1
|
Netsyk O, Korol SV, Li JP, Birnir B, Jin Z. GABA-activated slow spontaneous inhibitory postsynaptic currents are decreased in dorsal hippocampal dentate gyrus granule cells in an aged mouse model of Alzheimer's disease. J Alzheimers Dis 2025:13872877251317608. [PMID: 39956943 DOI: 10.1177/13872877251317608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Synaptic transmission dysfunction is associated with a range of neurological disorders, including Alzheimer's disease (AD). However, the role of γ-aminobutyric acid (GABA)-mediated synaptic inhibition in AD has not been fully explored. OBJECTIVE We studied basal, GABA-activated slow spontaneous synaptic currents (sIPSCs) in dentate gyrus (DG) granule cells in the dorsal hippocampus of an AD mouse model (tg-APPSwe) and investigated insulin's modulatory effects. METHODS GABA-activated slow sIPSCs were recorded in the DG granule cells by whole-cell patch--clamp recordings in dorsal hippocampal brain slices from 5-6 (adult) and 10-12 (aged) months old wild-type (WT) and AD mice, in the presence or absence of insulin (1 nM). RESULTS The median 10-90% rise time of slow sIPSCs significantly decreased with age (10-12 months vs. 5-6 months) only in AD mice. The median amplitude of the slow sIPSCs was decreased in adult and aged AD mice as compared to WT mice whereas the slow sIPSCs frequency was only reduced in the aged WT mice. The median 63% decay time and total current density of the slow IPSCs was significantly decreased in the aged AD mice as compared to both WT mice and to the adult AD mice. Insulin application exerted no effect on slow sIPSCs properties in any of the animal groups. CONCLUSIONS The characteristics of the slow sIPSCs recorded in DG granule cells of dorsal hippocampus from WT and AD mice are altered by age- and disease-state, whereas insulin has negligible effects.
Collapse
Affiliation(s)
- Olga Netsyk
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sergiy V Korol
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Brown KA, Stramiello M, Clark JK, Wagner JJ. Postsynaptic dopamine D 3 receptors selectively modulate μ-opioid receptor-expressing GABAergic inputs onto CA1 pyramidal cells in the rat ventral hippocampus. J Neurophysiol 2024; 132:2002-2011. [PMID: 39570291 DOI: 10.1152/jn.00353.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Although the actions of dopamine throughout the brain are clearly linked to motivation and cognition, the specific role(s) of dopamine in the CA1 subfield of the ventral hippocampus (vH) is unresolved. Prior preclinical studies suggest that dopamine D3 receptors (D3Rs) expressed on CA1 pyramidal cells exhibit a unique capacity to modulate mechanisms of long-term synaptic plasticity, but less is known about how interneuronal inputs modulate these cells. We hypothesized that inputs from μ-opioid receptor (MOR)-expressing inhibitory interneurons selectively modulate the activity of postsynaptic D3Rs expressed on CA1 principal cells to shape neurotransmission in the rat vH. We used the whole cell voltage-clamp technique to test this hypothesis by measuring evoked inhibitory postsynaptic currents (eIPSCs) from CA1 principal cells in vH slices or GABAA currents from acutely dissociated vH neurons. The eIPSC response recorded from CA1 neurons in vH slices was inhibited by either the MOR agonist DAMGO or the D3R agonist PD128907, but pretreatment with DAMGO occluded any further inhibition by PD128907. GABAA currents measured in acutely dissociated vH CA1 neurons were inhibited by D3R activation via PD128907, consistent with postsynaptic localization of D3 receptors. Kinetic alterations induced by the neuromodulatory agonists are consistent with selective targeting of postsynaptic D3Rs expressed on CA1 principal cells by MOR-expressing GABAergic inputs. Our findings suggest that postsynaptic D3R-mediated modulation of MOR-expressing GABAergic inputs is a site at which dopaminergic and opioidergic activity may contribute to disinhibition of vH excitatory neurotransmission and, thus, influence critical physiological processes such as synaptic plasticity and network oscillations.NEW & NOTEWORTHY We report that the activity of an inhibitory synapse on CA1 pyramidal cells in the rat ventral hippocampus is shaped by heterogeneous neuromodulators. Specifically, postsynaptic dopamine D3 receptors on ventral hippocampal CA1 pyramidal neurons are selectively targeted by an inhibitory input from µ-opioid receptor-expressing GABAergic terminals.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States
| | - Michael Stramiello
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, United States
- Neuroscience PhD Program, University of Georgia, Athens, Georgia, United States
| | - Jason K Clark
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, United States
| | - John J Wagner
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States
- Neuroscience PhD Program, University of Georgia, Athens, Georgia, United States
| |
Collapse
|
3
|
Fröhlich AS, Gerstner N, Gagliardi M, Ködel M, Yusupov N, Matosin N, Czamara D, Sauer S, Roeh S, Murek V, Chatzinakos C, Daskalakis NP, Knauer-Arloth J, Ziller MJ, Binder EB. Single-nucleus transcriptomic profiling of human orbitofrontal cortex reveals convergent effects of aging and psychiatric disease. Nat Neurosci 2024; 27:2021-2032. [PMID: 39227716 PMCID: PMC11452345 DOI: 10.1038/s41593-024-01742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Aging is a complex biological process and represents the largest risk factor for neurodegenerative disorders. The risk for neurodegenerative disorders is also increased in individuals with psychiatric disorders. Here, we characterized age-related transcriptomic changes in the brain by profiling ~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and without psychiatric diagnoses and replicated findings in an independent cohort with 32 individuals. Aging affects all cell types, with LAMP5+LHX6+ interneurons, a cell-type abundant in primates, by far the most affected. Disrupted synaptic transmission emerged as a convergently affected pathway in aged tissue. Age-related transcriptomic changes overlapped with changes observed in Alzheimer's disease across multiple cell types. We find evidence for accelerated transcriptomic aging in individuals with psychiatric disorders and demonstrate a converging signature of aging and psychopathology across multiple cell types. Our findings shed light on cell-type-specific effects and biological pathways underlying age-related changes and their convergence with effects driven by psychiatric diagnosis.
Collapse
Affiliation(s)
- Anna S Fröhlich
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry, Munich, Germany.
| | - Nathalie Gerstner
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Maik Ködel
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natan Yusupov
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Darina Czamara
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Roeh
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Chris Chatzinakos
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nikolaos P Daskalakis
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Janine Knauer-Arloth
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael J Ziller
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth B Binder
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Huang S, Rizzo D, Wu SJ, Xu Q, Ziane L, Alghamdi N, Stafford DA, Daigle TL, Tasic B, Zeng H, Ibrahim LA, Fishell G. Neurogliaform Cells Exhibit Laminar-specific Responses in the Visual Cortex and Modulate Behavioral State-dependent Cortical Activity. RESEARCH SQUARE 2024:rs.3.rs-4530873. [PMID: 39011116 PMCID: PMC11247929 DOI: 10.21203/rs.3.rs-4530873/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their 'volume transmission' output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniella Rizzo
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qing Xu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Past address: Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Leena Ziane
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Norah Alghamdi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - David A Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94708, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Huang S, Rizzo D, Wu SJ, Xu Q, Ziane L, Alghamdi N, Stafford DA, Daigle TL, Tasic B, Zeng H, Ibrahim LA, Fishell G. Neurogliaform Cells Exhibit Laminar-specific Responses in the Visual Cortex and Modulate Behavioral State-dependent Cortical Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597539. [PMID: 38895403 PMCID: PMC11185653 DOI: 10.1101/2024.06.05.597539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their "volume transmission" output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniella Rizzo
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qing Xu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Past address: Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Leena Ziane
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Norah Alghamdi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - David A Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94708, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Tzilivaki A, Tukker JJ, Maier N, Poirazi P, Sammons RP, Schmitz D. Hippocampal GABAergic interneurons and memory. Neuron 2023; 111:3154-3175. [PMID: 37467748 PMCID: PMC10593603 DOI: 10.1016/j.neuron.2023.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Panayiota Poirazi
- Foundation for Research and Technology Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), N. Plastira 100, Heraklion, Crete, Greece
| | - Rosanna P Sammons
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstrasse. 13, 10115 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
7
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
8
|
Stieve BJ, Smith MM, Krook-Magnuson E. LINCs Are Vulnerable to Epileptic Insult and Fail to Provide Seizure Control via On-Demand Activation. eNeuro 2023; 10:ENEURO.0195-22.2022. [PMID: 36725340 PMCID: PMC9933934 DOI: 10.1523/eneuro.0195-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is notoriously pharmacoresistant, and identifying novel therapeutic targets for controlling seizures is crucial. Long-range inhibitory neuronal nitric oxide synthase-expressing cells (LINCs), a population of hippocampal neurons, were recently identified as a unique source of widespread inhibition in CA1, able to elicit both GABAA-mediated and GABAB-mediated postsynaptic inhibition. We therefore hypothesized that LINCs could be an effective target for seizure control. LINCs were optogenetically activated for on-demand seizure intervention in the intrahippocampal kainate (KA) mouse model of chronic TLE. Unexpectedly, LINC activation at 1 month post-KA did not substantially reduce seizure duration in either male or female mice. We tested two different sets of stimulation parameters, both previously found to be effective with on-demand optogenetic approaches, but neither was successful. Quantification of LINCs following intervention revealed a substantial reduction of LINC numbers compared with saline-injected controls. We also observed a decreased number of LINCs when the site of initial insult (i.e., KA injection) was moved to the amygdala [basolateral amygdala (BLA)-KA], and correspondingly, no effect of light delivery on BLA-KA seizures. This indicates that LINCs may be a vulnerable population in TLE, regardless of the site of initial insult. To determine whether long-term circuitry changes could influence outcomes, we continued testing once a month for up to 6 months post-KA. However, at no time point did LINC activation provide meaningful seizure suppression. Altogether, our results suggest that LINCs are not a promising target for seizure inhibition in TLE.
