1
|
Sherman J, Bortz E, Antonio ES, Tseng HA, Raiff L, Han X. Ultrasound pulse repetition frequency preferentially activates different neuron populations independent of cell type. J Neural Eng 2024; 21:056008. [PMID: 39178904 PMCID: PMC11381926 DOI: 10.1088/1741-2552/ad731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective. Transcranial ultrasound (US) stimulation serves as an external input to a neuron, and thus the evoked response relies on neurons' intrinsic properties. Neural activity is limited to a couple hundred hertz and often exhibits preference to input frequencies. Accordingly, US pulsed at specific physiologic pulse repetition frequencies (PRFs) may selectively engage neurons with the corresponding input frequency preference. However, most US parametric studies examine the effects of supraphysiologic PRFs. It remains unclear whether pulsing US at different physiologic PRFs could activate distinct neurons in the awake mammalian brain.Approach. We recorded cellular calcium responses of individual motor cortex neurons to US pulsed at PRFs of 10, 40, and 140 Hz in awake mice. We compared the evoked responses across these PRFs in the same neurons. To further understand the cell-type dependent effects, we categorized the recorded neurons as parvalbumin positive fast spiking interneurons or putative excitatory neurons and analyzed single-cell mechanosensitive channel expression in mice and humans using the Allen Brain Institute's RNA-sequencing databases.Main results. We discovered that many neurons were preferentially activated by only one PRF and different PRFs selectively engaged distinct neuronal populations. US-evoked cellular calcium responses exhibited the same characteristics as those naturally occurring during spiking, suggesting that US increases intrinsic neuronal activity. Furthermore, evoked responses were similar between fast-spiking inhibitory neurons and putative excitatory neurons. Thus, variation in individual neuron's cellular properties dominates US-evoked response heterogeneity, consistent with our observed cell-type independent expression patterns of mechanosensitive channels across individual neurons in mice and humans. Finally, US transiently increased network synchrony without producing prolonged over-synchronization that could be detrimental to neural circuit functions.Significance. These results highlight the feasibility of activating distinct neuronal subgroups by varying PRF and the potential to improve neuromodulation effects by combining physiologic PRFs.
Collapse
Affiliation(s)
- Jack Sherman
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States of America
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Erynne San Antonio
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Laura Raiff
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| |
Collapse
|
2
|
Webb TD, Lybbert C, Wilson MG, Odéen H, Kubanek J. A Physiological Marker for Deep Brain Ultrasonic Neuromodulation. Neuromodulation 2024:S1094-7159(24)00657-3. [PMID: 39177522 DOI: 10.1016/j.neurom.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Transcranial ultrasound neuromodulation (TUSN) is a noninvasive and spatially specific therapy that promises to deliver treatments tailored to the specific needs of individuals. To fulfill this promise, each treatment must be modified to adequately correct for variation across individual skulls and neural anatomy. This study examines the use of ultrasound-induced voltage potentials (measured with electroencephalography [EEG]) to guide TUSN therapies. MATERIALS AND METHODS We measured EEG responses in two awake nonhuman primates during sonication of 12 targets surrounding two deep brain nuclei, the left and right lateral geniculate nucleus. RESULTS We report reliable ultrasound evoked potentials measured with EEG after the deep brain ultrasonic modulation in nonhuman primates. Robust responses are observed after just ten repetitions of the ultrasonic stimuli. Moreover, these potentials are only evoked for specific deep brain targets. Furthermore, a behavioral study in one subject shows a direct correspondence between the target with maximal EEG response and ultrasound-based modulation of visual choice behavior. Thus, this study provides evidence for the feasibility of EEG-based guidance for ultrasound neuromodulation therapies.
Collapse
Affiliation(s)
- Taylor D Webb
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Carter Lybbert
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Matthew G Wilson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Matt E, Radjenovic S, Mitterwallner M, Beisteiner R. Current state of clinical ultrasound neuromodulation. Front Neurosci 2024; 18:1420255. [PMID: 38962179 PMCID: PMC11219564 DOI: 10.3389/fnins.2024.1420255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Unmatched by other non-invasive brain stimulation techniques, transcranial ultrasound (TUS) offers highly focal stimulation not only on the cortical surface but also in deep brain structures. These unique attributes are invaluable in both basic and clinical research and might open new avenues for treating neurological and psychiatric diseases. Here, we provide a concise overview of the expanding volume of clinical investigations in recent years and upcoming research initiatives concerning focused ultrasound neuromodulation. Currently, clinical TUS research addresses a variety of neuropsychiatric conditions, such as pain, dementia, movement disorders, psychiatric conditions, epilepsy, disorders of consciousness, and developmental disorders. As demonstrated in sham-controlled randomized studies, TUS neuromodulation improved cognitive functions and mood, and alleviated symptoms in schizophrenia and autism. Further, preliminary uncontrolled evidence suggests relieved anxiety, enhanced motor functions in movement disorders, reduced epileptic seizure frequency, improved responsiveness in patients with minimally conscious state, as well as pain reduction after neuromodulatory TUS. While constrained by the relatively modest number of investigations, primarily consisting of uncontrolled feasibility trials with small sample sizes, TUS holds encouraging prospects for treating neuropsychiatric disorders. Larger sham-controlled randomized trials, alongside further basic research into the mechanisms of action and optimal sonication parameters, are inevitably needed to unfold the full potential of TUS neuromodulation.
