1
|
Petrella L, Polito R, Catapano A, Santillo A, Ciliberti MG, Sevi A, Messina A, Cavaliere G, Marino F, Polverino MG, Messina G, Monda M, Mollica MP, Crispino M, Cimmino F, Albenzio M, Trinchese G. Goat Milk Supplementation Modulates the Mitochondrial Metabolic Flexibility and Orexin-A Levels Influencing the Inflammatory Pattern in Rats. Antioxidants (Basel) 2024; 13:1054. [PMID: 39334713 PMCID: PMC11429022 DOI: 10.3390/antiox13091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Milk and its derivatives are included in a balanced diet of humans as excellent sources of proteins, vitamins, and essential minerals that are functional nutrients. Knowledge about the nutritional benefits or harms due to milk consumption has been expanding in recent years. We previously explored, in rodent models, the metabolic effects of isoenergetic intake of milk derived from cows, donkeys, or humans, while the impact of goat's milk intake has remained unexplored. The aim of this work was to investigate, in an animal model, the effects of dietary supplementation with goat's milk on energy homeostasis and inflammatory state, focusing on the modulation of mitochondrial functions in most metabolically active organs, such as skeletal muscle and the liver. In addition, we highlighted a link between nutrient intake, substrate metabolism, and the orexinergic system. Our results indicate that goat milk improves mitochondrial oxidative capacity and reduces inflammation and oxidative stress in both organs. Notably, goat milk lowers the circulating levels of Orexin-A, a neuropeptide that plays a crucial role in regulating peripheral energy balance and central nervous system mechanisms. These data provide the first evidence that the anti-inflammatory and antioxidant effects of goat milk are mediated by the modulation of mitochondrial functions and orexinergic signaling.
Collapse
Affiliation(s)
- Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 80131 Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Giovanni Messina
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
2
|
Haubjerg Østerby NC, Jørgensen NR, Jennum PJ. Evaluating routine blood and cerebrospinal fluid samples in narcolepsy patients. Scand J Clin Lab Invest 2024; 84:252-256. [PMID: 38934461 DOI: 10.1080/00365513.2024.2369992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Cerebrospinal fluid hypocretin-1 is proven to be a precise diagnostic marker of narcolepsy Type 1 (NT1). However other characteristics of cerebrospinal fluid and blood parameters have not yet been described. The objective of this study was to evaluate the differences in routine blood and cerebrospinal fluid analyses between NT1 patients and patients suspected of hypersomnia. We collected retrospectively all measures of cerebrospinal fluid hypocretin-1 between 2019 and 2022. This yielded 612 patients out of which 146 were diagnosed with NT1 and the rest (466 patients) were used as a control group. We selected the most relevant routine samples from both blood, plasma and cerebrospinal fluid and compared the two groups. The only significantly different analytes were plasma lactate dehydrogenase and cerebrospinal fluid hypocretin-1. No other differences were found between the groups including thyroid markers, markers of neuroendocrine function, inflammatory markers in blood or cerebrospinal fluid, markers of permeability of the blood brain barrier or metabolic markers in blood samples. We found no significant differences in routine blood or cerebrospinal fluid components, neuroendocrine function, neuroinflammation and metabolic markers. The results reflect that the hypocretin system does not seem to play a chronic major role in regulation of these markers. None of the parameters routinely measured in blood in these patients could differentiate between NT1 and non-NT1 disorders besides CSF-hcrt-1.
Collapse
Affiliation(s)
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital- Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Poul Jørgen Jennum
- Danish Centre for Sleep Medicine, Copenhagen University Hospital- Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
3
|
Wang H, Jia M. Analysis of thyroid function and related factors in narcolepsy patients. Sci Rep 2023; 13:18494. [PMID: 37898692 PMCID: PMC10613271 DOI: 10.1038/s41598-023-45321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
The loss of hypocretin is thought to be the main pathophysiological mechanism of narcolepsy. There is strong evidence that hypocretin is related to the regulation of endocrine functions and depression. To explore thyroid hormone levels in narcolepsy patients was our aim. In addition, further is to analyze the relationship between thyroid hormone levels and sleep quality, anxiety, and depression in narcolepsy patients. There are 40 patients with narcolepsy and 40 healthy controls (HCs) were conducted. Blood samples were explored for thyroid function. Correlation analysis between thyroid hormones and clinical characteristics of narcolepsy was performed using Pearson or Spearman. Narcolepsy patients had significantly lower free thyroxine (FT4) levels in comparison to controls (p < 0.001). No subject was diagnosed with primary hypothyroidism. There were 4 (10%) subjects with subclinical hypothyroidism. The serum FT4 levels were positively correlated with HAMA14 score (r = - 0.343, p = 0.030) by Pearson correlation analysis. The serum TSH levels and HAMD24 score (r = - 0.807 p ˂0.001), and ESS score (r = - 0.317, p = 0.046) both showed a negative correction. Hypocretin deficiency may be associated with the regulation of thyroid hormones in narcolepsy patients. The serum thyroid hormones may affect the severity and neuropsychological functions of narcolepsy patients.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Pain Management, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Mingrui Jia
- Department of Pain Management, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| |
Collapse
|
4
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus. Neuropeptides 2023; 101:102336. [PMID: 37290176 DOI: 10.1016/j.npep.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 06/10/2023]
Abstract
Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Mogavero MP, Godos J, Grosso G, Caraci F, Ferri R. Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients 2023; 15:3679. [PMID: 37686711 PMCID: PMC10489991 DOI: 10.3390/nu15173679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Orexin plays a significant role in the modulation of REM sleep, as well as in the regulation of appetite and feeding. This review explores, first, the current evidence on the role of orexin in the modulation of sleep and wakefulness and highlights that orexin should be considered essentially as a neurotransmitter inhibiting REM sleep and, to a much lesser extent, a wake promoting agent. Subsequently, the relationship between orexin, REM sleep, and appetite regulation is examined in detail, shedding light on their interconnected nature in both physiological conditions and diseases (such as narcolepsy, sleep-related eating disorder, idiopathic hypersomnia, and night eating syndrome). Understanding the intricate relationship between orexin, REM sleep, and appetite regulation is vital for unraveling the complex mechanisms underlying sleep-wake patterns and metabolic control. Further research in this field is encouraged in order to pave the way for novel therapeutic approaches to sleep disorders and metabolic conditions associated with orexin dysregulation.