Collapse
Affiliation(s)
- Bethany J Stieve
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Madison M Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Esther Krook-Magnuson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Mercier MS, Magloire V, Cornford JH, Kullmann DM. Long-term potentiation in neurogliaform interneurons modulates excitation-inhibition balance in the temporoammonic pathway. J Physiol 2022; 600:4001-4017. [PMID: 35876215 PMCID: PMC9540908 DOI: 10.1113/jp282753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
Collapse
Affiliation(s)
- Marion S. Mercier
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Vincent Magloire
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Jonathan H. Cornford
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Dimitri M. Kullmann
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| |
Collapse
|
10
|
Szocs S, Henn-Mike N, Agocs-Laboda A, Szabo-Meleg E, Varga C. Neurogliaform cells mediate feedback inhibition in the medial entorhinal cortex. Front Neuroanat 2022; 16:779390. [PMID: 36003850 PMCID: PMC9393258 DOI: 10.3389/fnana.2022.779390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Layer I of the medial entorhinal cortex (MEC) contains converging axons from several brain areas and dendritic tufts originating from principal cells located in multiple layers. Moreover, specific GABAergic interneurons are also located in the area, but their inputs, outputs, and effect on local network events remain elusive. Neurogliaform cells are the most frequent and critically positioned inhibitory neurons in layer I. They are considered to conduct feed-forward inhibition via GABAA and GABAB receptors on pyramidal cells located in several cortical areas. Using optogenetic experiments, we showed that layer I neurogliaform cells receive excitatory inputs from layer II pyramidal cells, thereby playing a critical role in local feedback inhibition in the MEC. We also found that neurogliaform cells are evenly distributed in layer I and do not correlate with the previously described compartmentalization (“cell islands”) of layer II. We concluded that the activity of neurogliaform cells in layer I is largely set by layer II pyramidal cells through excitatory synapses, potentially inhibiting the apical dendrites of all types of principal cells in the MEC.
Collapse
Affiliation(s)
- Szilard Szocs
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Henn-Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
- *Correspondence: Nora Henn-Mike,
| | - Agnes Agocs-Laboda
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Edina Szabo-Meleg
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Csaba Varga
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Csaba Varga,
| |
Collapse
|
11
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
12
|
Genescu I, Aníbal-Martínez M, Kouskoff V, Chenouard N, Mailhes-Hamon C, Cartonnet H, Lokmane L, Rijli FM, López-Bendito G, Gambino F, Garel S. Dynamic interplay between thalamic activity and Cajal-Retzius cells regulates the wiring of cortical layer 1. Cell Rep 2022; 39:110667. [PMID: 35417707 PMCID: PMC9035679 DOI: 10.1016/j.celrep.2022.110667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development. Prenatal thalamic waves of activity regulate CRc density in L1 Prenatal and postnatal CRc manipulations alter specific interneuron populations Postnatal CRc shape L5 apical dendrite structural and functional properties Early sensory activity selectively regulates L5 basal dendrite spine formation
Collapse
Affiliation(s)
- Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Mar Aníbal-Martínez
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernandez, Sant Joan d'Alacant, Spain
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Caroline Mailhes-Hamon
- Acute Transgenesis Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | | | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Collège de France, 75005 Paris, France.
| |
Collapse
|
13
|
Transcriptomically-Guided Pharmacological Experiments in Neocortical and Hippocampal NPY-Positive GABAergic Interneurons. eNeuro 2022; 9:ENEURO.0005-22.2022. [PMID: 35437266 PMCID: PMC9045474 DOI: 10.1523/eneuro.0005-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Cortical GABAergic interneurons have been shown to fulfil important roles by inhibiting excitatory principal neurons. Recent transcriptomic studies have confirmed seminal discoveries that used anatomic and electrophysiological methods highlighting the existence of multiple different classes of GABAergic interneurons. Although some of these studies have emphasized that inter-regional differences may exist for a given class, the extent of such differences remains unknown. To address this problem, we used single-cell Patch-RNAseq to characterize neuropeptide Y (NPY)-positive GABAergic interneurons in superficial layers of the primary auditory cortex (AC) and in distal layers of area CA3 in mice. We found that more than 300 genes are differentially expressed in NPY-positive neurons between these two brain regions. For example, the AMPA receptor (AMPAR) auxiliary subunit Shisa9/CKAMP44 and the 5HT2a receptor (5HT2aR) are significantly higher expressed in auditory NPY-positive neurons. These findings guided us to perform pharmacological experiments that revealed a role for 5HT2aRs in auditory NPY-positive neurons. Specifically, although the application of 5HT led to a depolarization of both auditory and CA3 NPY-positive neurons, the 5HT2aR antagonist ketanserin only reversed membrane potential changes in auditory NPY-positive neurons. Our study demonstrates the potential of single-cell transcriptomic studies in guiding directed pharmacological experiments.
Collapse
|
14
|
Degro CE, Bolduan F, Vida I, Booker SA. Interneuron diversity in the rat dentate gyrus: An unbiased in vitro classification. Hippocampus 2022; 32:310-331. [PMID: 35171512 PMCID: PMC9306941 DOI: 10.1002/hipo.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022]
Abstract
Information processing in cortical circuits, including the hippocampus, relies on the dynamic control of neuronal activity by GABAergic interneurons (INs). INs form a heterogenous population with defined types displaying distinct morphological, molecular, and physiological characteristics. In the major input region of the hippocampus, the dentate gyrus (DG), a number of IN types have been described which provide synaptic inhibition to distinct compartments of excitatory principal cells (PrCs) and other INs. In this study, we perform an unbiased classification of GABAergic INs in the DG by combining in vitro whole-cell patch-clamp recordings, intracellular labeling, morphological analysis, and supervised cluster analysis to better define IN type diversity in this region. This analysis reveals that DG INs divide into at least 13 distinct morpho-physiological types which reflect the complexity of the local IN network and serve as a basis for further network analyses.
