1
|
Lahiri DK, Maloney B, Wang R, White FA, Sambamurti K, Greig NH, Counts SE. The seeds of its regulation: Natural antisense transcripts as single-gene control switches in neurodegenerative disorders. Ageing Res Rev 2024; 99:102336. [PMID: 38740308 PMCID: PMC11492926 DOI: 10.1016/j.arr.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Several proteins play critical roles in vulnerability or resistance to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Regulation of these proteins is critical to maintaining healthy neurohomeostasis. In addition to transcription factors regulating gene transcription and microRNAs regulating mRNA translation, natural antisense transcripts (NATs) regulate mRNA levels, splicing, and translation. NATs' roles are significant in regulating key protein-coding genes associated with neurodegenerative disorders. Elucidating the functions of these NATs could prove useful in treating or preventing diseases. NAT activity is not restricted to mRNA translation; it can also regulate DNA (de)methylation and other gene expression steps. NATs are noncoding RNAs (ncRNAs) encoded by DNA sequences overlapping the pertinent protein genes. These NATs have complex structures, including introns and exons, and therefore bind their target genes, precursor mRNAs (pre-mRNAs), and mature RNAs. They can occur at the 5'- or 3'-ends of a mRNA-coding sequence or internally to a parent gene. NATs can downregulate translation, e.g., microtubule-associated protein tau (MAPT) antisense-1 gene (MAPT-AS1), or upregulate translation, e.g., β-Amyloid site Cleaving Enzyme 1 (BACE1) antisense gene (BACE1-AS). Regulation of NATs can parallel pathogenesis, wherein a "pathogenic" NAT (e.g., BACE1-AS) is upregulated under pathogenic conditions, while a "protective" NAT (e.g., MAPT-AS1) is downregulated under pathogenic conditions. As a relatively underexplored endogenous control mechanism of protein expression, NATs may present novel mechanistic targets to prevent or ameliorate aging-related disorders.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Bryan Maloney
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruizhi Wang
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Scott E Counts
- Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
2
|
Ali G, Shin KC, Ahmed N, Habbab W, Alkhadairi G, Razzaq A, Bejaoui Y, El Hajj N, Mifsud B, Park Y, Stanton LW. Deletion in RMST lncRNA impairs hypothalamic neuronal development in a human stem cell-based model of Kallmann Syndrome. Cell Death Discov 2024; 10:330. [PMID: 39030180 PMCID: PMC11271498 DOI: 10.1038/s41420-024-02074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
Rhabdomyosarcoma 2-associated transcript (RMST) long non-coding RNA has previously been shown to cause Kallmann syndrome (KS), a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism (CHH) and olfactory dysfunction. In the present study, we generated large deletions of approximately 41.55 kb in the RMST gene in human pluripotent stem cells using CRISPR/Cas9 gene editing. To evaluate the impact of RMST deletion, these cells were differentiated into hypothalamic neurons that include 10-15% neurons that express gonadotrophin-releasing hormone (GnRH). We found that deletion in RMST did not impair the neurogenesis of GnRH neurons, however, the hypothalamic neurons were electro-physiologically hyperactive and had increased calcium influx activity compared to control. Transcriptomic and epigenetic analyses showed that RMST deletion caused altered expression of key genes involved in neuronal development, ion channels, synaptic signaling and cell adhesion. The in vitro generation of these RMST-deleted GnRH neurons provides an excellent cell-based model to dissect the molecular mechanism of RMST function in Kallmann syndrome and its role in hypothalamic neuronal development.
Collapse
Affiliation(s)
- Gowher Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nisar Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wesal Habbab
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ghaneya Alkhadairi
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Aleem Razzaq
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Yosra Bejaoui
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nady El Hajj
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Borbala Mifsud
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- William Harvey Research Institute, Queen Mary University London, London, UK
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Lawrence W Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
3
|
Sivagurunathan N, Rahamathulla MP, Al-Dossary H, Calivarathan L. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson's Disease. Mol Neurobiol 2024; 61:4619-4632. [PMID: 38105409 DOI: 10.1007/s12035-023-03809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is one of the complex neurodegenerative disorders, primarily characterized by motor deficits, including bradykinesia, tremor, rigidity, and postural instability. The underlying pathophysiology involves the progressive loss of dopaminergic neurons within the substantia nigra pars compacta, leading to dopamine depletion in the basal ganglia circuitry. While motor symptoms are hallmark features of PD, emerging research highlights a wide range of non-motor symptoms, including cognitive impairments, mood disturbances, and autonomic dysfunctions. Inflammasome activation is pivotal in inducing neuroinflammation and promoting disease onset, progression, and severity of PD. Several studies have shown that long noncoding RNAs (lncRNAs) modulate inflammasomes in the pathogenesis of neurodegenerative diseases. Dysregulation of lncRNAs is linked to aberrant gene expression and cellular processes in neurodegeneration, causing the activation of inflammasomes that contribute to neuroinflammation and neurodegeneration. Inflammasomes are cytosolic proteins that form complexes upon activation, inducing inflammation and neuronal cell death. This review explores the significance of lncRNAs in regulating inflammasomes in PD, primarily focusing on specific lncRNAs such as nuclear paraspeckle assembly transcript 1 (NEATNEAT1), X-inactive specific transcript (XIST), growth arrest-specific 5 (GAS5), and HOX transcript antisense RNA (HOTAIR), which have been shown to activate or inhibit the NLRP3 inflammasome and induce the release of proinflammatory cytokines. Moreover, some lncRNAs mediate inflammasome activation through miRNA interactions. Understanding the roles of lncRNAs in inflammasome regulation provides new therapeutic targets for controlling neuroinflammation and reducing the progression of neurodegeneration. Identifying lncRNA-mediated regulatory pathways paves the way for novel therapies in the battle against these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Hussein Al-Dossary
- University Hospital, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India.
| |
Collapse
|
4
|
Nakos Bimpos M, Karali K, Antoniou C, Palermos D, Fouka M, Delis A, Tzieras I, Chrousos GP, Koutmani Y, Stefanis L, Polissidis A. Alpha-synuclein-induced stress sensitivity renders the Parkinson's disease brain susceptible to neurodegeneration. Acta Neuropathol Commun 2024; 12:100. [PMID: 38886854 PMCID: PMC11181569 DOI: 10.1186/s40478-024-01797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024] Open
Abstract
A link between chronic stress and Parkinson's disease (PD) pathogenesis is emerging. Ample evidence demonstrates that the presynaptic neuronal protein alpha-synuclein (asyn) is closely tied to PD pathogenesis. However, it is not known whether stress system dysfunction is present in PD, if asyn is involved, and if, together, they contribute to neurodegeneration. To address these questions, we assess stress axis function in transgenic rats overexpressing full-length wildtype human asyn (asyn BAC rats) and perform multi-level stress and PD phenotyping following chronic corticosterone administration. Stress signaling, namely corticotropin-releasing factor, glucocorticoid and mineralocorticoid receptor gene expression, is also examined in post-mortem PD patient brains. Overexpression of human wildtype asyn leads to HPA axis dysregulation in rats, while chronic corticosterone administration significantly aggravates nigrostriatal degeneration, serine129 phosphorylated asyn (pS129) expression and neuroinflammation, leading to phenoconversion from a prodromal to an overt motor PD phenotype. Interestingly, chronic corticosterone in asyn BAC rats induces a robust, twofold increase in pS129 expression in the hypothalamus, the master regulator of the stress response, while the hippocampus, both a regulator and a target of the stress response, also demonstrates elevated pS129 asyn levels and altered markers of stress signalling. Finally, defective hippocampal stress signalling is mirrored in human PD brains and correlates with asyn expression levels. Taken together, our results link brain stress system dysregulation with asyn and provide evidence that elevated circulating glucocorticoids can contribute to asyn-induced neurodegeneration, ultimately triggering phenoconversion from prodromal to overt PD.
Collapse
Affiliation(s)
- Modestos Nakos Bimpos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
| | - Katerina Karali
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Athens International Master's Programme in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, 15784, Illisia, Athens, Greece
| | - Christine Antoniou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
- Athens International Master's Programme in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, 15784, Illisia, Athens, Greece
| | - Dionysios Palermos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
| | - Maria Fouka
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
| | - Anastasios Delis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
| | - Iason Tzieras
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
| | - George Panagiotis Chrousos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
- University Research Institute on Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Yassemi Koutmani
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece
- 1St Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens - BRFAA, 11527, Athens, Greece.
