1
|
Nath DK, Lee Y. Exploring the multifaceted functions of APPL in metabolism and memory using Drosophila melanogaster. Mol Cells 2024; 48:100163. [PMID: 39603510 PMCID: PMC11697555 DOI: 10.1016/j.mocell.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Amyloid precursor protein (APP) is a single-pass transmembrane protein abundantly expressed in the central nervous system and implicated in familial Alzheimer's disease, a progressive neurodegenerative disorder that impairs memory. Here, we investigated the role of amyloid precursor protein-like (APPL) using the model organism Drosophila melanogaster. In this study, Appl null mutants exhibited a reduced lifespan under normal conditions and increased triglyceride levels, which were mitigated by metformin treatment. Additionally, taste-associative memory impairment in Appld mutants suggested APPL's role in memory formation, which was restored by curcumin supplementation. The Appld mutants also displayed reduced climbing ability, which was improved by supplementation with vitamins C (ascorbic acid) and B2 (riboflavin). These findings suggest that APPL is involved in metabolic regulation, cognition, climbing activity, and aging in Drosophila melanogaster.
Collapse
Affiliation(s)
- Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
2
|
Zhang B, Hou S, Tang J. Riboflavin Deficiency and Apoptosis: A Review. J Nutr 2024:S0022-3166(24)01131-3. [PMID: 39510506 DOI: 10.1016/j.tjnut.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Riboflavin, commonly known as vitamin B2, is an essential micronutrient critical for the function of flavoproteins, which utilize flavin mononucleotide and flavin adenine dinucleotide as cofactors in energy metabolism, lipid metabolism, redox regulation, and protein folding. Nutritional riboflavin deficiency (RD) has previously been observed in humans and animals, leading to adverse outcomes such as growth retardation, increased mortality, and liver damage, which may be attributed to apoptosis. Although such deficiencies are now uncommon because of improved living standards, certain high-risk groups (e.g. those with chronic diseases, the elderly, and pregnant) have increased riboflavin demands, making them vulnerable to physiological RD associated with apoptosis. Understanding the pathways through which RD induces apoptosis, including mitochondrial dysfunction, endoplasmic reticulum stress, and reactive oxygen species, is essential for grasping its broader health impacts. Additionally, this deficiency disrupts fatty acid metabolism, potentially resulting in lipotoxic apoptosis. Despite its significance, RD-induced apoptosis remains underexplored in the literature. Therefore, this review will discuss the roles of redox imbalance, mitochondrial dysfunction, endoplasmic reticulum stress, and lipotoxicity in apoptosis regulation because of RD, aiming to highlight its importance for improving riboflavin nutrition and overall health.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Zhang B, Gao K, Cao J, Xing G, Ji Z, Li Z, Li Y, Keijer J, Xie M, Zhou Z, Hou S, Tang J. Maternal riboflavin deficiency causes embryonic defects by activating ER stress-induced hepatocyte apoptosis pathway. Free Radic Biol Med 2024; 224:418-435. [PMID: 39241988 DOI: 10.1016/j.freeradbiomed.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Riboflavin deficiency (RD) induces liver damage, abnormal embryonic development, and high mortality. We hypothesized that the phenotype could be rescued by inhibiting ER stress. The objectives of the present study were to investigate the underlying molecular mechanisms of RD-induced embryonic defects using in vitro and in vivo models. Primary duck embryonic hepatocytes were treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, and cultured in RD medium and riboflavin-sufficient (CON) medium for 8 days. Laying ducks (n = 20 cages/diet, 1 bird/cage) were fed an RD diet or CON diet for 14 wk, and the eggs were collected for hatching. At day 7 of incubation, the fertilized RD eggs were injected with or without 4-PBA into the yolk. RD decreased cell number and cell viability compared to the CON group, induced oxidative stress and apoptosis in primary duck embryonic hepatocytes. However, after being treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, the apoptosis rate in RD hepatocytes decreased by 60.6 % and 86.1 %, respectively, being equal to the CON. These results indicated that RD-induced hepatocyte apoptosis is mediated by ER stress and the CHOP pathway. In vivo, RD embryos showed low hatchability, abnormal development, liver damage, ER stress, and apoptosis compared to the CON group. However, 4-PBA administration, as a model of ER stress inhibition, substantially restored embryonic development and alleviated liver damage in the RD group, including ER stress and apoptosis. Notably, hatchability in the RD group increased from 21.7 % to 72.7 % after 4-PBA treatment, though it remained less than the CON group (87.7 %). These results implicated ER stress-CHOP-apoptosis pathway as molecular mechanisms underlying RD-induced abnormal embryonic development and death, this target with potential for therapy or intervention.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Kexin Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junting Cao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guangnan Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanqing Ji
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhinan Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yating Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - Ming Xie
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jing Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Dricot CEMK, Erreygers I, Cauwenberghs E, De Paz J, Spacova I, Verhoeven V, Ahannach S, Lebeer S. Riboflavin for women's health and emerging microbiome strategies. NPJ Biofilms Microbiomes 2024; 10:107. [PMID: 39420006 PMCID: PMC11486906 DOI: 10.1038/s41522-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
Collapse
Affiliation(s)
- Caroline E M K Dricot
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Isabel Erreygers
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline Cauwenberghs
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jocelyn De Paz
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
He L, Li M, Zhang Y, Li Q, Fang S, Chen G, Xu X. Neuroinflammation Plays a Potential Role in the Medulla Oblongata After Moderate Traumatic Brain Injury in Mice as Revealed by Nontargeted Metabonomics Analysis. J Neurotrauma 2024; 41:e2026-e2038. [PMID: 38695184 DOI: 10.1089/neu.2023.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Moderate traumatic brain injury (mTBI) involves a series of complex pathophysiological processes in not only the area in direct contact with mechanical violence but also in other brain regions far from the injury site, which may be important factors influencing subsequent neurological dysfunction or death. The medulla oblongata (MO) is a key area for the maintenance of basic respiratory and circulatory functions, whereas the pathophysiological processes after mTBI have rarely drawn the attention of researchers. In this study, we established a closed-head cortical contusion injury model, identified 6 different time points that covered the acute, subacute, and chronic phases, and then used nontargeted metabolomics to identify and analyze the changes in differential metabolites (DMs) and metabolic pathways in the MO region. Our results showed that the metabolic profile of the MO region underwent specific changes over time: harmaline, riboflavin, and dephospho-coenzyme A were identified as the key DMs and play important roles in reducing inflammation, enhancing antioxidation, and maintaining homeostasis. Choline and glycerophospholipid metabolism was identified as the key pathway related to the changes in MO metabolism at different phases. In addition, we confirmed increases in the levels of inflammatory factors and the activation of astrocytes and microglia by Western blot and immunofluorescence staining, and these findings were consistent with the nontargeted metabolomic results. These findings suggest that neuroinflammation plays a central role in MO neuropathology after mTBI and provide new insights into the complex pathophysiologic mechanisms involved after mTBI.
Collapse
Affiliation(s)
- Liangchao He
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Mingming Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Yonghao Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Shiyong Fang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Guang Chen
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
6
|
Aragão MÂ, Pires L, Santos-Buelga C, Barros L, Calhelha RC. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024; 13:2255. [PMID: 39063339 PMCID: PMC11276209 DOI: 10.3390/foods13142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Since the early twentieth century, research on vitamins has revealed their therapeutic potential beyond their role as essential micronutrients. Riboflavin, known as vitamin B2, stands out for its unique characteristics. Despite numerous studies, riboflavin remains vital, with implications for human health. Abundantly present in various foods, riboflavin acts as a coenzyme in numerous enzymatic reactions crucial for human metabolism. Its role in energy production, erythrocyte synthesis, and vitamin metabolism underscores its importance in maintaining homeostasis. The impact of riboflavin extends to neurological function, skin health, and cardiovascular well-being, with adequate levels linked to reduced risks of various ailments. However, inadequate intake or physiological stress can lead to deficiency, a condition that poses serious health risks, including severe complications. This underscores the importance of maintaining sufficient levels of riboflavin for general wellness. The essential role of riboflavin in immune function further emphasises its significance for human health and vitality. This paper examines the diverse effects of riboflavin on health and stresses the importance of maintaining sufficient levels for overall well-being.
