1
|
Parekh P, Serra M, Allaw M, Perra M, Pinna A, Manconi M, Morelli M. Extract from Nasco pomace loaded in nutriosomes exerts anti-inflammatory effects in the MPTP mouse model of Parkinson's disease. Exp Neurol 2024; 382:114958. [PMID: 39303846 DOI: 10.1016/j.expneurol.2024.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Neuroinflammation has recently emerged as a key event in Parkinson's disease (PD) pathophysiology and as a potential target for disease-modifying therapies. Plant-derived extracts, rich in bioactive phytochemicals with antioxidant properties, have shown potential in this regard. Yet their clinical utility is hampered by poor systemic availability and rapid metabolism. Recently, our group demonstrated that intragastric delivery of Nasco pomace extract via nutriosomes (NN), a novel nanoliposome formulation, contrasts the degeneration of nigrostriatal dopaminergic neurons in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In the present study, we investigated the impact of intragastric NN treatment on the reactivity of glial cells in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu) of MPTP-treated mice. To this scope, in mice exposed to MPTP (20 mg/kg/day, × 4 days), we conducted immunohistochemistry analyses of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1) to assess the responsiveness of astrocytes and microglial cells, respectively. Additionally, we studied the co-localization of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF)-α with IBA1 to obtain insights into microglial phenotype. Immunohistochemical results showed that NN administration significantly mitigated astrogliosis and microgliosis in the CPu and SNc of mice receiving subacute MPTP treatment, with region-specific variations in anti-inflammatory efficacy. Remarkably, the CPu showed a heightened response to NN treatment, including a pronounced decrease in microglial IL-1β and TNF-α production. Altogether, these findings underscore the anti-inflammatory effects of NN treatment and provide a potential mechanism underlying the neuroprotective effects previously observed in a subacute MPTP mouse model of PD.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Italy.
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
2
|
Kale MB, Wankhede NL, Bishoyi AK, Ballal S, Kalia R, Arya R, Kumar S, Khalid M, Gulati M, Umare M, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Fareed M, Koppula S. Emerging biophysical techniques for probing synaptic transmission in neurodegenerative disorders. Neuroscience 2024:S0306-4522(24)00643-2. [PMID: 39608699 DOI: 10.1016/j.neuroscience.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Plethora of research has shed light on the critical role of synaptic dysfunction in various neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Synapses, the fundamental units for neural communication in the brain, are highly vulnerable to pathological conditions and are central to the progression of neurological diseases. The presynaptic terminal, a key component of synapses responsible for neurotransmitter release and synaptic communication, undergoes structural and functional alterations in these disorders. Understanding synaptic transmission abnormalities is crucial for unravelling the pathophysiological mechanisms underlying neurodegeneration. In the quest to probe synaptic transmission in NDDs, emerging biophysical techniques play a pivotal role. These advanced methods offer insights into the structural and functional changes occurring at nerve terminals in conditions like AD, PD, HD & ALS. By investigating synaptic plasticity and alterations in neurotransmitter release dynamics, researchers can uncover valuable information about disease progression and potential therapeutic targets. The review articles highlighted provide a comprehensive overview of how synaptic vulnerability and pathology are shared mechanisms across a spectrum of neurological disorders. In major neurodegenerative diseases, synaptic dysfunction is a common thread linking these conditions. The intricate molecular machinery involved in neurotransmitter release, synaptic vesicle dynamics, and presynaptic protein regulation are key areas of focus for understanding synaptic alterations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Mohit Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
3
|
Chalmers E, Duarte S, Al-Hejji X, Devoe D, Gruber A, McDonald RJ. Simulated synapse loss induces depression-like behaviors in deep reinforcement learning. Front Comput Neurosci 2024; 18:1466364. [PMID: 39569353 PMCID: PMC11576168 DOI: 10.3389/fncom.2024.1466364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Deep Reinforcement Learning is a branch of artificial intelligence that uses artificial neural networks to model reward-based learning as it occurs in biological agents. Here we modify a Deep Reinforcement Learning approach by imposing a suppressive effect on the connections between neurons in the artificial network-simulating the effect of dendritic spine loss as observed in major depressive disorder (MDD). Surprisingly, this simulated spine loss is sufficient to induce a variety of MDD-like behaviors in the artificially intelligent agent, including anhedonia, increased temporal discounting, avoidance, and an altered exploration/exploitation balance. Furthermore, simulating alternative and longstanding reward-processing-centric conceptions of MDD (dysfunction of the dopamine system, altered reward discounting, context-dependent learning rates, increased exploration) does not produce the same range of MDD-like behaviors. These results support a conceptual model of MDD as a reduction of brain connectivity (and thus information-processing capacity) rather than an imbalance in monoamines-though the computational model suggests a possible explanation for the dysfunction of dopamine systems in MDD. Reversing the spine-loss effect in our computational MDD model can lead to rescue of rewarding behavior under some conditions. This supports the search for treatments that increase plasticity and synaptogenesis, and the model suggests some implications for their effective administration.
Collapse
Affiliation(s)
- Eric Chalmers
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Santina Duarte
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Xena Al-Hejji
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Daniel Devoe
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Aaron Gruber
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Malik S, Ali SA, Mehdi AM, Raza A, Bashir S, Baig DN. A pilot study: Examining cytoskeleton gene expression profiles in Pakistani children with autism spectrum disorder. Int J Dev Neurosci 2024; 84:769-778. [PMID: 39285780 DOI: 10.1002/jdn.10372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Finding effective pharmacological interventions to address the complex array of neurodevelopmental disorders is currently an urgent imperative within the scientific community as these conditions present significant challenges for patients and their families, often impacting cognitive, emotional, and social development. In this study, we aimed to explore non-invasive method to diagnose autism spectrum disorders (ASD) within Pakistan children population and to identify clinical drugs for its treatment. AIMS The current report outlines a comprehensive bidirectional investigation showcasing the successful utilization of saliva samples to quantify the expression patterns of profilins (PFN1, 2, and 3); and ERM (ezrin, radixin, and moesin) proteins; and additionally moesin pseudogene 1 and moesin pseudogene 1 antisense (MSNP1AS). Subsequently, these expression profiles were employed to forecast interactions between drugs and genes in children diagnosed with ASD. METHODS This study sought to delve into the intricate gene expression profiles using qualitative polymerase chain reaction of profilin isoforms (PFN1, 2, and 3) and ERM genes extracted from saliva samples obtained from children diagnosed with ASD. Through this analysis, we aimed to elucidate potential molecular mechanisms underlying ASD pathogenesis, shedding light on novel biomarkers and therapeutic targets for this complex neurological condition. (n = 22). Subsequently, we implemented a diagnostic model utilizing sparse partial least squares discriminant analysis (sPLS-DA) to predict drugs against our genes of interest. Furthermore, connectivity maps were developed to illustrate the predicted associations of 24 drugs with the genes expression. RESULTS Our study results showed varied expression profile of cytoskeleton linked genes. Similarly, sPLS-DA model precisely predicted drug to genes response. Sixteen of the examined drugs had significant positive correlations with the expression of the targeted genes whereas eight of the predicted drugs had shown negative correlations. CONCLUSION Here we report the role of cytoskeleton linked genes (PFN and ERM) in co-relation to ASD. Furthermore, variable yet significant quantitative expression of these genes successfully predicted drug-gene interactions as shown with the help of connectivity maps that can be used to support the clinical use of these drugs to treat individuals with ASD in future studies.