- Department of Science and Mathematics, ACG-Research Center, Deree - American College of Greece, 15342, Athens, Greece.
| |
Collapse
|
5
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
6
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Liu C, Su Y, Ma X, Wei Y, Qiao R. How close are we to a breakthrough? The hunt for blood biomarkers in Parkinson's disease diagnosis. Eur J Neurosci 2024; 59:2563-2576. [PMID: 38379501 DOI: 10.1111/ejn.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Parkinson's disease (PD), being the second largest neurodegenerative disease, poses challenges in early detection, resulting in a lack of timely treatment options to effectively manage the disease. By the time clinical diagnosis becomes possible, more than 60% of dopamine neurons in the substantia nigra (SN) of patients have already degenerated. Therefore, early diagnosis or identification of warning signs is crucial for the prompt and timely beginning of the treatment. However, conducting invasive or complex diagnostic procedures on asymptomatic patients can be challenging, making routine blood tests a more feasible approach in such cases. Numerous studies have been conducted over an extended period to search for effective diagnostic biomarkers in blood samples. However, thus far, no highly effective biomarkers have been confirmed. Besides classical proteins like α-synuclein (α-syn), phosphorylated α-syn and oligomeric α-syn, other molecules involved in disease progression should also be given equal attention. In this review, we will not only discuss proposed biomarkers that are currently under investigation but also delve into the mechanisms underlying the disease, focusing on processes such as α-syn misfolding, intercellular transmission and the crossing of the blood-brain barrier (BBB). Our aim is to provide an updated overview of molecules based on these processes that may potentially serve as blood biomarkers.
Collapse
Affiliation(s)
- Cheng Liu
- Peking University Third Hospital, Beijing, China
| | - Yang Su
- Peking University Third Hospital, Beijing, China
| | - Xiaolong Ma
- Peking University Third Hospital, Beijing, China
| | - Yao Wei
- Peking University Third Hospital, Beijing, China
| | - Rui Qiao
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Shadkam R, Saadat P, Azadmehr A, Chehrazi M, Daraei A. Key Non-coding Variants in Three Neuroapoptosis and Neuroinflammation-Related LncRNAs Are Protectively Associated with Susceptibility to Parkinson's Disease and Some of Its Clinical Features. Mol Neurobiol 2024; 61:2854-2865. [PMID: 37946005 DOI: 10.1007/s12035-023-03708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Research findings show that genetic susceptibility to sporadic Parkinson's disease (PD), a common neurodegenerative disorder, is determined through gene variation of loci involved in its development and pathogenesis. A growing body of strong evidence has revealed that dysfunction of long non-coding RNAs (lncRNAs) plays key roles in the pathogenesis and progression of PD through impairing neuronal signaling pathways, but little is known about the relationship between their variants and PD susceptibility. In this research, we intended to study the relationship between functional SNPs rs12826786C>T, rs3200401C>T, and rs6931097G>A in the key lncRNAs stimulating neuroapoptosis and neuroinflammation in PD, including HOTAIR, MALAT1, and lincRNA-P21, respectively, with susceptibility to PD as well as its clinical symptoms.The population of this study consisted of 240 individuals, including 120 controls and 120 cases, and the sample taken from them was peripheral blood. Genotyping of the target SNPs was done using PCR-RFLP. We found that the healthy individuals carry more T allele of MALAT1-rs3200401C>T compared to the patients (P= 0.019). Furthermore, it was observed that in the dominant genetic model, subjects with genotypes carrying the T allele have a lower risk of PD (OR= 0.530; CI= 0.296-0.950; P= 0.033). Regarding the lincRNA-P21-rs6931097G>A, we observed a significant protective relationship between its GA (OR= 0.144; CI= 0.030-0.680; P= 0.014) and AA (OR= 0.195; CI= 00.047-0.799; P= 0.023) genotypes with the manifestation of tremor and bradykinesia symptoms, respectively. Furthermore, the findings indicated that the minor TT genotype of HOTAIR-rs12826786C>T was significantly associated with a reduced risk of bradykinesia symptoms (OR= 0.147; CI= 0.039-0.555; P= 0.005). Collectively, these findings suggest that MALAT1-rs3200401C>T may be an important lncRNA SNP against the development of PD, while the other two SNPs show protective effects on the clinical manifestations of PD in a way that lincRNA-P21-rs6931097G>A has a protective effect against the occurrence of tremor and bradykinesia symptoms in PD patients, and HOTAIR -rs12826786C>T indicates a protective effect against the display of bradykinesia feature. Therefore, they can have valuable potential as biomarkers for clinical evaluations of this disease.
Collapse
Affiliation(s)
- Roshanak Shadkam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Chehrazi
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
9
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
10
|
Plasil SL, Farris SP, Blednov Y, Mayfield RD, Mangieri RA, Nwokeji UJ, Aziz HC, Lambeth PS, Harris RA, Homanics GE. Mutation of novel ethanol-responsive lncRNA Gm41261 impacts ethanol-related behavioral responses in mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12886. [PMID: 38373108 PMCID: PMC10876150 DOI: 10.1111/gbb.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Chronic alcohol exposure results in widespread dysregulation of gene expression that contributes to the pathogenesis of Alcohol Use Disorder (AUD). Long noncoding RNAs are key regulators of the transcriptome that we hypothesize coordinate alcohol-induced transcriptome dysregulation and contribute to AUD. Based on RNA-Sequencing data of human prefrontal cortex, basolateral amygdala and nucleus accumbens of AUD versus non-AUD brain, the human LINC01265 and its predicted murine homolog Gm41261 (i.e., TX2) were selected for functional interrogation. We tested the hypothesis that TX2 contributes to ethanol drinking and behavioral responses to ethanol. CRISPR/Cas9 mutagenesis was used to create a TX2 mutant mouse line in which 306 base-pairs were deleted from the locus. RNA analysis revealed that an abnormal TX2 transcript was produced at an unchanged level in mutant animals. Behaviorally, mutant mice had reduced ethanol, gaboxadol and zolpidem-induced loss of the righting response and reduced tolerance to ethanol in both sexes. In addition, a male-specific reduction in two-bottle choice every-other-day ethanol drinking was observed. Male TX2 mutants exhibited evidence of enhanced GABA release and altered GABAA receptor subunit composition in neurons of the nucleus accumbens shell. In C57BL6/J mice, TX2 within the cortex was cytoplasmic and largely present in Rbfox3+ neurons and IBA1+ microglia, but not in Olig2+ oligodendrocytes or in the majority of GFAP+ astrocytes. These data support the hypothesis that TX2 mutagenesis and dysregulation impacts ethanol drinking behavior and ethanol-induced behavioral responses in mice, likely through alterations in the GABAergic system.
Collapse
Affiliation(s)
- S. L. Plasil
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - S. P. Farris
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Biomedical InformaticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - Y. Blednov
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - R. D. Mayfield
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Department of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - R. A. Mangieri
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - U. J. Nwokeji
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - H. C. Aziz
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - P. S. Lambeth
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Department of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - R. A. Harris
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - G. E. Homanics
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
11
|
Spanos M, Gokulnath P, Chatterjee E, Li G, Varrias D, Das S. Expanding the horizon of EV-RNAs: LncRNAs in EVs as biomarkers for disease pathways. EXTRACELLULAR VESICLE 2023; 2:100025. [PMID: 38188000 PMCID: PMC10768935 DOI: 10.1016/j.vesic.2023.100025] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles with different types of cargo released by cells and postulated to mediate functions such as intercellular communications. Recent studies have shown that long non-coding RNAs (lncRNAs) or their fragments are present as cargo within EVs. LncRNAs are a heterogeneous group of RNA species with a length exceeding 200 nucleotides with diverse functions in cells based on their localization. While lncRNAs are known for their important functions in cellular regulation, their presence and role in EVs have only recently been explored. While certain studies have observed EV-lncRNAs to be tissue-and disease-specific, it remains to be determined whether or not this is a global observation. Nonetheless, these molecules have demonstrated promising potential to serve as new diagnostic and prognostic biomarkers. In this review, we critically evaluate the role of EV-derived lncRNAs in several prevalent diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases, with a specific focus on their role as biomarkers.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dimitrios Varrias
- Albert Einstein College of Medicine/Jacobi Medical Center, The Bronx, NY, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Taha HB, Bogoniewski A. Extracellular vesicles from bodily fluids for the accurate diagnosis of Parkinson's disease and related disorders: A systematic review and diagnostic meta-analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e121. [PMID: 38939363 PMCID: PMC11080888 DOI: 10.1002/jex2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 06/29/2024]
Abstract
Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) are often misdiagnosed due to overlapping symptoms and the absence of precise biomarkers. Furthermore, there are no current methods to ascertain the progression and conversion of prodromal conditions such as REM behaviour disorder (RBD). Extracellular vesicles (EVs), containing a mixture of biomolecules, have emerged as potential sources for parkinsonian diagnostics. However, inconsistencies in previous studies have left their diagnostic potential unclear. We conducted a meta-analysis, following PRISMA guidelines, to assess the diagnostic accuracy of general EVs isolated from various bodily fluids, including cerebrospinal fluid (CSF), plasma, serum, urine or saliva, in differentiating patients with parkinsonian disorders from healthy controls (HCs). The meta-analysis included 21 studies encompassing 1285 patients with PD, 24 with MSA, 105 with DLB, 99 with PSP, 101 with RBD and 783 HCs. Further analyses were conducted only for patients with PD versus HCs, given the limited number for other comparisons. Using bivariate and hierarchal receiver operating characteristics (HSROC) models, the meta-analysis revealed moderate diagnostic accuracy in distinguishing patients with PD from HCs, with substantial heterogeneity and publication bias. The trim-and-fill method revealed at least two missing studies with null or low diagnostic accuracy. CSF-EVs showed better overall diagnostic accuracy, while plasma-EVs had the lowest performance. General EVs demonstrated higher diagnostic accuracy compared to CNS-originating EVs, which are more time-consuming, labour- and cost-intensive to isolate. In conclusion, while holding promise, utilizing biomarkers in general EVs for PD diagnosis remains unfeasible due to existing challenges. The focus should shift toward harmonizing the field through standardization, collaboration, and rigorous validation. Current efforts by the International Society For Extracellular Vesicles (ISEV) aim to enhance the accuracy and reproducibility of EV-related research through rigor and standardization, aiming to bridge the gap between theory and practical clinical application.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Müller-Nedebock AC, Cuttler K, Pfaff AL, Kõks S. Longitudinal dysregulation of long non-coding RNAs in Parkinson's disease. Exp Biol Med (Maywood) 2023; 248:1780-1784. [PMID: 37750041 PMCID: PMC10792423 DOI: 10.1177/15353702231198078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 09/27/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been suggested as potential biomarkers for Parkinson's disease (PD). This study aimed to identify blood-based lncRNA transcripts that are dysregulated in PD over time and could serve as peripheral biomarkers. Using RNA-sequencing data from the Parkinson's Progression Markers Initiative, differential expression between case and control groups at five different time points was detected, and pathway analysis was conducted. Seven transcripts, not previously linked to PD, were consistently dysregulated across all time points, while PD-linked lncRNAs were dysregulated at some but not all time points. Pathway analysis highlighted pathways, known to be affected in PD. This suggested that dysregulated lncRNA transcripts could play a role in PD pathogenesis by affecting well-known PD pathways and highlighted their potential as longitudinal biomarkers for PD. Further studies are needed to validate these findings and explore the potential use of identified lncRNAs as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town 7602, South Africa
| | - Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch 6150, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
14
|
Tauber CV, Schwarz SC, Rösler TW, Arzberger T, Gentleman S, Windl O, Krumbiegel M, Reis A, Ruf VC, Herms J, Höglinger GU. Different MAPT haplotypes influence expression of total MAPT in postmortem brain tissue. Acta Neuropathol Commun 2023; 11:40. [PMID: 36906636 PMCID: PMC10008602 DOI: 10.1186/s40478-023-01534-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein α-synuclein (α-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR; soluble and insoluble protein levels of tau and α-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble α-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD.