Collapse
Affiliation(s)
- M. Ângela Aragão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Zhang K, Cai T, Han Y, Gu Z, Hu R, Hou Z, Yu X, Gao Y, Gao M, Liu T, Zhang Y. Association between dietary riboflavin intake and cognitive decline in older adults: a cross-sectional analysis. Nutr Neurosci 2024:1-10. [PMID: 39012764 DOI: 10.1080/1028415x.2024.2375171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND Research exploring the link between dietary riboflavin intake and cognitive decline in this demographic is limited. Our aim was to examine the association between riboflavin intake levels and cognitive decline. METHODS The National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2014 were utilized in this cross-sectional analysis. The Consortium to Establish a Registry for Alzheimer's Disease test Word Learning delayed recall trial (DR), Digit Symbol Substitution Test (DSST), Animal Fluency Test(AFT) and Z test were used to evaluate cognitive performance. Multivariate logistic regression, restricted cubic spline and subgroup analysis were performed to evaluate the associations between riboflavin intake and cognitive decline. RESULTS The study included a total of 2255 patients, with 47.9% being male. The incidence of cognitive decline was 23.8%. After adjusting for all selected covariates, we found that high riboflavin intake was associated with a lower risk of cognitive impairment in adults in the United States. When riboflavin intake was used as a Categorical variable, compared to those with the lowest intake, the odds ratio (OR) of individuals with the highest riboflavin intake for DR test, AFT test, DSST test and Z test were 0.73 (95% CI: 0.53~1), 0.68(95% CI: 0.49-0.96),0.53(95% CI: 0.37-0.77) and 0.56(95% CI: 0.39-0.8). The study also found an L-shaped association between riboflavin intake and cognitive decline, with an inflection point at approximately 2.984 mg/d. CONCLUSIONS Our cross-sectional study in a nationwide sample of American old adults suggests that dietary riboflavin intake was negative associated with cognitive decline.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department of Jilin University Second Hospital, Changchun, People's Republic of China
| | - Tianyi Cai
- Cardiovascular Surgery Department of Jilin University Second Hospital, Changchun, People's Republic of China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhaoxuan Gu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Rui Hu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Zhengyan Hou
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Xiaoqi Yu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Yafang Gao
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tianzhou Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yixin Zhang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
8
|
Panpetch J, Kiatrungrit K, Tuntipopipat S, Tangphatsornruang S, Mhuantong W, Chongviriyaphan N. Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder. J Pers Med 2024; 14:739. [PMID: 39063993 PMCID: PMC11277806 DOI: 10.3390/jpm14070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder potentially linked to gut dysbiosis. This comparative cross-sectional study profiled the gut microbiota in 24 treatment-naïve Thai children diagnosed with ADHD and 24 healthy ones matched by age and gender (median age: 7 years). Fecal microbial compositions were genetically analyzed using 16s rRNA gene amplicon sequencing. The study findings indicated no statistically significant differences in microbial diversity between groups, although Firmicutes and Actinobacteria appeared dominant in both groups. Moreover, ADHD patients exhibited enrichment in Alloprevotella, CAG-352, Succinivibrio, and Acidaminococcus genera, while healthy controls had higher levels of Megamonas, Enterobacter, Eubacterium hallii, and Negativibacillus genera. Spearman correlation analysis demonstrated a significant positive association between CAG-352 and inattention and hyperactivity/impulsivity scores, whereas the Eubacterium hallii group and Megamonas exhibited negative correlations with these symptomatology domains. Beta-carotene intake was associated with the Eubacterium hallii group and Succinivibrio: likewise, vitamin B2 intake was associated with Alloprevotella. Additional research should aim to elucidate the underlying mechanisms influencing clinical biomarkers that signify alterations in specific gut microbiome profiles linked to ADHD.
Collapse
Affiliation(s)
- Jittraporn Panpetch
- Doctoral Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | - Komsan Kiatrungrit
- Department of Psychiatry, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.M.)
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.M.)
| | - Nalinee Chongviriyaphan
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Ulmann N, Hioe J, Touraud D, Horinek D, Kunz W. Self-association as a solubility limiting factor of riboflavin in aqueous media. Phys Chem Chem Phys 2024; 26:18930-18942. [PMID: 38952212 DOI: 10.1039/d4cp02074j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Single crystal X-ray diffraction analysis of needle shaped riboflavin (RF) crystals revealed π-stacking of RF's isoalloxazine units (distance: 3.643-3.313 Å) with syn-orientated ribityl chains. In line with this, classical molecular dynamics (MD) (400 ns) using an isobaric-isothermal (NPT) ensemble of eight RF in a water box (〈V〉 ∼ 508.62 nm3, 〈p〉 = 1.11 bar) revealed anti-aligned aggregation of RF in water (COM-distance: 4 Å). Comparing umbrella sampling for the separation of two RF molecules to the separation of two lumichrome molecules, the similar mean potential force for the separation of RF and lumichrome (22.8 kJ mol-1; 24.4 kJ mol-1) proved dispersive interactions as the origin of RF's aggregation. Though stacking of RF is the major water-solubility limiting factor, the conformation of RF's ribityl chain may alter the solubility in water. Both, MD (in water) and COSMO-RS (in water continuum) predicted that conformations of RF with an extended ribityl chain are thermodynamically preferred over any conformations with internal hydrogen bonds between hydroxyl groups and nitrogen/oxygen atoms of the pyrimidine moiety of the flavin ring. Interestingly, COSMO-RS predicted the solubility of the extended conformation to be significantly lower than the latter leading to the very low average solubility of RF. Nuclear Overhauser effect measurements (NOESY) of the structurally related sodium riboflavin 5'-monophosphate (RF-PO4) in deuterium oxide confirmed π-stacking of the isoalloxazine rings. In conformity with the 350 times higher water-solubility of RF-PO4, NOESY also indicated a contorted conformation of the ribityl phosphate chain, whereas, for RF, indications for a contorted chain were not observed.
Collapse
Affiliation(s)
- Nadja Ulmann
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | - Johnny Hioe
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
10
|
Ross SM. Mitochondria Dysfunction and Chronic Fatigue Syndrome. Holist Nurs Pract 2024; 38:245-247. [PMID: 38900008 DOI: 10.1097/hnp.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- Stephanie Maxine Ross
- Author Affiliations: Integrative Health Practitioner; served as the founding Director of Dept. of Complementary and Integrative Health, Drexel University, College of Nursing and Health Professions, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Nishiwaki H, Ueyama J, Ito M, Hamaguchi T, Takimoto K, Maeda T, Kashihara K, Tsuboi Y, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Meta-analysis of shotgun sequencing of gut microbiota in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:106. [PMID: 38773112 PMCID: PMC11109112 DOI: 10.1038/s41531-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
We aimed to identify gut microbial features in Parkinson's disease (PD) across countries by meta-analyzing our fecal shotgun sequencing dataset of 94 PD patients and 73 controls in Japan with five previously reported datasets from USA, Germany, China1, China2, and Taiwan. GC-MS and LC-MS/MS assays were established to quantify fecal short-chain fatty acids (SCFAs) and fecal polyamines, respectively. α-Diversity was increased in PD across six datasets. Taxonomic analysis showed that species Akkermansia muciniphila was increased in PD, while species Roseburia intestinalis and Faecalibacterium prausnitzii were decreased in PD. Pathway analysis showed that genes in the biosyntheses of riboflavin and biotin were markedly decreased in PD after adjusting for confounding factors. Five out of six categories in carbohydrate-active enzymes (CAZymes) were decreased in PD. Metabolomic analysis of our fecal samples revealed that fecal SCFAs and polyamines were significantly decreased in PD. Genes in the riboflavin and biotin biosyntheses were positively correlated with the fecal concentrations of SCFAs and polyamines. Bacteria that accounted for the decreased riboflavin biosynthesis in Japan, the USA, and Germany were different from those in China1, China2, and Taiwan. Similarly, different bacteria accounted for decreased biotin biosynthesis in the two country groups. We postulate that decreased SCFAs and polyamines reduce the intestinal mucus layer, which subsequently facilitates the formation of abnormal α-synuclein fibrils in the intestinal neural plexus in PD, and also cause neuroinflammation in PD.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiichi Takimoto
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Occupational Therapy, Chubu University College of Life and Health Sciences, Kasugai, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nagoya, Japan.
| |
Collapse
|
12
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
13
|
Savic-Hartwig M, Kerlikowsky F, van de Flierdt E, Hahn A, Schuchardt JP. A micronutrient supplement modulates homocysteine levels regardless of vitamin B biostatus in elderly subjects. INT J VITAM NUTR RES 2024; 94:120-132. [PMID: 36715360 DOI: 10.1024/0300-9831/a000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevated homocysteine (Hcy) levels (≥15 μmol/L) in the elderly are frequently associated with a higher risk of cardiovascular disease and cognitive decline. Several studies have already shown an Hcy-lowering effect of B vitamin supplementation in cohorts deficient in these nutrients. The aim of this randomized, double-blinded 12-week intervention study was to investigate whether Hcy levels in healthy elderly subjects (75.4±4.5 years, n=133) could be lowered with a micronutrient supplement (i.e., 400 μg folic acid, 100 μg cobalamin). Difference in mean initial Hcy levels between intervention (17.6±7.1 μmol/L, n=65) and placebo group (18.9±6.1 μmol/L, n=68) was not significant. The prevalence of cobalamin and folate deficiency in the total study population was low: 27% had serum-cobalamin levels ≤150 pmol/L, 12% holo-transcobalamin (Holo-TC) levels ≤50 pmol/L, 13% low cobalamin status using the aggregated cobalamin marker 4cB12 and 10% red blood cell (RBC) folate ≤570 nmol/L. Nevertheless, the treated subjects still showed improved cobalamin and folate biostatus (serum cobalamin Δt12-t0: 63±48 pmol/L; Holo-TC Δt12-t0: 17±19 pmol/L; RBC folate Δt12-t0: 326±253 nmol/L) and Hcy levels (Δt12-t0: -3.6±5.7 μmol/L). The effects were statistically significant compared to the placebo group with p=0.005 (serum cobalamin), p=0.021 (Holo-TC), p=0.014 (RBC-folate) and p<0.001 (Hcy). The Hcy-lowering effect was dependent on the initial Hcy levels (p<0.001). Our findings suggest that elevated Hcy levels in elderly subjects can be lowered regardless of the initial cobalamin and folate biostatus.