Collapse
Affiliation(s)
- Maria P. Mogavero
- Department of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Filippo Caraci
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
6
|
Soejima Y, Iwata N, Nakayama N, Hirata S, Nakano Y, Yamamoto K, Suyama A, Oguni K, Nada T, Fujisawa S, Otsuka F. Mutual Effects of Orexin and Bone Morphogenetic Proteins on Gonadotropin Expression by Mouse Gonadotrope Cells. Int J Mol Sci 2022; 23:ijms23179782. [PMID: 36077179 PMCID: PMC9456022 DOI: 10.3390/ijms23179782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Orexin plays a key role in the regulation of sleep and wakefulness and in feeding behavior in the central nervous system, but its receptors are expressed in various peripheral tissues including endocrine tissues. In the present study, we elucidated the effects of orexin on pituitary gonadotropin regulation by focusing on the functional involvement of bone morphogenetic proteins (BMPs) and clock genes using mouse gonadotrope LβT2 cells that express orexin type 1 (OX1R) and type 2 (OX2R) receptors. Treatments with orexin A enhanced LHβ and FSHβ mRNA expression in a dose-dependent manner in the absence of GnRH, whereas orexin A in turn suppressed GnRH-induced gonadotropin expression in LβT2 cells. Orexin A downregulated GnRH receptor expression, while GnRH enhanced OX1R and OX2R mRNA expression. Treatments with orexin A as well as GnRH increased the mRNA levels of Bmal1 and Clock, which are oscillational regulators for gonadotropin expression. Of note, treatments with BMP-6 and -15 enhanced OX1R and OX2R mRNA expression with upregulation of clock gene expression. On the other hand, orexin A enhanced BMP receptor signaling of Smad1/5/9 phosphorylation through upregulation of ALK-2/BMPRII among the BMP receptors expressed in LβT2 cells. Collectively, the results indicate that orexin regulates gonadotropin expression via clock gene expression by mutually interacting with GnRH action and the pituitary BMP system in gonadotrope cells.
Collapse
Affiliation(s)
- Yoshiaki Soejima
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Nanako Nakayama
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Shinichi Hirata
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Kohei Oguni
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Satoshi Fujisawa
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7342; Fax: +81-86-235-7345
| |
Collapse
|
7
|
Exploring the Role of Orexinergic Neurons in Parkinson's Disease. Neurotox Res 2021; 39:2141-2153. [PMID: 34495449 DOI: 10.1007/s12640-021-00411-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting about 2% of the population. A neuropeptide, orexin, is linked with sleep abnormalities in the parkinsonian patient. This study aimed to review the changes in the orexinergic system in parkinsonian subjects and the effects of orexin. A number of search techniques were used and presumed during the search, including cloud databank searches of PubMed and Medline using title words, keywords, and MeSH terms. PD is characterised by motor dysfunctions (postural instability, rigidity, tremor) and cognitive disorders, sleep-wake abnormalities grouped under non-motor disorders. The Orexinergic system found in the hypothalamus is linked with autonomic function, neuroprotection, learning and memory, and the sleep-wake cycle. Prepro-orexin, a precursor peptide (130 amino acids), gives rise to orexins (Orx-A and Orx-B). Serum orexin level measurement is vital for evaluating several neurological disorders (Alzheimer's disease, Huntington's disease, and PD). Orexinergic neurons are activated by hypoglycemia and ghrelin, while they are restrained by food consumption and leptin. Orexinergic system dysfunctioning was found to be linked with non-motor symptoms (sleep abnormalities) in PD. Orexinergic neuron's behaviour may be either inhibitory or excitatory depending on the environment in which they are present. As well, orexin antagonists are found to improve the abnormal sleep pattern. Since the orexinergic system plays a role in several psychological and neurological disorders, therefore, these disorders can be managed by targeting this system.