Collapse
Affiliation(s)
- Christina V Tauber
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, School of Medicine, Technical University Munich, Munich, Germany.,Department of Obstetrics and Gynecology, Ludiwgs-Maximilians University of Munich, Munich, Germany
| | - Sigrid C Schwarz
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, School of Medicine, Technical University Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Steve Gentleman
- Parkinson's UK Brain Bank, Department of Brain Sciences, Imperial College London, London, UK.,Neuropathology Unit, Department of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. .,Department of Neurology, Ludwig-Maximilians University of Munich, Munich, Germany.
| |
Collapse
|
15
|
An Update on Peripheral Blood Extracellular Vesicles as Biomarkers for Parkinson's Disease Diagnosis. Neuroscience 2023; 511:131-146. [PMID: 36435476 DOI: 10.1016/j.neuroscience.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the world's second primary neurodegenerative disease, and the diagnosis and treatment of PD have become mainstream research. Over the past decades, several studies have identified potential biomarkers for diagnosing PD. Among them, extracellular vesicles (EVs) can carry specific biomarkers reflecting the physiological and pathological state of the body. Due to the blood-brain barrier (BBB) limitation, peripheral blood is limited in diagnosing neurodegenerative diseases. With the increasing research on EVs, their ability to pass through BBB indicated that peripheral blood could depict disease status like cerebrospinal fluid (CSF). Peripheral blood is a clinically available sample and has recently been widely used by researchers in various studies. In this review, we summarized previous studies on PD diagnosis biomarkers in peripheral blood EVs and evaluated their diagnostic value. Some EV surface markers were also described, which can extract EVs from specific cell origins. In addition, the combination of several biomarkers demonstrated good diagnostic performance in PD diagnosis compared with a single biomarker, suggesting the focus of future research.
Collapse
|
16
|
Li J, Sun Z, Song L. LncRNA SNHG15 mediates 1-methyl-4-phenylpyridinium (MPP +)-induced neuronal damage through targeting miR-29c-3p/SNCA axis. Neurol Res 2023; 45:181-190. [PMID: 36384413 DOI: 10.1080/01616412.2022.2129754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the most prevalent neurodegenerative disease in the elderly people. Long non-coding ribose nucleic acids (LncRNAs) can serve as molecular sponges for micro RNA (miRNA) and regulate gene expression, which is implicated in the occurrence and progression of PD. In this work, we investigated the functional role of lncRNA SNHG15 in a neuronal damage cell model and its potential mechanism. METHODS SK-N-SH cells treated with 1-methyl-4-phenylpyridinium (MPP+) were employed as the in vitro cellular model to mimic neuronal degeneration. The expression levels of SNHG15, miR-29c-3p, and SNCA were determined by qRT-PCR. ELISA, CCK-8 proliferation assay, and flow cytometry were conducted to explore the effects of SNHG15 and miR-29c-3p on the production of inflammatory factors, cell proliferation, and apoptosis, respectively. Dual-luciferase reporter assay was utilized to validate the functional interactions among SNHG15, miR-29c-3p, and SNCA. SNCA protein levels were examined by Western blot. RESULTS SNHG15 was highly induced in the cell model of MPP+-induced neuronal damage. SNHG15 knockdown significantly mitigated MPP+-induced damages in SK-N-SH cells. SNHG15 served as a sponge to down-regulate miR-29c-3p, thereby releasing the inhibition of miR-29c-3p on SNCA expression, which promoted neuronal damages upon MPP+ challenge. CONCLUSION The upregulation of SNHG15 upon MPP+ challenge mediates neuronal damages in SK-N-SH cells by regulating miR-29c-3p/SNCA axis. Future work is required to validate these findings in PD patients and animal models, which could provide insights into the diagnosis and therapy of PD.
Collapse
Affiliation(s)
- Jiazhen Li
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai City, China
| | - Zhaoming Sun
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai City, China
| | - Lixiang Song
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai City, China
| |
Collapse
|
17
|
Cyske Z, Gaffke L, Pierzynowska K, Węgrzyn G. Expression of Long Noncoding RNAs in Fibroblasts from Mucopolysaccharidosis Patients. Genes (Basel) 2023; 14:genes14020271. [PMID: 36833198 PMCID: PMC9957086 DOI: 10.3390/genes14020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this report, changes in the levels of various long non-coding RNAs (lncRNAs) were demonstrated for the first time in fibroblasts derived from patients suffering from 11 types/subtypes of mucopolysaccharidosis (MPS). Some kinds of lncRNA (SNHG5, LINC01705, LINC00856, CYTOR, MEG3, and GAS5) were present at especially elevated levels (an over six-fold change relative to the control cells) in several types of MPS. Some potential target genes for these lncRNAs were identified, and correlations between changed levels of specific lncRNAs and modulations in the abundance of mRNA transcripts of these genes (HNRNPC, FXR1, TP53, TARDBP, and MATR3) were found. Interestingly, the affected genes code for proteins involved in various regulatory processes, especially gene expression control through interactions with DNA or RNA regions. In conclusion, the results presented in this report suggest that changes in the levels of lncRNAs can considerably influence the pathomechanism of MPS through the dysregulation of the expression of certain genes, especially those involved in the control of the activities of other genes.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-523-6024
| |
Collapse
|
18
|
Plasil SL, Collins VJ, Baratta AM, Farris SP, Homanics GE. Hippocampal ceRNA networks from chronic intermittent ethanol vapor-exposed male mice and functional analysis of top-ranked lncRNA genes for ethanol drinking phenotypes. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10831. [PMID: 36908580 PMCID: PMC10004261 DOI: 10.3389/adar.2022.10831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms regulating the development and progression of alcohol use disorder (AUD) are largely unknown. While noncoding RNAs have previously been implicated as playing key roles in AUD, long-noncoding RNA (lncRNA) remains understudied in relation to AUD. In this study, we first identified ethanol-responsive lncRNAs in the mouse hippocampus that are transcriptional network hub genes. Microarray analysis of lncRNA, miRNA, circular RNA, and protein coding gene expression in the hippocampus from chronic intermittent ethanol vapor- or air- (control) exposed mice was used to identify ethanol-responsive competing endogenous RNA (ceRNA) networks. Highly interconnected lncRNAs (genes that had the strongest overall correlation to all other dysregulated genes identified) were ranked. The top four lncRNAs were novel, previously uncharacterized genes named Gm42575, 4930413E15Rik, Gm15767, and Gm33447, hereafter referred to as Pitt1, Pitt2, Pitt3, and Pitt4, respectively. We subsequently tested the hypothesis that CRISPR/Cas9 mutagenesis of the putative promoter and first exon of these lncRNAs in C57BL/6J mice would alter ethanol drinking behavior. The Drinking in the Dark (DID) assay was used to examine binge-like drinking behavior, and the Every-Other-Day Two-Bottle Choice (EOD-2BC) assay was used to examine intermittent ethanol consumption and preference. No significant differences between control and mutant mice were observed in the DID assay. Female-specific reductions in ethanol consumption were observed in the EOD-2BC assay for Pitt1, Pitt3, and Pitt4 mutant mice compared to controls. Male-specific alterations in ethanol preference were observed for Pitt1 and Pitt2. Female-specific increases in ethanol preference were observed for Pitt3 and Pitt4. Total fluid consumption was reduced in Pitt1 and Pitt2 mutants at 15% v/v ethanol and in Pitt3 and Pitt4 at 20% v/v ethanol in females only. We conclude that all lncRNAs targeted altered ethanol drinking behavior, and that lncRNAs Pitt1, Pitt3, and Pitt4 influenced ethanol consumption in a sex-specific manner. Further research is necessary to elucidate the biological mechanisms for these effects. These findings add to the literature implicating noncoding RNAs in AUD and suggest lncRNAs also play an important regulatory role in the disease.