Collapse
Affiliation(s)
- Marija Savic-Hartwig
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | - Felix Kerlikowsky
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | - Edda van de Flierdt
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | | |
Collapse
|
14
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
15
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Li H, Krall JR, Frankenfeld C, Slavin M. Nutritional intake of riboflavin (vitamin B2) and migraine: a cross-sectional analysis of the National Health and Nutrition Examination Survey (NHANES) 2001-2004. Nutr Neurosci 2023; 26:1068-1077. [PMID: 36175363 DOI: 10.1080/1028415x.2022.2126760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Clinical studies demonstrate that supplemental riboflavin is an efficacious and low risk prophylactic treatment for migraine. However, background riboflavin intake of adults with migraine from nutritional sources has not been evaluated. This study aimed to evaluate riboflavin consumption of adults with migraine in the United States, and further investigate the relationship between nutritional riboflavin consumption and the prevalence of migraine among adults. METHODS This cross-sectional secondary analysis included 3439 participants ages 20-50 years old in the National Health and Nutrition Examination Survey from 2001 to 2004. Presence of migraine in the past three months was self-reported. Riboflavin intake was determined from one 24-hour recall interview. Odds ratios and 95% confidence intervals were calculated for riboflavin intake quartiles using an adjusted logistic regression model. Statistical significance was determined using an adjusted Wald test. RESULTS Results showed that mean dietary consumption of riboflavin fulfilled the Recommended Dietary Allowance for migraine and control groups. Dietary riboflavin intake was associated with the odds of migraine (pWald = 0.002), but no association was found for supplemental or total riboflavin consumption (pWald = 0.479 and 0.136). When stratified by gender, there was no association of dietary riboflavin with migraine in males (pWald = 0.423), but an association was observed in females (pWald = 0.014). DISCUSSION The RDA value for riboflavin was not relevant for assessing odds of migraine; however, differing odds of migraine were detected across dietary riboflavin consumption groups at levels above the RDA. Future riboflavin supplementation trials for migraine prophylaxis should consider measuring background dietary intake.
Collapse
Affiliation(s)
- Huilun Li
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA
| | - Jenna R Krall
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Cara Frankenfeld
- Public Health Program, University of Puget Sound, Tacoma, WA, USA
| | - Margaret Slavin
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA
| |
Collapse
|
17
|
Spekker E, Nagy-Grócz G. All Roads Lead to the Gut: The Importance of the Microbiota and Diet in Migraine. Neurol Int 2023; 15:1174-1190. [PMID: 37755364 PMCID: PMC10536453 DOI: 10.3390/neurolint15030073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Migraine, a prevalent neurological condition and the third most common disease globally, places a significant economic burden on society. Despite extensive research efforts, the precise underlying mechanism of the disease remains incompletely comprehended. Nevertheless, it is established that the activation and sensitization of the trigeminal system are crucial during migraine attacks, and specific substances have been recognized for their distinct involvement in the pathomechanism of migraine. Recently, an expanding body of data indicates that migraine attacks can be prevented and treated through dietary means. It is important to highlight that the various diets available pose risks for patients without professional guidance. This comprehensive overview explores the connection between migraine, the gut microbiome, and gastrointestinal disorders. It provides insight into migraine-triggering foods, and discusses potential diets to help reduce the frequency and severity of migraine attacks. Additionally, it delves into the benefits of using pre- and probiotics as adjunctive therapy in migraine treatment.
Collapse
Affiliation(s)
| | - Gábor Nagy-Grócz
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
18
|
Martami F, Holton KF. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023; 15:3952. [PMID: 37764736 PMCID: PMC10537717 DOI: 10.3390/nu15183952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate's involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate's role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
Collapse
Affiliation(s)
- Fahimeh Martami
- Department of Health Studies, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA;
- Department of Neuroscience, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
19
|
Plascencia-Villa G, Perry G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:1628. [PMID: 37627623 PMCID: PMC10451948 DOI: 10.3390/antiox12081628] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder that progressively undermines memory and thinking skills by affecting the hippocampus and entorhinal cortex. The main histopathological hallmarks of AD are the presence of abnormal protein aggregates (Aβ and tau), synaptic dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. However, oxidative stress or oxidative damage is also evident and commonly overlooked or considered a consequence of the advancement of dementia symptoms. The control or onset of oxidative stress is linked to the activity of the amyloid-β peptide, which may serve as both antioxidant and pro-oxidant molecules. Furthermore, oxidative stress is correlated with oxidative damage to proteins, nucleic acids, and lipids in vulnerable cell populations, which ultimately lead to neuronal death through different molecular mechanisms. By recognizing oxidative stress as an integral feature of AD, alternative therapeutic or preventive interventions are developed and tested as potential or complementary therapies for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA;
| | | |
Collapse
|
20
|
Cesur MF, Basile A, Patil KR, Çakır T. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease. Life Sci Alliance 2023; 6:e202201695. [PMID: 37236669 PMCID: PMC10215973 DOI: 10.26508/lsa.202201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tunahan Çakır
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
21
|
Wang F, Gu YH, Guo J, Bao Y, Qiu Z, Zheng P, Ushijima M, Matsuura M, Zhang T. Polymorphisms of Placental Iodothyronine Deiodinase Genes in a Rural Area of Northern China with High Prevalence of Neural Tube Defects. Hum Hered 2023; 88:29-37. [PMID: 36944328 DOI: 10.1159/000530112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION We have reported that high total homocysteine and the coexistence of inadequate thyroid hormones in maternal serum increase the risk of fetal neural tube defects (NTDs). Placental iodothyronine deiodinases (DIOs: DIO1, DIO2, and DIO3) play a role in regulating the conversions between different forms of maternal thyroid hormones. This study hypothesized that single nucleotide polymorphisms (SNPs) in placental DIOs genes could be related to NTDs. METHODS We performed a case-control study from 2007 to 2009 that included pregnant women from Lüliang, Shanxi Province, China. Nine distinct SNPs in DIOs genes were analyzed, and placental samples were obtained from 83 pregnant women with NTD fetuses and 90 pregnant women with normal fetuses. The nine SNPs were analyzed using the Cochran-Armitage test and the Fisher's exact test. RESULTS There were no statistically significant differences between case and control in the nine SNPs of DIOs (p > 0.05). CONCLUSIONS The results of this study suggested that SNPs of DIO genes in the placenta among pregnant women have no statistically significant difference between the two groups, suggesting that other factors might be involved in metabolism of maternal thyroid hormone provided to fetuses, such as epigenetic modification of methylation and homocysteinylation and genomic imprinting in the placenta. Further functional studies on placenta samples are necessary.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China,
| | - Yan-Hong Gu
- Japan China Care Association, Tokyo, Japan
- Department of Hygiene and Public Health, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - YiHua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - ZhiYong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ping Zheng
- Beijing FangShan District Maternal and Child Health Care Hospital, Beijing, China
| | - Masaru Ushijima
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
22
|
Zeng C, Mu Y, Cao W, Zhuang Q, Wang Y. Water-Soluble Photoluminescent Adenosine-Functionalized Gold Nanoclusters as Highly Sensitive and Selective Receptors for Riboflavin Detection in Rat Brain. Anal Chem 2023; 95:1671-1679. [PMID: 36594807 DOI: 10.1021/acs.analchem.2c04803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Simple, selective, and sensitive detection of cerebral riboflavin is of great significance due to the vital roles of riboflavin in physiological and pathological processes. In the work, water-soluble photoluminescent adenosine-functionalized gold nanoclusters (Ade-AuNCs) are exploited as highly sensitive and selective receptors for cerebral riboflavin detection. The Ade-AuNCs are prepared under aqueous conditions by the one-step "synthesis-functionalization integration" strategy, using chloroauric acid as gold precursors and adenosine as outer-shell ligands. During the Ade-AuNCs synthesis process, adenosine and ascorbic acid are demonstrated to respectively serve as a stabilizer and a reductant, and citrate buffer plays multiple roles including a pH regulator, reductant, and complexing agent. The added riboflavin causes photoluminescence quenching of Ade-AuNCs, and the quenching photoluminescence is applied for well quantifying riboflavin in the range of 0.005-0.1 nM with a detection limit of 0.002 nM. The detailed analytical characterizations reveal that the photoluminescence quenching results from the static photoinduced electron transfer process from the surface functional Ade-AuNCs to riboflavin and the strong affinity between Ade-AuNCs and riboflavin. Moreover, the Ade-AuNC-based sensor exhibits a high selectivity for riboflavin over metal ions, anions, amino acids, and biological substances that possibly exist in the rat brain. Finally, by coupling the microdialysis technique, the proposed sensor is successfully applied to detect riboflavin in living rat brain microdialysates with a basal value of 13.1 ± 2.5 nM (n = 3), and the results are comparable well with those from a reference high-performance liquid chromatography method.