Collapse
|
8
|
Transcranial Magnetic Stimulation as a Tool to Investigate Motor Cortex Excitability in Sport. Brain Sci 2021; 11:brainsci11040432. [PMID: 33800662 PMCID: PMC8065474 DOI: 10.3390/brainsci11040432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.
Collapse
|
9
|
Chieffi S. Meet Our Editorial Board Member. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/266608221603201210094328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
BaHammam AS, Olaish AH, Al-Omar M, Almeneessier AS. Medical comorbidities in Saudi patients with narcolepsy: a case-control study. Sleep Sci 2021; 14:286-290. [PMID: 35186208 PMCID: PMC8848530 DOI: 10.5935/1984-0063.20200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This case-control study sought to assess comorbid medical disorders in patients with narcolepsy type-1 (NT-1) and type-2 (NT-2). MATERIAL AND METHODS The study comprised 80 consecutive Arab (Saudi) patients with narcolepsy (NT-1=56 and NT-2=24) and a control group of 211 adults matched for age, sex, and body mass index (BMI). Data were collected from cases and controls based on a predesigned questionnaire that was formulated based on previous studies to evaluate the chosen medical comorbidities. RESULTS Narcolepsy patients had a higher prevalence of hypothyroidism and hyperlipidemia and a higher prevalence of high-risk for OSA than controls. Hyperlipidemia was more common in cases than controls, 8 (10%) vs. 3 (1.4%), p=0.002. After adjusting for age, sex, and BMI, the odds-ratios for hypothyroidism and high risk for OSA in the NT-1 group was 5.49 (95% CI, [0.8 - 38.6]) and 69.99 ((95%CI [20.6 -237.4]), respectively, and in the NT-2 group, 12.5, 95%CI [1.6-97.7], and 33.3, 95%CI [8.2-135.7], respectively. CONCLUSION Arab (Saudi) narcolepsy patients had a higher association with hypothyroidism, hyperlipidemia, and a higher risk of OSA than controls.
Collapse
Affiliation(s)
- Ahmed Salem BaHammam
- King Saud University, University Sleep Disorders Center, Department of Medicine, College of Medicine - Riyadh - Riyadh - Saudi Arabia. , Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, National Plan - Riyadh - Riyadh - Saudi Arabia. ,Corresponding author: Ahmed Salem BaHammam E-mail:
| | - Awad H Olaish
- King Saud University, University Sleep Disorders Center, Department of Medicine, College of Medicine - Riyadh - Riyadh - Saudi Arabia. , Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, National Plan - Riyadh - Riyadh - Saudi Arabia
| | - Majid Al-Omar
- King Saud University, University Sleep Disorders Center, Department of Medicine, College of Medicine - Riyadh - Riyadh - Saudi Arabia
| | - Aljohara S Almeneessier
- King Saud University, University Sleep Disorders Center, Department of Medicine, College of Medicine - Riyadh - Riyadh - Saudi Arabia. , King Saud University, Family and Community Medicine Department - Riyadh - Riyadh - Saudi Arabia
| |
Collapse
|
11
|
Valenzano A, Tartaglia N, Ambrosi A, Tafuri D, Monda M, Messina A, Sessa F, Campanozzi A, Monda V, Cibelli G, Messina G, Polito R. The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System. J Clin Med 2020; 9:jcm9103327. [PMID: 33081283 PMCID: PMC7602946 DOI: 10.3390/jcm9103327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/28/2022] Open
Abstract
The accumulation of adipose tissue represents one of the characteristics of obesity, increasing the risk of developing correlated obesity diseases such as cardiovascular disease, type 2 diabetes, cancer, and immune diseases. Visceral adipose tissue accumulation leads to chronic low inflammation inducing an imbalanced adipokine secretion. Among these adipokines, Adiponectin is an important metabolic and inflammatory mediator. It is also known that adipose tissue is influenced by Orexin-A levels, a neuropeptide produced in the lateral hypothalamus. Adiponectin and Orexin-A are strongly decreased in obesity and are associated with metabolic and inflammatory pathways. The aim of this review was to investigate the involvement of the autonomic nervous system focusing on Adiponectin and Orexin-A after bariatric surgery. After bariatric surgery, Adiponectin and Orexin-A levels are strongly increased independently of weight loss showing that hormone increases are also attributable to a rearrangement of metabolic and inflammatory mediators. The restriction of food intake and malabsorption are not sufficient to clarify the clinical effects of bariatric surgery suggesting the involvement of neuro-hormonal feedback loops and also of mediators such as Adiponectin and Orexin-A.
Collapse
Affiliation(s)
- Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (A.V.); (F.S.); (G.C.)
| | - Nicola Tartaglia
- General Surgery, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Antonio Ambrosi
- General Surgery, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Domenico Tafuri
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.M.); (A.M.); (V.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.M.); (A.M.); (V.M.)