Collapse
Affiliation(s)
- SL Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - VJ Collins
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - AM Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - SP Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - GE Homanics
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Nila IS, Sumsuzzman DM, Khan ZA, Jung JH, Kazema AS, Kim SJ, Hong Y. Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson's disease: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101764. [PMID: 36273807 DOI: 10.1016/j.arr.2022.101764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Recently, there has been growing interest in exosomal biomarkers for their active targeting and specificity for delivering their cargos (proteins, lipids, nucleic acids) from the parent cell to the recipient cell. Currently, the clinical diagnosis of Parkinson's disease (PD) is mainly based on a clinician's neuropsychological examination and motor symptoms (e.g., bradykinesia, rigidity, postural instability, and resting tremor). However, this diagnosis method is not accurate due to overlapping criteria of other neurodegenerative diseases. Exosomes are differentially expressed in PD and a combination of types and contents of exosomes might be used as a biomarker in PD. Here, we systematically reviewed and meta-analyzed exosomal contents, types and sources of exosomes, method of isolation, and protein quantification tools to determine the optimum exosome-related attributes for PD diagnosis. Pubmed, Embase, and ISI Web of Science were searched for relevant studies. 25 studies were included in the meta-analysis. The Ratio of Mean (RoM) with 95% confidence intervals (CI) was calculated to estimate the effect size. Biomarker performances were rated by random-effects meta-analysis with the Restricted Maximum Likelihood (REML) method. The study protocol is available at PROSPERO (CRD42022331885). Exosomal α-synuclein (α-Syn) was significantly altered in PD patients from healthy controls [RoM = 1.67, 95% CI (0.99 to 2.35); p = 0.00] followed by tau [RoM = 1.33, 95% CI (0.79 to 1.87); p = 0.00], PS-129 [RoM = 0.97, 95% CI (0.54 to 1.40); p = 0.00], and DJ-1/PARK7 [RoM = 0.93, 95% CI (0.64 to 1.21); p = 0.00]. Central nervous system derived L1CAM exosome [RoM = 1.24, 95% CI (1.04 to 1.45); p = 0.00] from either plasma [RoM = 1.35, 95% CI (1.09 to 1.61); p = 0.00]; or serum [RoM = 1.47, 95% CI (1.05 to 1.90); p = 0.00] has been found the optimum type of exosome. The exosome isolation by ExoQuick [RoM = 1.16, 95% CI (0.89 to 1.43); p = 0.00] and protein quantification method by ELISA [RoM = 1.28, 95% CI (1.15 to 1.41); p = 0.00] has been found the optimum isolation and quantification method, respectively for PD diagnosis. This meta-analysis suggests that α-Syn in L1CAM exosome derived from blood, isolated by ExoQuick kit, and quantified by ELISA can be used for PD diagnosis.
Collapse
Affiliation(s)
- Irin Sultana Nila
- Institute of Digital Anti-aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea.
| | - Dewan Md Sumsuzzman
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea.
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea.
| | - Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Republic of Korea.
| | - Ashura Suleiman Kazema
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Republic of Korea.
| | - Sang Jin Kim
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Republic of Korea.
| | - Yonggeun Hong
- Institute of Digital Anti-aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Republic of Korea; Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
20
|
Wang ZY, Wen ZJ, Xu HM, Zhang Y, Zhang YF. Exosomal noncoding RNAs in central nervous system diseases: biological functions and potential clinical applications. Front Mol Neurosci 2022; 15:1004221. [PMID: 36438184 PMCID: PMC9681831 DOI: 10.3389/fnmol.2022.1004221] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 09/26/2023] Open
Abstract
Central nervous system (CNS) disease is a general term for a series of complex and diverse diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), CNS tumors, stroke, epilepsy, and amyotrophic lateral sclerosis (ALS). Interneuron and neuron-glia cells communicate with each other through their homeostatic microenvironment. Exosomes in the microenvironment have crucial impacts on interneuron and neuron-glia cells by transferring their contents, such as proteins, lipids, and ncRNAs, constituting a novel form of cell-to-cell interaction and communication. Exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs), regulate physiological functions and maintain CNS homeostasis. Exosomes are regarded as extracellular messengers that transfer ncRNAs between neurons and body fluids due to their ability to cross the blood-brain barrier. This review aims to summarize the current understanding of exosomal ncRNAs in CNS diseases, including prospective diagnostic biomarkers, pathological regulators, therapeutic strategies and clinical applications. We also provide an all-sided discussion of the comparison with some similar CNS diseases and the main limitations and challenges for exosomal ncRNAs in clinical applications.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Ningxia Medical University, Yinchuan, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Na C, Wen-Wen C, Li W, Ao-Jia Z, Ting W. Significant Role of Long Non-coding RNAs in Parkinson's Disease. Curr Pharm Des 2022; 28:3085-3094. [PMID: 36154598 DOI: 10.2174/1381612828666220922110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, with clinical manifestations of resting tremor, akinesia (or bradykinesia), rigidity, and postural instability. However, the molecular pathogenesis of PD is still unclear, and its effective treatments are limited. Substantial evidence demonstrates that long non-coding RNAs (lncRNAs) have important functions in various human diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. Therefore, the main purpose of this study is to review the role of lncRNAs in the pathogenesis of PD. METHODS The role of lncRNAs in the pathogenesis of PD is summarized by reviewing Pubmed. RESULTS Thirty different lncRNAs are aberrantly expressed in PD and promote or inhibit PD by mediating ubiquitin-proteasome system, autophagy-lysosomal pathway, dopamine (DA) neuronal apoptosis, mitochondrial function, oxidative stress, and neuroinflammation. CONCLUSION In this direction, lncRNA may contribute to the treatment of PD as a diagnostic and therapeutic target for PD.
Collapse
Affiliation(s)
- Chen Na
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chen Wen-Wen
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Li
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhou Ao-Jia
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Ting
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.,Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
22
|
Valencia J, Ferreira M, Merino-Torres JF, Marcilla A, Soriano JM. The Potential Roles of Extracellular Vesicles as Biomarkers for Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911508. [PMID: 36232833 PMCID: PMC9569867 DOI: 10.3390/ijms231911508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is a slowly progressive neurodegenerative disorder, characterized by the misfolding and aggregation of α-synuclein (α-syn) into Lewy bodies and the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The urge for an early diagnosis biomarker comes from the fact that clinical manifestations of PD are estimated to appear once the substantia nigra has deteriorated and there has been a reduction of the dopamine levels from the striatum. Nowadays, extracellular vesicles (EVs) play an important role in the pathogenesis of neuro-degenerative diseases as PD. A systematic review dated August 2022 was carried out with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses with the aim to analyze the potential role of EVs as biomarkers for PD. From a total of 610 articles retrieved, 29 were eligible. This review discusses the role of EVs biochemistry and their cargo proteins, such as α-syn and DJ-1 among others, detected by a proteomic analysis as well as miRNAs and lncRNAs, as potential biomarkers that can be used to create standardized protocols for early PD diagnosis as well as to evaluate disease severity and progression.
Collapse
Affiliation(s)
- Jessica Valencia
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
| | - Marta Ferreira
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
| | - J. Francisco Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Valencia, Spain
| | - Antonio Marcilla
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Department of Pharmacy and Pharmaceutic Technology and Parasitology, University of Valencia, 46010 Burjassot, Valencia, Spain
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Correspondence:
| |
Collapse
|
23
|
Katifelis H, Filidou E, Psaraki A, Yakoub F, Roubelakis MG, Tarapatzi G, Vradelis S, Bamias G, Kolios G, Gazouli M. Amniotic Fluid-Derived Mesenchymal Stem/Stromal Cell-Derived Secretome and Exosomes Improve Inflammation in Human Intestinal Subepithelial Myofibroblasts. Biomedicines 2022; 10:2357. [PMID: 36289619 PMCID: PMC9598363 DOI: 10.3390/biomedicines10102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 08/29/2023] Open
Abstract
Inflammatory Bowel Diseases (IBDs) are characterized by chronic relapsing inflammation of the gastrointestinal tract. The mesenchymal stem/stromal cell-derived secretome and secreted extracellular vesicles may offer novel therapeutic opportunities in patients with IBD. Thus, exosomes may be utilized as a novel cell-free approach for IBD therapy. The aim of our study was to examine the possible anti-inflammatory effects of secretome/exosomes on an IBD-relevant, in vitro model of LPS-induced inflammation in human intestinal SubEpithelial MyoFibroblasts (SEMFs). The tested CM (Conditioned Media)/exosomes derived from a specific population of second-trimester amniotic fluid mesenchymal stem/stromal cells, the spindle-shaped amniotic fluid MSCs (SS-AF-MSCs), and specifically, their secreted exosomes could be utilized as a novel cell-free approach for IBD therapy. Therefore, we studied the effect of SS-AF-MSCs CM and exosomes on LPS-induced inflammation in SEMF cells. SS-AF-MSCs CM and exosomes were collected, concentrated, and then delivered into the cell cultures. Administration of both secretome and exosomes derived from SS-AF-MSCs reduced the severity of LPS-induced inflammation. Specifically, IL-1β, IL-6, TNF-α, and TLR-4 mRNA expression was decreased, while the anti-inflammatory IL-10 was elevated. Our results were also verified at the protein level, as secretion of IL-1β was significantly reduced. Overall, our results highlight a cell-free and anti-inflammatory therapeutic agent for potential use in IBD therapy.