Collapse
Affiliation(s)
- Sana Malik
- Kauser Abdullah Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, Pakistan
| | - Syed Aoun Ali
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ahmed Murtaza Mehdi
- Diamantina Institute, Faculty of Medicine, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Amir Raza
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (Sialkot Campus), Sialkot, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Deeba Noreen Baig
- Kauser Abdullah Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, Pakistan
- University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Mercer A, Sancandi M, Maclatchy A, Lange S. Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson's Disease Rat Model. Int J Mol Sci 2024; 25:11168. [PMID: 39456949 PMCID: PMC11509057 DOI: 10.3390/ijms252011168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Amy Maclatchy
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| |
Collapse
|
6
|
Decet M, Scott P, Kuenen S, Meftah D, Swerts J, Calatayud C, Gallego SF, Kaempf N, Nachman E, Praschberger R, Schoovaerts N, Tang CC, Eidelberg D, Al Adawi S, Al Asmi A, Nandhagopal R, Verstreken P. A candidate loss-of-function variant in SGIP1 causes synaptic dysfunction and recessive parkinsonism. Cell Rep Med 2024; 5:101749. [PMID: 39332416 PMCID: PMC11513836 DOI: 10.1016/j.xcrm.2024.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024]
Abstract
Synaptic dysfunction is recognized as an early step in the pathophysiology of parkinsonism. Several genetic mutations affecting the integrity of synaptic proteins cause or increase the risk of developing disease. We have identified a candidate causative mutation in synaptic "SH3GL2 Interacting Protein 1" (SGIP1), linked to early-onset parkinsonism in a consanguineous Arab family. Additionally, affected siblings display intellectual, cognitive, and behavioral dysfunction. Metabolic network analysis of [18F]-fluorodeoxyglucose positron emission tomography scans shows patterns very similar to those of idiopathic Parkinson's disease. We show that the identified SGIP1 mutation causes a loss of protein function, and analyses in newly created Drosophila models reveal movement defects, synaptic transmission dysfunction, and neurodegeneration, including dopaminergic synapse loss. Histology and correlative light and electron microscopy reveal the absence of synaptic multivesicular bodies and the accumulation of degradative organelles. This research delineates a putative form of recessive parkinsonism, converging on defective synaptic proteostasis and opening avenues for diagnosis, genetic counseling, and treatment.
Collapse
Affiliation(s)
- Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrick Scott
- Laboratory of Molecular Biology, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Douja Meftah
- Laboratory of Pulmonary Physiology, Department of Pediatrics, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Natalie Kaempf
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Eliana Nachman
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Samir Al Adawi
- Department of Behavioral Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Abdullah Al Asmi
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Ramachandiran Nandhagopal
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Breznik L, Daurer M, Rabl R, Loeffler T, Etxeberria-Rekalde E, Neddens J, Flunkert S, Prokesch M. Motor deficits and brain pathology in the Parkinson's disease mouse model hA53Ttg. Front Neurosci 2024; 18:1462041. [PMID: 39371610 PMCID: PMC11450652 DOI: 10.3389/fnins.2024.1462041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the accumulation of α-synuclein (α-syn) aggregates. The A53T missense point mutation occurs in autosomal dominant familial PD and has been found to promote the aggregation of α-syn. To investigate the role of the A53T mutation in PD, researchers have developed various mouse models with this mutation. Objective We therefore conducted a comprehensive characterization of the tg(THY1-SNCA*A53T)M53Sud mouse model (hA53Ttg mice) for its motor and pathological features. Methods hA53Ttg mice were tested for motor impairments in a series of motor tests at 2, 4 or 6 months of age. Human α-syn and α-syn pSer129, as well as GFAP and Iba1 signal were labeled and quantified in the cortex, hippocampus, and brainstem. Neurofilament light chain (NF-L) levels were measured in the cerebrospinal fluid (CSF) and plasma. Ex vivo analyses were performed at the age of 2, 4, 6, and 10 months. Results Behavioral tests revealed early muscle weakness and motor impairments that progressed with age. Immunohistochemical analyses demonstrated elevated levels of human α-syn and α-syn pSer129 in all evaluated brain regions. α-syn pSer129 labeling further revealed fiber-like structures in the cortex of older animals. Neuroinflammation was observed in an age-dependent manner. Biochemical evaluation revealed elevated NF-L levels in the plasma and CSF. Overall, our findings highlight the value of hA53Ttg mice in modeling PD-associated pathologies that closely resemble those observed in PD patients. Conclusion Our results thus suggest that hA53Ttg mice are a useful tool for studying the underlying mechanisms of PD.
Collapse
|
8
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
9
|
Wesenhagen KEJ, de Leeuw DM, Tomassen J, Gobom J, Bos I, Vos SJB, Martinez-Lage P, Tainta M, Popp J, Peyratout G, Tsolaki M, Vandenberghe R, Freund-Levi Y, Verhey F, Lovestone S, Streffer J, Dobricic V, Blennow K, Scheltens P, Smit AB, Bertram L, Teunissen CE, Zetterberg H, Tijms BM. Synaptic protein CSF levels relate to memory scores in individuals without dementia. RESEARCH SQUARE 2024:rs.3.rs-4607202. [PMID: 39108495 PMCID: PMC11302699 DOI: 10.21203/rs.3.rs-4607202/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
INTRODUCTION We investigated how cerebrospinal fluid levels of synaptic proteins associate with memory function in normal cognition (CN) and mild cognitive impairment (MCI), and investigated the effect of amyloid positivity on these associations. METHODS We included 242 CN (105(43%) abnormal amyloid), and 278 MCI individuals (183(66%) abnormal amyloid) from EMIF-AD MBD and ADNI. For 181 (EMIF-AD MBD) and 36 (ADNI) proteins with a synaptic annotation in SynGO, associations with word learning recall were analysed with linear models. RESULTS Subsets of synaptic proteins showed lower levels with worse recall in preclinical AD (EMIF-AD MBD: 7, ADNI: 5 proteins, none overlapping), prodromal AD (EMIF-AD MBD only, 27 proteins) and non-AD MCI (EMIF-AD MBD: 1, ADNI: 7 proteins). The majority of these associations were specific to these groups. DISCUSSION Synaptic disturbance-related memory impairment occurred very early in AD, indicating it may be relevant to develop therapies targeting the synapse early in the disease.
Collapse
Affiliation(s)
| | | | - Jori Tomassen
- Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC
| | | | - Isabelle Bos
- Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC
| | | | | | | | | | | | - Magda Tsolaki
- AHEPA University Hospital, Aristotle University of Thessaloniki
| | | | | | | | | | | | | | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC
| | | | | | | | | | - Betty M Tijms
- Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC
| |
Collapse
|
10
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated shifts between DNA methylation and DNA hydroxymethylation in human brain in PD-related genes, including PARK19 (DNAJC6) and PTPRN2 (IA-2β). RESEARCH SQUARE 2024:rs.3.rs-4572401. [PMID: 39070644 PMCID: PMC11275970 DOI: 10.21203/rs.3.rs-4572401/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The majority of Parkinson's disease (PD) cases are due to a complex interaction between aging, genetics, and environmental factors; epigenetic mechanisms are thought to act as important mediators of these risk factors. While multiple studies to date have explored the role of DNA modifications in PD, few focus on 5-hydroxymethylcytosine (5hmC). Because 5hmC occurs at its highest levels in the brain and is thought to be particularly important in the central nervous system, particularly in the response to neurotoxicants, it is important to explore the potential role of 5hmC in PD. This study expands on our previously published epigenome-wide association study (EWAS) performed on DNA isolated from neuron-enriched nuclei from human postmortem parietal cortex from the Banner Sun Health Research Institute Brain Bank. The study aimed to identify paired changes in 5hmC and 5mC in PD in enriched neuronal nuclei isolated from PD post-mortem parietal cortex and age- and sex-matched controls. We performed oxidative bisulfite (oxBS) conversion and paired it with our previously published bisulfite (BS)-based EWAS on the same samples to identify cytosines with significant shifts between these two related epigenetic marks. Interaction differentially modified cytosines (iDMCs) were identified using our recently published mixed-effects model for co-analyzing βmC and βhmC data. Results We identified 1,030 iDMCs with paired changes in 5mC and 5hmC (FDR < 0.05) that map to 695 genes, including PARK19 (DNAJC6), a familial PD gene, and PTPRN2 (IA-2), which has been previously implicated in PD in both epigenetic and mechanistic studies. The majority of iDMC-containing genes have not previously been implicated in PD and were not identified in our previous BS-based EWAS. Conclusions These data potentially link epigenetic regulation of the PARK19 and PTPRN2 loci in the pathogenesis of idiopathic PD. In addition, iDMC-containing genes have known functions in synaptic formation and function, cell cycle and senescence, neuroinflammation, and epigenetic regulation. These data suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes relevant to PD pathogenesis that are not captured by analyzing BS-based data alone or by analyzing each mark as a distinct dataset.
