DOI: 10.1007/s12035-021-02689-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are thought to play a dominant role in the pathogenesis of Parkinson's disease (PD). Mogroside V (MV), extracted from Siraitia grosvenorii, exhibits antioxidant-like activities. The aim of this study was to investigate the function of MV in neuroprotection in PD and to reveal its mechanism of action. To that end, we firstly set up mice models of PD with unilateral striatum injection of 0.25 mg/kg rotenone (Rot) and co-treated with 2.5 mg/kg, 5 mg/kg, and 10 mg/kg MV by gavage. Results showed that Rot-induced motor impairments and dopaminergic neuronal damage were reversed by treatment of 10 mg/kg MV. Then, we established cellular models of PD using Rot-treated SH-SY5Y cells, which were divided into six groups, including control, Rot, and co-enzyme Q10 (CQ10), as well as MV groups, MV25, MV50, and MV100 treated with 25 μM, 50 μM, and 100 μM MV doses, respectively. Results demonstrated that MV effectively attenuates Rot neurotoxicity through a ROS-related intrinsic mitochondrial pathway. MV reduced overproduction of reactive oxygen species (ROS), recovered the mitochondrial membrane potential (MMP), and increased the oxygen consumption rate and adenosine triphosphate (ATP) production in a dose-dependent manner. Hence, treatment with MV led to a reduction in the number of apoptotic cells, as reflected by Annexin-V/propidium iodide co-staining using flow cytometry and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay. In addition, the Sirtuin3 (SIRT3) protein level and activity were decreased upon exposure to Rot both in substantia nigra (SN) of mice and SH-SY5Y cells. SIRT3 impairment hyperacetylated a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2). MV alleviates SIRT3 and SOD2 molecular changes. However, after successfully inhibiting SIRT3 by its specific inhibitor 3-1H-1, 2, 3-triazol-4-yl pyridine (3TYP), MV was not able to reduce ROS levels, reverse abnormal MMP, or decrease apoptotic cells. Motor impairments and dopaminergic neuronal injury in the SN were alleviated with the oral administration of MV in Rot-treated PD mice, indicating a relationship between protection against defective motility and preservation of dopaminergic neurons. Therefore, we conclude that MV can alleviate Rot-induced neurotoxicity in a PD model, and that SIRT3 may be an important regulator in the protection of MV.
Collapse
Affiliation(s)
- Hanjiang Luo
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Caixia Peng
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Xiaofeng Xu
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yuntao Peng
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Fang Shi
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinghua Li
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China.
| | - Min Chen
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China. .,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
25
|
Ahmedy OA, Abdelghany TM, El-Shamarka MEA, Khattab MA, El-Tanbouly DM. Apigenin attenuates LPS-induced neurotoxicity and cognitive impairment in mice via promoting mitochondrial fusion/mitophagy: role of SIRT3/PINK1/Parkin pathway. Psychopharmacology (Berl) 2022; 239:3903-3917. [PMID: 36287214 PMCID: PMC9671996 DOI: 10.1007/s00213-022-06262-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Alteration of the NAD+ metabolic pathway is proposed to be implicated in lipopolysaccharide (LPS)-induced neurotoxicity and mitochondrial dysfunction in neurodegenerative diseases. Apigenin, a naturally-occurring flavonoid, has been reported to maintain NAD+ levels and to preserve various metabolic functions. OBJECTIVES This study aimed to explore the effect of apigenin on mitochondrial SIRT3 activity as a mediator through which it could modulate mitochondrial quality control and to protect against intracerebrovascular ICV/LPS-induced neurotoxicity. METHODS Mice received apigenin (40 mg/kg; p.o) for 7 consecutive days. One hour after the last dose, LPS (12 µg/kg, icv) was administered. RESULTS Apigenin robustly guarded against neuronal degenerative changes and maintained a normal count of intact neurons in mice hippocampi. Consequently, it inhibited the deleterious effect of LPS on cognitive functions. Apigenin was effective in preserving the NAD+/NADH ratio to boost mitochondrial sirtuin-3 (SIRT3), activity, and ATP production. It conserved normal mitochondrial features via induction of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α), along with mitochondrial transcription factor A (TFAM) and the fusion proteins, mitofusin 2 (MFN2), and optic atrophy-1 (OPA1). Furthermore, it increased phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin expression as well as the microtubule-associated protein 1 light chain 3 II/I ratio (LC3II/I) to induce degradation of unhealthy mitochondria via mitophagy. CONCLUSIONS These observations reveal the marked neuroprotective potential of apigenin against LPS-induced neurotoxicity through inhibition of NAD+ depletion and activation of SIRT3 to maintain adequate mitochondrial homeostasis and function.