Collapse
Affiliation(s)
- Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Adriana Psaraki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Farinta Yakoub
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria G. Roubelakis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Giorgos Bamias
- GI Unit, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Sciences, Hellenic Open University, 26335 Patra, Greece
| |
Collapse
|
24
|
Liu H, Dehestani M, Blauwendraat C, Makarious MB, Leonard H, Kim JJ, Schulte C, Noyce A, Jacobs BM, Foote I, Sharma M, Nalls M, Singleton A, Gasser T, Bandres‐Ciga S. Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors. Ann Neurol 2022; 92:270-278. [PMID: 35599344 PMCID: PMC9329258 DOI: 10.1002/ana.26416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available. METHODS We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership-Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses. RESULTS A higher polygenic resilience score was associated with a lower risk for PD (β = -0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci. INTERPRETATION The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 2022;92:270-278.
Collapse
Affiliation(s)
- Hui Liu
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Mohammad Dehestani
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
| | - Mary B. Makarious
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
- Data Tecnica InternationalGlen EchoMDUSA
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Hampton Leonard
- Data Tecnica InternationalGlen EchoMDUSA
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Jonggeol J. Kim
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Alastair Noyce
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Benjamin M. Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Isabelle Foote
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Manu Sharma
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
- Center for Genetic Epidemiology, Institute for Clinical Epidemiology and Functional BiometryUniversity of TübingenTübingenGermany
| | - Mike Nalls
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
- Data Tecnica InternationalGlen EchoMDUSA
| | - Andrew Singleton
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Sara Bandres‐Ciga
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
25
|
Carelli S, Rey F, Cereda C. SNCA-AS1 in aging and Parkinson’s disease. Aging (Albany NY) 2022; 14:3335-3336. [PMID: 35438650 PMCID: PMC9085241 DOI: 10.18632/aging.204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Stephana Carelli
- Pediatric Research Center “Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, Milano 20157, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, Milano 20157, Italy
| | - Cristina Cereda
- Department of Women, Mothers and Neonatal Care, Children's Hospital "V. Buzzi", Milano 20154, Italy
| |
Collapse
|
26
|
El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022; 22:319-335. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders causing cognitive deficits and motor difficulties in the elderly. Conventional treatments are mainly symptomatic with little ability to halt disease progression. Gene therapies to correct or silence genetic mutations predisposing to AD or PD are currently being developed in preclinical studies and clinical trials, relying mostly on systemic delivery, which reduces their effectiveness. Imaging-guided stereotaxic procedures are used to locally deliver therapeutic cargos to well-defined brain sites, hence raising the question whether stereotaxic-assisted gene therapy has therapeutic potentials. AREAS COVERED The authors summarize the studies that investigated the use of gene therapy in PD and AD in animal and clinical studies over the past five years, with a special emphasis on the combinatorial potential with stereotaxic delivery. The advantages, limitations and futuristic challenges of this technique are discussed. EXPERT OPINION Robotic stereotaxis combined with intraoperative imaging has revolutionized brain surgeries. While gene therapies are bringing huge innovations to the medical field and new hope to AD and PD patients and medical professionals, the efficient and targeted delivery of such therapies is a bottleneck. We propose that careful application of stereotaxic delivery of gene therapies can improve PD and AD management. [Figure: see text].
Collapse
Affiliation(s)
- Samar O El Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Tony Cijsouw
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
27
|
Tau mRNA Metabolism in Neurodegenerative Diseases: A Tangle Journey. Biomedicines 2022; 10:biomedicines10020241. [PMID: 35203451 PMCID: PMC8869323 DOI: 10.3390/biomedicines10020241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/07/2022] Open
Abstract
Tau proteins are known to be mainly involved in regulation of microtubule dynamics. Besides this function, which is critical for axonal transport and signal transduction, tau proteins also have other roles in neurons. Moreover, tau proteins are turned into aggregates and consequently trigger many neurodegenerative diseases termed tauopathies, of which Alzheimer’s disease (AD) is the figurehead. Such pathological aggregation processes are critical for the onset of these diseases. Among the various causes of tau protein pathogenicity, abnormal tau mRNA metabolism, expression and dysregulation of tau post-translational modifications are critical steps. Moreover, the relevance of tau function to general mRNA metabolism has been highlighted recently in tauopathies. In this review, we mainly focus on how mRNA metabolism impacts the onset and development of tauopathies. Thus, we intend to portray how mRNA metabolism of, or mediated by, tau is associated with neurodegenerative diseases.
Collapse
|
28
|
Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cell Mol Life Sci 2022; 79:78. [PMID: 35044538 PMCID: PMC8908880 DOI: 10.1007/s00018-021-04047-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.
Collapse
|
29
|
Manna I, Quattrone A, De Benedittis S, Iaccino E, Quattrone A. Roles of Non-Coding RNAs as Novel Diagnostic Biomarkers in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1475-1489. [PMID: 34334422 PMCID: PMC8609715 DOI: 10.3233/jpd-212726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 5%of the elderly population. Currently, the diagnosis of PD is mainly based on clinical features and no definitive diagnostic biomarkers have been identified. The discovery of biomarkers at the earliest stages of PD is of extreme interest. This review focuses on the current findings in the field of circulating non-coding RNAs in PD. We briefly describe the more established circulating biomarkers in PD and provide a more thorough review of non-coding RNAs, in particular microRNAs, long non-coding RNAs and circular RNAs, differentially expressed in PD, highlighting their potential for being considered as biomarkers for diagnosis. Together, these studies hold promise for the use of peripheral biomarkers for the diagnosis of PD.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, Catanzaro, Italy
| | - Andrea Quattrone
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia, ” Germaneto, Catanzaro, Italy
| | - Selene De Benedittis
- Department of Medical and Surgical Sciences, University “Magna Graecia, ” Germaneto, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Aldo Quattrone
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, Catanzaro, Italy
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
30
|
Ninou E, Michail A, Politis PK. Long Non-Coding RNA Lacuna Regulates Neuronal Differentiation of Neural Stem Cells During Brain Development. Front Cell Dev Biol 2021; 9:726857. [PMID: 34900989 PMCID: PMC8653915 DOI: 10.3389/fcell.2021.726857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Although long non-coding RNAs (lncRNAs) is one of the most abundant classes of RNAs encoded within the mammalian genome and are highly expressed in the adult brain, they remain poorly characterized and their roles in the brain development are not well understood. Here we identify the lncRNA Lacuna (also catalogued as NONMMUT071331.2 in NONCODE database) as a negative regulator of neuronal differentiation in the neural stem/progenitor cells (NSCs) during mouse brain development. In particular, we show that Lacuna is transcribed from a genomic locus near to the Tbr2/Eomes gene, a key player in the transition of intermediate progenitor cells towards the induction of neuronal differentiation. Lacuna RNA expression peaks at the developmental time window between E14.5 and E16.5, consistent with a role in neural differentiation. Overexpression experiments in ex vivo cultured NSCs from murine cortex suggest that Lacuna is sufficient to inhibit neuronal differentiation, induce the number of Nestin+ and Olig2+ cells, without affecting proliferation or apoptosis of NSCs. CRISPR/dCas9-KRAB mediated knockdown of Lacuna gene expression leads to the opposite phenotype by inducing neuronal differentiation and suppressing Nestin+ and Olig2+ cells, again without any effect on proliferation or apoptosis of NSCs. Interestingly, despite the negative action of Lacuna on neurogenesis, its knockdown inhibits Eomes transcription, implying a simultaneous, but opposite, role in facilitating the Eomes gene expression. Collectively, our observations indicate a critical function of Lacuna in the gene regulation networks that fine tune the neuronal differentiation in the mammalian NSCs.