Collapse
|
11
|
Zhang J, Xie D, Jiao D, Zhou S, Liu S, Ju Z, Hu L, Qi L, Yao C, Zhao C. From inflammatory signaling to neuronal damage: Exploring NLR inflammasomes in ageing neurological disorders. Heliyon 2024; 10:e32688. [PMID: 38975145 PMCID: PMC11226848 DOI: 10.1016/j.heliyon.2024.e32688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Xie
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
12
|
Pfeifer GP. DNA Damage and Parkinson's Disease. Int J Mol Sci 2024; 25:4187. [PMID: 38673772 PMCID: PMC11050701 DOI: 10.3390/ijms25084187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology underlying most sporadic Parkinson's' disease (PD) cases is unknown. Environmental exposures have been suggested as putative causes of the disease. In cell models and in animal studies, certain chemicals can destroy dopaminergic neurons. However, the mechanisms of how these chemicals cause the death of neurons is not understood. Several of these agents are mitochondrial toxins that inhibit the mitochondrial complex I of the electron transport chain. Familial PD genes also encode proteins with important functions in mitochondria. Mitochondrial dysfunction of the respiratory chain, in combination with the presence of redox active dopamine molecules in these cells, will lead to the accumulation of reactive oxygen species (ROS) in dopaminergic neurons. Here, I propose a mechanism regarding how ROS may lead to cell killing with a specificity for neurons. One rarely considered hypothesis is that ROS produced by defective mitochondria will lead to the formation of oxidative DNA damage in nuclear DNA. Many genes that encode proteins with neuron-specific functions are extraordinary long, ranging in size from several hundred kilobases to well over a megabase. It is predictable that such long genes will contain large numbers of damaged DNA bases, for example in the form of 8-oxoguanine (8-oxoG), which is a major DNA damage type produced by ROS. These DNA lesions will slow down or stall the progression of RNA polymerase II, which is a term referred to as transcription stress. Furthermore, ROS-induced DNA damage may cause mutations, even in postmitotic cells such as neurons. I propose that the impaired transcription and mutagenesis of long, neuron-specific genes will lead to a loss of neuronal integrity, eventually leading to the death of these cells during a human lifetime.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
13
|
Melachroinou K, Divolis G, Tsafaras G, Karampetsou M, Fortis S, Stratoulias Y, Papadopoulou G, Kriebardis AG, Samiotaki M, Vekrellis K. Endogenous Alpha-Synuclein is Essential for the Transfer of Pathology by Exosome-Enriched Extracellular Vesicles, Following Inoculation with Preformed Fibrils in vivo. Aging Dis 2024; 15:869-892. [PMID: 37548944 PMCID: PMC10917543 DOI: 10.14336/ad.2023.0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
The main pathological hallmark of Parkinson's disease (PD) and related synucleinopathies is the presence of intracellular proteinaceous aggregates, enriched in the presynaptic protein alpha-Synuclein (α-Syn). α-Syn association with exosomes has been previously documented both as a physiological process of secretion and as a pathological process of disease transmission, however, critical information about the mechanisms governing this interplay is still lacking. To address this, we utilized the α-Syn preformed fibril (PFF) mouse model of PD, as a source of brain-derived exosome-enriched extracellular vesicles (ExE-EVs) and assessed their pathogenic capacity following intrastriatal injections in host wild type (WT) mouse brain. We further investigated the impact of the fibrillar α-Syn on the exosomal cargo independent of the endogenous α-Syn, by isolating ExE-EVs from PFF-injected α-Syn knockout mice. Although PFF inoculation does not alter the morphology, size distribution, and quantity of brain-derived ExE-EVs, it triggers changes in the exosomal proteome related to synaptic and mitochondrial function, as well as metabolic processes. Importantly, we showed that the presence of the endogenous α-Syn is essential for the ExE-EVs to acquire a pathogenic capacity, allowing them to mediate disease transmission by inducing phosphorylated-α-Syn pathology. Notably, misfolded α-Syn containing ExE-EVs when injected in WT mice were able to induce astrogliosis and synaptic alterations in the host brain, at very early stages of α-Syn pathology, preceding the formation of the insoluble α-Syn accumulations. Collectively, our data suggest that exosomal cargo defines their ability to spread α-Syn pathology.
Collapse
Affiliation(s)
- Katerina Melachroinou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - George Tsafaras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Mantia Karampetsou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Sotirios Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece.
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece.
| | - Yannis Stratoulias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Gina Papadopoulou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece.
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
14
|
Hong CT, Chung CC, Yu RC, Chan L. Plasma extracellular vesicle synaptic proteins as biomarkers of clinical progression in patients with Parkinson's disease. eLife 2024; 12:RP87501. [PMID: 38483306 PMCID: PMC10939498 DOI: 10.7554/elife.87501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Synaptic dysfunction plays a key role in Parkinson's disease (PD), and plasma extracellular vesicle (EV) synaptic proteins are emerging as biomarkers for neurodegenerative diseases. Assessment of plasma EV synaptic proteins for their efficacy as biomarkers in PD and their relationship with disease progression was conducted. In total, 144 participants were enrolled, including 101 people with PD (PwP) and 43 healthy controls (HCs). The changes in plasma EV synaptic protein levels between baseline and 1-year follow-up did not differ significantly in both PwP and HCs. In PwP, the changes in plasma EV synaptic protein levels were significantly associated with the changes in Unified Parkinson's Disease Rating Scale (UPDRS)-II and III scores. Moreover, PwP with elevated levels (first quartile) of any one plasma EV synaptic proteins (synaptosome-associated protein 25, growth-associated protein 43 or synaptotagmin-1) had significantly greater disease progression in UPDRS-II score and the postural instability and gait disturbance subscore in UPDRS-III than did the other PwP after adjustment for age, sex, and disease duration. The promising potential of plasma EV synaptic proteins as clinical biomarkers of disease progression in PD was suggested. However, a longer follow-up period is warranted to confirm their role as prognostic biomarkers.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Ruan-Ching Yu
- Division of Psychiatry, University College London, London, United Kingdom
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Brüll M, Geese N, Celardo I, Laumann M, Leist M. Preparation of Viable Human Neurites for Neurobiological and Neurodegeneration Studies. Cells 2024; 13:242. [PMID: 38334634 PMCID: PMC10854604 DOI: 10.3390/cells13030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Few models allow the study of neurite damage in the human central nervous system. We used here dopaminergic LUHMES neurons to establish a culture system that allows for (i) the observation of highly enriched neurites, (ii) the preparation of the neurite fraction for biochemical studies, and (iii) the measurement of neurite markers and metabolites after axotomy. LUHMES-based spheroids, plated in culture dishes, extended neurites of several thousand µm length, while all somata remained aggregated. These cultures allowed an easy microscopic observation of live or fixed neurites. Neurite-only cultures (NOC) were produced by cutting out the still-aggregated somata. The potential application of such cultures was exemplified by determinations of their protein and RNA contents. For instance, the mitochondrial TOM20 protein was highly abundant, while nuclear histone H3 was absent. Similarly, mitochondrial-encoded RNAs were found at relatively high levels, while the mRNA for a histone or the neuronal nuclear marker NeuN (RBFOX3) were relatively depleted in NOC. Another potential use of NOC is the study of neurite degeneration. For this purpose, an algorithm to quantify neurite integrity was developed. Using this tool, we found that the addition of nicotinamide drastically reduced neurite degeneration. Also, the chelation of Ca2+ in NOC delayed the degeneration, while inhibitors of calpains had no effect. Thus, NOC proved to be suitable for biochemical analysis and for studying degeneration processes after a defined cut injury.