Collapse
Affiliation(s)
- Omaima A Ahmedy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE24HH, UK
- Institute of Translational and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE24HH, UK
| | - Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Center, Cairo, 12622, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
26
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
27
|
Singh S, Singh TG. Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis. Inflamm Res 2021; 70:1027-1042. [PMID: 34652489 DOI: 10.1007/s00011-021-01511-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy. MATERIALS AND METHODS A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability. CONCLUSION The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
28
|
Perturbed Brain Glucose Metabolism Caused by Absent SIRT3 Activity. Cells 2021; 10:cells10092348. [PMID: 34571997 PMCID: PMC8469836 DOI: 10.3390/cells10092348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acetylation is a post-translational modification that regulates the activity of enzymes fundamentally involved in cellular and mitochondrial bioenergetic metabolism. NAD+ dependent deacetylase sirtuin 3 (SIRT3) is localized to mitochondria where it plays a key role in regulating acetylation of TCA cycle enzymes and the mitochondrial respiratory complexes. Although the SIRT3 target proteins in mitochondria have been identified, the effect of SIRT3 activity on mitochondrial glucose metabolism in the brain remains elusive. The impact of abolished SIRT3 activity on glucose metabolism was determined in SIRT3 knockout (KO) and wild type (WT) mice injected with [1,6-13C]glucose using ex vivo 13C-NMR spectroscopy. The 1H-NMR spectra and amino acid analysis showed no differences in the concentration of lactate, glutamate, alanine, succinate, or aspartate between SIRT3 KO and WT mice. However, glutamine, total creatine (Cr), and GABA were lower in SIRT3 KO brain. Incorporation of label from [1,6-13C]glucose metabolism into lactate or alanine was not affected in SIRT3 KO brain. However, the incorporation of the label into all isotopomers of glutamate, glutamine, GABA and aspartate was lower in SIRT3 KO brain, reflecting decreased activity of mitochondrial and TCA cycle metabolism in both neurons and astrocytes. This is most likely due to hyperacetylation of mitochondrial enzymes due to suppressed SIRT3 activity in the brain of SIRT3 KO mice. Thus, the absence of Sirt3 results in impaired mitochondrial oxidative energy metabolism and neurotransmitter synthesis in the brain. Since the SIRT3 activity is NAD+ dependent, these results might parallel changes in glucose metabolism under pathologic reduction in mitochondrial NAD+ pools.
Collapse
|
29
|
Roles for α-Synuclein in Gene Expression. Genes (Basel) 2021; 12:genes12081166. [PMID: 34440340 PMCID: PMC8393936 DOI: 10.3390/genes12081166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (α-Syn) is a small cytosolic protein associated with a range of cellular compartments, including synaptic vesicles, the nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. In addition to its physiological role in regulating presynaptic function, the protein plays a central role in both sporadic and familial Parkinson’s disease (PD) via a gain-of-function mechanism. Because of this, several recent strategies propose to decrease α-Syn levels in PD patients. While these therapies may offer breakthroughs in PD management, the normal functions of α-Syn and potential side effects of its depletion require careful evaluation. Here, we review recent evidence on physiological and pathological roles of α-Syn in regulating activity-dependent signal transduction and gene expression pathways that play fundamental role in synaptic plasticity.