Collapse
Affiliation(s)
- Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Biology, University of Patras, Patras, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
31
|
Rey F, Pandini C, Messa L, Launi R, Barzaghini B, Zangaglia R, Raimondi MT, Gagliardi S, Cereda C, Zuccotti GV, Carelli S. α-Synuclein antisense transcript SNCA-AS1 regulates synapses- and aging-related genes suggesting its implication in Parkinson's disease. Aging Cell 2021; 20:e13504. [PMID: 34799977 PMCID: PMC8672788 DOI: 10.1111/acel.13504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/26/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
SNCA protein product, α‐synuclein, is widely renowned for its role in synaptogenesis and implication in both aging and Parkinson's disease (PD), but research efforts are still needed to elucidate its physiological functions and mechanisms of regulation. In this work, we aim to characterize SNCA‐AS1, antisense transcript to the SNCA gene, and its implications in cellular processes. The overexpression of SNCA‐AS1 upregulates both SNCA and α‐synuclein and, through RNA‐sequencing analysis, we investigated the transcriptomic changes of which both genes are responsible. We highlight how they impact neurites' extension and synapses' biology, through specific molecular signatures. We report a reduced expression of markers associated with synaptic plasticity, and we specifically focus on GABAergic and dopaminergic synapses, for their relevance in aging processes and PD, respectively. A reduction in SNCA‐AS1 expression leads to the opposite effect. As part of this signature is co‐regulated by the two genes, we discriminate between functions elicited by genes specifically altered by SNCA‐AS1 or SNCA's overexpression, observing a relevant role for SNCA‐AS1 in synaptogenesis through a shared molecular signature with SNCA. We also highlight how numerous deregulated pathways are implicated in aging‐related processes, suggesting that SNCA‐AS1 could be a key player in cellular senescence, with implications for aging‐related diseases. Indeed, the upregulation of SNCA‐AS1 leads to alterations in numerous PD‐specific genes, with an impact highly comparable to that of SNCA's upregulation. Our results show that SNCA‐AS1 elicits its cellular functions through the regulation of SNCA, with a specific modulation of synaptogenesis and senescence, presenting implications in PD.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| | - Cecilia Pandini
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
- Department of Biology and Biotechnology “L. Spallanzani” University of Pavia Pavia Italy
| | - Letizia Messa
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Rossella Launi
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Roberta Zangaglia
- Parkinson's Disease and Movement Disorders Unit IRCCS Mondino Foundation Pavia Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Stella Gagliardi
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
| | - Cristina Cereda
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
- Department of Pediatrics Children's Hospital "V. Buzzi" Milan Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| |
Collapse
|
32
|
Kuo MC, Liu SCH, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson's disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 2021; 28:78. [PMID: 34794432 PMCID: PMC8603508 DOI: 10.1186/s12929-021-00775-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
The discovery of various noncoding RNAs (ncRNAs) and their biological implications is a growing area in cell biology. Increasing evidence has revealed canonical and noncanonical functions of long and small ncRNAs, including microRNAs, long ncRNAs (lncRNAs), circular RNAs, PIWI-interacting RNAs, and tRNA-derived fragments. These ncRNAs have the ability to regulate gene expression and modify metabolic pathways. Thus, they may have important roles as diagnostic biomarkers or therapeutic targets in various diseases, including neurodegenerative disorders, especially Parkinson's disease. Recently, through diverse sequencing technologies and a wide variety of bioinformatic analytical tools, such as reverse transcriptase quantitative PCR, microarrays, next-generation sequencing and long-read sequencing, numerous ncRNAs have been shown to be associated with neurodegenerative disorders, including Parkinson's disease. In this review article, we will first introduce the biogenesis of different ncRNAs, including microRNAs, PIWI-interacting RNAs, circular RNAs, long noncoding RNAs, and tRNA-derived fragments. The pros and cons of the detection platforms of ncRNAs and the reproducibility of bioinformatic analytical tools will be discussed in the second part. Finally, the recent discovery of numerous PD-associated ncRNAs and their association with the diagnosis and pathophysiology of PD are reviewed, and microRNAs and long ncRNAs that are transported by exosomes in biofluids are particularly emphasized.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Medicine, Section of Neurology, Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sam Chi-Hao Liu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
33
|
Zhu Z, Huang P, Sun R, Li X, Li W, Gong W. A Novel Long-Noncoding RNA LncZFAS1 Prevents MPP +-Induced Neuroinflammation Through MIB1 Activation. Mol Neurobiol 2021; 59:778-799. [PMID: 34775541 PMCID: PMC8857135 DOI: 10.1007/s12035-021-02619-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease remains one of the leading neurodegenerative diseases in developed countries. Despite well-defined symptomology and pathology, the complexity of Parkinson's disease prevents a full understanding of its etiological mechanism. Mechanistically, α-synuclein misfolding and aggregation appear to be central for disease progression, but mitochondrial dysfunction, dysfunctional protein clearance and ubiquitin/proteasome systems, and neuroinflammation have also been associated with Parkinson's disease. Particularly, neuroinflammation, which was initially thought to be a side effect of Parkinson's disease pathogenesis, has now been recognized as driver of Parkinson's disease exacerbation. Next-generation sequencing has been used to identify a plethora of long noncoding RNAs (lncRNA) with important transcriptional regulatory functions. Moreover, a myriad of lncRNAs are known to be regulators of inflammatory signaling and neurodegenerative diseases, including IL-1β secretion and Parkinson's disease. Here, LncZFAS1 was identified as a regulator of inflammasome activation, and pyroptosis in human neuroblast SH-SY5Y cells following MPP+ treatment, a common in vitro Parkinson's disease cell model. Mechanistically, TXNIP ubiquitination through MIB1 E3 ubiquitin ligase regulates NLRP3 inflammasome activation in neuroblasts. In contrast, MPP+ activates the NLPR3 inflammasome through miR590-3p upregulation and direct interference with MIB1-dependent TXNIP ubiquitination. LncZFAS overexpression inhibits this entire pathway through direct interference with miR590-3p, exposing a novel research idea regarding the mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Ziman Zhu
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Ruifeng Sun
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Xiaoling Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Wenshan Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| |
Collapse
|
34
|
Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
|
35
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
36
|
Nie H, Liao Z, Wang Y, Zhou J, He X, Ou C. Exosomal long non-coding RNAs: Emerging players in cancer metastasis and potential diagnostic biomarkers for personalized oncology. Genes Dis 2021; 8:769-780. [PMID: 34522707 PMCID: PMC8427254 DOI: 10.1016/j.gendis.2020.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is a major challenge in the treatment of cancer. Exosomes are a class of small extracellular vesicles (EVs) that play critical roles in several human diseases, especially cancer, by transferring information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Numerous recent studies have shown that exosomal long non-coding RNAs (lncRNAs) play crucial regulatory roles in cancer metastasis in the tumor microenvironment by altering the expression of several key signaling pathways and molecules. Due to their specificity and sensitivity, exosomal lncRNAs have potential as novel tumor markers and therapeutic targets in the treatment of cancer metastasis. In this review, we aim to summarize the roles of exosomal lncRNAs in cancer metastasis, the mechanisms underlying their roles, and their potential clinical applications.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Zhujun Liao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Xiaoyun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| |
Collapse
|
37
|
Wallen ZD, Stone WJ, Factor SA, Molho E, Zabetian CP, Standaert DG, Payami H. Exploring human-genome gut-microbiome interaction in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:74. [PMID: 34408160 PMCID: PMC8373869 DOI: 10.1038/s41531-021-00218-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
The causes of complex diseases remain an enigma despite decades of epidemiologic research on environmental risks and genome-wide studies that have uncovered tens or hundreds of susceptibility loci for each disease. We hypothesize that the microbiome is the missing link. Genetic studies have shown that overexpression of alpha-synuclein, a key pathological protein in Parkinson’s disease (PD), can cause familial PD and variants at alpha-synuclein locus confer risk of idiopathic PD. Recently, dysbiosis of gut microbiome in PD was identified: altered abundances of three microbial clusters were found, one of which was composed of opportunistic pathogens. Using two large datasets, we found evidence that the overabundance of opportunistic pathogens in PD gut is influenced by the host genotype at the alpha-synuclein locus, and that the variants responsible modulate alpha-synuclein expression. Results put forth testable hypotheses on the role of gut microbiome in the pathogenesis of PD, the incomplete penetrance of PD susceptibility genes, and potential triggers of pathology in the gut.
Collapse
Affiliation(s)
- Zachary D Wallen
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Stone
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric Molho
- Department of Neurology, Albany Medical College, Albany, NY, USA
| | - Cyrus P Zabetian
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haydeh Payami
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
38
|
García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The Emerging Role of Long Non-Coding RNAs and MicroRNAs in Neurodegenerative Diseases: A Perspective of Machine Learning. Biomolecules 2021; 11:1132. [PMID: 34439798 PMCID: PMC8391852 DOI: 10.3390/biom11081132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive neuronal dysfunction and death of brain cells population. As the early manifestations of NDs are similar, their symptoms are difficult to distinguish, making the timely detection and discrimination of each neurodegenerative disorder a priority. Several investigations have revealed the importance of microRNAs and long non-coding RNAs in neurodevelopment, brain function, maturation, and neuronal activity, as well as its dysregulation involved in many types of neurological diseases. Therefore, the expression pattern of these molecules in the different NDs have gained significant attention to improve the diagnostic and treatment at earlier stages. In this sense, we gather the different microRNAs and long non-coding RNAs that have been reported as dysregulated in each disorder. Since there are a vast number of non-coding RNAs altered in NDs, some sort of synthesis, filtering and organization method should be applied to extract the most relevant information. Hence, machine learning is considered as an important tool for this purpose since it can classify expression profiles of non-coding RNAs between healthy and sick people. Therefore, we deepen in this branch of computer science, its different methods, and its meaningful application in the diagnosis of NDs from the dysregulated non-coding RNAs. In addition, we demonstrate the relevance of machine learning in NDs from the description of different investigations that showed an accuracy between 85% to 95% in the detection of the disease with this tool. All of these denote that artificial intelligence could be an excellent alternative to help the clinical diagnosis and facilitate the identification diseases in early stages based on non-coding RNAs.