Collapse
Affiliation(s)
- Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Nils Geese
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Michael Laumann
- Electron Microscopy Centre, University of Konstanz, 78457 Konstanz, Germany;
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
- Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Ji M, Niu SQ, Mi HY, Jiang P, Li Y. Vinpocetine improves dyskinesia in Parkinson's disease rats by reducing oxidative stress and activating the Wnt/β-catenin signaling pathway. Chem Biol Drug Des 2024; 103:e14358. [PMID: 37749299 DOI: 10.1111/cbdd.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is the commonest neurodegenerative disorder. It reduces motor and cognitive function in patients. Vinpocetine (Vinp) has the effects of anti-inflammatory and antioxidant, and could improve cognitive function in patients. This study was aimed to investigating the therapeutic effects of Vinp on dyskinesia in a 6-Hydroxydopamine hydrobromide (6-OHDA)-induced PD rat model. We constructed a PD rat model by injecting 6-OHDA, and intervened with Vinp for 7 days. The motor function of the rats was evaluated by an open-field test and rotation test. Besides, H&E staining was applied to observe the changes of dopaminergic neurons in the striatum. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the rat striatum were detected. We assessed the impact of Vinp on α-synuclein (α-Syn) and Wnt/β-catenin signaling pathway-related molecules by western blot and qRT-PCR. Rats in the PD group showed reduced horizontal movement frequency and number of squares crossed, increased contact time and rotation frequency, and reduced number of dopaminergic neurons accompanied by severe morphological damage. Vinp treatment increased the horizontal movement frequency and number of squares crossed, reduced the contact time, and rotation frequency in PD rats. Also, Vinp downregulated α-Syn protein expression and MDA level, while upregulated SOD activity in the striatum of PD rats. Furthermore, Vinp treatment activated the Wnt/β-catenin signaling pathway in the striatum of PD rats. In conclusion, Vinp improved the dyskinesia in 6-OHDA-induced PD rats by alleviating oxidative stress, and these effects may be associated with activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Meng Ji
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Shi-Qin Niu
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - He-Yin Mi
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Peng Jiang
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yue Li
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Lojek NM, Williams VA, Rogers AM, Sajo E, Black BJ, Ghezzi CE. A 3D In Vitro Cortical Tissue Model Based on Dense Collagen to Study the Effects of Gamma Radiation on Neuronal Function. Adv Healthc Mater 2024; 13:e2301123. [PMID: 37921265 PMCID: PMC11468710 DOI: 10.1002/adhm.202301123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.
Collapse
Affiliation(s)
- Neal M. Lojek
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria A. Williams
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Andrew M. Rogers
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Erno Sajo
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Bryan J. Black
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
18
|
Belloso-Iguerategui A, Zamarbide M, Merino-Galan L, Rodríguez-Chinchilla T, Gago B, Santamaria E, Fernández-Irigoyen J, Cotman CW, Prieto GA, Quiroga-Varela A, Rodríguez-Oroz MC. Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain 2023; 146:4949-4963. [PMID: 37403195 PMCID: PMC10690043 DOI: 10.1093/brain/awad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.
Collapse
Affiliation(s)
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Belén Gago
- Faculty of Medicine, IBIMA Plataforma BIONAND, Universidad de Málaga, 29016 Málaga, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76010 Querétaro, México
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
19
|
Murata H, Phoo MTZ, Ochi T, Tomonobu N, Yamamoto KI, Kinoshita R, Miyazaki I, Nishibori M, Asanuma M, Sakaguchi M. Phosphorylated SARM1 is involved in the pathological process of rotenone-induced neurodegeneration. J Biochem 2023; 174:533-548. [PMID: 37725528 PMCID: PMC11033528 DOI: 10.1093/jb/mvad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.
Collapse
Key Words
- JNK
- PARK2
- Parkinson’s disease
- Phosphorylation
- SARM1.Abbreviations: ARM, armadillo/HEAT motif; DMSO, dimethyl sulfoxide; EGTA, ethylene glycol-bis(2-aminoethelether)-N: N: N: N-tetraacetic acid; iPSC, induced pluripotent stem cell; JNK, c-Jun N-terminal kinase; NAD, nicotinamide adenine dinucleotide; NSC, neural stem cell; NF-L, neurofilament-L; NF-M, neurofilament-M; PD, Parkinson’s disease; PINK1, PTEN-induced kinase 1; ROS, reactive oxygen species; SAM, sterile alpha motif; SARM1, sterile alpha and Toll/interleukin receptor motif-containing protein 1; SNpc, substantia nigra pars compacta; TH, tyrosine hydroxylase; TIR, Toll/interleukin receptor; WT, wild type
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - May Tha Zin Phoo
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
20
|
Bérard M, Martínez-Drudis L, Sheta R, El-Agnaf OMA, Oueslati A. Non-invasive systemic viral delivery of human alpha-synuclein mimics selective and progressive neuropathology of Parkinson's disease in rodent brains. Mol Neurodegener 2023; 18:91. [PMID: 38012703 PMCID: PMC10683293 DOI: 10.1186/s13024-023-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
Collapse
Affiliation(s)
- Morgan Bérard
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Laura Martínez-Drudis
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
21
|
Anirudhan A, Mahema S, Ahmad SF, Emran TB, Ahmed SSSJ, Paramasivam P. Screening of Crucial Cytosolicproteins Interconnecting the Endoplasmic Reticulum and Mitochondria in Parkinson's Disease and the Impact of Anti-Parkinson Drugs in the Preservation of Organelle Connectivity. Brain Sci 2023; 13:1551. [PMID: 38002511 PMCID: PMC10670093 DOI: 10.3390/brainsci13111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction is well-established in Parkinson's disease (PD); however, its dysfunctions associating with cell organelle connectivity remain unknown. We aimed to establish the crucial cytosolic protein involved in organelle connectivity between mitochondria and the endopalmic reticulum (ER) through a computational approach by constructing an organelle protein network to extract functional clusters presenting the crucial PD protein connecting organelles. Then, we assessed the influence of anti-parkinsonism drugs (n = 35) on the crucial protein through molecular docking and molecular dynamic simulation and further validated its gene expression in PD participants under, istradefylline (n = 25) and amantadine (n = 25) treatment. Based on our investigation, D-aspartate oxidase (DDO )protein was found to be the critical that connects both mitochondria and the ER. Further, molecular docking showed that istradefylline has a high affinity (-9.073 kcal/mol) against DDO protein, which may disrupt mitochondrial-ER connectivity. While amantadine (-4.53 kcal/mol) shows negligible effects against DDO that contribute to conformational changes in drug binding, Successively, DDO gene expression was downregulated in istradefylline-treated PD participants, which elucidated the likelihood of an istradefylline off-target mechanism. Overall, our findings illuminate the off-target effects of anti-parkinsonism medications on DDO protein, enabling the recommendation of off-target-free PD treatments.