Collapse
Affiliation(s)
- Claudius E Degro
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Felix Bolduan
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Sam A Booker
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Speigel IA, Hemmings Jr. HC. Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Front Synaptic Neurosci 2022; 13:812905. [PMID: 35153712 PMCID: PMC8825374 DOI: 10.3389/fnsyn.2021.812905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/04/2023] Open
Abstract
General anesthetics disrupt brain processes involved in consciousness by altering synaptic patterns of excitation and inhibition. In the cerebral cortex and hippocampus, GABAergic inhibition is largely mediated by inhibitory interneurons, a heterogeneous group of specialized neuronal subtypes that form characteristic microcircuits with excitatory neurons. Distinct interneuron subtypes regulate specific excitatory neuron networks during normal behavior, but how these interneuron subtypes are affected by general anesthetics is unclear. This narrative review summarizes current principles of the synaptic architecture of cortical and interneuron subtypes, their contributions to different forms of inhibition, and their roles in distinct neuronal microcircuits. The molecular and cellular targets in these circuits that are sensitive to anesthetics are reviewed in the context of how anesthetics impact interneuron function in a subtype-specific manner. The implications of this functional interneuron diversity for mechanisms of anesthesia are discussed, as are their implications for anesthetic-induced changes in neural plasticity and overall brain function.
Collapse
Affiliation(s)
- Iris A. Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Iris A. Speigel
| | - Hugh C. Hemmings Jr.
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
16
|
Distinct Fastigial Output Channels and Their Impact on Temporal Lobe Seizures. J Neurosci 2021; 41:10091-10107. [PMID: 34716233 DOI: 10.1523/jneurosci.0683-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
Despite being canonically considered a motor control structure, the cerebellum is increasingly recognized for important roles in processes beyond this traditional framework, including seizure suppression. Excitatory fastigial neurons project to a large number of downstream targets, and it is unclear whether this broad targeting underlies seizure suppression, or whether a specific output may be sufficient. To address this question, we used the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, male and female animals, and a dual-virus approach to selectively label and manipulate fastigial outputs. We examined fastigial neurons projecting to the superior colliculus, medullary reticular formation, and central lateral nucleus of the thalamus, and found that these comprise largely nonoverlapping populations of neurons that send collaterals to unique sets of additional, somewhat overlapping, thalamic and brainstem regions. We found that neither optogenetic stimulation of superior colliculus nor reticular formation output channels attenuated hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons targeting the central lateral nucleus robustly inhibited seizures. Our results indicate that fastigial control of hippocampal seizures does not require simultaneous modulation of many fastigial output channels. Rather, selective modulation of the fastigial output channel to the central lateral thalamus, specifically, is sufficient for seizure control. More broadly, our data highlight the concept of specific cerebellar output channels, whereby discrete cerebellar nucleus neurons project to specific aggregates of downstream targets, with important consequences for therapeutic interventions.SIGNIFICANCE STATEMENT The cerebellum has an emerging relationship with nonmotor systems and may represent a powerful target for therapeutic intervention in temporal lobe epilepsy. We find, as previously reported, that fastigial neurons project to numerous brain regions via largely segregated output channels, and that projection targets cannot be predicted simply by somatic locations within the nucleus. We further find that on-demand optogenetic excitation of fastigial neurons projecting to the central lateral nucleus of the thalamus-but not fastigial neurons projecting to the reticular formation, superior colliculus, or ventral lateral thalamus-is sufficient to attenuate hippocampal seizures.
Collapse
|
17
|
Figueroa AG, Benkwitz C, Surges G, Kunz N, Homanics GE, Pearce RA. Hippocampal β2-GABA A receptors mediate LTP suppression by etomidate and contribute to long-lasting feedback but not feedforward inhibition of pyramidal neurons. J Neurophysiol 2021; 126:1090-1100. [PMID: 34406874 PMCID: PMC8560413 DOI: 10.1152/jn.00303.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The general anesthetic etomidate, which acts through γ-aminobutyric acid type A (GABAA) receptors, impairs the formation of new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) β2-N265M mutation, we tested the roles of receptors that incorporate GABAA receptor β2 versus β3 subunits to suppression of long-term potentiation (LTP), a cellular model of learning and memory. We found that brain slices from β2-N265M mice resisted etomidate suppression of LTP, indicating that the β2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hippocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, β2 subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line of β3-N265M mice, we also examined the contributions of β2- versus β3-GABAARs to GABAA,slow dendritic inhibition, because dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting suppression of population activity through feedforward and feedback inhibition. We found that both β2- and β3-GABAARs contribute to GABAA,slow inhibition and that both β2- and β3-GABAARs contribute to feedback inhibition, whereas only β3-GABAARs contribute to feedforward inhibition. We conclude that modulation of β2-GABAARs is essential to etomidate suppression of LTP. Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback inhibition.NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains unknown. Here, using a hippocampal brain slice model, we show that β2-GABAARs are essential to this effect. We also show that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neurons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how inhibitory circuits control learning and memory.
Collapse
Affiliation(s)
- Alexander G Figueroa
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Claudia Benkwitz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gabe Surges
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas Kunz
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
18
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
19
|
Total Number and Ratio of GABAergic Neuron Types in the Mouse Lateral and Basal Amygdala. J Neurosci 2021; 41:4575-4595. [PMID: 33837051 DOI: 10.1523/jneurosci.2700-20.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022] Open
Abstract
GABAergic neurons are key circuit elements in cortical networks. Despite growing evidence showing that inhibitory cells play a critical role in the lateral (LA) and basal (BA) amygdala functions, neither the number of GABAergic neurons nor the ratio of their distinct types has been determined in these amygdalar nuclei. Using unbiased stereology, we found that the ratio of GABAergic neurons in the BA (22%) is significantly higher than in the LA (16%) in both male and female mice. No difference was observed between the right and left hemispheres in either sex. In addition, we assessed the ratio of the major inhibitory cell types in both amygdalar nuclei. Using transgenic mice and a viral strategy for visualizing inhibitory cells combined with immunocytochemistry, we estimated that the following cell types together compose the vast majority of GABAergic cells in the LA and BA: axo-axonic cells (5.5%-6%), basket cells expressing parvalbumin (17%-20%) or cholecystokinin (7%-9%), dendrite-targeting inhibitory cells expressing somatostatin (10%-16%), NPY-containing neurogliaform cells (14%-15%), VIP and/or calretinin-expressing interneuron-selective interneurons (29%-38%), and GABAergic projection neurons expressing somatostatin and neuronal nitric oxide synthase (5.5%-8%). Our results show that these amygdalar nuclei contain all major GABAergic neuron types as found in other cortical regions. Furthermore, our data offer an essential reference for future studies aiming to reveal changes in GABAergic cell number and in inhibitory cell types typically observed under different pathologic conditions, and to model functioning amygdalar networks in health and disease.SIGNIFICANCE STATEMENT GABAergic cells in cortical structures, as in the lateral and basal nucleus of the amygdala, have a determinant role in controlling circuit operation. In this study, we provide the first estimate for the total number of inhibitory cells in these two amygdalar nuclei. In addition, our study is the first to define the ratio of the major GABAergic cell types present in these cortical networks. Taking into account that hyperexcitability in the amygdala, arising from the imbalance between excitation and inhibition typifies many altered brain functions, including anxiety, post-traumatic stress disorder, schizophrenia, and autism, uncovering the number and ratio of distinct amygdalar inhibitory cell types offers a solid base for comparing the changes in inhibition in pathologic brain states.
Collapse
|
20
|
Mihály I, Molnár T, Berki ÁJ, Bod RB, Orbán-Kis K, Gáll Z, Szilágyi T. Short-Term Amygdala Low-Frequency Stimulation Does not Influence Hippocampal Interneuron Changes Observed in the Pilocarpine Model of Epilepsy. Cells 2021; 10:cells10030520. [PMID: 33804543 PMCID: PMC7998440 DOI: 10.3390/cells10030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is characterized by changes in interneuron numbers in the hippocampus. Deep brain stimulation (DBS) is an emerging tool to treat TLE seizures, although its mechanisms are not fully deciphered. We aimed to depict the effect of amygdala DBS on the density of the most common interneuron types in the CA1 hippocampal subfield in the lithium-pilocarpine model of epilepsy. Status epilepticus was induced in male Wistar rats. Eight weeks later, a stimulation electrode was implanted to the left basolateral amygdala of both pilocarpine-treated (Pilo, n = 14) and age-matched control rats (n = 12). Ten Pilo and 4 control animals received for 10 days 4 daily packages of 50 s 4 Hz regular stimulation trains. At the end of the stimulation period, interneurons were identified by immunolabeling for parvalbumin (PV), neuropeptide Y (NPY), and neuronal nitric oxide synthase (nNOS). Cell density was determined in the CA1 subfield of the hippocampus using confocal microscopy. We found that PV+ cell density was preserved in pilocarpine-treated rats, while the NPY+/nNOS+ cell density decreased significantly. The amygdala DBS did not significantly change the cell density in healthy or in epileptic animals. We conclude that DBS with low frequency applied for 10 days does not influence interneuron cell density changes in the hippocampus of epileptic rats.