Collapse
|
30
|
Garg G, Singh AK, Singh S, Rizvi SI. Promising drug discovery strategies for sirtuin modulators: what lessons have we learnt? Expert Opin Drug Discov 2021; 16:915-927. [PMID: 33880981 DOI: 10.1080/17460441.2021.1915980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Sirtuins, NAD-dependent protein deacetylases, require NAD+ for enzymatic activity. Recent research has indicated that sirtuins have a key role in the regulation of gene expression, the cell cycle, apoptosis, neurodegeneration and several age-related diseases. In mammals, there are seven sirtuin isoforms (SIRT-1-7) that catalyze specific lysine substrate deacetylation. AREAS COVERED This review explains the current information on the structure, function and importance of sirtuin modulators. It also explores the possible therapeutic applications of sirtuin modulators and related small molecules in the context of various diseases. EXPERT OPINION Sirtuin's modulators open a new area of research for targeting pathological conditions. Sirtuin modulators, through their targeted function, may provide a possible tool for the amelioration of various diseases. However, the search of activators/inhibitors for sirtuins needs further research. The structural elucidation of sirtuins will create an understanding for the development of isoform-specific selective modulators. This could be a useful tool to determine the functions of individual sirtuins as potential therapeutic agents.
Collapse
Affiliation(s)
- Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India.,Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
31
|
Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: A relevant approach in epilepsy. Mitochondrion 2021; 58:213-226. [PMID: 33775871 DOI: 10.1016/j.mito.2021.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Epileptogenesis is most commonly associated with neurodegeneration and a bioenergetic defect attributing to the fact that mitochondrial dysfunction plays a key precursor for neuronal death. Mitochondria are the essential organelle of neuronal cells necessary for certain neurophysiological processes like neuronal action potential activity and synaptic transmission. The mitochondrial dysfunction disrupts calcium homeostasis leading to inhibitory interneuron dysfunction and increasing the excitatory postsynaptic potential. In epilepsy, the prolonged repetitive neuronal activity increases the excessive demand for energy and acidosis in the brain further increasing the intracellular calcium causing neuronal death. Similarly, the mitochondrial damage also leads to the decline of energy by dysfunction of the electron transport chain and abnormal production of the ROS triggering the apoptotic neuronal death. Thus, the elevated level of cytosolic calcium causes the mitochondria DNA damage coinciding with mtROS and releasing the cytochrome c binding to Apaf protein further initiating the apoptosis resulting in epileptic encephalopathies. The various genetic and mRNA studies of epilepsy have explored the various pathogenic mutations of genes affecting the mitochondria functioning further initiating the neuronal excitotoxicity. Based on the results of previous studies, the recent therapeutic approaches are targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria and hold great promise to attenuate epileptogenesis. Therefore, the current review emphasizes the emerging insights to uncover the relation between mitochondrial dysfunction and ROS generation contributing to mechanisms underlying epileptic seizures.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, FL 33101, USA
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
32
|
Sherin F, Gomathy S, Antony S. Sirtuin3 in Neurological Disorders. Curr Drug Res Rev 2020; 13:140-147. [PMID: 33290206 DOI: 10.2174/2589977512666201207200626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/16/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Sirtuins are NAD+ dependent enzymes that have a predominant role in neurodegenerative disorders and also regulate the inflammatory process, protein aggregation, etc. The relation between Sirtuins with that of the nervous system and neurodegeneration are widely studied consequently. Sirtuins have a strong role in metabolic syndrome in mitochondria also. The activities of Sirtuins can be altered by using small molecules that would be developed into drugs and it is proven that manipulation of SIRT1 activity influences neurodegenerative disease models. They are especially thrilling since using small molecules, which would be developed into a drug, it is feasible to alter the activities of sirtuins. Different functions of Sirtuins are depended upon their subcellular localization. In this review paper, we are discussing different Sirtuins, differential expression of sirtuins, and expression of sirtuin in the brain and briefly about sirtuin3 (SIRT3).