Collapse
Affiliation(s)
- Athira Anirudhan
- Central Research Laboratory, Believers Church Medical College Hospital, Kuttapuzha, Thiruvalla 689101, Kerala, India
| | - S. Mahema
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Prabu Paramasivam
- Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & IDF Centre of Education, Gopalapuram, Chennai 602105, Tamil Nadu, India
- Department of Neurology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
22
|
Barmaki H, Nourazarian A, Khaki-Khatibi F. Proteostasis and neurodegeneration: a closer look at autophagy in Alzheimer's disease. Front Aging Neurosci 2023; 15:1281338. [PMID: 38020769 PMCID: PMC10652403 DOI: 10.3389/fnagi.2023.1281338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of misfolded amyloid-beta and tau proteins. Autophagy acts as a proteostasis process to remove protein clumps, although it progressively weakens with aging and AD, thus facilitating the accumulation of toxic proteins and causing neurodegeneration. This review examines the impact of impaired autophagy on the progression of AD disease pathology. Under normal circumstances, autophagy removes abnormal proteins and damaged organelles, but any dysfunction in this process can lead to the exacerbation of amyloid and tau pathology, particularly in AD. There is increasing attention to therapeutic tactics to revitalize autophagy, including reduced caloric intake, autophagy-stimulating drugs, and genetic therapy. However, the translation of these strategies into clinical practice faces several hurdles. In summary, this review integrates the understanding of the intricate role of autophagy dysfunction in Alzheimer's disease progression and reinforces the promising prospects of autophagy as a beneficial target for treatments to modify the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Haleh Barmaki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Calabresi P, Di Lazzaro G, Marino G, Campanelli F, Ghiglieri V. Advances in understanding the function of alpha-synuclein: implications for Parkinson's disease. Brain 2023; 146:3587-3597. [PMID: 37183455 PMCID: PMC10473562 DOI: 10.1093/brain/awad150] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
The critical role of alpha-synuclein in Parkinson's disease represents a pivotal discovery. Some progress has been made over recent years in identifying disease-modifying therapies for Parkinson's disease that target alpha-synuclein. However, these treatments have not yet shown clear efficacy in slowing the progression of this disease. Several explanations exist for this issue. The pathogenesis of Parkinson's disease is complex and not yet fully clarified and the heterogeneity of the disease, with diverse genetic susceptibility and risk factors and different clinical courses, adds further complexity. Thus, a deep understanding of alpha-synuclein physiological and pathophysiological functions is crucial. In this review, we first describe the cellular and animal models developed over recent years to study the physiological and pathological roles of this protein, including transgenic techniques, use of viral vectors and intracerebral injections of alpha-synuclein fibrils. We then provide evidence that these tools are crucial for modelling Parkinson's disease pathogenesis, causing protein misfolding and aggregation, synaptic dysfunction, brain plasticity impairment and cell-to-cell spreading of alpha-synuclein species. In particular, we focus on the possibility of dissecting the pre- and postsynaptic effects of alpha-synuclein in both physiological and pathological conditions. Finally, we show how vulnerability of specific neuronal cell types may facilitate systemic dysfunctions leading to multiple network alterations. These functional alterations underlie diverse motor and non-motor manifestations of Parkinson's disease that occur before overt neurodegeneration. However, we now understand that therapeutic targeting of alpha-synuclein in Parkinson's disease patients requires caution, since this protein exerts important physiological synaptic functions. Moreover, the interactions of alpha-synuclein with other molecules may induce synergistic detrimental effects. Thus, targeting only alpha-synuclein might not be enough. Combined therapies should be considered in the future.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Gioia Marino
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Federica Campanelli
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Human Sciences and Promotion of the Quality of Life, Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
24
|
Toker L, Nido GS, Tzoulis C. Not every estimate counts - evaluation of cell composition estimation approaches in brain bulk tissue data. Genome Med 2023; 15:41. [PMID: 37287013 DOI: 10.1186/s13073-023-01195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Variation in cell composition can dramatically impact analyses in bulk tissue samples. A commonly employed approach to mitigate this issue is to adjust statistical models using estimates of cell abundance derived directly from omics data. While an arsenal of estimation methods exists, the applicability of these methods to brain tissue data and whether or not cell estimates can sufficiently account for confounding cellular composition has not been adequately assessed. METHODS We assessed the correspondence between different estimation methods based on transcriptomic (RNA sequencing, RNA-seq) and epigenomic (DNA methylation and histone acetylation) data from brain tissue samples of 49 individuals. We further evaluated the impact of different estimation approaches on the analysis of H3K27 acetylation chromatin immunoprecipitation sequencing (ChIP-seq) data from entorhinal cortex of individuals with Alzheimer's disease and controls. RESULTS We show that even closely adjacent tissue samples from the same Brodmann area vary greatly in their cell composition. Comparison across different estimation methods indicates that while different estimation methods applied to the same data produce highly similar outcomes, there is a surprisingly low concordance between estimates based on different omics data modalities. Alarmingly, we show that cell type estimates may not always sufficiently account for confounding variation in cell composition. CONCLUSIONS Our work indicates that cell composition estimation or direct quantification in one tissue sample should not be used as a proxy to the cellular composition of another tissue sample from the same brain region of an individual-even if the samples are directly adjacent. The highly similar outcomes observed among vastly different estimation methods, highlight the need for brain benchmark datasets and better validation approaches. Finally, unless validated through complementary experiments, the interpretation of analyses outcomes based on data confounded by cell composition should be done with great caution, and ideally avoided all together.
Collapse
Affiliation(s)
- Lilah Toker
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway.
| |
Collapse
|
25
|
Pauwels EKJ, Boer GJ. Parkinson's Disease: A Tale of Many Players. Med Princ Pract 2023; 32:155-165. [PMID: 37285828 PMCID: PMC10601631 DOI: 10.1159/000531422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
In 2020, more than 9 million patients suffering from Parkinson's disease (PD) were reported worldwide, and studies predict that the burden of this disease will grow substantially in industrial countries. In the last decade, there has been a better understanding of this neurodegenerative disorder, clinically characterized by motor disturbances, impaired balance, coordination, memory difficulties, and behavioral changes. Various preclinical investigations and studies on human postmortem brains suggest that local oxidative stress and inflammation promote misfolding and aggregation of alpha-synuclein within Lewy bodies and cause nerve cell damage. Parallel to these investigations, the familial contribution to the disease became evident from studies on genome-wide association in which specific genetic defects were linked to neuritic alpha-synuclein pathology. As for treatment, currently available pharmacological and surgical interventions may improve the quality of life but do not stop the progress of neurodegeneration. However, numerous preclinical studies have provided insights into the pathogenesis of PD. Their results provide a solid base for clinical trials and further developments. In this review, we discuss the pathogenesis, the prospects, and challenges of synolytic therapy, CRISPR, gene editing, and gene- and cell-based therapy. We also throw light on the recent observation that targeted physiotherapy may help improve the gait and other motor impairments.
Collapse
Affiliation(s)
| | - Gerard J. Boer
- Netherlands Institute for Brain Research, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Murata H, Yasui Y, Oiso K, Ochi T, Tomonobu N, Yamamoto KI, Kinoshita R, Sakaguchi M. STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD +-biosynthetic and consuming enzymes. Cell Signal 2023; 108:110717. [PMID: 37187216 DOI: 10.1016/j.cellsig.2023.110717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Yu Yasui
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuma Oiso
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
27
|
Adam H, Gopinath SCB, Md Arshad MK, Adam T, Parmin NA, Husein I, Hashim U. An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech 2023; 13:142. [PMID: 37124989 PMCID: PMC10134733 DOI: 10.1007/s13205-023-03553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
In severe cases, Parkinson's disease causes uncontrolled movements known as motor symptoms such as dystonia, rigidity, bradykinesia, and tremors. Parkinson's disease also causes non-motor symptoms such as insomnia, constipation, depression and hysteria. Disruption of dopaminergic and non-dopaminergic neural networks in the substantia nigra pars compacta is a major cause of motor symptoms in Parkinson's disease. Furthermore, due to the difficulty of clinical diagnosis of Parkinson's disease, it is often misdiagnosed, highlighting the need for better methods of detection. Treatment of Parkinson's disease is also complicated due to the difficulties of medications passing across the blood-brain barrier. Moreover, the conventional methods fail to solve the aforementioned issues. As a result, new methods are needed to detect and treat Parkinson's disease. Improved diagnosis and treatment of Parkinson's disease can help avoid some of its devastating symptoms. This review explores how nanotechnology platforms, such as nanobiosensors and nanomedicine, have improved Parkinson's disease detection and treatment. Nanobiosensors integrate science and engineering principles to detect Parkinson's disease. The main advantages are their low cost, portability, and quick and precise analysis. Moreover, nanotechnology can transport medications in the form of nanoparticles across the blood-brain barrier. However, because nanobiosensors are a novel technology, their use in biological systems is limited. Nanobiosensors have the potential to disrupt cell metabolism and homeostasis, changing cellular molecular profiles and making it difficult to distinguish sensor-induced artifacts from fundamental biological phenomena. In the treatment of Parkinson's disease, nanoparticles, on the other hand, produce neurotoxicity, which is a challenge in the treatment of Parkinson's disease. Techniques must be developed to distinguish sensor-induced artifacts from fundamental biological phenomena and to reduce the neurotoxicity caused by nanoparticles.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - M. K. Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - N. A. Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Irzaman Husein
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor-Indonesia, Indonesia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| |
Collapse
|
28
|
Elango R, Banaganapalli B, Mujalli A, AlRayes N, Almaghrabi S, Almansouri M, Sahly A, Jadkarim GA, Malik MZ, Kutbi HI, Shaik NA, Alefishat E. Potential Biomarkers for Parkinson Disease from Functional Enrichment and Bioinformatic Analysis of Global Gene Expression Patterns of Blood and Substantia Nigra Tissues. Bioinform Biol Insights 2023; 17:11779322231166214. [PMID: 37153842 PMCID: PMC10155030 DOI: 10.1177/11779322231166214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 05/10/2023] Open
Abstract
The Parkinson disease (PD) is the second most common neurodegenerative disorder affecting the central nervous system and motor functions. The biological complexity of PD is yet to reveal potential targets for intervention or to slow the disease severity. Therefore, this study aimed to compare the fidelity of blood to substantia nigra (SN) tissue gene expression from PD patients to provide a systematic approach to predict role of the key genes of PD pathobiology. Differentially expressed genes (DEGs) from multiple microarray data sets of PD blood and SN tissue from GEO database are identified. Using the theoretical network approach and variety of bioinformatic tools, we prioritized the key genes from DEGs. A total of 540 and 1024 DEGs were identified in blood and SN tissue samples, respectively. Functional pathways closely related to PD such as ERK1 and ERK2 cascades, mitogen-activated protein kinase (MAPK) signaling, Wnt, nuclear factor-κB (NF-κB), and PI3K-Akt signaling were observed by enrichment analysis. Expression patterns of 13 DEGs were similar in both blood and SN tissues. Comprehensive network topological analysis and gene regulatory networks identified additional 10 DEGs functionally connected with molecular mechanisms of PD through the mammalian target of rapamycin (mTOR), autophagy, and AMP-activated protein kinase (AMPK) signaling pathways. Potential drug molecules were identified by chemical-protein network and drug prediction analysis. These potential candidates can be further validated in vitro/in vivo to be used as biomarkers and/or novel drug targets for the PD pathology and/or to arrest or delay the neurodegeneration over the years, respectively.