Collapse
Affiliation(s)
- Chao Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Yaxin Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Wanxin Cao
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing100191, China
| | - Qianfen Zhuang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| | - Yong Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang330031, China
| |
Collapse
|
23
|
Blaylock RL. The biochemical basis of neurodegenerative disease: The role of immunoexcitoxicity and ways to possibly attenuate it. Surg Neurol Int 2023; 14:141. [PMID: 37151454 PMCID: PMC10159298 DOI: 10.25259/sni_250_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
There is growing evidence that inflammation secondary to immune activation is intimately connected to excitotoxicity. We now know that most peripheral tissues contain fully operational glutamate receptors. While most of the available research deals with excitotoxicity in central nervous system (CNS) tissues, this is no longer true. Even plant has been found to contain glutamate receptors. Most of the immune cells, including mask cells, contain glutamate receptors. The receptors are altered by inflammation, both chemokine and cytokines. A host of new diseases have been found that are caused by immunity to certain glutamate receptors, as we see with Rasmussen's encephalitis. In this paper, I try to explain this connection and possible ways to reduce or even stop the reaction.
Collapse
Affiliation(s)
- Russell L. Blaylock
- Corresponding author: Russell L. Blaylock, M.D. 609 Old Natchez Trace Canton, MS. Retired Neurosurgeon, Department of Neurosurgery, Theoretical Neuroscience Research, LLC, Ridgeland, Mississippi, United States.
| |
Collapse
|
24
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Fatima MT, Bhat AA, Nisar S, Fakhro KA, Al-Shabeeb Akil AS. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2022; 9:e12698. [PMID: 36632095 PMCID: PMC9826852 DOI: 10.1016/j.heliyon.2022.e12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Healthy diet is vital to cellular health. The human body succumbs to numerous diseases which afflict severe economic and psychological burdens on the patient and family. Oxidative stress is a possible crucial regulator of various pathologies, including type 2 diabetes and neurodegenerative diseases. It generates reactive oxygen species (ROS) that trigger the dysregulation of essential cellular functions, ultimately affecting cellular health and homeostasis. However, lower levels of ROS can be advantageous and are implicated in a variety of signaling pathways. Due to this dichotomy, the terms oxidative "eustress," which refers to a good oxidative event, and "distress," which can be hazardous, have developed. ROS affects multiple signaling pathways, leading to compromised insulin secretion, insulin resistance, and β-cell dysfunction in diabetes. ROS is also associated with increased mitochondrial dysfunction and neuroinflammation, aggravating neurodegenerative conditions in the body, particularly with age. Treatment includes drugs/therapies often associated with dependence, side effects including non-selectivity, and possible toxicity, particularly in the long run. It is imperative to explore alternative medicines as an adjunct therapy, utilizing natural remedies/resources to avoid all the possible harms. Antioxidants are vital components of our body that fight disease by reducing oxidative stress or nullifying the excess toxic free radicals produced under various pathological conditions. In this review, we focus on the antioxidant effects of components of dietary foods such as tea, coffee, wine, oils, and honey and the role and mechanism of action of these antioxidants in alleviating type 2 diabetes and neurodegenerative disorders. We aim to provide information about possible alternatives to drug treatments used alone or combined to reduce drug intake and encourage the consumption of natural ingredients at doses adequate to promote health and combat pathologies while reducing unwanted risks and side effects.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmed Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid Adnan Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Doha, Qatar,Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar,Department of Human Genetics, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ammira Sarah Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar,Corresponding author.
| |
Collapse
|
26
|
Panja S, Siegel D, Camandola S, de Cabo R, Ross D, Mallela K. FAD-deficient P187S mutation of NAD(P)H:quinone oxidoreductase 1 (NQO1*2) binds and accelerates β-amyloid aggregation. Biosci Rep 2022; 42:BSR20220643. [PMID: 36281795 PMCID: PMC9664297 DOI: 10.1042/bsr20220643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most prominent neurodegenerative diseases. Results from animal and cellular models suggest that FAD-deficient forms of NAD(P)H quinone oxidoreductase 1 (NQO1) may accelerate the aggregation of Alzheimer's amyloid-β peptide (Aβ1-42). Here, we examined in vitro whether NQO1 and its FAD-deficient P187S mutation (NQO1*2) directly interact with Aβ1-42 and modify its rate of aggregation. When monitored using the fluorescence of either noncovalent thioflavin T (ThT) or HiLyte Fluor 647 (HF647) dye covalently attached to the Aβ1-42 peptide, the aggregation kinetics of Aβ1-42 were markedly more rapid in the presence of NQO1*2 than the wild-type (WT) NQO1. Experiments using apo-NQO1 indicate that this increase is linked to the inability of NQO1*2 to bind to FAD. Furthermore, dicoumarol, an NQO1 inhibitor that binds near the FAD-binding site and stabilizes NQO1*2, markedly decreased the aggregation kinetics of Aβ1-42. Imaging flow cytometry confirmed in-vitro coaggregation of NQO1 isoforms and Aβ1-42. Aβ1-42 alone forms rod-shaped fibril structures while in the presence of NQO1 isoforms, Aβ1-42 is incorporated in the middle of larger globular protein aggregates surrounded by NQO1 molecules. Isothermal titration calorimetry (ITC) analysis indicates that Aβ1-42 interacts with NQO1 isoforms with a specific stoichiometry through a hydrophobic interaction with positive enthalpy and entropy changes. These data define the kinetics, mechanism, and shape of coaggregates of Aβ1-42 and NQO1 isoforms and the potential relevance of FAD-deficient forms of NQO1 for amyloid aggregation diseases.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, MS C238-V20, Aurora, CO 80045, U.S.A
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, MS C238-V20, Aurora, CO 80045, U.S.A
| | - Simonetta Camandola
- Experimental Gerontology Section, National Institute of Aging, National Institutes of Health, Baltimore MD, U.S.A
| | - Rafael de Cabo
- Experimental Gerontology Section, National Institute of Aging, National Institutes of Health, Baltimore MD, U.S.A
| | - David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, MS C238-V20, Aurora, CO 80045, U.S.A
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, MS C238-V20, Aurora, CO 80045, U.S.A
| |
Collapse
|
27
|
Ismail OI, Rashed NA. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci Rep 2022; 12:19346. [PMID: 36369258 PMCID: PMC9652251 DOI: 10.1038/s41598-022-23894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Tartrazine is a synthetic yellowish dye considered one of the most common food colorants. Extensive usage of tartrazine in humans led to harmful health impacts. To investigate the impact of tartrazine administration on the cerebellum and to assess the potential role of riboflavin co-administration in the adult male albino rat. Four groups of adult albino rats were included in this study. Group I was supplied with distilled water. Group II was supplied tartrazine orally at a dose of 7.5 mg/kg BW dissolved in distilled water. Group III was supplied with tartrazine at the same previously mentioned dose and riboflavin orally at a dose of 25 mg/kg BW dissolved in distilled water. Group IV was supplied with riboflavin at the same previously mentioned dose. The study was conducted for 30 days then rats were sacrificed, weighted and the cerebella extracted and handled for light, ultrastructural and immunohistochemical evaluation. It was found with tartrazine treatment focal areas of Purkinje cell loss leaving empty spaces, a broad spread of neuronal affection to the degree of the disappearance of some of the granular cells, reduced the thickness of the molecular and granular layers, and strong positive GFAP immunoreactions. With riboflavin coadministration restored continuous Purkinje layer with normal appeared Purkinje cells, but some cells were still shrunken and vacuolated as well as the molecular and granular cell layers appeared normal. Tartrazine had deleterious effects on the cerebellar cytoarchitecture, and riboflavin co-administration alleviated these neurotoxic effects.