Collapse
Affiliation(s)
- Farhath Sherin
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - S Gomathy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - Shanish Antony
- Department of Pharmacy, Govt. Medical College of Pharmaceutical Sciences, Kerala University of Health Sciences, Kottayam, . India
| |
Collapse
|
33
|
Shen Y, Wu Q, Shi J, Zhou S. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease. Biomed Pharmacother 2020; 132:110928. [PMID: 33128944 DOI: 10.1016/j.biopha.2020.110928] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin-3 (SIRT3) is a NAD+-dependent protein deacetylase that is located in mitochondria, regulating mitochondrial proteins and maintaining cellular antioxidant status. Increasing evidence demonstrates that SIRT3 plays a role in degenerative disorders including Parkinson's disease (PD), which is a devastating nervous system disease currently with no effective treatments available. Although the etiology of PD is still largely ambiguous, substantial evidence indicates that mitochondrial dysfunction and oxidative stress play major roles in the pathogenesis of PD. The imbalance of reactive oxygen species (ROS) production and detoxification leads to oxidative stress that can accelerate the progression of PD. By causing conformational changes in the deacetylated proteins SIRT3 modulates the activities and biological functions of a variety of proteins involved in mitochondrial antioxidant defense and various mitochondrial functions. Increasingly more studies have suggested that upregulation of SIRT3 confers beneficial effect on neuroprotection in various PD models. This review discusses the mechanism by which SIRT3 regulates intracellular oxidative status and mitochondrial function with an emphasis in discussing in detail the regulation of SIRT3 on each component of the five complexes of the mitochondrial respiratory chain and mitochondrial antioxidant defense, as well as the pharmacological regulation of SIRT3 in light of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
34
|
Notoginseng Leaf Triterpenes Ameliorates OGD/R-Induced Neuronal Injury via SIRT1/2/3-Foxo3a-MnSOD/PGC-1 α Signaling Pathways Mediated by the NAMPT-NAD Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7308386. [PMID: 33149812 PMCID: PMC7603631 DOI: 10.1155/2020/7308386] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Background Cerebral ischemic stroke (CIS) is a common cerebrovascular disease whose main risks include necrosis, apoptosis, and cerebral infarction. But few therapeutic advances and prominent drugs seem to be of value for ischemic stroke in the clinic yet. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stem and leaf have been confirmed to have neuroprotective effects against mitochondrial damages caused by cerebral ischemia in vivo. However, the potential mechanisms of mitochondrial protection have not been fully elaborated yet. Methods The oxygen and glucose deprivation and reperfusion (OGD/R)-induced SH-SY5Y cells were adopted to explore the neuroprotective effects and the potential mechanisms of PNGL in vitro. Cellular cytotoxicity was measured by MTT, viable mitochondrial staining, and antioxidant marker detection in vitro.Mitochondrial functions were analyzed by ATP content measurement, MMP determination, ROS, NAD, and NADH kit in vitro. And the inhibitor FK866 was adopted to verify the regulation of PNGL on the target NAMPT and its key downstream. Results In OGD/R models, treatment with PNGL strikingly alleviated ischemia injury, obviously preserved redox balance and excessive oxidative stress, inhibited mitochondrial damage, markedly alleviated energy metabolism dysfunction, improved neuronal mitochondrial functions, obviously reduced neuronal loss and apoptosis in vitro, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL markedly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions and OGD/R-induced SH-SY5Y cells and regulated the downstream SIRT1/2-Foxo3a and SIRT1/3-MnSOD/PGC-1α pathways. And FK866 further verified that the protective effects of PNGL might be mediated by the NAMPT in vitro. Conclusions The mitochondrial protective effects of PNGL are, at least partly, mediated via the NAMPT-NAD+ and its downstream SIRT1/2/3-Foxo3a-MnSOD/PGC-1α signaling pathways. PNGL, as a new drug candidate, has a pivotal role in mitochondrial homeostasis and energy metabolism therapy via NAMPT against OGD-induced SH-SY5Y cell injury.