Collapse
Affiliation(s)
- István Mihály
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (T.M.); (Á.-J.B.); (R.-B.B.); (K.O.-K.); (T.S.)
- Correspondence: ; Tel.: +40-749-768-257
| | - Tímea Molnár
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (T.M.); (Á.-J.B.); (R.-B.B.); (K.O.-K.); (T.S.)
| | - Ádám-József Berki
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (T.M.); (Á.-J.B.); (R.-B.B.); (K.O.-K.); (T.S.)
| | - Réka-Barbara Bod
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (T.M.); (Á.-J.B.); (R.-B.B.); (K.O.-K.); (T.S.)
| | - Károly Orbán-Kis
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (T.M.); (Á.-J.B.); (R.-B.B.); (K.O.-K.); (T.S.)
| | - Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Tibor Szilágyi
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (T.M.); (Á.-J.B.); (R.-B.B.); (K.O.-K.); (T.S.)
| |
Collapse
|
21
|
Ding C, Emmenegger V, Schaffrath K, Feldmeyer D. Layer-Specific Inhibitory Microcircuits of Layer 6 Interneurons in Rat Prefrontal Cortex. Cereb Cortex 2021; 31:32-47. [PMID: 32829414 PMCID: PMC7727376 DOI: 10.1093/cercor/bhaa201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
GABAergic interneurons in different cortical areas play important roles in diverse higher-order cognitive functions. The heterogeneity of interneurons is well characterized in different sensory cortices, in particular in primary somatosensory and visual cortex. However, the structural and functional properties of the medial prefrontal cortex (mPFC) interneurons have received less attention. In this study, a cluster analysis based on axonal projection patterns revealed four distinct clusters of L6 interneurons in rat mPFC: Cluster 1 interneurons showed axonal projections similar to Martinotti-like cells extending to layer 1, cluster 2 displayed translaminar projections mostly to layer 5, and cluster 3 interneuron axons were confined to the layer 6, whereas those of cluster 4 interneurons extend also into the white matter. Correlations were found between neuron location and axonal distribution in all clusters. Moreover, all cluster 1 L6 interneurons showed a monotonically adapting firing pattern with an initial high-frequency burst. All cluster 2 interneurons were fast-spiking, while neurons in cluster 3 and 4 showed heterogeneous firing patterns. Our data suggest that L6 interneurons that have distinct morphological and physiological characteristics are likely to innervate different targets in mPFC and thus play differential roles in the L6 microcircuitry and in mPFC-associated functions.
Collapse
Affiliation(s)
- Chao Ding
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
| | - Vishalini Emmenegger
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kim Schaffrath
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Ophthalmology, RWTH Aachen University Hospital, Medical School, 52074 Aachen, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University Hospital, 52074 Aachen, Germany
- JARA-Translational Brain Medicine, 52074 Aachen, Germany
| |
Collapse
|
22
|
Geiller T, Vancura B, Terada S, Troullinou E, Chavlis S, Tsagkatakis G, Tsakalides P, Ócsai K, Poirazi P, Rózsa BJ, Losonczy A. Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice. Neuron 2020; 108:968-983.e9. [PMID: 33022227 PMCID: PMC7736348 DOI: 10.1016/j.neuron.2020.09.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 01/26/2023]
Abstract
Cortical computations are critically reliant on their local circuit, GABAergic cells. In the hippocampus, a large body of work has identified an unprecedented diversity of GABAergic interneurons with pronounced anatomical, molecular, and physiological differences. Yet little is known about the functional properties and activity dynamics of the major hippocampal interneuron classes in behaving animals. Here we use fast, targeted, three-dimensional (3D) two-photon calcium imaging coupled with immunohistochemistry-based molecular identification to retrospectively map in vivo activity onto multiple classes of interneurons in the mouse hippocampal area CA1 during head-fixed exploration and goal-directed learning. We find examples of preferential subtype recruitment with quantitative differences in response properties and feature selectivity during key behavioral tasks and states. These results provide new insights into the collective organization of local inhibitory circuits supporting navigational and mnemonic functions of the hippocampus.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Eirini Troullinou
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
- Department of Computer Science, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, 700 13, Greece
| | | | - Panagiotis Tsakalides
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
- Department of Computer Science, University of Crete, Heraklion, 70013, Greece
| | - Katalin Ócsai
- Faculty of Information Technology, Pázmány Péter University, Budapest
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, 700 13, Greece
| | - Balázs J Rózsa
- Faculty of Information Technology, Pázmány Péter University, Budapest
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Wang X, Gao C, Zhang Y, Xu J, Fang Q, Gou L, Yang Z, Mei D, Liu L, Li L, Liu J, Zhang H, Song Y. Neuronal Nitric Oxide Synthase Knockdown Within Basolateral Amygdala Induces Autistic-Related Phenotypes and Decreases Excitatory Synaptic Transmission in Mice. Front Neurosci 2020; 14:886. [PMID: 32982674 PMCID: PMC7488195 DOI: 10.3389/fnins.2020.00886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/29/2020] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by deficits in communication, impaired social interaction, and repetitive or restricted interests and behaviors. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was reduced in the basolateral amygdala of mice after postnatal valproic acid exposure. However, the specific role of nNOS downregulation in mice remains to be elucidated. Herein, we investigated the behavioral alternations of naive mice with a recombinant adeno-associated virus (rAAV)-mediated knockdown of nNOS in a comprehensive test battery, including the social interaction, marble burying, self-grooming, and open field tests. Further, the electrophysiological and surface expression changes induced by nNOS deficiency of the basolateral amygdala in these animals were examined. Our results show that nNOS knockdown displayed typical symptoms of ASD-like behaviors, such as reduced social interaction and communication, elevated stereotypes, and anxiety in mice. Surprisingly, we found that nNOS knockdown exhibited greatly reduced excitatory synaptic transmission concomitant with the lower surface expression of GluN2B-containing N-methyl-D-aspartate receptors and postsynaptic density protein 95 in mice. These findings support a notion that dysregulation of nNOS might contribute to ASD-associated phenotypes, with disease pathogenesis most likely resulting from deficits in excitatory synaptic transmission.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jinxiu Xu
- School of Basic Medicine, Sanquan Medical College, Xinxiang, China
| | - Quanfeng Fang
- Healthcare Department, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Zhigang Yang
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Leiming Liu
- Department of Medical Assistance, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Linfei Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Huichun Zhang
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yinsen Song
- People's Hospital Affiliated to Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
24
|
Guet-McCreight A, Skinner FK, Topolnik L. Common Principles in Functional Organization of VIP/Calretinin Cell-Driven Disinhibitory Circuits Across Cortical Areas. Front Neural Circuits 2020; 14:32. [PMID: 32581726 PMCID: PMC7296096 DOI: 10.3389/fncir.2020.00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
In the brain, there is a vast diversity of different structures, circuitries, cell types, and cellular genetic expression profiles. While this large diversity can often occlude a clear understanding of how the brain works, careful analyses of analogous studies performed across different brain areas can hint at commonalities in neuronal organization. This in turn can yield a fundamental understanding of necessary circuitry components that are crucial for how information is processed across the brain. In this review, we outline recent in vivo and in vitro studies that have been performed in different cortical areas to characterize the vasoactive intestinal polypeptide (VIP)- and/or calretinin (CR)-expressing cells that specialize in inhibiting GABAergic interneurons. In doing so, we make the case that, across cortical structures, interneuron-specific cells commonly specialize in the synaptic disinhibition of excitatory neurons, which can ungate the integration and plasticity of external inputs onto excitatory neurons. In line with this, activation of interneuron- specific cells enhances animal performance across a variety of behavioral tasks that involve learning, memory formation, and sensory discrimination, and may represent a key target for therapeutic interventions under different pathological conditions. As such, interneuron-specific cells across different cortical structures are an essential network component for information processing and normal brain function.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Brain Institute - Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Frances K Skinner
- Krembil Brain Institute - Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| |
Collapse
|
25
|
Functional Access to Neuron Subclasses in Rodent and Primate Forebrain. Cell Rep 2020; 26:2818-2832.e8. [PMID: 30840900 PMCID: PMC6509701 DOI: 10.1016/j.celrep.2019.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.