Collapse
Affiliation(s)
| | | | | | - Roland Beisteiner
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Caffaratti H, Slater B, Shaheen N, Rhone A, Calmus R, Kritikos M, Kumar S, Dlouhy B, Oya H, Griffiths T, Boes AD, Trapp N, Kaiser M, Sallet J, Banks MI, Howard MA, Zanaty M, Petkov CI. Neuromodulation with Ultrasound: Hypotheses on the Directionality of Effects and a Community Resource. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308829. [PMID: 38947047 PMCID: PMC11213082 DOI: 10.1101/2024.06.14.24308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low-intensity Transcranial Ultrasound Stimulation (TUS) is a promising non-invasive technique for deep-brain stimulation and focal neuromodulation. Research with animal models and computational modelling has raised the possibility that TUS can be biased towards enhancing or suppressing neural function. Here, we first conduct a systematic review of human TUS studies for perturbing neural function and alleviating brain disorders. We then collate a set of hypotheses on the directionality of TUS effects and conduct an initial meta-analysis on the human TUS study reported outcomes to date (n = 32 studies, 37 experiments). We find that parameters such as the duty cycle show some predictability regarding whether the targeted area's function is likely to be enhanced or suppressed. Given that human TUS sample sizes are exponentially increasing, we recognize that results can stabilize or change as further studies are reported. Therefore, we conclude by establishing an Iowa-Newcastle (inTUS) resource for the systematic reporting of TUS parameters and outcomes to support further hypothesis testing for greater precision in brain stimulation and neuromodulation with TUS.
Collapse
Affiliation(s)
- Hugo Caffaratti
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ben Slater
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Nour Shaheen
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ariane Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ryan Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Michael Kritikos
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Brian Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Tim Griffiths
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Nicholas Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Marcus Kaiser
- NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, INSERM U1208, University of Lyon, Lyon, France
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin at Madison, WI, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Hsieh TH, Chu PC, Nguyen TXD, Kuo CW, Chang PK, Chen KHS, Liu HL. Neuromodulatory Responses Elicited by Intermittent versus Continuous Transcranial Focused Ultrasound Stimulation of the Motor Cortex in Rats. Int J Mol Sci 2024; 25:5687. [PMID: 38891875 PMCID: PMC11171676 DOI: 10.3390/ijms25115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different stimulation patterns, such as intermittent versus continuous, and is an aspect that requires further detailed exploration. In this study, we developed a platform to evaluate the neuromodulatory effects of intermittent and continuous tFUS on motor cortical plasticity before and after tFUS application. Three groups of rats were exposed to either intermittent, continuous, or sham tFUS. We analyzed the neuromodulatory effects on motor cortical excitability by examining changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). We also investigated the effects of different stimulation patterns on excitatory and inhibitory neural biomarkers, examining c-Fos and glutamic acid decarboxylase (GAD-65) expression using immunohistochemistry staining. Additionally, we evaluated the safety of tFUS by analyzing glial fibrillary acidic protein (GFAP) expression. The current results indicated that intermittent tFUS produced a facilitation effect on motor excitability, while continuous tFUS significantly inhibited motor excitability. Furthermore, neither tFUS approach caused injury to the stimulation sites in rats. Immunohistochemistry staining revealed increased c-Fos and decreased GAD-65 expression following intermittent tFUS. Conversely, continuous tFUS downregulated c-Fos and upregulated GAD-65 expression. In conclusion, our findings demonstrate that both intermittent and continuous tFUS effectively modulate cortical excitability. The neuromodulatory effects may result from the activation or deactivation of cortical neurons following tFUS intervention. These effects are considered safe and well-tolerated, highlighting the potential for using different patterns of tFUS in future clinical neuromodulatory applications.
Collapse
Affiliation(s)
- Tsung-Hsun Hsieh
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Chun Chu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Thi Xuan Dieu Nguyen
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Chi-Wei Kuo
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Pi-Kai Chang
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300195, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
6
|
Wan X, Zhang Y, Li Y, Song W. An update on noninvasive neuromodulation in the treatment of patients with prolonged disorders of consciousness. CNS Neurosci Ther 2024; 30:e14757. [PMID: 38747078 PMCID: PMC11094579 DOI: 10.1111/cns.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND With the improvement of emergency techniques, the survival rate of patients with severe brain injury has increased. However, this has also led to an annual increase in the number of patients with prolonged disorders of consciousness (pDoC). Hence, recovery of consciousness is an important part of treatment. With advancing techniques, noninvasive neuromodulation seems a promising intervention. The objective of this review was to summarize the latest techniques and provide the basis for protocols of noninvasive neuromodulations in pDoC. METHODS This review summarized the advances in noninvasive neuromodulation in the treatment of pDoC in the last 5 years. RESULTS Variable techniques of neuromodulation are used in pDoC. Transcranial ultrasonic stimulation (TUS) and transcutaneous auricular vagus nerve stimulation (taVNS) are very new techniques, while transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are still the hotspots in pDoC. Median nerve electrical stimulation (MNS) has received little attention in the last 5 years. CONCLUSIONS Noninvasive neuromodulation is a valuable and promising technique to treat pDoC. Further studies are needed to determine a unified stimulus protocol to achieve optimal effects as well as safety.