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (A.V.); (F.S.); (G.C.)
| | - Angelo Campanozzi
- Pediatrics, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy;
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.M.); (A.M.); (V.M.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (A.V.); (F.S.); (G.C.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (A.V.); (F.S.); (G.C.)
- Correspondence: (G.M.); (R.P.); Tel.: +39-0881588095 (G.M.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (A.V.); (F.S.); (G.C.)
- Correspondence: (G.M.); (R.P.); Tel.: +39-0881588095 (G.M.)
| |
Collapse
|
12
|
Li SJ, Lo YC, Lai HY, Lin SH, Lin HC, Lin TC, Chang CW, Chen TC, Chin-Jung Hsieh C, Yang SH, Chiu FM, Kuo CH, Chen YY. Uncovering the Modulatory Interactions of Brain Networks in Cognition with Central Thalamic Deep Brain Stimulation Using Functional Magnetic Resonance Imaging. Neuroscience 2020; 440:65-84. [DOI: 10.1016/j.neuroscience.2020.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023]
|
13
|
Polito R, Monda V, Nigro E, Messina A, Di Maio G, Giuliano MT, Orrù S, Imperlini E, Calcagno G, Mosca L, Mollica MP, Trinchese G, Scarinci A, Sessa F, Salerno M, Marsala G, Buono P, Mancini A, Monda M, Daniele A, Messina G. The Important Role of Adiponectin and Orexin-A, Two Key Proteins Improving Healthy Status: Focus on Physical Activity. Front Physiol 2020; 11:356. [PMID: 32390865 PMCID: PMC7188914 DOI: 10.3389/fphys.2020.00356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise represents the most important integrative therapy in metabolic, immunologic and chronic diseases; it represents a valid strategy in the non-pharmacological intervention of lifestyle linked diseases. A large body of evidence indicates physical exercise as an effective measure against chronic non-communicable diseases. The worldwide general evidence for health benefits are both for all ages and skill levels. In a dysregulated lifestyle such as in the obesity, there is an imbalance in the production of different cytokines. In particular, we focused on Adiponectin, an adipokine producted by adipose tissue, and on Orexin-A, a neuropeptide synthesized in the lateral hypothalamus. The production of both Adiponectin and Orexin-A increases following regular and structured physical activity and both these hormones have similar actions. Indeed, they improve energy and glucose metabolism, and also modulate energy expenditure and thermogenesis. In addition, a relevant biological role of Adiponectin and Orexin A has been recently highlighted in the immune system, where they function as immune-suppressor factors. The strong connection between these two cytokines and healthy status is mediated by physical activity and candidates these hormones as potential biomarkers of the beneficial effects induced by physical activity. For these reasons, this review aims to underly the interconnections among Adiponectin, Orexin-A, physical activity and healthy status. Furthermore, it is analyzed the involvement of Adiponectin and Orexin-A in physical activity as physiological factors improving healthy status through physical exercise.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Girolamo Di Maio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Giuliano
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | | | - Giuseppe Calcagno
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Laura Mosca
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Maria Pina Mollica
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Giovanna Trinchese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Alessia Scarinci
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgery Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero Universitaria - Ospedali Riuniti, Foggia, Italy
| | - Pasqualina Buono
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Annamaria Mancini
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
Mohammadkhani A, James MH, Pantazis CB, Aston-Jones G. Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Res 2020; 1731:146461. [PMID: 31526801 PMCID: PMC7069781 DOI: 10.1016/j.brainres.2019.146461] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
The orexin (hypocretin) system is multifaceted, and regulates sleep-wake cycles, nociception, endocrine function and reward-seeking behavior. We have established an important role for this system in motivation for drugs of abuse. The orexin-1 receptor (Ox1R) antagonist SB334867 (SB) reduces seeking of drug reward under conditions of high motivation. There is some evidence that the effects of systemic SB on reward seeking persist beyond the pharmacological availability of the drug, however the time course of these effects is not well characterized, nor is it known whether similar persistent effects are observed following intraparenchymal injections. Here, we used a behavioral economics paradigm, which allows for repeated testing of drug motivation across consecutive days, to examine the persistent effects of acute systemic and local treatment with SB on motivation for the short-acting μ-opioid receptor agonistremifentanil. Systemic injections of SB immediately prior to behavioral testing reduced motivation for remifentanil; this effect was sustained on a subsequent test at 24 h, but not on a third test at 48 h. When injected into ventral pallidum (VP) the effects of SB were more persistent, with reduced motivation observed for up to 48 h. We next made SB injections into VP 24 h prior to behavioral testing; this produced effects that persisted for at least 72 h post-treatment. Cued reinstatement of extinguished remifentanil seeking was also attenuated by pretreatment with SB 24 h earlier. These data indicate that the effects of SB on opioid seeking behavior persist beyond the bioavailability of the compound. These observations have important ramifications for the future clinical use of orexin receptor antagonists for the treatment of addiction.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), PO Box 1954851167, Tehran, Iran; Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Morgan H James