Collapse
|
26
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
27
|
Corder KM, Li Q, Cortes MA, Bartley AF, Davis TR, Dobrunz LE. Overexpression of neuropeptide Y decreases responsiveness to neuropeptide Y. Neuropeptides 2020; 79:101979. [PMID: 31708112 PMCID: PMC6960342 DOI: 10.1016/j.npep.2019.101979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous neuropeptide that is abundantly expressed in the central nervous system. NPY is involved in various neurological processes and neuropsychiatric disorders, including fear learning and anxiety disorders. Reduced levels of NPY are reported in Post-Traumatic Stress Disorder (PTSD) patients, and NPY has been proposed as a potential therapeutic target for PTSD. It is therefore important to understand the effects of chronic enhancement of NPY on anxiety and fear learning. Previous studies have shown that acute elevation of NPY reduces anxiety, fear learning and locomotor activity. Models of chronic NPY overexpression have produced mixed results, possibly caused by ectopic NPY expression. NPY is expressed primarily by a subset of GABAergic interneurons, providing specific spatiotemporal release patterns. Administration of exogenous NPY throughout the brain, or overexpression in cells that do not normally release NPY, can have detrimental side effects, including memory impairment. In order to determine the effects of boosting NPY only in the cells that normally release it, we utilized a transgenic mouse line that overexpresses NPY only in NPY+ cells. We tested for effects on anxiety related behaviors in adolescent mice, an age with high incidence of anxiety disorders in humans. Surprisingly, we did not observe the expected reduction in anxiety-like behavior in NPY overexpression mice. There was no change in fear learning behavior, although there was a deficit in nest building. The effect of exogenous NPY on synaptic transmission in acute hippocampal slices was also diminished, indicating that the function of NPY receptors is impaired. Reduced NPY receptor function could contribute to the unexpected behavioral outcomes. We conclude that overexpression of NPY, even in cells that normally express it, can lead to reduced responsiveness of NPY receptors, potentially affecting the ability of NPY to function as a long-term therapeutic.
Collapse
Affiliation(s)
- Katelynn M Corder
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America; University of Alabama at Birmingham, Department of Biology, 1670 University Blvd., VH G133B, Birmingham, AL 35233, United States of America
| | - Qin Li
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Mariana A Cortes
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Aundrea F Bartley
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Taylor R Davis
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Lynn E Dobrunz
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America.
| |
Collapse
|
28
|
A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. eNeuro 2020; 7:ENEURO.0516-19.2019. [PMID: 31907212 PMCID: PMC7004485 DOI: 10.1523/eneuro.0516-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023] Open
Abstract
The study of brain circuits depends on a clear understanding of the role played by different neuronal populations. Therefore, the unambiguous identification of different cell types is essential for the correct interpretation of experimental data. Here, we emphasize to the broader neuroscience community the importance of recognizing the persistent presence of Cajal-Retzius cells in the molecular layers of the postnatal hippocampus, and then we suggest a variety of criteria for distinguishing Cajal-Retzius cells from other neurons of the hippocampal molecular layers, such as GABAergic interneurons and semilunar granule cells. The toolbox of criteria that we have investigated (in male and female mice) can be useful both for anatomical and functional experiments, and relies on the quantitative study of neuronal somatic/nuclear morphology, location and developmental profile, expression of specific molecular markers (GAD67, reelin, COUP-TFII, calretinin, and p73), single cell anatomy, and electrophysiological properties. We conclude that Cajal-Retzius cells are small, non-GABAergic neurons that are tightly associated with the hippocampal fissure (HF), and that, within this area of interest, selectively express the proteins p73 and calretinin. We highlight the dangers of using markers such as reelin or COUP-TFII to identify Cajal-Retzius cells or GABAergic interneurons because of their poor specificity. Lastly, we examine neurons of the postnatal hippocampal molecular layers and show cell type-specific differences in their dendritic/axonal morphologies and density distributions, as well as in their membrane properties and spontaneous synaptic inputs. These parameters can be used to distinguish biocytin-filled and/or electrophysiologically recorded neurons and should be considered to avoid interpretational mistakes.
Collapse
|
29
|
Yamamoto R, Furuyama T, Sugai T, Ono M, Pare D, Kato N. Serotonergic control of GABAergic inhibition in the lateral amygdala. J Neurophysiol 2019; 123:670-681. [PMID: 31875487 DOI: 10.1152/jn.00500.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Much evidence implicates the serotonergic regulation of the amygdala in anxiety. Thus the present study was undertaken to characterize the influence of serotonin (5-HT) on principal neurons (PNs) of the rat lateral amygdala (LA), using whole cell recordings in vitro. Because inhibition is a major determinant of PN activity, we focused on the control of GABAergic transmission by 5-HT. IPSCs were elicited by local electrical stimulation of LA in the presence of glutamate receptor antagonists. We found that 5-HT reduces GABAA inhibitory postsynaptic currents (IPSCs) via presynaptic 5-HT1B receptors. While the presynaptic inhibition of GABA release also attenuated GABAB currents, this effect was less pronounced than for GABAA currents because 5-HT also induced a competing postsynaptic enhancement of GABAB currents. That is, GABAB currents elicited by pressure application of GABA or baclofen were enhanced by 5-HT. In addition, we obtained evidence suggesting that 5-HT differentially regulates distinct subsets of GABAergic synapses. Indeed, GABAA IPSCs were comprised of two components: a relatively 5-HT-insensitive IPSC that had a fast time course and a 5-HT-sensitive component that had a slower time course. Because the relative contribution of these two components varied depending on whether neurons were recorded at proximity versus at a distance from the stimulating electrodes, we speculate that distinct subtypes of local-circuit cells contribute the two contingents of GABAergic synapses. Overall, our results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.NEW & NOTEWORTHY We report that 5-HT, acting via presynaptic 5-HT1B receptors, attenuates GABAA IPSCs by reducing GABA release in the lateral amygdala (LA). In parallel, 5-HT enhances GABAB currents postsynaptically, such that GABAB inhibitory postsynaptic currents (IPSCs) are relatively preserved from the presynaptic inhibition of GABA release. We also found that the time course of 5-HT-sensitive and -insensitive GABAA IPSCs differ. Together, these results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
30
|
Iyer A, Tole S. Neuronal diversity and reciprocal connectivity between the vertebrate hippocampus and septum. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e370. [PMID: 31850675 DOI: 10.1002/wdev.370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023]
Abstract
A hallmark of the nervous system is the precision with which myriad cell types are integrated into functional networks that control complex behaviors. The limbic system governs evolutionarily conserved processes essential for survival. The septum and the hippocampus are central to the limbic system, and control not only emotion-related behaviors but also learning and memory. Here, we provide a developmental and evolutionary perspective of the hippocampus and septum and highlight the neuronal diversity and circuitry that connects these two central components of the limbic system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Nervous System Development > Vertebrates: General Principles Comparative Development and Evolution > Regulation of Organ Diversity.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
31
|
Excitation of Diverse Classes of Cholecystokinin Interneurons in the Basal Amygdala Facilitates Fear Extinction. eNeuro 2019; 6:ENEURO.0220-19.2019. [PMID: 31636080 PMCID: PMC6838687 DOI: 10.1523/eneuro.0220-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/25/2023] Open
Abstract
There is growing evidence that interneurons (INs) orchestrate neural activity and plasticity in corticoamygdala circuits to regulate fear behaviors. However, defining the precise role of cholecystokinin-expressing INs (CCK INs) remains elusive due to the technical challenge of parsing this population from CCK-expressing principal neurons (CCK PNs). Here, we used an intersectional genetic strategy in CCK-Cre;Dlx5/6-Flpe double-transgenic mice to study the anatomical, molecular and electrophysiological properties of CCK INs in the basal amygdala (BA) and optogenetically manipulate these cells during fear extinction. Electrophysiological recordings confirmed that this strategy targeted GABAergic cells and that a significant proportion expressed functional cannabinoid CB1 receptors; a defining characteristic of CCK-expressing basket cells. However, immunostaining showed that subsets of the genetically-targeted cells expressed either neuropeptide Y (NPY; 29%) or parvalbumin (PV; 17%), but not somatostatin (SOM) or Ca2+/calmodulin-dependent protein kinase II (CaMKII)-α. Further morphological and electrophysiological analyses showed that four IN types could be identified among the EYFP-expressing cells: CCK/cannabinoid receptor type 1 (CB1R)-expressing basket cells, neurogliaform cells, PV+ basket cells, and PV+ axo-axonic cells. At the behavioral level, in vivo optogenetic photostimulation of the targeted population during extinction acquisition led to reduced freezing on a light-free extinction retrieval test, indicating extinction memory facilitation; whereas photosilencing was without effect. Conversely, non-selective (i.e., inclusive of INs and PNs) photostimulation or photosilencing of CCK-targeted cells, using CCK-Cre single-transgenic mice, impaired extinction. These data reveal an unexpectedly high degree of phenotypic complexity in a unique population of extinction-modulating BA INs.