Collapse
Affiliation(s)
- Omnia I Ismail
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Noha A Rashed
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
28
|
Zhang B, Dong W, Ma Z, Duan S, Han R, Lv Z, Liu X, Mao Y. Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling gut microbiota and regulating host metabolism. CNS Neurosci Ther 2022; 29:239-255. [PMID: 36261870 PMCID: PMC9804075 DOI: 10.1111/cns.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS There is growing evidence that the gut microbiota plays a significant part in the pathophysiology of chronic stress. The dysbiosis of the gut microbiota closely relates to dysregulation of microbiota-host cometabolism. Composition changes in the gut microbiota related to perturbations in metabolic profiles are vital risk factors for disease development. Hyperbaric oxygen therapy is commonly applied as an alternative or primary therapy for various diseases. Therefore, a metabolic and gut bacteria perspective is essential to uncover possible mechanisms of chronic stress and the therapeutic effect of hyperbaric oxygenation. We determined that there were significantly disturbed metabolites and disordered gut microbiota between control and chronic stress group. The study aims to offer further information on the interactions between host metabolism, gut microbiota, and chronic stress. METHODS At present, chronic unpredictable mild stress is considered the most widespread method of modeling chronic stress in animals, so we used a chronic unpredictable mild stress mouse model to characterize changes in the metabolome and microbiome of depressed mice by combining 16S rRNA gene sequencing and UHPLC-MS/MS-based metabolomics. Pearson's correlation-based clustering analysis was performed with above metabolomics and fecal microbiome data to determine gut microbiota-associated metabolites. RESULTS We found that 18 metabolites showed a significant correlation with campylobacterota. Campylobacterota associated metabolites were significantly enriched mainly in the d-glutamate and d-glutamine metabolism. Hyperoxia treatment may improve depression-like behaviors in chronic stress model mice through regulating the disrupted metabolites. CONCLUSIONS Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling Campylobacterota associated metabolites.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wenwen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zhixin Ma
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ruina Han
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinru Liu
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
29
|
Liu L, Li W, Wang L, Gong P, Lyu T, Liu D, Zhang Y, Guo Y, Liu X, Tang M, Hu H, Liu C, Li B. Proteomic and metabolomic profiling of acupuncture for migraine reveals a correlative link via energy metabolism. Front Neurosci 2022; 16:1013328. [PMID: 36248663 PMCID: PMC9557737 DOI: 10.3389/fnins.2022.1013328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a neurovascular disease with a high disability rate. Acupuncture treatment has emerged as a safe and viable alternative prophylactic therapy that can effectively alleviate the duration and frequency of migraine attacks. However, the therapeutic mechanisms underlying the effects of acupuncture are yet to be systematically elucidated. In this study, we enrolled female patients with migraine without aura (n = 20) and healthy controls (n = 10). Patients received acupuncture treatment on DU20, DU24, bilateral GB13, GB8, and GB20, applied three times per week over the course of 4 weeks for 12 sessions in total. Blood samples were collected from the median cubital vein before and after acupuncture treatment. Proteomic and metabolomic profiling was performed using liquid chromatography-mass spectrometry to determine the characteristics of differentially expressed molecules and expression of their corresponding biological pathways as well as to elucidate the pathogenesis of migraine and the biological effects underlying the treatment of migraine with acupuncture. Proteomic and metabolomic profiling of plasma samples from patients with migraine without aura before and after acupuncture treatment revealed enrichment of immune-related pathway functions and the arginine synthesis pathway. Joint pathway analyses revealed significant enrichment of the pentose phosphate and glycolysis/gluconeogenesis pathways in patients with migraine. The glycolysis/gluconeogenesis and riboflavin metabolism pathways were significantly enriched after acupuncture treatment. The expression levels of various key proteins and metabolites, including α-D-glucose, flavin adenine dinucleotide, biliverdin reductase B, and L-glutamate, were significantly differentially expressed before and after acupuncture treatment in patients with migraine without aura. Treatment of migraine with acupuncture was associated with significant changes in key molecules and pathways, indicative of physiological changes in the trigeminovascular system, glutamate neurotoxicity, and other migraine-related physiological changes. Overall, our comprehensive analysis using proteomic and metabolomic profiling demonstrates that energy metabolism may serve as a key correlative link in the occurrence of migraine and the therapeutic effects of acupuncture treatment. Our findings may facilitate the identification of diagnostic and therapeutic modalities in the ongoing search for effective treatments for migraine attacks.
Collapse
Affiliation(s)
- Lu Liu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weizheng Li
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Linpeng Wang
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Pengyun Gong
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Tianli Lyu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dapeng Liu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Zhang
- Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan, China
| | - Yijie Guo
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Xiang Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Min Tang
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Hongke Hu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Chao Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- *Correspondence: Chao Liu,
| | - Bin Li
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Bin Li,
| |
Collapse
|
30
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
31
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
32
|
Perez Visñuk D, Teran MDM, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective Effect of Riboflavin Producing Lactic Acid Bacteria in Parkinsonian Models. Neurochem Res 2022; 47:1269-1279. [PMID: 35113305 DOI: 10.1007/s11064-021-03520-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammatory processes might contribute to the cascade of events leading Parkinson disease (PD); and vitamins such as riboflavin can exert protection on vulnerable neurons in neurodegenerative conditions. Previously, it was demonstrated that a mixture of lactic acid bacteria (including a riboflavin-producing strain) improved motor skills in a parkinsonian model. The aim of the present work was to investigate the neuroprotective potential of Lactiplantibacillus (L.) plantarum CRL2130, a riboflavin-producing strain in PD models. In vitro, N2a differentiated neurons were exposed the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or commercial riboflavin. In vivo, adult male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid, and received orally L. plantarum CRL2130, L. plantarum CRL725 (parent strain that produces low levels of riboflavin) or commercial vitamin. Results showed that when N2a cells were incubated with intracellular extract from L. plantarum CRL2130 maintained the viability, and significantly decreased the release of IL-6 and the formation of reactive oxygen species (ROS), all affected by MPP+. In vivo, the administration of L. plantarum CRL2130 attenuated motor deficits and prevented dopaminergic neuronal death. Decrease of pro-inflammatory cytokines and increase of IL-10 in both serum and brain were observed in samples from mice that received L. plantarum CRL2130 compared to MPTP control group (without treatment). In addition, these beneficial effects were similar or improved when compared with animals that received commercial riboflavin. In conclusion, L. plantarum CRL2130 showed a neuroprotective effect in both PD models through anti-oxidant/anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Daiana Perez Visñuk
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - María Del Milagro Teran
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
33
|
Brandley ET, Kirkland AE, Baron M, Baraniuk JN, Holton KF. The Effect of the Low Glutamate Diet on the Reduction of Psychiatric Symptoms in Veterans With Gulf War Illness: A Pilot Randomized-Controlled Trial. Front Psychiatry 2022; 13:926688. [PMID: 35795023 PMCID: PMC9251130 DOI: 10.3389/fpsyt.2022.926688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this pilot study was to examine the effects of the low glutamate diet on anxiety, post-traumatic stress disorder (PTSD), and depression in veterans with Gulf War Illness (GWI). The low glutamate diet removes dietary excitotoxins and increases consumption of micronutrients which are protective against glutamatergic excitotoxicity. This study was registered at ClinicalTrials.gov (NCT#03342482). Forty veterans with GWI completed psychiatric questionnaires at baseline and after 1-month following the low glutamate diet. Participants were then randomized into a double-blind, placebo-controlled crossover challenge with monosodium glutamate (MSG; a dietary excitotoxin) vs. placebo over three consecutive days per week, with assessments on day three. Data were analyzed across the full sample and with participants categorized by baseline symptom severity. Pre-post-dietary intervention change scores were analyzed with Wilcoxon signed-rank tests and paired sample t-tests across the full sample, and changes across symptom severity categories were analyzed using ANOVA. Crossover challenge results were analyzed with linear mixed modeling accounting for challenge material (MSG v. placebo), sequence (MSG/placebo v. placebo/MSG), period (challenge week 1 v. week 2), pre-diet baseline symptom severity category (minimal/mild, moderate, or severe), and the challenge material*symptom severity category interaction. A random effect of ID (sequence) was also included. All three measures showed significant improvement after 1 month on the diet, with significant differences between baseline severity categories. Individuals with severe psychological symptoms at baseline showed the most improvement after 1 month on the diet, while those with minimal/mild symptoms showed little to no change. Modeling results from the challenge period demonstrated a significant worsening of anxiety from MSG in only the most severe group, with no significant effects of MSG challenge on depression nor PTSD symptoms. These results suggest that the low glutamate diet may be an effective treatment for depression, anxiety, and PTSD, but that either (a) glutamate is only a direct cause of symptoms in anxiety, or (b) underlying nutrient intake may prevent negative psychiatric effects from glutamate exposure. Future, larger scale clinical trials are needed to confirm these findings and to further explore the potential influence of increased micronutrient intake on the improvements observed across anxiety, PTSD, and depression.