Collapse
Affiliation(s)
- Xiaoping Wan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yanhua Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lee K, Park TY, Lee W, Kim H. A review of functional neuromodulation in humans using low-intensity transcranial focused ultrasound. Biomed Eng Lett 2024; 14:407-438. [PMID: 38645585 PMCID: PMC11026350 DOI: 10.1007/s13534-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/23/2024] Open
Abstract
Transcranial ultrasonic neuromodulation is a rapidly burgeoning field where low-intensity transcranial focused ultrasound (tFUS), with exquisite spatial resolution and deep tissue penetration, is used to non-invasively activate or suppress neural activity in specific brain regions. Over the past decade, there has been a rapid increase of tFUS neuromodulation studies in healthy humans and subjects with central nervous system (CNS) disease conditions, including a recent surge of clinical investigations in patients. This narrative review summarized the findings of human neuromodulation studies using either tFUS or unfocused transcranial ultrasound (TUS) reported from 2013 to 2023. The studies were categorized into two separate sections: healthy human research and clinical studies. A total of 42 healthy human investigations were reviewed as grouped by targeted brain regions, including various cortical, subcortical, and deep brain areas including the thalamus. For clinical research, a total of 22 articles were reviewed for each studied CNS disease condition, including chronic pain, disorder of consciousness, Alzheimer's disease, Parkinson's disease, depression, schizophrenia, anxiety disorders, substance use disorder, drug-resistant epilepsy, and stroke. Detailed information on subjects/cohorts, target brain regions, sonication parameters, outcome readouts, and stimulatory efficacies were tabulated for each study. In later sections, considerations for planning tFUS neuromodulation in humans were also concisely discussed. With an excellent safety profile to date, the rapid growth of human tFUS research underscores the increasing interest and recognition of its significant potential in the field of non-invasive brain stimulation (NIBS), offering theranostic potential for neurological and psychiatric disease conditions and neuroscientific tools for functional brain mapping.
Collapse
Affiliation(s)
- Kyuheon Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Wonhye Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| |
Collapse
|
8
|
Peng X, Connolly DJ, Sutton F, Robinson J, Baker-Vogel B, Short EB, Badran BW. Non-invasive suppression of the human nucleus accumbens (NAc) with transcranial focused ultrasound (tFUS) modulates the reward network: a pilot study. Front Hum Neurosci 2024; 18:1359396. [PMID: 38628972 PMCID: PMC11018963 DOI: 10.3389/fnhum.2024.1359396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Background The nucleus accumbens (NAc) is a key node of the brain reward circuit driving reward-related behavior. Dysregulation of NAc has been demonstrated to contribute to pathological markers of addiction in substance use disorder (SUD) making it a potential therapeutic target for brain stimulation. Transcranial focused ultrasound (tFUS) is an emerging non-invasive brain stimulation approach that can modulate deep brain regions with a high spatial resolution. However, there is currently no evidence showing how the brain activity of NAc and brain functional connectivity within the reward network neuromodulated by tFUS on the NAc. Methods In this pilot study, we carried out a single-blind, sham-controlled clinical trial using functional magnetic resonance imaging (fMRI) to investigate the underlying mechanism of tFUS neuromodulating the reward network through NAc in ten healthy adults. Specifically, the experiment consists of a 20-min concurrent tFUS/fMRI scan and two 24-min resting-state fMRI before and after the tFUS session. Results Firstly, our results demonstrated the feasibility and safety of 20-min tFUS on NAc. Additionally, our findings demonstrated that bilateral NAc was inhibited during tFUS on the left NAc compared to sham. Lastly, increased functional connectivity between the NAc and medial prefrontal cortex (mPFC) was observed after tFUS on the left NAc, but no changes for the sham group. Conclusion Delivering tFUS to the NAc can modulate brain activations and functional connectivity within the reward network. These preliminary findings suggest that tFUS could be potentially a promising neuromodulation tool for the direct and non-invasive management of the NAc and shed new light on the treatment for SUD and other brain diseases that involve reward processing.