Collapse
|
32
|
Christenson Wick Z, Tetzlaff MR, Krook-Magnuson E. Novel long-range inhibitory nNOS-expressing hippocampal cells. eLife 2019; 8:46816. [PMID: 31609204 PMCID: PMC6839902 DOI: 10.7554/elife.46816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
The hippocampus, a brain region that is important for spatial navigation and episodic memory, benefits from a rich diversity of neuronal cell-types. Through the use of an intersectional genetic viral vector approach in mice, we report novel hippocampal neurons which we refer to as LINCs, as they are long-range inhibitory neuronal nitric oxide synthase (nNOS)-expressing cells. LINCs project to several extrahippocampal regions including the tenia tecta, diagonal band, and retromammillary nucleus, but also broadly target local CA1 cells. LINCs are thus both interneurons and projection neurons. LINCs display regular spiking non-pyramidal firing patterns, are primarily located in the stratum oriens or pyramidale, have sparsely spiny dendrites, and do not typically express somatostatin, VIP, or the muscarinic acetylcholine receptor M2. We further demonstrate that LINCs can strongly influence hippocampal function and oscillations, including interregional coherence. The identification and characterization of these novel cells advances our basic understanding of both hippocampal circuitry and neuronal diversity.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, United States
| | - Madison R Tetzlaff
- Neuroscience Department, University of Minnesota, Minneapolis, United States
| | | |
Collapse
|
33
|
Cytoarchitecture of the dorsal claustrum of the cat: a quantitative Golgi study. J Mol Histol 2019; 50:435-457. [DOI: 10.1007/s10735-019-09839-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022]
|
34
|
Anstötz M, Lee SK, Neblett TI, Rune GM, Maccaferri G. Experience-Dependent Regulation of Cajal-Retzius Cell Networks in the Developing and Adult Mouse Hippocampus. ACTA ACUST UNITED AC 2019. [PMID: 28637318 DOI: 10.1093/cercor/bhx153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In contrast to their near-disappearance in the adult neocortex, Cajal-Retzius cells have been suggested to persist longer in the hippocampus. A distinctive feature of the mature hippocampus, not maintained by other cortical areas, is its ability to sustain adult neurogenesis. Here, we have investigated whether environmental manipulations affecting hippocampal postnatal neurogenesis have a parallel impact on Cajal-Retzius cells. We used multiple mouse reporter lines to unequivocally identify Cajal-Retzius cells and quantify their densities during postnatal development. We found that exposure to an enriched environment increased the persistence of Cajal-Retzius cells in the hippocampus, but not in adjacent cortical regions. We did not observe a similar effect for parvalbumin-expressing interneurons, which suggested the occurrence of a cell type-specific process. In addition, we did not detect obvious changes either in Cajal-Retzius cell electrophysiological or morphological features, when compared with what previously reported in animals not exposed to enriched conditions. However, optogenetically triggered synaptic output of Cajal-Retzius cells onto local interneurons was enhanced, consistent with our observation of higher Cajal-Retzius cell densities. In conclusion, our data reveal a novel form of hippocampal, cell type-specific, experience-dependent network plasticity. We propose that this phenomenon may be involved in the regulation of enrichment-dependent enhanced hippocampal postnatal neurogenesis.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA.,Institute for Neuroanatomy, University/University Hospital Hamburg, 20246 Hamburg, Germany
| | - Sun Kyong Lee
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | - Tamra I Neblett
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | - Gabriele M Rune
- Institute for Neuroanatomy, University/University Hospital Hamburg, 20246 Hamburg, Germany
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| |
Collapse
|
35
|
Hinova-Palova D, Iliev A, Landzhov B, Kotov G, Stanchev S, Georgiev GP, Kirkov V, Edelstein L, Paloff A. Ultrastructure of the dorsal claustrum in cat. I. Types of neurons. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/20023294.2019.1578636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dimka Hinova-Palova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Kotov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi P. Georgiev
- Department of Orthopedics and Traumatology, University Hospital St. Giovanna-ISUL, Medical University of Sofia, Sofia, Bulgaria
| | - Vidin Kirkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | | | - Adrian Paloff
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
36
|
Zhang Y, Ahmed S, Neagu G, Wang Y, Li Z, Wen J, Liu C, Vreugdenhil M. μ-Opioid receptor activation modulates CA3-to-CA1 gamma oscillation phase-coupling. IBRO Rep 2019; 6:122-131. [PMID: 30834352 PMCID: PMC6384309 DOI: 10.1016/j.ibror.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/03/2022] Open
Abstract
CA3 gamma oscillation (γ) drives CA1 gamma and suppresses CA1 intrinsic fast γ. μ-opioid receptor (MOR) activation reduces γ frequency in CA3 and CA1. MOR activation in CA1 phase-uncouples CA1 γ from CA3 γ. Uncoupling is not due to CA3 γ deceleration by MOR activation.
In the intact brain, hippocampal area CA1 alternates between low-frequency gamma oscillations (γ), phase-locked to low-frequency γ in CA3, and high-frequency γ, phase-locked to γ in the medial entorhinal cortex. In hippocampal slices, γ in CA1 is phase-locked to CA3 low-frequency γ. However, when Schaffer collaterals are cut, CA1 can generate its own high-frequency γ. Here we test whether (un)coupling of CA1 γ from CA3 γ can be caused by μ-opioid receptor (MOR) modulation. In CA1 minislices isolated from rat ventral hippocampus slices, MOR activation by DAMGO reduced the dominant frequency of intrinsic fast γ, induced by carbachol. In intact slices, DAMGO strongly reduced the dominant frequency of CA3 slow γ, but did not affect γ power consistently. DAMGO suppressed the phase coupling of CA1 γ to CA3 slow γ and increased the power of CA1 intrinsic fast γ, but not in the presence of the MOR antagonist CTAP. The benzodiazepine zolpidem and local application of DAMGO to CA3 both mimicked the reduction in dominant frequency of CA3 slow γ, but did not reduce the phase coupling. Local application of DAMGO to CA1 reduced phase coupling. These results suggest that MOR-expressing CA1 interneurons, feed-forwardly activated by Schaffer collaterals, are responsible for the phase coupling between CA3 γ and CA1 γ. Modulating their activity may switch the CA1 network between low-frequency γ and high-frequency γ, controlling the information flow between CA1 and CA3 or medial entorhinal cortex respectively.