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Caroline B Pantazis
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
15
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Polito R, Nigro E, Messina A, Monaco ML, Monda V, Scudiero O, Cibelli G, Valenzano A, Picciocchi E, Zammit C, Pisanelli D, Monda M, Cincione IR, Daniele A, Messina G. Adiponectin and Orexin-A as a Potential Immunity Link Between Adipose Tissue and Central Nervous System. Front Physiol 2018; 9:982. [PMID: 30140232 PMCID: PMC6094989 DOI: 10.3389/fphys.2018.00982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue (AT) is strongly associated with development and progression of immune disorders through adipokines secretion, such as adiponectin. This protein has beneficial energetic properties and is involved in inflammation and immunity processes. Three oligomers of circulating adiponectin with different molecular weight are described: High (HMW), Medium (MMW), and Low (LMW). The HMW is the most biologically active oligomers. On binding to its receptors AdipoR1, AdipoR2, and T-cadherin, adiponectin acts on both innate and acquired immunity. The suppression of NF-κB activation and pro-inflammatory cytokine expression in macrophages is mediated by AdipoR1. AdipoR2 mediates polarization of anti-inflammatory M2 macrophages T-cadherin is essential for the M2 macrophage proliferation. Furthermore, adiponectin reduces T cells responsiveness and B cells lymphopoiesis. The immune system is very sensitive to environmental changes and it is not only interconnected with AT but also with the central nervous system (CNS). Cytokines, which are mediators of the immune system, exercise control over mediators of the CNS. Microglia, which are immunity cells belonging to the macrophage family, are present within the CNS. The nervous system is also involved in immunity through the production of neuropeptides such as orexin-A/hypocretin-1. This neuropeptide is involved in metabolic disorders, inflammation and in the immune response. The relationship between adipokines, immunity, and the nervous system is validated by both the role of orexin-A on fat, food intake, and energy expenditure, as well as by role of adiponectin on the CNS. In this review, we focused on the functions of adiponectin and orexin-A as a potential immunity link between AT and CNS.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Messina
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria L Monaco
- CEINGE-Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Vincenzo Monda
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Elisabetta Picciocchi
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marcellino Monda
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ivan R Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Valenzano A, Moscatelli F, Messina A, Monda V, Orsitto R, Zezza G, Fiorentino G, Salerno M, Triggiani AI, Viggiano A, Mollica MP, Carotenuto M, Monda M, Cibelli G, Messina G. Stress Profile in Remotely Piloted Aircraft Crewmembers During 2 h Operating Mission. Front Physiol 2018; 9:461. [PMID: 29867525 PMCID: PMC5949534 DOI: 10.3389/fphys.2018.00461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
Emotional stability plays a key role in individual and team performance during both routine activities and management of unexpected emergencies. Using a psycho-physiological approach, the stress response was investigated in drone operators in service. Methods: Salivary α-amylase (sAA), galvanic skin response (GSR) and anxiety were assessed over a 2-h operating flight. Results: Compared to baseline values, GSR and sAA values increased in operating conditions. Moreover, these values were higher in Pilots than in Sensor Operators, indicating that their stress response was greater. These results were associated with an increase in anxiety level, highlighting a relationship between autonomic reactivity and anxiety. Conclusion: This is the first report providing experimental evidences of the stress response related to Remotely Piloted Aircraft operations.
Collapse
Affiliation(s)
- Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | | | | | | | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio I Triggiani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Maria P Mollica
- Department of Biology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: Evidences & mechanisms. Neuropeptides 2018; 68:1-6. [PMID: 29472002 DOI: 10.1016/j.npep.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Orexins (A & B), neuropeptides of hypothalamic origin, act through G-protein coupled receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). The wide projection of orexin neurons in the hypothalamic region allows them to interact with the other neurons and regulate food intake, emotional status, sleep wake cycle and energy metabolism. The autonomic nervous system plays an important regulatory role in the energy metabolism as well as glucose homeostasis. Orexin neurons are also under the control of GABAergic neurons. Emerging preclinical as well as clinical research has reported the role of orexins in the glucose homeostasis since orexins are involved in hypothalamic metabolism circuitry and also rely on sensing peripheral metabolic signals such as gut, adipose derived and pancreatic peptides. Apart from the hypothalamic origin, integration and control in various physiological functions, peripheral origin in wide organs, raises the possibility of use of orexins as a therapeutic biomarker in the management of metabolic disorders. The present review focuses the central as well as peripheral roles of orexins in the glucose homeostasis.