Collapse
Affiliation(s)
- Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Sherman J, Bortz E, Antonio ES, Tseng HA, Raiff L, Han X. Ultrasound pulse repetition frequency preferentially activates different neuron populations independent of cell type. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586645. [PMID: 38585918 PMCID: PMC10996595 DOI: 10.1101/2024.03.25.586645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Transcranial ultrasound activates mechanosensitive cellular signaling and modulates neural dynamics. Given that intrinsic neuronal activity is limited to a couple hundred hertz and often exhibits frequency preference, we examined whether pulsing ultrasound at physiologic pulse repetition frequencies (PRFs) could selectively influence neuronal activity in the mammalian brain. We performed calcium imaging of individual motor cortex neurons, while delivering 0.35 MHz ultrasound at PRFs of 10, 40, and 140 Hz in awake mice. We found that most neurons were preferentially activated by only one of the three PRFs, highlighting unique cellular effects of physiologic PRFs. Further, ultrasound evoked responses were similar between excitatory neurons and parvalbumin positive interneurons regardless of PRFs, indicating that individual cell sensitivity dominates ultrasound-evoked effects, consistent with the heterogeneous mechanosensitive channel expression we found across single neurons in mice and humans. These results highlight the feasibility of tuning ultrasound neuromodulation effects through varying PRFs.
Collapse
|
10
|
Kim HJ, Phan TT, Lee K, Kim JS, Lee SY, Lee JM, Do J, Lee D, Kim SP, Lee KP, Park J, Lee CJ, Park JM. Long-lasting forms of plasticity through patterned ultrasound-induced brainwave entrainment. SCIENCE ADVANCES 2024; 10:eadk3198. [PMID: 38394205 PMCID: PMC10889366 DOI: 10.1126/sciadv.adk3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Achieving long-lasting neuronal modulation with low-intensity, low-frequency ultrasound is challenging. Here, we devised theta burst ultrasound stimulation (TBUS) with gamma bursts for brain entrainment and modulation of neuronal plasticity in the mouse motor cortex. We demonstrate that two types of TBUS, intermittent and continuous TBUS, induce bidirectional long-term potentiation or depression-like plasticity, respectively, as evidenced by changes in motor-evoked potentials. These effects depended on molecular pathways associated with long-term plasticity, including N-methyl-d-aspartate receptor and brain-derived neurotrophic factor/tropomyosin receptor kinase B activation, as well as de novo protein synthesis. Notably, bestrophin-1 and transient receptor potential ankyrin 1 play important roles in these enduring effects. Moreover, pretraining TBUS enhances the acquisition of previously unidentified motor skills. Our study unveils a promising protocol for ultrasound neuromodulation, enabling noninvasive and sustained modulation of brain function.
Collapse
Affiliation(s)
- Ho-Jeong Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Sook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Yeong Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jongrok Do
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
11
|
Riis T, Feldman D, Losser A, Mickey B, Kubanek J. Device for Multifocal Delivery of Ultrasound Into Deep Brain Regions in Humans. IEEE Trans Biomed Eng 2024; 71:660-668. [PMID: 37695955 PMCID: PMC10803076 DOI: 10.1109/tbme.2023.3313987] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Low-intensity focused ultrasound provides the means to noninvasively stimulate or release drugs in specified deep brain targets. However, successful clinical translations require hardware that maximizes acoustic transmission through the skull, enables flexible electronic steering, and provides accurate and reproducible targeting while minimizing the use of MRI. We have developed a device that addresses these practical requirements. The device delivers ultrasound through the temporal and parietal skull windows, which minimize the attenuation and distortions of the ultrasound by the skull. The device consists of 252 independently controlled elements, which provides the ability to modulate multiple deep brain targets at a high spatiotemporal resolution, without the need to move the device or the subject. And finally, the device uses a mechanical registration method that enables accurate deep brain targeting both inside and outside of the MRI. Using this method, a single MRI scan is necessary for accurate targeting; repeated subsequent treatments can be performed reproducibly in an MRI-free manner. We validated these functions by transiently modulating specific deep brain regions in two patients with treatment-resistant depression.
Collapse
|
12
|
Meng W, Lin Z, Bian T, Chen X, Meng L, Yuan T, Niu L, Zheng H. Ultrasound Deep Brain Stimulation Regulates Food Intake and Body Weight in Mice. IEEE Trans Neural Syst Rehabil Eng 2024; 32:366-377. [PMID: 38194393 DOI: 10.1109/tnsre.2024.3351312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Given the widespread occurrence of obesity, new strategies are urgently needed to prevent, halt and reverse this condition. We proposed a noninvasive neurostimulation tool, ultrasound deep brain stimulation (UDBS), which can specifically modulate the hypothalamus and effectively regulate food intake and body weight in mice. Fifteen-min UDBS of hypothalamus decreased 41.4% food intake within 2 hours. Prolonged 1-hour UDBS significantly decreased daily food intake lasting 4 days. UDBS also effectively restrained body weight gain in leptin-receptor knockout mice (Sham: 96.19%, UDBS: 58.61%). High-fat diet (HFD) mice treated with 4-week UDBS (15 min / 2 days) reduced 28.70% of the body weight compared to the Sham group. Meanwhile, UDBS significantly modulated glucose-lipid metabolism and decreased the body fat. The potential mechanism is that ultrasound actives pro-opiomelanocortin (POMC) neurons in the hypothalamus for reduction of food intake and body weight. These results provide a noninvasive tool for controlling food intake, enabling systematic treatment of obesity.