Collapse
Key Words
- CA1, Cornu ammonis area 1
- CA3, Cornu ammonis area 3
- CTAP, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2
- DAMGO, [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin
- EPSC, Excitatory post-synaptic current
- ERP, Event-related potential
- Gamma
- Hippocampus
- IPSC, Inhibitory post-synaptic current
- Interneuron
- MEC, Medial entorhinal cortex
- MOR, μ opioid receptor
- Oscillation
- PING, pyramidal-interneuron-network gamma
- PLV, phase-locking value
- PV+, parvalbumin-expressing
- Phase-coupling
- TTX, tetrodotoxin
- aCSF, artificial cerebrospinal fluid
- s.e.m., Standard error of the mean
- γ, gamma frequency oscillation
- θ, theta frequency oscillation
- μ-Opioid
Collapse
Affiliation(s)
- Yujiao Zhang
- Department of Psychology, Xinxiang Medical University, Jinsui Avenue, Xinxiang, 453003, PR China
| | - Sanya Ahmed
- Department of Neuroscience, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, United Kingdom
| | - Georgiana Neagu
- Department of Neuroscience, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, United Kingdom
| | - Yali Wang
- Department of Neurobiology, Xinxiang Medical University, Jinsui Avenue, Xinxiang, 453003, PR China
| | - Zhenyi Li
- Department of Psychology, Xinxiang Medical University, Jinsui Avenue, Xinxiang, 453003, PR China
| | - Jianbin Wen
- Department of Neurobiology, Xinxiang Medical University, Jinsui Avenue, Xinxiang, 453003, PR China
| | - Chunjie Liu
- Department of Psychology, Xinxiang Medical University, Jinsui Avenue, Xinxiang, 453003, PR China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical University, Jinsui Avenue, Xinxiang, 453003, PR China.,Department of Neuroscience, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, United Kingdom.,Department of Life Science, School of Health Sciences, Birmingham City University, Westbourne Road, Birmingham, B15 3TN, United Kingdom
| |
Collapse
|
37
|
Anstötz M, Karsak M, Rune GM. Integrity of Cajal-Retzius cells in the reeler-mouse hippocampus. Hippocampus 2018; 29:550-565. [PMID: 30394609 DOI: 10.1002/hipo.23049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Cajal-Retzius (CR) cells are early-born glutamatergic neurons that are primarily known as the early main source of the signal protein Reelin. In the reeler mutant, the absence of Reelin causes severe defects in the radial migration of neurons, resulting in abnormal cortical layering. To date, the exact morphological properties of CR-cells independent of Reelin are unknown. With this in view, we studied the ontogenesis, density, and distribution of CR-cells in reeler mice that were cross-bred with a CXCR4-EGFP reporter mouse line, thus enabling us to clearly identify CR-cells positions in the disorganized hippocampus of the reeler mouse. As evidenced by morphological analysis, differences were found regarding CR-cell distribution and density: generally, we found fewer CR-cells in the developing and adult reeler hippocampus as compared to the hippocampus of wild-type animals (WT); however, in reeler mice, CR-cells were much more closely associated to the hippocampal fissure (HF), resulting in relatively higher local CR-cell densities. This higher local cell density was accompanied by stronger immunoreactivity of the CXCR4 ligand, stroma-derived factor-1 (SDF-1) that is known to regulate CR-cell positioning. Importantly, confocal microscopy indicates an integration of CR-cells into the developing and adult hippocampal network in reeler mice, raising evidence that network integration of CR-cells might be independent of Reelin.
Collapse
Affiliation(s)
- Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
38
|
Tepper JM, Koós T, Ibanez-Sandoval O, Tecuapetla F, Faust TW, Assous M. Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Front Neuroanat 2018; 12:91. [PMID: 30467465 PMCID: PMC6235948 DOI: 10.3389/fnana.2018.00091] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Our original review, “Heterogeneity and Diversity of Striatal GABAergic Interneurons,” to which this is an invited update, was published in December, 2010 in Frontiers is Neuroanatomy. In that article, we reviewed several decades’ worth of anatomical and electrophysiological data on striatal parvalbumin (PV)-, neuropeptide Y (NPY)- and calretinin(CR)-expressing GABAergic interneurons from many laboratories including our own. In addition, we reported on a recently discovered novel tyrosine hydroxylase (TH) expressing GABAergic interneuron class first revealed in transgenic TH EGFP reporter mouse line. In this review, we report on further advances in the understanding of the functional properties of previously reported striatal GABAergic interneurons and their synaptic connections. With the application of new transgenic fluorescent reporter and Cre-driver/reporter lines, plus optogenetic, chemogenetic and viral transduction methods, several additional subtypes of novel striatal GABAergic interneurons have been discovered, as well as the synaptic networks in which they are embedded. These findings make it clear that previous hypotheses in which striatal GABAergic interneurons modulate and/or control the firing of spiny neurons principally by simple feedforward and/or feedback inhibition are at best incomplete. A more accurate picture is one in which there are highly selective and specific afferent inputs, synaptic connections between different interneuron subtypes and spiny neurons and among different GABAergic interneurons that result in the formation of functional networks and ensembles of spiny neurons.
Collapse
Affiliation(s)
- James M Tepper
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Tibor Koós
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Osvaldo Ibanez-Sandoval
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Fatuel Tecuapetla
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Thomas W Faust
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Maxime Assous
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
39
|
Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear α5-GABA A receptors. Nat Commun 2018; 9:3576. [PMID: 30177704 PMCID: PMC6120902 DOI: 10.1038/s41467-018-06004-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
Dendrite-targeting GABAergic interneurons powerfully control postsynaptic integration, synaptic plasticity, and learning. However, the mechanisms underlying the efficient GABAergic control of dendritic electrogenesis are not well understood. Using subtype-selective blockers for GABAA receptors, we show that dendrite-targeting somatostatin interneurons and NO-synthase-positive neurogliaform cells preferentially activate α5-subunit- containing GABAA receptors (α5-GABAARs), generating slow inhibitory postsynaptic currents (IPSCs) in hippocampal CA1 pyramidal cells. By contrast, only negligible contribution of these receptors could be found in perisomatic IPSCs, generated by fast-spiking parvalbumin interneurons. Remarkably, α5-GABAAR-mediated IPSCs were strongly outward-rectifying generating 4-fold larger conductances above –50 mV than at rest. Experiments and modeling show that synaptic activation of these receptors can very effectively control voltage-dependent NMDA-receptor activation as well as Schaffer-collateral evoked burst firing in pyramidal cells. Taken together, nonlinear-rectifying α5-GABAARs with slow kinetics match functional NMDA-receptor properties and thereby mediate powerful control of dendritic postsynaptic integration and action potential firing by dendrite-targeting interneurons. Somatostatin+ (SOM+ ) GABAergic interneurons are known to fine-tune synaptic plasticity as they inhibit dendritic spikes and burst firing. Here, the authors show that both SOM+ and NOS+ interneurons preferentially recruit nonlinear outward-rectifying GABA(A)R with alpha5 subunit, and that this inhibition with slow gating kinetics matches voltage and time-dependent activation of synaptic NMDARs, thereby controlling the generation of dendritic NMDA spikes.
Collapse
|
40
|
Wang X, Guo J, Song Y, Wang Q, Hu S, Gou L, Gao Y. Decreased Number and Expression of nNOS-Positive Interneurons in Basolateral Amygdala in Two Mouse Models of Autism. Front Cell Neurosci 2018; 12:251. [PMID: 30150925 PMCID: PMC6099087 DOI: 10.3389/fncel.2018.00251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
The basolateral amygdala (BLA) controls socio-emotional behaviors and is involved in the etiology of autism. We have recently shown that virtually every neuronal nitric oxide synthase (nNOS) positive cell is a GABAergic inhibitory interneuron in the mouse BLA. Here, stereology was used to quantify the number of nNOS-expressing interneurons in valproic acid (VPA)-exposed C57BL/6J (B6) and BTBR T+Itpr3tf/J (BTBR) mice models of autism. Additionally, the protein and mRNA levels of nNOS in the BLA were quantitatively assessed by western blot and qRT-PCR analysis, respectively. Our results showed the decreased number of nNOS interneurons in the BLA of animal models relative to autism. Consistently, nNOS was significantly reduced in the VPA-exposed and BTBR mice at both protein and mRNA levels. Together, these preliminary findings suggest that down-regulation of nNOS may be an attractive target for the pharmacological intervention in autism.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Jisheng Guo
- Center for Translational Medicine, The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yinsen Song
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, China
| | - Shunan Hu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Yinbo Gao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Christenson Wick Z, Krook-Magnuson E. Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Front Cell Neurosci 2018; 12:151. [PMID: 29962936 PMCID: PMC6010559 DOI: 10.3389/fncel.2018.00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is a powerful and rapidly expanding set of techniques that use genetically encoded light sensitive proteins such as opsins. Through the selective expression of these exogenous light-sensitive proteins, researchers gain the ability to modulate neuronal activity, intracellular signaling pathways, or gene expression with spatial, directional, temporal, and cell-type specificity. Optogenetics provides a versatile toolbox and has significantly advanced a variety of neuroscience fields. In this review, using recent epilepsy research as a focal point, we highlight how the specificity, versatility, and continual development of new optogenetic related tools advances our understanding of neuronal circuits and neurological disorders. We additionally provide a brief overview of some currently available optogenetic tools including for the selective expression of opsins.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience and Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
42
|
Harris KD, Hochgerner H, Skene NG, Magno L, Katona L, Bengtsson Gonzales C, Somogyi P, Kessaris N, Linnarsson S, Hjerling-Leffler J. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLoS Biol 2018; 16:e2006387. [PMID: 29912866 PMCID: PMC6029811 DOI: 10.1371/journal.pbio.2006387] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/03/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023] Open
Abstract
Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.