Collapse
Affiliation(s)
- Monika Rani
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | - Raghuvansh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India.
| |
Collapse
|
19
|
Messina A, Monda V, Sessa F, Valenzano A, Salerno M, Bitetti I, Precenzano F, Marotta R, Lavano F, Lavano SM, Salerno M, Maltese A, Roccella M, Parisi L, Ferrentino RI, Tripi G, Gallai B, Cibelli G, Monda M, Messina G, Carotenuto M. Sympathetic, Metabolic Adaptations, and Oxidative Stress in Autism Spectrum Disorders: How Far From Physiology? Front Physiol 2018; 9:261. [PMID: 29623047 PMCID: PMC5874307 DOI: 10.3389/fphys.2018.00261] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/07/2018] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) is a complex and multifaceted neurobehavioral syndrome with no specific cause still identified, despite the worldwide increasing (prevalence for 1,000 children from 6.7 to 14.6, between 2000 and 2012). Many biological and instrumental markers have been suggested as potential predictive factors for the precocious diagnosis during infancy and/or pediatric age. Many studies reported structural and functional abnormalities in the autonomic system in subjects with ASD. Sleep problems in ASD are a prominent feature, having an impact on the social interaction of the patient. Considering the role of orexins (A and B) in wake-sleep circadian rhythm, we could speculate that ASD subjects may present a dysregulation in orexinergic neurotransmission. Conversely, oxidative stress is implicated in the pathophysiology of many neurological disorders. Nonetheless, little is known about the linkage between oxidative stress and the occurrence or the progress of autism and autonomic functioning; some markers, such as heart rate (HR), heart rate variability (HRV), body temperature, and galvanic skin response (GSR), may be altered in the patient with this so complex disorder. In the present paper, we analyzed an autism case report, focusing on the rule of the sympathetic activity with the aim to suggest that it may be considered an important tool in ASD evaluation. The results of this case confirm our hypothesis even if further studies needed.
Collapse
Affiliation(s)
- Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Bitetti
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Precenzano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Marotta
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Francesco Lavano
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Serena M Lavano
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Margherita Salerno
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Agata Maltese
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Michele Roccella
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Lucia Parisi
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Roberta I Ferrentino
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriele Tripi
- Childhood Psychiatric Service for Neurodevelopmentals Disorders, Chinon, France
| | - Beatrice Gallai
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
20
|
Monda V, Salerno M, Sessa F, Bernardini R, Valenzano A, Marsala G, Zammit C, Avola R, Carotenuto M, Messina G, Messina A. Functional Changes of Orexinergic Reaction to Psychoactive Substances. Mol Neurobiol 2018; 55:6362-6368. [PMID: 29307079 DOI: 10.1007/s12035-017-0865-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
It is becoming increasingly apparent the importance of the central nervous system (CNS) as the major contributor to the regulation of systemic metabolism. Antipsychotic drugs are used often to treat several psychiatric disorders, including schizophrenia and bipolar disorder However, antipsychotic drugs prescription, particularly the second-generation ones (SGAs), such as clozapine and olanzapine, is related to a considerable weight gain which usually leads to obesity. The aim of this paper is to assess the influence of orexin A on sympathetic and hyperthermic reactions to several neuroleptic drugs. Orexin A is a neuropeptide which effects both body temperature and food intake by increasing sympathetic activity. Orexin A-mediated hyperthermia is reduced by haloperidol and is blocked by clozapine and olanzapine. Orexin A-mediated body temperature elevation is increased by risperidone. These hyperthermic effects are delayed by quietapine. In this paper, it is discussed the orexinergic pathway activation by neuroleptic drugs and its influence on human therapeutic strategies. With the aim to determine that neuroleptic drugs mediate body temperature control through to the orexinergic system, we summarized our previously published data. Psychiatric disorders increase the risk of developing metabolic disorders (e.g., weight gain, increased blood pressure, and glucose or lipid levels). Therefore, the choice of antipsychotic drug to be prescribed, based on the relevant risks and benefits of each individual drug, has an essential role in human health prevention.
Collapse
Affiliation(s)
- Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Foggia, Foggia, Italy
| | - Christian Zammit
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy.
| | - Antonietta Messina
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
21
|
Ensho T, Nakahara K, Suzuki Y, Murakami N. Neuropeptide S increases motor activity and thermogenesis in the rat through sympathetic activation. Neuropeptides 2017; 65:21-27. [PMID: 28433253 DOI: 10.1016/j.npep.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/01/2022]
Abstract
The central role of neuropeptide S (NPS), identified as the endogenous ligand for GPR154, now named neuropeptide S receptor (NPSR), has not yet been fully clarified. We examined the central role of NPS for body temperature, energy expenditure, locomotor activity and adrenal hormone secretion in rats. Intracerebroventricular (icv) injection of NPS increased body temperature in a dose-dependent manner. Energy consumption and locomotor activity were also significantly increased by icv injection of NPS. In addition, icv injection of NPS increased the peripheral blood concentration of adrenalin and corticosterone. Pretreatment with the β1- and β2-adrenergic receptor blocker timolol inhibited the NPS-induced increase of body temperature. The expression of both NPS mRNA in the brainstem and NPSR mRNA in the hypothalamus showed a nocturnal rhythm with a peak occurring during the first half of the dark period. To examine whether the endogenous NPS is involved in regulation of body temperature, NPSR antagonist SHA68 was administered one hour after darkness. SHA68 attenuated the nocturnal rise of body temperature. These results suggest that NPS contributes to the regulation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan.