Collapse
Affiliation(s)
- Ramu Elango
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Laboratory Medicine,
Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi
Arabia
| | - Nuha AlRayes
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
- Department of Medical Laboratory
Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory
Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah,
Saudi Arabia
- Center of Innovation in Personalized
Medicine (CIPM), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Almansouri
- Department of Clinical Biochemistry,
Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Sahly
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Gada Ali Jadkarim
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Zubbair Malik
- School of Computational and Integrative
Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Hussam Ibrahim Kutbi
- Department of Pharmacy Practice,
Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Eman Alefishat
- Department of Clinical Pharmacology,
College of Medicine, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Skiteva O, Yao N, Mantas I, Zhang X, Perlmann T, Svenningsson P, Chergui K. Aberrant somatic calcium channel function in cNurr1 and LRRK2-G2019S mice. NPJ Parkinsons Dis 2023; 9:56. [PMID: 37029193 PMCID: PMC10082048 DOI: 10.1038/s41531-023-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
In Parkinson's disease (PD), axons of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) degenerate before their cell bodies. Calcium influx during pacemaker firing might contribute to neuronal loss, but it is not known if dysfunctions of voltage-gated calcium channels (VGCCs) occur in DA neurons somata and axon terminals. We investigated T-type and L-type VGCCs in SNc-DA neurons of two mouse models of PD: mice with a deletion of the Nurr1 gene in DA neurons from an adult age (cNurr1 mice), and mice bearing the G2019S mutation in the gene coding for LRRK2 (G2019S mice). Adult cNurr1 mice displayed motor and DA deficits, while middle-aged G2019S mice did not. The number and morphology of SNc-DA neurons, most of their intrinsic membrane properties and pacemaker firing were unaltered in cNurr1 and G2019S mice compared to their control and wild-type littermates. L-type VGCCs contributed to the pacemaker firing of SNc-DA neurons in G2019S mice, but not in control, wild-type, and cNurr1 mice. In cNurr1 mice, but not G2019S mice, the contribution of T-type VGCCs to the pacemaker firing of SNc-DA neurons was reduced, and somatic dopamine-D2 autoreceptors desensitized more. Altered contribution of L-type and T-type VGCCs to the pacemaker firing was not observed in the presence of a LRRK2 kinase inhibitor in G2019S mice, and in the presence of a flavonoid with antioxidant activity in G2019S and cNurr1 mice. The role of L-type and T-type VGCCs in controlling dopamine release from axon terminals in the striatum was unaltered in cNurr1 and G2019S mice. Our findings uncover opposite changes, linked to oxidative stress, in the function of two VGCCs in DA neurons somata, but not axon terminals, in two different experimental PD models.
Collapse
Affiliation(s)
- Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Balusu S, Praschberger R, Lauwers E, De Strooper B, Verstreken P. Neurodegeneration cell per cell. Neuron 2023; 111:767-786. [PMID: 36787752 DOI: 10.1016/j.neuron.2023.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
The clinical definition of neurodegenerative diseases is based on symptoms that reflect terminal damage of specific brain regions. This is misleading as it tells little about the initial disease processes. Circuitry failures that underlie the clinical symptomatology are themselves preceded by clinically mostly silent, slowly progressing multicellular processes that trigger or are triggered by the accumulation of abnormally folded proteins such as Aβ, Tau, TDP-43, and α-synuclein, among others. Methodological advances in single-cell omics, combined with complex genetics and novel ways to model complex cellular interactions using induced pluripotent stem (iPS) cells, make it possible to analyze the early cellular phase of neurodegenerative disorders. This will revolutionize the way we study those diseases and will translate into novel diagnostics and cell-specific therapeutic targets, stopping these disorders in their early track before they cause difficult-to-reverse damage to the brain.
Collapse
Affiliation(s)
- Sriram Balusu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium; UK Dementia Research Institute, London, UK.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
31
|
Kolacheva A, Pavlova E, Bannikova A, Bogdanov V, Troshev D, Ugrumov M. The Gene Expression of Proteins Involved in Intercellular Signaling and Neurodegeneration in the Substantia Nigra in a Mouse Subchronic Model of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24033027. [PMID: 36769355 PMCID: PMC9917821 DOI: 10.3390/ijms24033027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Given the limited access to clinical material for studying the pathogenesis of Parkinson's disease (PD), these studies should be carried out on experimental models. We have recently developed a subchronic model of the progressive development of PD with a gradual transition from the preclinical (asymptomatic) stage to the clinical (symptomatic) one. The aim of this study was to evaluate changes in the expression of a wide range of genes in the substantia nigra (SN), the central link in the regulation of motor function, in mice in our subchronic model of PD. We have found changes in the expression of a number of genes encoding enzymes involved in the synthesis and degradation of dopamine as well as proteins involved in the vesicular cycle, axonal transport, protein degradation in the proteasome system, neuroinflammation, and cell death in the SN of our mouse model of the clinical stage of PD. Similar changes in gene expression were previously demonstrated in patients (postmortem), indicating good reproducibility of PD in our model. Further analysis of the gene expression in the SN of mice has shown that the expression of some genes also changes in the model of the preclinical stage, when dopaminergic neurons have not yet died. Thus, this study opens up broad prospects for further evaluation of the molecular mechanisms of PD pathogenesis and the development of a test system for drug screening.
Collapse
|
32
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
33
|
Yao N, Skiteva O, Chergui K. Age- and Sex-Dependent Behavioral and Neurochemical Alterations in hLRRK2-G2019S BAC Mice. Biomolecules 2022; 13:biom13010051. [PMID: 36671436 PMCID: PMC9856037 DOI: 10.3390/biom13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with late-onset Parkinson's disease (PD). Although PD affects men and women differently, longitudinal studies examining sex- and age-dependent alterations in mice carrying the G2019S mutation are limited. We examined if behavioral and neurochemical dysfunctions, as well as neurodegeneration, occur in male and female BAC LRRK2-hG2019S (G2019S) mice, compared to their age-matched wild type littermates, at four age ranges. In the open field test, hyperlocomotion was observed in 10-12 month old male and 2-4.5 months old female G2019S mice. In the pole test, motor coordination was impaired in male G2019S mice from 15 months of age and in 20-21 months old female G2019S mice. In the striatum of G2019S male and female mice, the amounts of tyrosine hydroxylase (TH), measured with Western blotting, were unaltered. However, we found a decreased expression of the dopamine transporter in 20-21 month old male G2019S mice. The number of TH-positive neurons in the substantia nigra compacta was unaltered in 20-21 month old male and female G2019S mice. These results identify sex- and age-dependent differences in the occurrence of motor and neurochemical deficits in BAC LRRK2-hG2019S mice, and no degeneration of DA neurons.