Collapse
Affiliation(s)
- Kenneth D. Harris
- University College London Institute of Neurology, London, United Kingdom
- University College London Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Hannah Hochgerner
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nathan G. Skene
- University College London Institute of Neurology, London, United Kingdom
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lorenza Magno
- University College London Wolfson Institute for Biomedical Research, London, United Kingdom
| | - Linda Katona
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Carolina Bengtsson Gonzales
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nicoletta Kessaris
- University College London Wolfson Institute for Biomedical Research, London, United Kingdom
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
An Essential Role for the Tetraspanin LHFPL4 in the Cell-Type-Specific Targeting and Clustering of Synaptic GABA A Receptors. Cell Rep 2018; 21:70-83. [PMID: 28978485 PMCID: PMC5640807 DOI: 10.1016/j.celrep.2017.09.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 02/04/2023] Open
Abstract
Inhibitory synaptic transmission requires the targeting and stabilization of GABAA receptors (GABAARs) at synapses. The mechanisms responsible remain poorly understood, and roles for transmembrane accessory proteins have not been established. Using molecular, imaging, and electrophysiological approaches, we identify the tetraspanin LHFPL4 as a critical regulator of postsynaptic GABAAR clustering in hippocampal pyramidal neurons. LHFPL4 interacts tightly with GABAAR subunits and is selectively enriched at inhibitory synapses. In LHFPL4 knockout mice, there is a dramatic cell-type-specific reduction in GABAAR and gephyrin clusters and an accumulation of large intracellular gephyrin aggregates in vivo. While GABAARs are still trafficked to the neuronal surface in pyramidal neurons, they are no longer localized at synapses, resulting in a profound loss of fast inhibitory postsynaptic currents. Hippocampal interneuron currents remain unaffected. Our results establish LHFPL4 as a synapse-specific tetraspanin essential for inhibitory synapse function and provide fresh insights into the molecular make-up of inhibitory synapses. LHFPL4 is a tetraspanin enriched at inhibitory synapses that complexes with GABAARs LHFPL4 is important for GABAAR clustering both in vitro and in vivo LHFPL4 is required for the surface clustering but not the trafficking of GABAARs GABAergic synaptic inputs on CA1 pyramidal neurons, but not interneurons, require LHFPL4
Collapse
|
44
|
Kang YJ, Lewis HES, Young MW, Govindaiah G, Greenfield LJ, Garcia-Rill E, Lee SH. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons. Neuroscience 2018; 376:80-93. [PMID: 29462702 PMCID: PMC5978001 DOI: 10.1016/j.neuroscience.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/01/2023]
Abstract
The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB1BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB1BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Mason William Young
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gubbi Govindaiah
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
45
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
46
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
47
|
Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety. J Neurosci 2017; 37:23-37. [PMID: 28053027 DOI: 10.1523/jneurosci.2599-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner.
Collapse
|
48
|
Feldmeyer D, Qi G, Emmenegger V, Staiger JF. Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience 2017; 368:132-151. [PMID: 28528964 DOI: 10.1016/j.neuroscience.2017.05.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Recent years have seen substantial progress in studying the structural and functional properties of GABAergic interneurons and their roles in the neuronal networks of barrel cortex. Although GABAergic interneurons represent only about 12% of the total number of neocortical neurons, they are extremely diverse with respect to their structural and functional properties. It has become clear that barrel cortex interneurons not only serve the maintenance of an appropriate excitation/inhibition balance but also are directly involved in sensory processing. In this review we present different interneuron types and their axonal projection pattern framework in the context of the laminar and columnar organization of the barrel cortex. The main focus is here on the most prominent interneuron types, i.e. basket cells, chandelier cells, Martinotti cells, bipolar/bitufted cells and neurogliaform cells, but interneurons with more unusual axonal domains will also be mentioned. We describe their developmental origin, their classification with respect to molecular, morphological and intrinsic membrane and synaptic properties. Most importantly, we will highlight the most prominent circuit motifs these interneurons are involved in and in which way they serve feed-forward inhibition, feedback inhibition and disinhibition. Finally, this will be put into context to their functional roles in sensory signal perception and processing in the whisker system and beyond.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2, Research Center Jülich, D-52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany; Jülich Aachen Research Alliance, Translational Brain Medicine (JARA Brain), D-52074 Aachen, Germany.
| | - Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-2, Research Center Jülich, D-52425 Jülich, Germany
| | - Vishalini Emmenegger
- Institute of Neuroscience and Medicine, INM-2, Research Center Jülich, D-52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Göttingen D-37075, Germany.
| |
Collapse
|
49
|
Marks WD, Paris JJ, Schier CJ, Denton MD, Fitting S, McQuiston AR, Knapp PE, Hauser KF. HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. J Neurovirol 2016; 22:747-762. [PMID: 27178324 PMCID: PMC5107352 DOI: 10.1007/s13365-016-0447-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/02/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction. We hypothesized that HIV-1 Tat would impair cognitive behavior and injure specific hippocampal interneuron subtypes. Male transgenic mice that inducibly expressed HIV-1 Tat (or non-expressing controls) were assessed for cognitive behavior or had hippocampal CA1 subregions evaluated via interneuron subpopulation markers. Tat exposure decreased spatial memory in a Barnes maze and mnemonic performance in a novel object recognition test. Tat reduced the percentage of neurons expressing neuronal nitric oxide synthase (nNOS) without neuropeptide Y immunoreactivity in the stratum pyramidale and the stratum radiatum, parvalbumin in the stratum pyramidale, and somatostatin in the stratum oriens, which are consistent with reductions in interneuron-specific interneuron type 3 (IS3), bistratified, and oriens-lacunosum-moleculare interneurons, respectively. The findings reveal that an interconnected ensemble of CA1 nNOS-expressing interneurons, the IS3 cells, as well as subpopulations of parvalbumin- and somatostatin-expressing interneurons are preferentially vulnerable to HIV-1 Tat. Importantly, the susceptible interneurons form a microcircuit thought to be involved in feedback inhibition of CA1 pyramidal cells and gating of CA1 pyramidal cell inputs. The identification of vulnerable CA1 hippocampal interneurons may provide novel insight into the basic mechanisms underlying key functional and neurobehavioral deficits associated with HAND.
Collapse
Affiliation(s)
- William D Marks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Jason J Paris
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Christina J Schier
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Melissa D Denton
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - A Rory McQuiston
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298-0059, USA
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
50
|
Lau PYP, Katona L, Saghy P, Newton K, Somogyi P, Lamsa KP. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo. Brain Struct Funct 2016; 222:1809-1827. [PMID: 27783219 PMCID: PMC5406446 DOI: 10.1007/s00429-016-1309-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.
Collapse
Affiliation(s)
| | - Linda Katona
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Peter Saghy
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Kathryn Newton
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.,MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Peter Somogyi
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK.
| | - Karri P Lamsa
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK. .,Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor, Szeged, 6720, Hungary.
| |
Collapse
|