Collapse
Affiliation(s)
- Elizabeth T Brandley
- Department of Health Studies, American University, Washington, DC, United States
| | - Anna E Kirkland
- Medical University of South Carolina, Charleston, SC, United States
| | - Michael Baron
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC, United States.,Department of Neuroscience, American University, Washington, DC, United States.,Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
34
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Nutrients to Improve Mitochondrial Function to Reduce Brain Energy Deficit and Oxidative Stress in Migraine. Nutrients 2021; 13:nu13124433. [PMID: 34959985 PMCID: PMC8707228 DOI: 10.3390/nu13124433] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms of migraine pathogenesis are not completely clear, but 31P-nuclear magnetic resonance studies revealed brain energy deficit in migraineurs. As glycolysis is the main process of energy production in the brain, mitochondria may play an important role in migraine pathogenesis. Nutrition is an important aspect of migraine pathogenesis, as many migraineurs report food-related products as migraine triggers. Apart from approved anti-migraine drugs, many vitamins and supplements are considered in migraine prevention and therapy, but without strong supportive evidence. In this review, we summarize and update information about nutrients that may be important for mitochondrial functions, energy production, oxidative stress, and that are related to migraine. Additionally, we present a brief overview of caffeine and alcohol, as they are often reported to have ambiguous effects in migraineurs. The nutrients that can be considered to supplement the diet to prevent and/or ameliorate migraine are riboflavin, thiamine, magnesium ions, niacin, carnitine, coenzyme Q10, melatonin, lipoic acid, pyridoxine, folate, and cobalamin. They can supplement a normal, healthy diet, which should be adjusted to individual needs determined mainly by the physiological constitution of an organism. The intake of caffeine and alcohol should be fine-tuned to the history of their use, as withdrawal of these agents in regular users may become a migraine trigger.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
35
|
Putilina MV, Teplova NV, Bairova KI, Petrikeeva AE, Shabalina NI. [The result of prospective randomized study CITADEL - the efficacy and safety of drug cytoflavin in postcovid rehabilitation]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:45-51. [PMID: 34874654 DOI: 10.17116/jnevro202112110145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the structure of postcovid syndrome, age and gender characteristics of its course, and to assess the effect of Cytoflavin on the clinical course of neurological disorders in patients who have undergone COVID-19. MATERIAL AND METHODS The study included 100 patients, the average age was 40.4±11.7 years, there were statistically more men than women. The duration of the transferred SARS-CoV-2 days is from 30 to 90 days from the date of recovery). By random sampling, the patients were divided into two groups, the main group, received Cytoflavin tablets, a course of 25 days, 2 tablets 2 times a day. Comparison group - other drugs (vitamins, nootropic drugs). All patients were examined on the day of treatment and 25-30 days after the end of therapy. The status was assessed using Asthenia Assessment Scale (MFI-20), Brief Mental Status Assessment Scale (MMSE), Quality-of-Life Questionnaire (EQ-5D), General Health Assessment Scale, and Pittsburgh Sleep Quality Index (PSQI). The analysis of laboratory parameters was carried out retrospectively. RESULTS AND CONCLUSION Postcovid syndrome was more common in men, among comorbid conditions arterial hypertension and atherosclerosis prevailed, neurocognitive and autonomic disorders predominated. Appointment of Cytoflavin made it possible to achieve a pronounced anti-asthenic effect with the correction of cognitive impairments, which was reflected in a significantly more significant positive dynamics of indicators of all scales. An additional effect of Cytoflavin was revealed - a decrease in the severity of thrombocytopenia. During the observation period, no patient had any serious adverse events or side effects associated with taking the drug. Prescription of the drug does not require age-related dose adjustment and is well combined with basic therapy for concomitant pathology.
Collapse
Affiliation(s)
- M V Putilina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N V Teplova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - K I Bairova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - N I Shabalina
- Central Polyclinic of Russian Railways, Moscow, Russia
| |
Collapse
|
36
|
Kumar RR, Singh L, Thakur A, Singh S, Kumar B. Role of Vitamins in Neurodegenerative Diseases: A Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 21:766-773. [PMID: 34802410 DOI: 10.2174/1871527320666211119122150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitamins are the micronutrients required for boosting the immune system and managing any future infection. Vitamins are involved in neurogenesis, a defense mechanism working in neurons, metabolic reactions, neuronal survival, and neuronal transmission. Their deficiency leads to abnormal functions in the brain like oxidative stress, mitochondrial dysfunction, accumulation of proteins (synuclein, Aβ plaques), neurodegeneration, and excitotoxicity. METHODS In this review, we have compiled various reports collected from PubMed, Scholar Google, Research gate, and Science direct. The findings were evaluated, compiled, and represented in this manuscript. CONCLUSION The deficiency of vitamins in the body causes various neurological disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and depression. We have discussed the role of vitamins in neurological disorders and the normal human body. Depression is linked to a deficiency of vitamin-C and vitamin B. In the case of Alzheimer's disease, there is a lack of vitamin-B1, B12, and vitamin-A, which results in Aβ-plaques. Similarly, in Parkinson's disease, vitamin-D deficiency leads to a decrease in the level of dopamine, and imbalance in vitamin D leads to accumulation of synuclein. In MS, Vitamin-C and Vitamin-D deficiency causes demyelination of neurons. In Huntington's disease, vitamin- C deficiency decreases the antioxidant level, enhances oxidative stress, and disrupts the glucose cycle. Vitamin B5 deficiency in Huntington's disease disrupts the synthesis of acetylcholine and hormones in the brain.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab. India
| | - Lovekesh Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab. India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031. Taiwan
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab. India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab. India
| |
Collapse
|
37
|
Gong J, Zhang W, Ding L, Zhang M, Zheng S, Ma R, Tang J, Yi W, Xu H, Zhang Y. 4,4'-Dimethoxychalcone regulates redox homeostasis by targeting riboflavin metabolism in Parkinson's disease therapy. Free Radic Biol Med 2021; 174:40-56. [PMID: 34332078 DOI: 10.1016/j.freeradbiomed.2021.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Oxidative stress damage plays a pivotal role in Parkinson's disease (PD) pathogenesis. Previously, we developed a blood brain barrier-penetrating peptide-based "Trojan Horse" strategy to deliver 4,4'-dimethoxychalcone (DMC) for PD therapy and revealed neuroprotective properties of DMC in a PD model; however, the underlying mechanisms remained unclear. Here, we report that DMC attenuated motor impairment, degeneration of DA neurons and α-synuclein aggregation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and exogenous human α-synuclein-induced PD mouse models. Mechanistically, DMC increased the expression of two critical intermediates in riboflavin metabolism: riboflavin kinase (RFK) and its metabolic product, flavin mononucleotide (FMN). We provide the first direct evidence that FMN ameliorated oxidative stress damage and dopaminergic neuron degeneration both in vitro and in vivo and that riboflavin metabolism was required for DMC-mediated neuroprotection. DMC-induced restoration of redox homeostasis was mediated via the activation of protein kinase Cθ (PKCθ) signaling. Together, our findings reveal that DMC may serve as a novel antioxidant in PD intervention and also define a novel mechanism that underlies its therapeutic activity.
Collapse
Affiliation(s)
- Junwei Gong
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mengran Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Shaohui Zheng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Runfang Ma
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Junyuan Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huaxi Xu
- Center for Brain Sciences of the First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Yunlong Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
38
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
39
|
Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines. Nutrients 2021; 13:nu13082612. [PMID: 34444772 PMCID: PMC8401857 DOI: 10.3390/nu13082612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Riboflavin, a water-soluble member of the B-vitamin family, plays a vital role in producing energy in mitochondria and reducing inflammation and oxidative stress. Migraine pathogenesis includes neuroinflammation, oxidative stress, and mitochondrial dysfunction. Therefore, riboflavin is increasingly being recognized for its preventive effects on migraines. However, there is no concrete evidence supporting its use because the link between riboflavin and migraines and the underlying mechanisms remains obscure. This review explored the current experimental and clinical evidence of conditions involved in migraine pathogenesis and discussed the role of riboflavin in inhibiting these conditions. Experimental research has demonstrated elevated levels of various oxidative stress markers and pro-inflammatory cytokines in migraines, and riboflavin’s role in reducing these marker levels. Furthermore, clinical research in migraineurs showed increased marker levels and observed riboflavin’s effectiveness in reducing migraines. These findings suggest that inflammation and oxidative stress are associated with migraine pathogenesis, and riboflavin may have neuroprotective effects through its clinically useful anti-inflammatory and anti-oxidative stress properties. Riboflavin’s safety and efficacy suggests its usefulness in migraine prophylaxis; however, insufficient evidence necessitates further study.
Collapse
|
40
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
41
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
42
|
Lee K, Choi YI, Im ST, Hwang SM, Lee HK, Im JZ, Kim YH, Jung SJ, Park CK. Riboflavin Inhibits Histamine-Dependent Itch by Modulating Transient Receptor Potential Vanilloid 1 (TRPV1). Front Mol Neurosci 2021; 14:643483. [PMID: 34220447 PMCID: PMC8249943 DOI: 10.3389/fnmol.2021.643483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Riboflavin, also known as vitamin B2, isfound in foods and is used as a dietary supplement. Its deficiency (also called ariboflavinosis) results in some skin lesions and inflammations, such as stomatitis, cheilosis, oily scaly skin rashes, and itchy, watery eyes. Various therapeutic effects of riboflavin, such as anticancer, antioxidant, anti-inflammatory, and anti-nociceptive effects, are well known. Although some studies have identified the clinical effect of riboflavin on skin problems, including itch and inflammation, its underlying mechanism of action remains unknown. In this study, we investigated the molecular mechanism of the effects of riboflavin on histamine-dependent itch based on behavioral tests and electrophysiological experiments. Riboflavin significantly reduced histamine-induced scratching behaviors in mice and histamine-induced discharges in single-nerve fiber recordings, while it did not alter motor function in the rotarod test. In cultured dorsal root ganglion (DRG) neurons, riboflavin showed a dose-dependent inhibitory effect on the histamine- and capsaicin-induced inward current. Further tests wereconducted to determine whether two endogenous metabolites of riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have similar effects to those of riboflavin. Here, FMN, but not FAD, significantly inhibited capsaicin-induced currents and itching responses caused by histamine. In addition, in transient receptor potential vanilloid 1 (TRPV1)-transfected HEK293 cells, both riboflavin and FMN blocked capsaicin-induced currents, whereas FAD did not. These results revealed that riboflavin inhibits histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how riboflavin exerts antipruritic effects and suggests that it might be a useful drug for the treatment of histamine-dependent itch.