Collapse
|
13
|
Qin PP, Jin M, Xia AW, Li AS, Lin TT, Liu Y, Kan RL, Zhang BB, Kranz GS. The effectiveness and safety of low-intensity transcranial ultrasound stimulation: A systematic review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105501. [PMID: 38061596 DOI: 10.1016/j.neubiorev.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 12/26/2023]
Abstract
Low-intensity transcranial ultrasound stimulation (LITUS) is a novel non-invasive neuromodulation technique. We conducted a systematic review to evaluate current evidence on the efficacy and safety of LITUS neuromodulation. Five databases were searched from inception to May 31, 2023. Randomized controlled human trials and controlled animal studies were included. The neuromodulation effects of LITUS on clinical or pre-clinical, neurophysiological, neuroimaging, histological and biochemical outcomes, and adverse events were summarized. In total, 11 human studies and 44 animal studies were identified. LITUS demonstrated therapeutic efficacy in neurological disorders, psychiatric disorders, pain, sleep disorders and hypertension. LITUS-related changes in neuronal structure and cortical activity were found. From histological and biochemical perspectives, prominent findings included suppressing the inflammatory response and facilitating neurogenesis. No adverse effects were reported in controlled animal studies included in our review, while reversible headache, nausea, and vomiting were reported in a few human subjects. Overall, LITUS alleviates various symptoms and modulates associated brain circuits without major side effects. Future research needs to establish a solid therapeutic framework for LITUS.
Collapse
Affiliation(s)
- Penny Ping Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Adam Weili Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Ami Sinman Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Tim Tianze Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuchen Liu
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Laidi Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Bella Bingbing Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Cornelssen C, Finlinson E, Rolston JD, Wilcox KS. Ultrasonic therapies for seizures and drug-resistant epilepsy. Front Neurol 2023; 14:1301956. [PMID: 38162441 PMCID: PMC10756913 DOI: 10.3389/fneur.2023.1301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Ultrasonic therapy is an increasingly promising approach for the treatment of seizures and drug-resistant epilepsy (DRE). Therapeutic focused ultrasound (FUS) uses thermal or nonthermal energy to either ablate neural tissue or modulate neural activity through high- or low-intensity FUS (HIFU, LIFU), respectively. Both HIFU and LIFU approaches have been investigated for reducing seizure activity in DRE, and additional FUS applications include disrupting the blood-brain barrier in the presence of microbubbles for targeted-drug delivery to the seizure foci. Here, we review the preclinical and clinical studies that have used FUS to treat seizures. Additionally, we review effective FUS parameters and consider limitations and future directions of FUS with respect to the treatment of DRE. While detailed studies to optimize FUS applications are ongoing, FUS has established itself as a potential noninvasive alternative for the treatment of DRE and other neurological disorders.
Collapse
Affiliation(s)
- Carena Cornelssen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Eli Finlinson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen S. Wilcox
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
15
|
Zhang T, Guo B, Zuo Z, Long X, Hu S, Li S, Su X, Wang Y, Liu C. Excitatory-inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neurosci Ther 2023; 29:3829-3841. [PMID: 37309308 PMCID: PMC10651987 DOI: 10.1111/cns.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/10/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Transcranial focus ultrasound stimulation (tFUS) is a promising non-invasive neuromodulation technology. This study aimed to evaluate the modulatory effects of tFUS on human motor cortex (M1) excitability and explore the mechanism of neurotransmitter-related intracortical circuitry and plasticity. METHODS Single pulse transcranial magnetic stimulation (TMS)-eliciting motor-evoked potentials (MEPs) were used to assessed M1 excitability in 10 subjects. Paired-pulse TMS was used to measure the effects of tFUS on GABA- and glutamate-related intracortical excitability and 1 H-MRS was used to assess the effects of repetitive tFUS on GABA and Glx (glutamine + glutamate) neurometabolic concentrations in the targeting region in nine subjects. RESULTS The etFUS significantly increased M1 excitability, decreased short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI). The itFUS significantly suppressed M1 excitability, increased SICI, LICI, and decreased intracortical facilitation (ICF). Seven times of etFUS decreased the GABA concentration (6.32%), increased the Glx concentration (12.40%), and decreased the GABA/Glx ratio measured by MRS, while itFUS increased the GABA concentration (18.59%), decreased Glx concentration (0.35%), and significantly increased GABA/Glx ratio. CONCLUSION The findings support that tFUS with different parameters can exert excitatory and inhibitory neuromodulatory effects on the human motor cortex. We provide novel insights that tFUS change cortical excitability and plasticity by regulating excitatory-inhibition balance related to the GABAergic and glutamatergic receptor function and neurotransmitter metabolic level.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Bingqi Guo
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- Hefei Comprehensive National Science CenterInstitute of Artificial IntelligenceHefeiChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Long
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Shimin Hu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Siran Li
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin Su
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
- Institute of Sleep and Consciousness Disorders, Center of Epilepsy, Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
- Hebei Hospital of Xuanwu HospitalCapital Medical UniversityShijiazhuangChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangChina
| | - Chunyan Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| |
Collapse
|
16
|