Collapse
|
34
|
Fathy YY, Jonkman LE, Bol JJ, Timmermans E, Jonker AJ, Rozemuller AJM, van de Berg WDJ. Axonal degeneration in the anterior insular cortex is associated with Alzheimer's co-pathology in Parkinson's disease and dementia with Lewy bodies. Transl Neurodegener 2022; 11:52. [PMID: 36474289 PMCID: PMC9728006 DOI: 10.1186/s40035-022-00325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS α-Synuclein, phosphorylated (p-)tau, and amyloid-β pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-β pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.
Collapse
Affiliation(s)
- Yasmine Y. Fathy
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Center, Postbus 2040, 3000 CA Rotterdam, Netherlands
| | - Laura E. Jonkman
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - John J. Bol
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Evelien Timmermans
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Allert J. Jonker
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Annemieke J. M. Rozemuller
- grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Pathology, Amsterdam Neuroscience, Vrije University Amsterdam, De Boelelaan, Amsterdam, Netherlands
| | - Wilma D. J. van de Berg
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Wakhloo D, Oberhauser J, Madira A, Mahajani S. From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regen Res 2022; 17:2606-2614. [PMID: 35662189 PMCID: PMC9165389 DOI: 10.4103/1673-5374.336138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Two of the most common neurodegenerative disorders - Alzheimer's and Parkinson's diseases - are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer's disease pathology. The major hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders. Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some publications provide significant findings related to axonal regeneration in Alzheimer's and Parkinson's diseases, they also highlight the limitations and obstacles to the development of neuroregenerative therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, neuroregeneration and neurodegeneration in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Debia Wakhloo
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jane Oberhauser
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Angela Madira
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sameehan Mahajani
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Caligiore D, Giocondo F, Silvetti M. The Neurodegenerative Elderly Syndrome (NES) hypothesis: Alzheimer and Parkinson are two faces of the same disease. IBRO Neurosci Rep 2022; 13:330-343. [PMID: 36247524 PMCID: PMC9554826 DOI: 10.1016/j.ibneur.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that Alzheimer's disease (AD) and Parkinson's disease (PD) share monoamine and alpha-synuclein (αSyn) dysfunctions, often beginning years before clinical manifestations onset. The triggers for these impairments and the causes leading these early neurodegenerative processes to become AD or PD remain unclear. We address these issues by proposing a radically new perspective to frame AD and PD: they are different manifestations of one only disease we call "Neurodegenerative Elderly Syndrome (NES)". NES goes through three phases. The seeding stage, which starts years before clinical signs, and where the part of the brain-body affected by the initial αSyn and monoamine dysfunctions, influences the future possible progression of NES towards PD or AD. The compensatory stage, where the clinical symptoms are still silent thanks to compensatory mechanisms keeping monoamine concentrations homeostasis. The bifurcation stage, where NES becomes AD or PD. We present recent literature supporting NES and discuss how this hypothesis could radically change the comprehension of AD and PD comorbidities and the design of novel system-level diagnostic and therapeutic actions.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, Rome 00199, Italy
| | - Flora Giocondo
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council (LENAI-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| |
Collapse
|
37
|
van den Hurk M, Lau S, Marchetto MC, Mertens J, Stern S, Corti O, Brice A, Winner B, Winkler J, Gage FH, Bardy C. Druggable transcriptomic pathways revealed in Parkinson's patient-derived midbrain neurons. NPJ Parkinsons Dis 2022; 8:134. [PMID: 36258029 PMCID: PMC9579158 DOI: 10.1038/s41531-022-00400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Complex genetic predispositions accelerate the chronic degeneration of midbrain substantia nigra neurons in Parkinson’s disease (PD). Deciphering the human molecular makeup of PD pathophysiology can guide the discovery of therapeutics to slow the disease progression. However, insights from human postmortem brain studies only portray the latter stages of PD, and there is a lack of data surrounding molecular events preceding the neuronal loss in patients. We address this gap by identifying the gene dysregulation of live midbrain neurons reprogrammed in vitro from the skin cells of 42 individuals, including sporadic and familial PD patients and matched healthy controls. To minimize bias resulting from neuronal reprogramming and RNA-seq methods, we developed an analysis pipeline integrating PD transcriptomes from different RNA-seq datasets (unsorted and sorted bulk vs. single-cell and Patch-seq) and reprogramming strategies (induced pluripotency vs. direct conversion). This PD cohort’s transcriptome is enriched for human genes associated with known clinical phenotypes of PD, regulation of locomotion, bradykinesia and rigidity. Dysregulated gene expression emerges strongest in pathways underlying synaptic transmission, metabolism, intracellular trafficking, neural morphogenesis and cellular stress/immune responses. We confirmed a synaptic impairment with patch-clamping and identified pesticides and endoplasmic reticulum stressors as the most significant gene-chemical interactions in PD. Subsequently, we associated the PD transcriptomic profile with candidate pharmaceuticals in a large database and a registry of current clinical trials. This study highlights human transcriptomic pathways that can be targeted therapeutically before the irreversible neuronal loss. Furthermore, it demonstrates the preclinical relevance of unbiased large transcriptomic assays of reprogrammed patient neurons.
Collapse
Affiliation(s)
- Mark van den Hurk
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia
| | - Shong Lau
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Maria C. Marchetto
- grid.266100.30000 0001 2107 4242Department of Anthropology, University of California San Diego, La Jolla, CA USA
| | - Jerome Mertens
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.5771.40000 0001 2151 8122Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Tyrol Austria
| | - Shani Stern
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Olga Corti
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Alexis Brice
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Beate Winner
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fred H. Gage
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Cedric Bardy
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia ,grid.1014.40000 0004 0367 2697Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA Australia
| |
Collapse
|
38
|
Fox SN, McMeekin LJ, Savage CH, Joyce KL, Boas SM, Simmons MS, Farmer CB, Ryan J, Pereboeva L, Becker K, Auwerx J, Sudarshan S, Ma J, Lee A, Roberts RC, Crossman DK, Kralli A, Cowell RM. Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. NPJ Parkinsons Dis 2022; 8:106. [PMID: 35982091 PMCID: PMC9388660 DOI: 10.1038/s41531-022-00369-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Many studies implicate mitochondrial dysfunction as a key contributor to cell loss in Parkinson disease (PD). Previous analyses of dopaminergic (DAergic) neurons from patients with Lewy-body pathology revealed a deficiency in nuclear-encoded genes for mitochondrial respiration, many of which are targets for the transcription factor estrogen-related receptor gamma (Esrrg/ERRγ). We demonstrate that deletion of ERRγ from DAergic neurons in adult mice was sufficient to cause a levodopa-responsive PD-like phenotype with reductions in mitochondrial gene expression and number, that partial deficiency of ERRγ hastens synuclein-mediated toxicity, and that ERRγ overexpression reduces inclusion load and delays synuclein-mediated cell loss. While ERRγ deletion did not fully recapitulate the transcriptional alterations observed in postmortem tissue, it caused reductions in genes involved in synaptic and mitochondrial function and autophagy. Altogether, these experiments suggest that ERRγ-deficient mice could provide a model for understanding the regulation of transcription in DAergic neurons and that amplifying ERRγ-mediated transcriptional programs should be considered as a strategy to promote DAergic maintenance in PD.
Collapse
Affiliation(s)
- S N Fox
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - L J McMeekin
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C H Savage
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
| | - K L Joyce
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - S M Boas
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - M S Simmons
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ryan
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - L Pereboeva
- Department of Pediatrics, Infectious Disease, Neuroscience Vector and Virus Core, University of Alabama at Birmingham, Birmingham, AL, 35223, USA
| | - K Becker
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - J Auwerx
- Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - S Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - A Lee
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - R M Cowell
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA.