Collapse
Affiliation(s)
- Kihwan Lee
- Tooth-Periodontium Complex Medical Research Center (MRC), Department of Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Young In Choi
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Sang-Taek Im
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Han-Kyu Lee
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Jay-Zoon Im
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
43
|
Plantone D, Pardini M, Rinaldi G. Riboflavin in Neurological Diseases: A Narrative Review. Clin Drug Investig 2021; 41:513-527. [PMID: 33886098 DOI: 10.1007/s40261-021-01038-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Riboflavin is classified as one of the water-soluble B vitamins. It is part of the functional group of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors and is required for numerous flavoprotein-catalysed reactions. Riboflavin has important antioxidant properties, essential for correct cell functioning. It is required for the conversion of oxidised glutathione to the reduced form and for the mitochondrial respiratory chain as complexes I and II contain flavoprotein reductases and electron transferring flavoproteins. Riboflavin deficiency has been demonstrated to impair the oxidative state of the body, especially in relation to lipid peroxidation status, in both animal and human studies. In the nervous system, riboflavin is essential for the synthesis of myelin and its deficiency can determine the disruption of myelin lamellae. The inherited condition of restricted riboflavin absorption and utilisation, reported in about 10-15% of world population, warrants further investigation in relation to its association with the main neurodegenerative diseases. Several successful trials testing riboflavin for migraine prevention were performed, and this drug is currently classified as a Level B medication for migraine according to the American Academy of Neurology evidence-based rating, with evidence supporting its efficacy. Brown-Vialetto-Van Laere syndrome and Fazio-Londe diseases are now renamed as "riboflavin transporter deficiency" because these are autosomal recessive diseases caused by mutations of SLC52A2 and SLC52A3 genes that encode riboflavin transporters. High doses of riboflavin represent the mainstay of the therapy of these diseases and high doses of riboflavin should be rapidly started as soon as the diagnosis is suspected and continued lifelong. Remarkably, some mitochondrial diseases respond to supplementation with riboflavin. These include multiple acyl-CoA-dehydrogenase deficiency (which is caused by ETFDH gene mutations in the majority of the cases, or mutations in the ETFA and ETFB genes in a minority), mutations of ACAD9 gene, mutations of AIFM1 gene, mutations of the NDUFV1 and NDUFV2 genes. Therapeutic riboflavin administration has been tried in other neurological diseases, including stroke, multiple sclerosis, Friedreich's ataxia and Parkinson's disease. Unfortunately, the design of these clinical trials was not uniform, not allowing to accurately assess the real effects of this molecule on the disease course. In this review we analyse the properties of riboflavin and its possible effects on the pathogenesis of different neurological diseases, and we will review the current indications of this vitamin as a therapeutic intervention in neurology.
Collapse
Affiliation(s)
- Domenico Plantone
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Giuseppe Rinaldi
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy
| |
Collapse
|
44
|
Rudzki L, Stone TW, Maes M, Misiak B, Samochowiec J, Szulc A. Gut microbiota-derived vitamins - underrated powers of a multipotent ally in psychiatric health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110240. [PMID: 33428888 DOI: 10.1016/j.pnpbp.2020.110240] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Despite the well-established roles of B-vitamins and their deficiencies in health and disease, there is growing evidence indicating a key role of those nutrients in functions of the central nervous system and in psychopathology. Clinical data indicate the substantial role of B-vitamins in various psychiatric disorders, including major depression, bipolar disorder, schizophrenia, autism, and dementia, including Alzheimer's and Parkinson's diseases. As enzymatic cofactors, B-vitamins are involved in many physiological processes such as the metabolism of glucose, fatty acids and amino acids, metabolism of tryptophan in the kynurenine pathway, homocysteine metabolism, synthesis and metabolism of various neurotransmitters and neurohormones including serotonin, dopamine, adrenaline, acetylcholine, GABA, glutamate, D-serine, glycine, histamine and melatonin. Those vitamins are highly involved in brain energetic metabolism and respiration at the cellular level. They have a broad range of anti-inflammatory, immunomodulatory, antioxidant and neuroprotective properties. Furthermore, some of those vitamins are involved in the regulation of permeability of the intestinal and blood-brain barriers. Despite the fact that a substantial amount of the above vitamins is acquired from various dietary sources, deficiencies are not uncommon, and it is estimated that micronutrient deficiencies affect about two billion people worldwide. The majority of gut-resident microbes and the broad range of bacteria available in fermented food, express genetic machinery enabling the synthesis and metabolism of B-vitamins and, consequently, intestinal microbiota and fermented food rich in probiotic bacteria are essential sources of B-vitamins for humans. All in all, there is growing evidence that intestinal bacteria-derived vitamins play a significant role in physiology and that dysregulation of the "microbiota-vitamins frontier" is related to various disorders. In this review, we will discuss the role of vitamins in mental health and explore the perspectives and potential of how gut microbiota-derived vitamins could contribute to mental health and psychiatric treatment.
Collapse
Affiliation(s)
- Leszek Rudzki
- The Charleston Centre, 49 Neilston Road, Paisley PA2 6LY, UK.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| |
Collapse
|
45
|
Yamanaka G, Kanou K, Takamatsu T, Takeshita M, Morichi S, Suzuki S, Ishida Y, Watanabe Y, Go S, Oana S, Kawashima H. Complementary and Integrative Medicines as Prophylactic Agents for Pediatric Migraine: A Narrative Literature Review. J Clin Med 2021; 10:jcm10010138. [PMID: 33401551 PMCID: PMC7794736 DOI: 10.3390/jcm10010138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Complementary and integrative medicines (CIMs) are increasingly used as a preventive antimigraine therapy. In this review, we aimed to summarize the evidence for the efficacy and safety of eight CIMs (riboflavin, coenzyme Q10, magnesium, melatonin, polyunsaturated fatty acids, and combination therapy of feverfew, vitamin D, and ginkgolide B) in pediatric migraine prevention. The level of evidence for riboflavin was relatively high; it was investigated by many studies with five/seven studies demonstrating its efficacy. Five studies investigated the use of melatonin, with one reporting negative results. There was insufficient evidence on the effectiveness of coenzyme Q10, magnesium, and polyunsaturated fatty acids. Combination therapy showed positive potential; however, reports on the individual antimigraine effects of the CIMs were lacking. A definitive conclusion was not reached regarding the specific integrative drugs clinicians should choose for pediatric migraines, owing to low-quality evidence and a limited number of studies. Integrative medications are becoming more common for pediatric migraine prevention as they do not produce serious side effects, and underlying research data suggest their efficacy in preventing migraine. Additional studies are warranted to confirm the role of CIMs in treating patients with migraines.
Collapse
|
46
|
Oyeyinka BO, Afolayan AJ. Potentials of Musa Species Fruits against Oxidative Stress-Induced and Diet-Linked Chronic Diseases: In Vitro and In Vivo Implications of Micronutritional Factors and Dietary Secondary Metabolite Compounds. Molecules 2020; 25:E5036. [PMID: 33142997 PMCID: PMC7663138 DOI: 10.3390/molecules25215036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nutritional quality and the well-being of the body system are directly linked aspects of human survival. From the unborn foetus to adulthood, the need for sustainable access to micronutrient-rich foods is pertinent and the global consumption of banana and plantain fruits, in effect, contributes to the alleviation of the scourge of malnutrition. This review is particularly aimed at evaluating the pharmacological dimensions through the biological mechanisms of Musa fruits in the body, which represent correlations with their constituent micronutrient factors and dietary polyphenolic constituents such as minerals, vitamin members, anthocyanins, lutein, α-,β- carotenes, neoxanthins and cryptoxanthins, epi- and gallo catechins, catecholamines, 3-carboxycoumarin, β-sitosterol, monoterpenoids, with series of analytical approaches for the various identified compounds being highlighted therein. Derivative value-products from the compartments (flesh and peel) of Musa fruits are equally highlighted, bringing forth the biomedicinal and nutritional relevance, including the potentials of Musa species in dietary diversification approaches.