| | - Yoshihiro Suzuki
- Laboratory of Animal Health Science, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| |
Collapse
|
22
|
Chieffi S, Carotenuto M, Monda V, Valenzano A, Villano I, Precenzano F, Tafuri D, Salerno M, Filippi N, Nuccio F, Ruberto M, De Luca V, Cipolloni L, Cibelli G, Mollica MP, Iacono D, Nigro E, Monda M, Messina G, Messina A. Orexin System: The Key for a Healthy Life. Front Physiol 2017; 8:357. [PMID: 28620314 PMCID: PMC5450021 DOI: 10.3389/fphys.2017.00357] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 11/30/2022] Open
Abstract
The orexin-A/hypocretin-1 and orexin-B/hypocretin-2 are neuropeptides synthesized by a cluster of neurons in the lateral hypothalamus and perifornical area. Orexin neurons receive a variety of signals related to environmental, physiological and emotional stimuli, and project broadly to the entire CNS. Orexin neurons are “multi-tasking” neurons regulating a set of vital body functions, including sleep/wake states, feeding behavior, energy homeostasis, reward systems, cognition and mood. Furthermore, a dysfunction of orexinergic system may underlie different pathological conditions. A selective loss orexin neurons was found in narcolepsia, supporting the crucial role of orexins in maintaining wakefulness. In animal models, orexin deficiency lead to obesity even if the consume of calories is lower than wildtype counterpart. Reduced physical activity appears the main cause of weight gain in these models resulting in energy imbalance. Orexin signaling promotes obesity resistance via enhanced spontaneous physical activity and energy expenditure regulation and the deficiency/dysfunction in orexins system lead to obesity in animal models despite of lower calories intake than wildtype associated with reduced physical activity. Interestingly, orexinergic neurons show connections to regions involved in cognition and mood regulation, including hippocampus. Orexins enhance hippocampal neurogenesis and improve spatial learning and memory abilities, and mood. Conversely, orexin deficiency results in learning and memory deficits, and depression.
Collapse
Affiliation(s)
- Sergio Chieffi
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| | - Ines Villano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Domenico Tafuri
- Department of Motor Sciences and Wellness, University of Naples "Parthenope"Naples, Italy
| | - Monica Salerno
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Nicola Filippi
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Francesco Nuccio
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Maria Ruberto
- Department of Medical-Surgical and Dental Specialties, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Vincenzo De Luca
- Department of Psychiatry, University of TorontoToronto, ON, Canada
| | - Luigi Cipolloni
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Università degli Studi di Roma La SapienzaRome, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| | - Maria P Mollica
- Department of Biology Università degli Studi di Napoli Federico IINaples, Italy
| | - Diego Iacono
- Neurodevelopmental Research Lab, Biomedical Research Institute of New JerseyMorristown, NJ, United States.,Neuroscience Research, MidAtlantic Neonatology Associates, Atlantic Health SystemMorristown, NJ, United States.,Neuropathology Research, MANA/Biomedical Research Institute of New JerseyMorristown, NJ, United States
| | | | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy.,Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Università degli Studi della Campania "Luigi Vanvitelli"Naples, Italy
| |
Collapse
|
23
|
Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5856071. [PMID: 28593174 PMCID: PMC5448050 DOI: 10.1155/2017/5856071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022]
Abstract
Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.
Collapse
|
24
|
Messina G, Valenzano A, Moscatelli F, Salerno M, Lonigro A, Esposito T, Monda V, Corso G, Messina A, Viggiano A, Triggiani AI, Chieffi S, Guglielmi G, Monda M, Cibelli G. Role of Autonomic Nervous System and Orexinergic System on Adipose Tissue. Front Physiol 2017; 8:137. [PMID: 28344558 PMCID: PMC5344930 DOI: 10.3389/fphys.2017.00137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023] Open
Abstract
Adipose tissue, defined as white adipose tissue (WAT) and brown adipose tissue (BAT), is a biological caloric reservoir; in response to over-nutrition it expands and, in response to energy deficit, it releases lipids. The WAT primarily stores energy as triglycerides, whereas BAT dissipates chemical energy as heat. In mammals, the BAT is a key site for heat production and an attractive target to promote weight loss. The autonomic nervous system (ANS) exerts a direct control at the cellular and molecular levels in adiposity. The sympathetic nervous system (SNS) provides a complex homeostatic control to specifically coordinate function and crosstalk of both fat pads, as indicated by the increase of the sympathetic outflow to BAT, in response to cold and high-fat diet, but also by the increase or decrease of the sympathetic outflow to selected WAT depots, in response to different lipolytic requirements of these two conditions. More recently, a role has been attributed to the parasympathetic nervous system (PNS) in modulating both adipose tissue insulin-mediated glucose uptake and fatty free acid (FFA) metabolism in an anabolic way and its endocrine function. The regulation of adipose tissue is unlikely to be limited to the autonomic control, since a number of signaling cytokines and neuropeptides play an important role, as well. In this review, we report some experimental evidences about the role played by both the ANS and orexins into different fat pads, related to food intake and energy expenditure, with a special emphasis on body weight status and fat mass (FM) content.