Riis TS, Feldman DA, Vonesh LC, Brown JR, Solzbacher D, Kubanek J, Mickey BJ. Durable effects of deep brain ultrasonic neuromodulation on major depression: a case report. J Med Case Rep 2023; 17:449. [PMID: 37891643 PMCID: PMC10612153 DOI: 10.1186/s13256-023-04194-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Severe forms of depression have been linked to hyperactivity of the subcallosal cingulate cortex. The ability to stimulate the subcallosal cingulate cortex or associated circuits noninvasively and directly would maximize the number of patients who could receive treatment. To this end, we have developed an ultrasound-based device for effective noninvasive modulation of deep brain circuits. Here we describe an application of this tool to an individual with treatment-resistant depression. CASE PRESENTATION A 30-year-old Caucasian woman with severe treatment-resistant non-psychotic depression was recruited into a clinical study approved by the Institutional Review Board of the University of Utah. The patient had a history of electroconvulsive therapy with full remission but without sustained benefit. Magnetic resonance imaging was used to coregister the ultrasound device to the subject's brain anatomy and to evaluate neural responses to stimulation. Brief, 30-millisecond pulses of low-intensity ultrasound delivered into the subcallosal cingulate cortex target every 4 seconds caused a robust decrease in functional magnetic resonance imaging blood-oxygen-level-dependent activity within the target. Following repeated stimulation of three anterior cingulate targets, the patient's depressive symptoms resolved within 24 hours of the stimulation. The patient remained in remission for at least 44 days afterwards. CONCLUSIONS This case illustrates the potential for ultrasonic neuromodulation to precisely engage deep neural circuits and to trigger a durable therapeutic reset of those circuits. Trial registration ClinicalTrials.gov, NCT05301036. Registered 29 March 2022, https://clinicaltrials.gov/ct2/show/NCT05301036.
Collapse
Affiliation(s)
- Thomas S Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, USA.
| | - Daniel A Feldman
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, USA
| | - Lily C Vonesh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, USA
| | - Jefferson R Brown
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, USA
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, USA
| | - Brian J Mickey
- Department of Biomedical Engineering, University of Utah, Salt Lake City, USA
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, USA
| |
Collapse
|
17
|
Choi MH, Li N, Popelka G, Butts Pauly K. Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimul 2023; 16:1362-1370. [PMID: 37690602 DOI: 10.1016/j.brs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) is a promising noninvasive neuromodulation modality. The inadvertent and unpredictable activation of the auditory system in response to TUS obfuscates the interpretation of non-auditory neuromodulatory responses. OBJECTIVE The objective was to develop and validate a computational metric to quantify the susceptibility to unintended auditory brainstem response (ABR) in mice premised on time frequency analyses of TUS signals and auditory sensitivity. METHODS Ultrasound pulses with varying amplitudes, pulse repetition frequencies (PRFs), envelope smoothing profiles, and sinusoidal modulation frequencies were selected. Each pulse's time-varying frequency spectrum was differentiated across time, weighted by the mouse hearing sensitivity, then summed across frequencies. The resulting time-varying function, computationally predicting the ABR, was validated against experimental ABR in mice during TUS with the corresponding pulse. RESULTS There was a significant correlation between experimental ABRs and the computational predictions for 19 TUS signals (R2 = 0.97). CONCLUSIONS To reduce ABR in mice during in vivo TUS studies, 1) reduce the amplitude of a rectangular continuous wave envelope, 2) increase the rise/fall times of a smoothed continuous wave envelope, and/or 3) change the PRF and/or duty cycle of a rectangular or sinusoidal pulsed wave to reduce the gap between pulses and increase the rise/fall time of the overall envelope. This metric can aid researchers performing in vivo mouse studies in selecting TUS signal parameters that minimize unintended ABR. The methods for developing this metric can be adapted to other animal models.
Collapse
Affiliation(s)
- Mi Hyun Choi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald Popelka
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Kim Butts Pauly
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Webb TD, Wilson MG, Odéen H, Kubanek J. Sustained modulation of primate deep brain circuits with focused ultrasonic waves. Brain Stimul 2023; 16:798-805. [PMID: 37080427 PMCID: PMC10330836 DOI: 10.1016/j.brs.2023.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Transcranial focused ultrasound has the potential to noninvasively modulate deep brain circuits and impart sustained, neuroplastic effects. OBJECTIVE Bring the approach closer to translations by demonstrating sustained modulation of deep brain circuits and choice behavior in task-performing non-human primates. METHODS Low-intensity transcranial ultrasound of 30 s in duration was delivered in a controlled manner into deep brain targets (left or right lateral geniculate nucleus; LGN) of non-human primates while the subjects decided whether a left or a right visual target appeared first. While the animals performed the task, we recorded intracranial EEG from occipital screws. The ultrasound was delivered into the deep brain targets daily for a period of more than 6 months. RESULTS The brief stimulation induced effects on choice behavior that persisted up to 15 minutes and were specific to the sonicated target. Stimulation of the left/right LGN increased the proportion of rightward/leftward choices. These effects were accompanied by an increase in gamma activity over visual cortex. The contralateral effect on choice behavior and the increase in gamma, compared to sham stimulation, suggest that the stimulation excited the target neural circuits. There were no detrimental effects on the animals' discrimination performance over the months-long course of the stimulation. CONCLUSION This study demonstrates that brief, 30-s ultrasonic stimulation induces neuroplastic effects specifically in the target deep brain circuits, and that the stimulation can be applied daily without detrimental effects. These findings encourage repeated applications of transcranial ultrasound to malfunctioning deep brain circuits in humans with the goal of providing a durable therapeutic reset.