Collapse
Affiliation(s)
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
47
|
Kumar N, Gupta SK, Chandan NK, Bhushan S, Singh DK, Kumar P, Kumar P, Wakchaure GC, Singh NP. Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci Rep 2020; 10:17883. [PMID: 33087779 PMCID: PMC7578828 DOI: 10.1038/s41598-020-74911-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Climate change impact has disturbed the rainfall pattern worsening the problems of water availability in the aquatic ecosystem of India and other parts of the world. Arsenic pollution, mainly through excessive use of groundwater and other anthropogenic activities, is aggravating in many parts of the world, particularly in South Asia. We evaluated the efficacy of selenium nanoparticles (Se-NPs) and riboflavin (RF) to ameliorate the adverse impacts of elevated temperature and arsenic pollution on growth, anti-oxidative status and immuno-modulation in Pangasianodon hypophthalmus. Se-NPs were synthesized using fish gill employing green synthesis method. Four diets i.e., Se-NPs (0 mg kg-1) + RF (0 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (5 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (10 mg kg-1); and Se-NPs (0.5 mg kg-1) + RF (15 mg kg-1) were given in triplicate in a completely randomized block design. The fish were treated in arsenic (1/10th of LC50, 2.68 mg L-1) and high temperature (34 °C). Supplementation of the Se-NPs and RF in the diets significantly (p < 0.01) enhanced growth performance (weight gain, feed efficiency ratio, protein efficiency ratio, and specific growth rate), anti-oxidative status and immunity of the fish. Nitroblue tetrazolium (NBT), total immunoglobulin, myeloperoxidase and globulin enhanced (p < 0.01) with supplementation (Se-NPs + RF) whereas, albumin and albumin globulin (A:G) ratio (p < 0.01) reduced. Stress biomarkers such as lipid peroxidation in the liver, gill and kidney, blood glucose, heat shock protein 70 in gill and liver as well as serum cortisol reduced (p < 0.01) with supplementation of Se-NPs and RF, whereas, acetylcholine esterase and vitamin C level in both brain and muscle significantly enhanced (p < 0.01) in compared to control and stressors group (As + T) fed with control diet. The fish were treated with pathogenic bacteria after 90 days of experimental trial to observe cumulative mortality and relative survival for a week. The arsenic concentration in experimental water and bioaccumulation in fish tissues was also determined, which indicated that supplementation of Se-NPs and RF significantly reduced (p < 0.01) bioaccumulation. The study concluded that a combination of Se-NPs and RF has the potential to mitigate the stresses of high temperature and As pollution in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India.
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| | - Nitish Kumar Chandan
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Shashi Bhushan
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| | - Prem Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, 600028, India
| | - Goraksha C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| | - Narendra Pratap Singh
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| |
Collapse
|
48
|
Jungert A, McNulty H, Hoey L, Ward M, Strain JJ, Hughes CF, McAnena L, Neuhäuser-Berthold M, Pentieva K. Riboflavin Is an Important Determinant of Vitamin B-6 Status in Healthy Adults. J Nutr 2020; 150:2699-2706. [PMID: 32805038 DOI: 10.1093/jn/nxaa225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Riboflavin is required to generate the active form of vitamin B-6 (pyridoxal 5'-phosphate; PLP) in tissues, but the relevance of this metabolic interaction for nutritional status of vitamin B-6 is unclear because riboflavin biomarkers are rarely measured in human studies. OBJECTIVES The purpose of this study was to identify the determinants of biomarkers of vitamin B-6 and riboflavin status and to examine the relationship between these nutrients in healthy adults. METHODS Multiple linear regression was performed on observational data in 407 healthy adults aged 18-92 y who did not use B-vitamin supplements. Vitamin B-6 status was assessed by plasma PLP concentrations and erythrocyte glutathione reductase activation coefficient (EGRac) was used as a functional indicator of riboflavin status. RESULTS Dietary intakes of vitamin B-6 and riboflavin were below the average requirements in 10% and 29% of participants, respectively. Suboptimal status of vitamin B-6 (PLP ≤30.0 nmol/L) was more prevalent in adults aged ≥60 y than in younger participants (i.e., 14% compared with 5%), whereas a high proportion (i.e., overall 37%) of both age groups had deficient riboflavin status (EGRac ≥1.40). In multiple regression analysis, EGRac (P = 0.019) was a significant determinant of plasma PLP, along with dietary vitamin B-6 intake (P = 0.003), age (P < 0.001), BMI (kg/m2) (P = 0.031), and methylenetetrahydrofolate reductase gene (MTHFR) genotype (P < 0.001). Significant determinants of EGRac were dietary riboflavin intake (P < 0.001), age (P < 0.001) and MTHFR genotype (P = 0.020). Plasma PLP showed a stepwise decrease across riboflavin status categories from optimal (EGRac ≤1.26) to low (EGRac 1.27-1.39) to deficient status (P = 0.001), independent of dietary vitamin B-6 intake. CONCLUSIONS The findings are consistent with the known metabolic dependency of vitamin B-6 on riboflavin status and indicate that riboflavin may be the limiting nutrient, particularly in older people, for maintaining adequate vitamin B-6 status.
Collapse
Affiliation(s)
- Alexandra Jungert
- Interdisciplinary Research Center for Biosystems, Land Use and Nutrition (IFZ), Biometry and Population Genetics, Justus Liebig University, Giessen, Germany
| | - Helene McNulty
- Nutrition Innovation Centre for food and Health (NICHE), Ulster University, Coleraine, United Kingdom
| | - Leane Hoey
- Nutrition Innovation Centre for food and Health (NICHE), Ulster University, Coleraine, United Kingdom
| | - Mary Ward
- Nutrition Innovation Centre for food and Health (NICHE), Ulster University, Coleraine, United Kingdom
| | - J J Strain
- Nutrition Innovation Centre for food and Health (NICHE), Ulster University, Coleraine, United Kingdom
| | - Catherine F Hughes
- Nutrition Innovation Centre for food and Health (NICHE), Ulster University, Coleraine, United Kingdom
| | - Liadhan McAnena
- Nutrition Innovation Centre for food and Health (NICHE), Ulster University, Coleraine, United Kingdom
| | | | - Kristina Pentieva
- Nutrition Innovation Centre for food and Health (NICHE), Ulster University, Coleraine, United Kingdom
| |
Collapse
|
49
|
Sinha T, Naash MI, Al-Ubaidi MR. Flavins Act as a Critical Liaison Between Metabolic Homeostasis and Oxidative Stress in the Retina. Front Cell Dev Biol 2020; 8:861. [PMID: 32984341 PMCID: PMC7481326 DOI: 10.3389/fcell.2020.00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Derivatives of the vitamin riboflavin, FAD and FMN, are essential cofactors in a multitude of bio-energetic reactions, indispensable for lipid metabolism and also are requisites in mitigating oxidative stress. Given that a balance between all these processes contributes to the maintenance of retinal homeostasis, effective regulation of riboflavin levels in the retina is paramount. However, various genetic and dietary factors have brought to fore pathological conditions that co-occur with a suboptimal level of flavins in the retina. Our focus in this review is to, comprehensively summarize all the possible metabolic and oxidative reactions which have been implicated in various retinal pathologies and to highlight the contribution flavins may have played in these. Recent research has found a sensitive method of measuring flavins in both diseased and healthy retina, presence of a novel flavin binding protein exclusively expressed in the retina, and the presence of flavin specific transporters in both the inner and outer blood-retina barriers. In light of these exciting findings, it is even more imperative to shift our focus on how the retina regulates its flavin homeostasis and what happens when this is disrupted.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
50
|
Yamanaka G, Suzuki S, Takeshita M, Go S, Morishita N, Takamatsu T, Daida A, Morichi S, Ishida Y, Oana S, Nara S, Shimura M, Nishimata S, Kawashima H. Effectiveness of low-dose riboflavin as a prophylactic agent in pediatric migraine. Brain Dev 2020; 42:523-528. [PMID: 32336482 DOI: 10.1016/j.braindev.2020.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Riboflavin may prevent migraine episodes; however, there is limited evidence of its effectiveness in pediatric populations. This study investigated the effectiveness of riboflavin and clinical predictors of response in children with migraines. METHODS We retrospectively reviewed data from 68 Japanese children with migraines, of whom 52 also exhibited another type of headache. Patients received 10 or 40 mg/day of riboflavin. We evaluated the average migraine frequency per month as a baseline and after 3 months of riboflavin therapy to determine the effectiveness and clinical predictors of response. RESULTS The frequency of migraine episodes was significantly lower at 3 months than at baseline (median, [interquartile range], 5.2 (3-7) vs. 4.0 (2-5); p < 0.01). Twenty-five patients (36.7%) showed 50% or greater reduction in episode frequency (responders), while 18 (26.5%) showed a 25%-50% reduction. We compared responders (n = 25) and non-responders (n = 43) and found no significant differences in sex, familial history, riboflavin dose, migraine type (i.e., presence or absence of aura), age at headache onset, or age at consultation. However, non-responders were more likely to have co-morbid non-migraine headaches (odds ratio, 4.11; 95% confidence interval [CI], 1.27-13.33; p = 0.02); this variable was also significant in a multivariate analysis (adjusted odds ratio, 3.8; 95% CI, 1.16-12.6; p = 0.03). Of the co-morbid headache types, only tension headaches were significant (odds ratio, 0.176; 95% CI, 0.04-0.73; p = 0.013). No adverse effects of riboflavin were identified. CONCLUSIONS Low-dose riboflavin is safe and modestly effective for migraines in children. It may be especially beneficial for children without other co-morbid headache types.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan.
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Atsuro Daida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shingo Oana
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shonosuke Nara
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Masaru Shimura
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shigeo Nishimata
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|