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
39
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
40
|
Skiteva O, Yao N, Sitzia G, Chergui K. LRRK2‐G2019S mice display alterations in glutamatergic synaptic transmission in midbrain dopamine neurons. J Neurochem 2022; 161:158-172. [PMID: 35152441 PMCID: PMC9305867 DOI: 10.1111/jnc.15588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
The progressive degeneration of dopamine (DA) neurons in the substantia nigra compacta (SNc) leads to the emergence of motor symptoms in patients with Parkinson's disease (PD). To propose neuroprotective therapies able to slow or halt the progression of the disease, it is necessary to identify cellular alterations that occur before DA neurons degenerate and before the onset of the motor symptoms that characterize PD. Using electrophysiological, histochemical, and biochemical approaches, we have examined if glutamatergic synaptic transmission in DA neurons in the SNc and in the adjacent ventral tegmental area (VTA) was altered in middle‐aged (10–12 months old) mice with the hG2019S point mutation (G2019S) in the leucine‐rich repeat kinase 2 (LRRK2) gene. G2019S mice showed increased locomotion and exploratory behavior compared with wildtype (WT) littermates, and intact DA neuron integrity. The intrinsic membrane properties and action potential characteristics of DA neurons recorded in brain slices were similar in WT and G2019S mice. Initial glutamate release probability onto SNc‐DA neurons, but not VTA‐DA neurons, was reduced in G2019S mice. We also found reduced protein amounts of the presynaptic marker of glutamatergic terminals, VGLUT1, and of the GluA1 and GluN1 subunits of AMPA and NMDA receptors, respectively, in the ventral midbrain of G2019S mice. These results identify alterations in glutamatergic synaptic transmission in DA neurons of the SNc and VTA before the onset of motor impairments in the LRRK2‐G2019S mouse model of PD.
Collapse
Affiliation(s)
- Olga Skiteva
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Ning Yao
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Giacomo Sitzia
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
- Current address: Laboratory for Integrative Neuroscience National Institute on Alcohol Abuse and Alcoholism US Rockville USA
| | - Karima Chergui
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
41
|
Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome Signaling in the Aging Brain and Age-Related Neurodegenerative Diseases. Mol Neurobiol 2022; 59:2288-2304. [PMID: 35066762 DOI: 10.1007/s12035-021-02683-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Inflammasomes are intracellular protein complexes, members of the innate immune system, and their activation and regulation play an essential role in maintaining homeostatic conditions against exogenous and endogenous stimuli. Inflammasomes occur as cytosolic proteins and assemble into a complex during the recognition of pathogen-associated or danger-associated molecular patterns by pattern-recognition receptors in host cells. The formation of the inflammasome complex elicits signaling molecules of proinflammatory cytokines such as interleukin-1β and interleukin 18 via activation of caspase-1 in the canonical inflammasome pathway whereas caspase-11 in the case of a mouse and caspase-4 and caspase-5 in the case of humans in the non-canonical inflammasome pathway, resulting in pyroptotic or inflammatory cell death which ultimately leads to neuroinflammation and neurodegenerative diseases. Inflammasome activation, particularly in microglial cells and macrophages, has been linked to aging as well as age-related neurodegenerative diseases. The accumulation of abnormal/ misfolded proteins acts as a ligand for inflammasome activation in neurodegenerative diseases. Although recent studies have revealed the inflammasomes' functionality in both in vitro and in vivo models, many inflammasome signaling cascade activations during biological aging, neuroinflammation, and neurodegeneration are still ambiguous. In this review, we comprehensively unveil the cellular and molecular mechanisms of inflammasome activation during neuronal aging and age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, prion disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, Tamil Nadu, 610005, India
| | - Narmadhaa Sivagurunathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, Tamil Nadu, 610005, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, Tamil Nadu, 610005, India.
| |
Collapse
|
42
|
Brzozowski CF, Hijaz BA, Singh V, Gcwensa NZ, Kelly K, Boyden ES, West AB, Sarkar D, Volpicelli-Daley LA. Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of α-synuclein. Acta Neuropathol Commun 2021; 9:180. [PMID: 34749824 PMCID: PMC8576889 DOI: 10.1186/s40478-021-01283-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Pathologic inclusions composed of α-synuclein called Lewy pathology are hallmarks of Parkinson’s Disease (PD). Dominant inherited mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. Lewy pathology is found in the majority of individuals with LRRK2-PD, particularly those with the G2019S-LRRK2 mutation. Lewy pathology in LRRK2-PD associates with increased non-motor symptoms such as cognitive deficits, anxiety, and orthostatic hypotension. Thus, understanding the relationship between LRRK2 and α-synuclein could be important for determining the mechanisms of non-motor symptoms. In PD models, expression of mutant LRRK2 reduces membrane localization of α-synuclein, and enhances formation of pathologic α-synuclein, particularly when synaptic activity is increased. α-Synuclein and LRRK2 both localize to the presynaptic terminal. LRRK2 plays a role in membrane traffic, including axonal transport, and therefore may influence α-synuclein synaptic localization. This study shows that LRRK2 kinase activity influences α-synuclein targeting to the presynaptic terminal. We used the selective LRRK2 kinase inhibitors, MLi-2 and PF-06685360 (PF-360) to determine the impact of reduced LRRK2 kinase activity on presynaptic localization of α-synuclein. Expansion microscopy (ExM) in primary hippocampal cultures and the mouse striatum, in vivo, was used to more precisely resolve the presynaptic localization of α-synuclein. Live imaging of axonal transport of α-synuclein-GFP was used to investigate the impact of LRRK2 kinase inhibition on α-synuclein axonal transport towards the presynaptic terminal. Reduced LRRK2 kinase activity increases α-synuclein overlap with presynaptic markers in primary neurons, and increases anterograde axonal transport of α-synuclein-GFP. In vivo, LRRK2 inhibition increases α-synuclein overlap with glutamatergic, cortico-striatal terminals, and dopaminergic nigral-striatal presynaptic terminals. The findings suggest that LRRK2 kinase activity plays a role in axonal transport, and presynaptic targeting of α-synuclein. These data provide potential mechanisms by which LRRK2-mediated perturbations of α-synuclein localization could cause pathology in both LRRK2-PD, and idiopathic PD.
Collapse
|
43
|
Veys L, Devroye J, Lefevere E, Cools L, Vandenabeele M, De Groef L. Characterizing the Retinal Phenotype of the Thy1-h[A30P]α-syn Mouse Model of Parkinson's Disease. Front Neurosci 2021; 15:726476. [PMID: 34557068 PMCID: PMC8452874 DOI: 10.3389/fnins.2021.726476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Despite decades of research, disease-modifying treatments of Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, remain out of reach. One of the reasons for this treatment gap is the incomplete understanding of how misfolded alpha-synuclein (α-syn) contributes to PD pathology. The retina, as an integral part of the central nervous system, recapitulates the PD disease processes that are typically seen in the brain, and retinal manifestations have emerged as prodromal symptoms of the disease. The timeline of PD manifestations in the visual system, however, is not fully elucidated and the underlying mechanisms are obscure. This highlights the need for new studies investigating retinal pathology, in order to propel its use as PD biomarker, and to develop validated research models to investigate PD pathogenesis. The present study pioneers in characterizing the retina of the Thy1-h[A30P]α-syn PD transgenic mouse model. We demonstrate widespread α-syn accumulation in the inner retina of these mice, of which a proportion is phosphorylated yet not aggregated. This α-syn expression coincides with inner retinal atrophy due to postsynaptic degeneration. We also reveal abnormal retinal electrophysiological responses. Absence of selective loss of melanopsin retinal ganglion cells or dopaminergic amacrine cells and inflammation indicates that the retinal manifestations in these transgenic mice diverge from their brain phenotype, and questions the specific cellular or molecular alterations that underlie retinal pathology in this PD mouse model. Nevertheless, the observed α-syn accumulation, synapse loss and functional deficits suggest that the Thy1-h[A30P]α-syn retina mimics some of the features of prodromal PD, and thus may provide a window to monitor and study the preclinical/prodromal stages of PD, PD-associated retinal disease processes, as well as aid in retinal biomarker discovery and validation.
Collapse
Affiliation(s)
- Lien Veys
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Joyce Devroye
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Evy Lefevere
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lien Cools
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Marjan Vandenabeele
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|