Collapse
Affiliation(s)
- Taylor D Webb
- Department of Biomedical Engineering, University of Utah, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America.
| | - Matthew G Wilson
- Department of Biomedical Engineering, University of Utah, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, United States of America
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America.
| |
Collapse
|
19
|
Yüksel MM, Sun S, Latchoumane C, Bloch J, Courtine G, Raffin EE, Hummel FC. Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation? IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:300-318. [PMID: 38196977 PMCID: PMC10776095 DOI: 10.1109/ojemb.2023.3263690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/11/2024] Open
Abstract
Stroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes. Transcranial ultrasound stimulation (TUS) is an emerging approach for non-invasive deep brain neuromodulation. Using non-ionizing, ultrasonic waves with millimeter-accuracy spatial resolution, excellent steering capacity and long penetration depth, TUS has the potential to serve as a novel non-invasive deep brain stimulation method to establish unprecedented neuromodulation and novel neurorehabilitation protocols. The purpose of the present review is to provide an overview on the current knowledge about the neuromodulatory effects of TUS while discussing the potential of TUS in the field of stroke recovery, with respect to existing NIBS methods. We will address and discuss critically crucial open questions and remaining challenges that need to be addressed before establishing TUS as a new clinical neurorehabilitation approach for motor stroke recovery.
Collapse
Affiliation(s)
- Mahmut Martin Yüksel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Shiqi Sun
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Charles Latchoumane
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Jocelyne Bloch
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Gregoire Courtine
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Estelle Emeline Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
- Clinical NeuroscienceUniversity of Geneva Medical SchoolGeneva1211Switzerland
| |
Collapse
|
20
|
Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex. Int J Mol Sci 2023; 24:ijms24032578. [PMID: 36768901 PMCID: PMC9917173 DOI: 10.3390/ijms24032578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) is a novel neuromodulating technique. It has been demonstrated that the neuromodulatory effects can be induced by weak ultrasound exposure levels (spatial-peak temporal average intensity, ISPTA < 10 mW/cm2) in vitro. However, fewer studies have examined the use of weak tFUS to potentially induce long-lasting neuromodulatory responses in vivo. The purpose of this study was to determine the lower-bound threshold of tFUS stimulation for inducing neuromodulation in the motor cortex of rats. A total of 94 Sprague-Dawley rats were used. The sonication region aimed at the motor cortex under weak tFUS exposure (ISPTA of 0.338-12.15 mW/cm2). The neuromodulatory effects of tFUS on the motor cortex were evaluated by the changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). In addition to histology analysis, the in vitro cell culture was used to confirm the neuromodulatory mechanisms following tFUS stimulation. In the results, the dose-dependent inhibitory effects of tFUS were found, showing increased intensities of tFUS suppressed MEPs and lasted for 30 min. Weak tFUS significantly decreased the expression of excitatory neurons and increased the expression of inhibitory GABAergic neurons. The PIEZO-1 proteins of GABAergic neurons were found to involve in the inhibitory neuromodulation. In conclusion, we show the use of weak ultrasound to induce long-lasting neuromodulatory effects and explore the potential use of weak ultrasound for future clinical neuromodulatory applications.