Collapse
Affiliation(s)
- Giovanni Messina
- Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy; Department of Experimental Medicine, Second University of NaplesNaples, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Antonio Lonigro
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Teresa Esposito
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Andrea Viggiano
- Department of Medicine and Surgery, University of Salerno Salerno, Italy
| | - Antonio I Triggiani
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Sergio Chieffi
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
25
|
Chieffi S, Messina G, Villano I, Messina A, Esposito M, Monda V, Valenzano A, Moscatelli F, Esposito T, Carotenuto M, Viggiano A, Cibelli G, Monda M. Exercise Influence on Hippocampal Function: Possible Involvement of Orexin-A. Front Physiol 2017; 8:85. [PMID: 28261108 PMCID: PMC5306252 DOI: 10.3389/fphys.2017.00085] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/30/2017] [Indexed: 01/24/2023] Open
Abstract
In the present article, we provide a brief review of current knowledge regarding the effects induced by physical exercise on hippocampus. Research involving animals and humans supports the view that physical exercise, enhancing hippocampal neurogenesis and function, improves cognition, and regulates mood. These beneficial effects depend on the contribute of more factors including the enhancement of vascularization and upregulation of growth factors. Among these, the BDNF seems to play a significant role. Another putative factor that might contribute to beneficial effects of exercise is the orexin-A. In support of this hypothesis there are the following observations: (1) orexin-A enhances hippocampal neurogenesis and function and (2) the levels of orexin-A increase with physical exercise. The beneficial effects of exercise may represent an important resource to hinder the cognitive decline associated with the aging-related hippocampal deterioration and ameliorate depressive symptoms.
Collapse
Affiliation(s)
- Sergio Chieffi
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Giovanni Messina
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of NaplesNaples, Italy; Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| | - Ines Villano
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Antonietta Messina
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Maria Esposito
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples Naples, Italy
| | - Vincenzo Monda
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Teresa Esposito
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples Naples, Italy
| | - Andrea Viggiano
- Department of Medicine and Surgery, University of Salerno Salerno, Italy
| | - Giuseppe Cibelli
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Marcellino Monda
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
26
|
Precenzano F, Ruberto M, Parisi L, Salerno M, Maltese A, Gallai B, Marotta R, Lavano SM, Lavano F, Roccella M. Visual-spatial training efficacy in children affected by migraine without aura: a multicenter study. Neuropsychiatr Dis Treat 2017; 13:253-258. [PMID: 28184165 PMCID: PMC5291325 DOI: 10.2147/ndt.s119648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Routinely in the clinical practice, children affected by migraine without aura (MwA) tend to exhibit severe and persistent difficulties within cognitive processes such as attention, memory, and visual-motor integration (VMI) skills. The aim of this study was to assess the visual-spatial and visual-motor abilities among a sample of children with MwA and the effects of a specific computerized training. The study population was composed of 84 patients affected by MwA (39 girls and 45 boys; mean age: 8.91±2.46 years), and they were randomly divided into two groups (group A and group B) comparable for age (P=0.581), gender (P=0.826), socioeconomic status (SES), migraine frequency (P=0.415), and intensity (P=0.323). At baseline (T0), the two groups were comparable for movement assessment battery for children (M-ABC) and VMI performances. After 6 months of treatment (T1), group A showed lower scores in the dexterity item of M-ABC test (P<0.001) and higher scores in M-ABC global performance centile (P<0.001) and total (P<0.001), visual (P=0.017), and motor (P<0.001) tasks of VMI test than group B. Moreover, at T1, group A showed higher scores in total (P<0.001) and motor (P<0.001) tasks of VMI test and in M-ABC global performance centile (P<0.001) and lower scores in the dexterity item of M-ABC test (P<0.001) than at T0. Group B showed, at T1, performances comparable to T0 for all evaluations. As reported by recent studies about alteration MwA among children in motor abilities, our study confirmed these difficulties and the efficacy of a specific software training, suggesting a new rehabilitative proposal in childhood.
Collapse
Affiliation(s)
- Francesco Precenzano
- Clinic of Child and Adolescent Neuropsychiatry, Headache Center for Children and Adolescent. Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania Luigi Vanvitelli
| | - Maria Ruberto
- Department of Medical-Surgical and Dental Specialties, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - Lucia Parisi
- Department of Psychological, Pedagogical and Educational Sciences
| | - Margherita Salerno
- Sciences for Mother and Child Health Promotion, University of Palermo, Palermo
| | - Agata Maltese
- Department of Psychological, Pedagogical and Educational Sciences
| | - Beatrice Gallai
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia
| | | | | | | | - Michele Roccella
- Department of Psychological, Pedagogical and Educational Sciences
| |
Collapse
|