Collapse
|
35
|
Zhou ZD, Tan EK. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson's disease. Ageing Res Rev 2020; 62:101107. [PMID: 32535274 DOI: 10.1016/j.arr.2020.101107] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial impairment is associated with progressive dopamine (DA) neuron degeneration in Parkinson's disease (PD). Recent findings highlight that Sirtuin-3 (SIRT3), a mitochondrial protein, is an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase and a key modulator in maintaining integrity and functions of mitochondria. SIRT3 plays vital roles in regulation of mitochondrial functions, including mitochondrial ATP generation and energy metabolism, anti-oxidant defense, and cell death and proliferation. SIRT3 can deacetylate the transcriptional factors and crosstalk with different signaling pathways to cooperatively modulate mitochondrial functions and regulate defensive mitochondrial quality control (QC) systems. Down-regulated NAD+ level and decreased SIRT3 activity are related to aging process and has been pathologically linked to PD pathogenesis. Further, SIRT3 can bind and deacetylate PTEN-induced kinase 1 (PINK1) and PD protein 2 E3 ubiquitin protein ligase (Parkin) to facilitate mitophagy. Leucine Rich Repeat Kinase 2 (LRRK2)-G2019S mutation in PD is linked to SIRT3 impairment. Furthermore, SIRT3 is inversely associated with α-synuclein aggregation and DA neuron degeneration in PD. SIRT3 chemical activators and NAD+ precursors can up-regulate SIRT3 activity to protect against DA neuron degeneration in PD models. Taken together, SIRT3 is a promising PD therapeutic target and studies of SIRT3 functional modulators with neuroprotective capability will be of clinical interest.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Department of Neurology, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
36
|
Alam MA, Datta PK. Epigenetic Regulation of Excitatory Amino Acid Transporter 2 in Neurological Disorders. Front Pharmacol 2019; 10:1510. [PMID: 31920679 PMCID: PMC6927272 DOI: 10.3389/fphar.2019.01510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Prasun K Datta
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
37
|
Khodaei F, Rashedinia M, Heidari R, Rezaei M, Khoshnoud MJ. Ellagic acid improves muscle dysfunction in cuprizone-induced demyelinated mice via mitochondrial Sirt3 regulation. Life Sci 2019; 237:116954. [PMID: 31610192 DOI: 10.1016/j.lfs.2019.116954] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023]
Abstract
Sirt3 enzyme and mitochondrial abnormality can be related to excess fatigue or muscular dysfunction in multiple sclerosis (MS).Ellagic acid (EA) has a mitochondrial protector, iron chelator, antioxidant, and axon regenerator in neurons.In this study the effect of EAon muscle dysfunction, its mitochondria, and Sirt3 enzyme incuprizone-induced model of MSwas examined. Demyelination was induced by a diet containing 0.2% w/w cuprizone (Cup) for 42 days and EA administered daily (5, 50, and 100 mg/kg P.O) either with or without cuprizone in mice. Behavioral tests were assessed, and muscle tissue markers ofoxidative stress, mitochondrial parameters, mitochondrial respiratory chain activity, the Sirt3 protein level, and Sirt3 expression were also determined. Luxol fast blue staining and the behavioral tests were performed toassess the implemented model. In Cup group an increased oxidative stress in their muscle tissues was observed. Also, muscle mitochondria exhibited mitochondria dysfunction, lowered mitochondrial respiratory chain activity, Sirt3 protein level, and Sirt3 expression.EA prevented most of these anomalous alterations. Sub-chronicEA co-treatment dose-dependently ameliorated behavioral and muscular impairment in mice that received Cup.EA can effectively protect muscle tissue against cuprizone-induced demeylination via the mitochondrial protection, oxidative stress prevention and Sirt3 overexpression.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Wang Y, Zhang M, Li Z, Yue J, Xu M, Zhang Y, Yung KKL, Li R. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. CHEMOSPHERE 2019; 218:577-588. [PMID: 30502696 DOI: 10.1016/j.chemosphere.2018.11.149] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/28/2018] [Accepted: 11/23/2018] [Indexed: 05/06/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) is associated with neurodegenerative diseases. Mitochondrion is key to brain degeneration. However, the underlying mechanism of PM2.5-induced brain injury, especially mitochondrial damage, is still unclear. In this study, changes in mitochondrial dynamics, mitochondrial permeability transition pore (mPTP), mitochondrial DNA (mtDNA) and oxidative stress in human SH-SY5Y cells exposed to PM2.5 at different concentrations (0, 25, 100, and 250 μg mL-1) were investigated. The results showed that PM2.5 caused more mitochondrial swell, accompanied by the opening of mPTP and the decrease of ATP levels, mitochondrial membrane potential and mtDNA copy number in SH-SY5Y cells. PM2.5 significantly enhanced the expression of mitochondrial fission/fusion genes (Drp1 and OPA1) and affected the gene expression of CypD, SIRT3, and COX Ⅳ in SH-SY5Y cells. Besides, PM2.5 triggered the increase of cellular ROS, Ca2+ and Aβ-42 levels, inhibition of manganese-superoxide dismutase (SOD2) activities, reduction of GSH levels GSH/GSSG ratio, and elevation of mitochondrial malondialdehyde contents. It suggests that mitochondrial dysfunction and oxidative stress are the potential mechanisms underlying PM2.5-induced brain nerve cell injury, which may be related to neurological diseases. Additionally, our study elucidated that PM2.5 components trigger different cytotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zhiping Li
- Shanxi Unisdom Testing Technologies Co., Ltd, Taiyuan, China
| | - Jianwei Yue
- Shanxi Unisdom Testing Technologies Co., Ltd, Taiyuan, China
| | - Min Xu
- Shanxi Unisdom Testing Technologies Co., Ltd, Taiyuan, China
| | - Yanhao Zhang
- Department of Biology, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, China; Department of Biology, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
40
|
Du Z, Zhang W, Wang S, Zhang J, He J, Wang Y, Dong Y, Huo M. Celastrol protects human retinal pigment epithelial cells against hydrogen peroxide mediated oxidative stress, autophagy, and apoptosis through sirtuin 3 signal pathway. J Cell Biochem 2019; 120:10413-10420. [PMID: 30618198 DOI: 10.1002/jcb.28326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023]
Abstract
Age-related macular degeneration (AMD), one of the most common causes of visual impairment, often occurrs in the elderly in developed countries. Oxidative stress, autophagy, and apoptosis of retinal pigment epithelial (RPE) cells play roles in the pathogenesis of AMD. In the current study, the protective effect of celastrol against hydrogen peroxide (H2 O2 )-induced oxidative stress and apoptosis was investigated using a human RPE cell line (ARPE-19). H2 O2 inhibited ARPE-19 cells' survival and autophagy and induced their oxidative stress and apoptosis. Compared with the H2 O2 group, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that celastrol increased ARPE-19 cells' survival in a dose- and time-dependent manner. Further, studies have suggested that celastrol has antioxidative stress and antiapoptosis effects in H2 O2 -treated ARPE-19 cells. Also, cell autophagy is activated by celastrol in H2 O2 -treated ARPE-19 cells. Reverse transcription polymerase chain reaction and Western blot showed that celastrol elevated the messenger RNA (mRNA) and protein expression of sirtuin 3 (SIRT3) in H2 O2 -induced ARPE-19 cells. Inhibition of the level of SIRT3 by SIRT3 small interfering RNA (siRNA) reversed the effects of celastrol on oxidative stress, autophagy, and apoptosis in H2 O2 -induced ARPE-19 cells. In conclusion, these observations suggest that celastrol activates the SIRT3 pathway in RPE cells and protects against H2 O2 -induced oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhaojiang Du
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Wen Zhang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Shengyu Wang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Jing Zhang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Jingang He
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yuan Wang
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yuhong Dong
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Min Huo
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|