Collapse
Affiliation(s)
- Ángela García-Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Cynthia Martin-Jimenez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Andres Felipe Aristizábal Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| |
Collapse
|
39
|
TOMM40 '523' poly-T repeat length is a determinant of longitudinal cognitive decline in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:56. [PMID: 34234128 PMCID: PMC8263775 DOI: 10.1038/s41531-021-00200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
The translocase of outer mitochondrial membrane 40 (TOMM40) ‘523’ polymorphism has previously been associated with age of Alzheimer’s disease onset and cognitive functioning in non-pathological ageing, but has not been explored as a candidate risk marker for cognitive decline in Parkinson’s disease (PD). Therefore, this longitudinal study investigated the role of the ‘523’ variant in cognitive decline in a patient cohort from the Parkinson’s Progression Markers Initiative. As such, a group of 368 people with PD were assessed annually for cognitive performance using multiple neuropsychological protocols, and were genotyped for the TOMM40 ‘523’ variant using whole-genome sequencing data. Covariate-adjusted generalised linear mixed models were utilised to examine the relationship between TOMM40 ‘523’ allele lengths and cognitive scores, while taking into account the APOE ε genotype. Cognitive scores declined over the 5-year study period and were lower in males than in females. When accounting for APOE ε4, the TOMM40 ‘523’ variant was not robustly associated with overall cognitive performance. However, in APOE ε3/ε3 carriers, who accounted for ~60% of the whole cohort, carriage of shorter ‘523’ alleles was associated with more severe cognitive decline in both sexes, while carriage of the longer alleles in females were associated with better preservation of global cognition and a number of cognitive sub-domains, and with a delay in progression to dementia. The findings indicate that when taken in conjunction with the APOE genotype, TOMM40 ‘523’ allele length is a significant independent determinant and marker for the trajectory of cognitive decline and risk of dementia in PD.
Collapse
|
40
|
Dong LI, Zheng Y, Gao L, Luo X. lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson's disease by impairing miR-374c-5p. Acta Biochim Biophys Sin (Shanghai) 2021; 53:870-882. [PMID: 33984130 DOI: 10.1093/abbs/gmab055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play biological roles in brain disorder and neurodegenerative diseases. As the functions of lncRNA NEAT1 in Parkinson's disease (PD) remain unknown, in the present study, we aimed to explore the roles and underlying molecular mechanisms of NEAT1 in PD. A PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and a cell model of SH-SY5Y induced by N-methyl-4-phenylpyridinium (MPP+) were established. The ratio of tyrosine hydroxylase (TH+) cells was determined by immunofluorescence assay, and the behavioral changes in mice were observed using pole tests and rotarod tests. The cellular viability and apoptosis of SH-SY5Y were detected by MTT assay and flow cytometric analysis, respectively, and the number of autophagosomes was subsequently measured by transmission electron microscopy. High-performance liquid chromatography was performed to detect the content of dopamine, and a dual-luciferase reporter assay was used to clarify the target of NEAT1 simultaneously. The results demonstrated that the level of NEAT1 was upregulated in the MPTP-induced PD mice, dopamine neurons, and the SH-SY5Y cells treated with MPP+, whereas the level of miR-374c-5p was downregulated. NEAT1 level was positively correlated with MPP+ in a concentration-dependent manner. NEAT1 inhibition efficiently facilitated cell proliferation but inhibited apoptosis and autophagy in the MPP+-treated SH-SY5Y cells. Additionally, silencing of NEAT1 increased the TH+ rate of neurons and suppressed autophagy greatly in PD mice. As a possible target of NEAT1, miR-374c-5p could impact on the apoptosis and autophagy of the SH-SY5Y cells. NEAT1 inhibition upregulated the expression of miR-374c-5p, enhanced SH-SY5Y cell viability, and repressed autophagy and apoptosis in MPTP-induced PD mice. These findings indicated a potential therapeutic role of NEAT1 in treating PD.
Collapse
Affiliation(s)
- L i Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yumin Zheng
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xiaoguang Luo
- Department of Neurology, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| |
Collapse
|
41
|
Keihani S, Kluever V, Fornasiero EF. Brain Long Noncoding RNAs: Multitask Regulators of Neuronal Differentiation and Function. Molecules 2021; 26:molecules26133951. [PMID: 34203457 PMCID: PMC8272081 DOI: 10.3390/molecules26133951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a 'coding molecule' has been largely surpassed, together with the conception that lncRNAs only represent 'waste material' produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.
Collapse
|
42
|
Simone R, Javad F, Emmett W, Wilkins OG, Almeida FL, Barahona-Torres N, Zareba-Paslawska J, Ehteramyan M, Zuccotti P, Modelska A, Siva K, Virdi GS, Mitchell JS, Harley J, Kay VA, Hondhamuni G, Trabzuni D, Ryten M, Wray S, Preza E, Kia DA, Pittman A, Ferrari R, Manzoni C, Lees A, Hardy JA, Denti MA, Quattrone A, Patani R, Svenningsson P, Warner TT, Plagnol V, Ule J, de Silva R. MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature 2021; 594:117-123. [PMID: 34012113 PMCID: PMC7610982 DOI: 10.1038/s41586-021-03556-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.
Collapse
Affiliation(s)
- Roberto Simone
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| | - Faiza Javad
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Warren Emmett
- UCL Genetics Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Inivata Ltd, Babraham, UK
| | - Oscar G Wilkins
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Filipa Lourenço Almeida
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Natalia Barahona-Torres
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Mazdak Ehteramyan
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Paola Zuccotti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Angelika Modelska
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Kavitha Siva
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Gurvir S Virdi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Jamie S Mitchell
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Jasmine Harley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Victoria A Kay
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Geshanthi Hondhamuni
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Daniah Trabzuni
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Elisavet Preza
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Raffaele Ferrari
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Claudia Manzoni
- UCL School of Pharmacy, Department of Pharmacology, London, UK
| | - Andrew Lees
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - John A Hardy
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Rickie Patani
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | | | - Jernej Ule
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
43
|
Dholpuria S, Kumar S, Kumar M, Sarwalia P, Kumar R, Datta TK. A novel lincRNA identified in buffalo oocytes with protein binding characteristics could hold the key for oocyte competence. Mol Biol Rep 2021; 48:3925-3934. [PMID: 34014469 DOI: 10.1007/s11033-021-06388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
Studying the maternal oocyte-specific genes, in farm animals is a significant step towards delineating the underlying mechanisms that regulate oocyte quality, early embryonic development and survival. With the creation of buffalo oocyte-specific subtracted cDNA library, it has raised new questions which need to be answered. The present study has characterized one of the ESTs selected from the library and highlighted its importance in the oocyte quality. The selected EST was made full length by RLM-RACE and four transcript variants were identified. Bioinformatics analysis indicated the novelty of full-length transcript along with conserved intergenic nature. The largest transcript was identified as long intergenic noncoding RNA based upon coding potential calculator output. The expression analysis at different hours of oocyte maturation showed a significant variation in developmentally competent oocytes to that of incompetent ones. Along with this, the transcript was also found to have protein binding ability which was confirmed by RNA electrophoretic mobility shift assay. The protein used in the experiment was isolated from oocyte and cumulus cells via sonication. A novel lincRNA has been reported here that might have an important role in maturation of oocytes, inferred from its relative gene expression study and protein binding characteristics.
Collapse
Affiliation(s)
- Sunny Dholpuria
- Department of Life Science, Sharda University, Greater Noida, India.
| | - Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
44
|
Wang H, Zhang M, Wei T, Zhou J, Zhang Y, Guo D. Long non-coding RNA SNHG1 mediates neuronal damage in Parkinson's disease model cells by regulating miR-216a-3p/Bcl-2-associated X protein. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:851. [PMID: 34164485 PMCID: PMC8184415 DOI: 10.21037/atm-21-1613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Parkinson’s disease (PD) is a common central nervous system degenerative disease in middle-aged and elderly people. Our study aimed to illuminate the relationship and mechanism of long-chain non-coding RNA SNHG1 and miRNA (miR)-216a-3p in PD. Methods Human neuroblastoma cell lines were treated with MPP+ to construct a PD model. Real-time fluorescent quantitative PCR was used to detect the cellular expression of SNHG1. Neuronal cell activity and apoptosis were compared before and after SNHG1 knock-down, as was neuronal miR-216a-3p expression. Further, a luciferase reporter gene experiment was performed to verify BAX as the target of miR-216a-3p. Anti-miR-216a-3p and BAX were co-transfected into PD model cells, and neuronal cellular activity and apoptosis were observed. Finally, the potential regulatory network of SNHG1/miR-216a-3p/BAX in PD was investigated. Results The expression of miR-216a-3p was decreased in the PD model cells, and re-expression reversed the high apoptotic rate and cell vitality inhibition in PD model cells. SNHG1 interacted with miR-216a-3p and negatively regulated its upstream molecules, while miR-216a-3p attenuated the effect of SNHG1 knock-down on neurons. The overexpression of BAX in the PD cell model blocked the damage by miR-216a-3p to neurons. At the same time, SNHG1 acted as a coordinator, mediating the regulation of BAX via miR-216a-3p, thereby affecting the activity and apoptotic rate of neurons in the PD model. Conclusions SNHG1 interacts with miR-216a-3p to regulate the expression of BAX. This SNHG1/miR-216a-3p/BAX molecular regulatory network is implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Meng Zhang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Taofeng Wei
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhou
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yongle Zhang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Dengjun Guo
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
45
|
Dolati S, Shakouri SK, Dolatkhah N, Yousefi M, Jadidi-Niaragh F, Sanaie S. The role of exosomal non-coding RNAs in aging-related diseases. Biofactors 2021; 47:292-310. [PMID: 33621363 DOI: 10.1002/biof.1715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Aging is a biological process caused by the accumulation of senescent cells with a permanent proliferative arrest. To the influence of aging on human life expectancy, there is essential for new biomarkers which possibly will assistance in recognizing age-associated pathologies. Exosomes, which are cell-secreted nanovesicles, make available a new biomarker detection and therapeutic approach for the transfer of different molecules with high capacity. Recently, non-coding RNAs (ncRNA) which are contained in exosomes have developed as important molecules regulating the complexity of aging and relevant human diseases. The discovery of ncRNA provided perceptions into an innovative regulatory platform that could interfere with cellular senescence. The non-coding transcriptome includes a different of RNA species, spanning from short ncRNAs (<200 nucleotides) to long ncRNAs, that are >200 bp long. Upgraded evidence displays that targeting ncRNAs possibly will influence senescence pathways. In this article, we will address ncRNAs that participated in age-related and cellular senescence diseases. Growing conception of ncRNAs in the aging process possibly will be responsible for new understandings into the improvement of age-related diseases and elongated life span.
Collapse
Affiliation(s)
- Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Wang S, Sun S, Guo R, Liao W, Shou H. Transcriptomic Profiling of Fe-Responsive lncRNAs and Their Regulatory Mechanism in Rice. Genes (Basel) 2021; 12:genes12040567. [PMID: 33919786 PMCID: PMC8070830 DOI: 10.3390/genes12040567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Iron (Fe) deficiency directly affects crop growth and development, ultimately resulting in reduced crop yield and quality. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in a multitude of pathways across numerous species. However, systematic screening of lncRNAs responding to Fe deficiency and their regulatory mechanism in plants has not been reported. In this work, 171 differently expressed lncRNAs (DE-lncRNAs) were identified based on analysis of strand-specific RNA-seq data from rice shoots and roots under Fe-deficient conditions. We also found several lncRNAs, which could generate miRNAs or act as endogenous target mimics to regulate expression of Fe-related genes. Analysis of interaction networks and gene ontology enrichment revealed that a number of DE-lncRNAs were associated with iron transport and photosynthesis, indicating a possible role of lncRNAs in regulation of Fe homeostasis. Moreover, we identified 76 potential lncRNA targets of OsbHLH156, a key regulator for transcriptional response to Fe deficiency. This study provides insight into the potential functions and regulatory mechanism of Fe-responsive lncRNAs and would be an initial and reference for any further studies regarding lncRNAs involved in Fe deficiency in plants.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.W.); (S.S.); (R.G.); (W.L.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.W.); (S.S.); (R.G.); (W.L.)
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining 314400, China
| | - Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.W.); (S.S.); (R.G.); (W.L.)
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.W.); (S.S.); (R.G.); (W.L.)
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.W.); (S.S.); (R.G.); (W.L.)
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining 314400, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Correspondence: ; Tel.: +86-571-88206146
| |
Collapse
|
47
|
Functional annotation of lncRNA in high-throughput screening. Essays Biochem 2021; 65:761-773. [PMID: 33835127 PMCID: PMC8564734 DOI: 10.1042/ebc20200061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Recent efforts on the characterization of long non-coding RNAs (lncRNAs) revealed their functional roles in modulating diverse cellular processes. These include pluripotency maintenance, lineage commitment, carcinogenesis, and pathogenesis of various diseases. By interacting with DNA, RNA and protein, lncRNAs mediate multifaceted mechanisms to regulate transcription, RNA processing, RNA interference and translation. Of more than 173000 discovered lncRNAs, the majority remain functionally unknown. The cell type-specific expression and localization of the lncRNA also suggest potential distinct functions of lncRNAs across different cell types. This highlights the niche of identifying functional lncRNAs in different biological processes and diseases through high-throughput (HTP) screening. This review summarizes the current work performed and perspectives on HTP screening of functional lncRNAs where different technologies, platforms, cellular responses and the downstream analyses are discussed. We hope to provide a better picture in applying different technologies to facilitate functional annotation of lncRNA efficiently.
Collapse
|
48
|
Yang S, Lim KH, Kim SH, Joo JY. Molecular landscape of long noncoding RNAs in brain disorders. Mol Psychiatry 2021; 26:1060-1074. [PMID: 33173194 DOI: 10.1038/s41380-020-00947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
According to current paradigms, various risk factors, such as genetic mutations, oxidative stress, neural network dysfunction, and abnormal protein degradation, contribute to the progression of brain disorders. Through the cooperation of gene transcripts in biological processes, the study of noncoding RNAs can lead to insights into the cause and treatment of brain disorders. Recently, long noncoding RNAs (lncRNAs) which are longer than 200 nucleotides in length have been suggested as key factors in various brain disorders. Accumulating evidence suggests the potential of lncRNAs as diagnostic or prognostic biomarkers and therapeutic targets. High-throughput screening-based sequencing has been instrumental in identification of lncRNAs that demand new approaches to understanding the progression of brain disorders. In this review, we discuss the recent progress in the study of lncRNAs, and addresses the pathogenesis of brain disorders that involve lncRNAs and describes the associations of lncRNAs with neurodegenerative disorders such as Alzheimer disease (AD), Parkinson disease (PD), and neurodevelopmental disorders. We also discuss potential targets of lncRNAs and their promise as novel therapeutics and biomarkers in brain disorders.
Collapse
Affiliation(s)
- Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
49
|
Xin C, Liu J. Long Non-coding RNAs in Parkinson's Disease. Neurochem Res 2021; 46:1031-1042. [PMID: 33544326 DOI: 10.1007/s11064-021-03230-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder and is associated with a range of motor and non-motor clinical symptoms. The underlying molecular pathogenesis of PD involves a variety of pathways and mechanisms, including α-synuclein proteostasis, mitochondrial dysfunction, oxidative stress, autophagy and apoptosis, neuroinflammation, and epigenetic regulation. Long non-coding RNAs (lncRNAs) are involved in the regulation of multiple pathological processes of PD. In this review, we provide an overview of large-scale studies on lncRNA expression profiling in PD patients and models, as well as highlight the impacts of lncRNAs on the pathogenesis of PD, which could provide basic information regarding the putative lncRNA-based biomarkers and therapeutic targets for the early diagnosis and treatment strategies for PD.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, People's Republic of China.,Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, Dalian City, Liaoning Province, 116023, People's Republic of China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, People's Republic of China. .,Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, Dalian City, Liaoning Province, 116023, People's Republic of China.
| |
Collapse
|
50
|
Tian S, Zhang M, Ma Z. An edge-based statistical analysis of long non-coding RNA expression profiles reveals a negative association between Parkinson's disease and colon cancer. BMC Med Genomics 2021; 14:36. [PMID: 33531021 PMCID: PMC7851899 DOI: 10.1186/s12920-021-00882-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Colon cancer (CC) is one of the most common malignant tumors, while Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent accumulating evidence indicates that these two diseases are associated with each other. Also, from the perspective of long non-coding RNAs, some well-known genes such as H19 and PVT1 can link these two diseases together. Several studies have shown that patients with PD had a decreased risk of developing CC compared with patients without PD. However, controversies surround the relationship between PD and CC, and to date, no concordant conclusion has been drawn. METHODS In this study, we aimed to assess the association between these two diseases based on lncRNA-to-lncRNA interactions. Motivated by the weighted gene co-expression network analysis method, a customized procedure was proposed and used to identify differentially correlated edges (DCEs) in the respective interaction networks for PD and CC and explore how these two diseases are linked. RESULTS Of the two sets of DCEs for PD and CC, 16 pairs overlapped. Among them, 15 edges had opposite signs, with positive signs for CC indicating a gain of connectivity, whereas negative signs for PD indicating a loss of connectivity. CONCLUSIONS By using the lncRNA expression profiles, and a customized procedure, an answer to the question about how PD and CC are associated is provided.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| | - Mingyue Zhang
- Department of Gastroenterology, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|