Collapse
|
21
|
Wang M, Wang T, Ji H, Yan J, Wang X, Zhang X, Li X, Yuan Y. Modulation effect of non-invasive transcranial ultrasound stimulation in an ADHD rat model. J Neural Eng 2023; 20. [PMID: 36599159 DOI: 10.1088/1741-2552/acb014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Objective.Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) with noninvasive high penetration and high spatial resolution has an effective neuromodulatory effect on neurological diseases. Attention deficit hyperactivity disorder (ADHD) is a persistent neurodevelopmental disorder that severely affects child health. However, the neuromodulatory effects of TUS on ADHD have not been reported to date. This study aimed to investigate the neuromodulatory effects of TUS on ADHD.Approach.TUS was performed in ADHD model rats for two consecutive weeks, and the behavioral improvement of ADHD, neural activity of ADHD from neurons and neural oscillation levels, and the plasma membrane dopamine transporter and brain-derived neurotrophic factor (BDNF) in the brains of ADHD rats were evaluated.Main results.TUS can improve cognitive behavior in ADHD rats, and TUS altered neuronal firing patterns and modulated the relative power and sample entropy of local field potentials in the ADHD rats. In addition, TUS can also enhance BDNF expression in the brain tissues.Significance. TUS has an effective neuromodulatory effect on ADHD and thus has the potential to clinically improve cognitive dysfunction in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, People's Republic of China
| | - Xingran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
22
|
Chen M, Peng C, Wu H, Huang CC, Kim T, Traylor Z, Muller M, Chhatbar PY, Nam CS, Feng W, Jiang X. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Med Phys 2023; 50:38-49. [PMID: 36342303 PMCID: PMC10099743 DOI: 10.1002/mp.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound (tFUS) has gained considerable attention as a promising noninvasive neuromodulatory technique for human brains. However, the complex morphology of the skull hinders scholars from precisely predicting the acoustic energy transmitted and the region of the brain impacted during the sonication. This is due to the fact that different ultrasound frequencies and skull morphology variations greatly affect wave propagation through the skull. PURPOSE Although the acoustic properties of human skull have been studied for tFUS applications, such as tumor ablation using a multielement phased array, there is no consensus about how to choose a single-element focused ultrasound (FUS) transducer with a suitable frequency for neuromodulation. There are interests in exploring the magnitude and dimension of tFUS beam through human parietal bone for modulating specific brain lobes. Herein, we aim to investigate the wave propagation of tFUS on human skulls to understand and address the concerns above. METHODS Both experimental measurements and numerical modeling were conducted to investigate the transmission efficiency and beam pattern of tFUS on five human skulls (C3 and C4 regions) using single-element FUS transducers with six different frequencies (150-1500 kHz). The degassed skull was placed in a water tank, and a calibrated hydrophone was utilized to measure acoustic pressure past it. The cranial computed tomography scan data of each skull were obtained to derive a high-resolution acoustic model (grid point spacing: 0.25 mm) in simulations. Meanwhile, we modified the power-law exponent of acoustic attenuation coefficient to validate numerical modeling and enabled it to be served as a prediction tool, based on the experimental measurements. RESULTS The transmission efficiency and -6 dB beamwidth were evaluated and compared for various frequencies. An exponential decrease in transmission efficiency and a logarithmic decrease of -6 dB beamwidth with an increase in ultrasound frequency were observed. It is found that a >750 kHz ultrasound leads to a relatively lower tFUS transmission efficiency (<5%), whereas a <350 kHz ultrasound contributes to a relatively broader beamwidth (>5 mm). Based on these observations, we further analyzed the dependence of tFUS wave propagation on FUS transducer aperture size. CONCLUSIONS We successfully studied tFUS wave propagation through human skulls at different frequencies experimentally and numerically. The findings have important implications to predict tFUS wave propagation for ultrasound neuromodulation in clinical applications, and guide researchers to develop advanced ultrasound transducers as neural interfaces.
Collapse
Affiliation(s)
- Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chih-Chung Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zachary Traylor
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chang S Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
23
|
Zhang MF, Chen WZ, Huang FB, Peng ZY, Quan YC, Tang ZM. Low-intensity transcranial ultrasound stimulation facilitates hand motor function and cortical excitability: A crossover, randomized, double blind study. Front Neurol 2022; 13:926027. [PMID: 36147048 PMCID: PMC9486841 DOI: 10.3389/fneur.2022.926027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Transcranial ultrasound stimulation (TUS) is a new form of non-invasive brain stimulation. Low-intensity TUS is considered highly safe. We aimed to investigate the effect of low-intensity TUS on hand reaction responses and cortical excitability in healthy adults. Methods This study used a crossover, randomized, and double-blind design. A total of 20 healthy participants were recruited for the study. All the participants received TUS and sham stimulation on separate days in random order. The finger tapping test (tapping score by using a tablet) and motor evoked potential (MEP) were assessed before and after stimulation, and discomfort levels were assessed using a visual analog scale (VAS) score. Results No significant differences in tapping score or MEP amplitude between the two experimental conditions were registered before stimulation. After stimulation, tapping scores were increased regardless of the specific treatment, and the real stimulation condition receiving TUS (90.4 ± 11.0 points) outperformed the sham stimulation condition (86.1 ± 8.4 points) (p = 0.002). The MEP latency of real TUS (21.85 ± 1.33 ms) was shorter than that of sham TUS (22.42 ± 1.43 ms) (p < 0.001). MEP amplitude of real TUS (132.18 ± 23.28 μV) was higher than that of sham TUS (114.74 ± 25.5 μV, p = 0.005). There was no significant difference in the discomfort score between the two conditions (p = 0.163). Conclusion Transcranial ultrasound stimulation (TUS) can decrease the hand reaction response time and latency of the MEP, enhance the excitability of the motor cortex, and improve hand motor function in healthy individuals without obvious discomfort.
Collapse
Affiliation(s)
- Meng-Fei Zhang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Wei-Zhou Chen
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Fub-Biao Huang
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing, China
| | - Zhi-Yong Peng
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Ying-Chan Quan
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Zhi-Ming Tang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhi-Ming Tang
| |
Collapse
|
24
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
25
|
Dilevicius I, Serdijn WA, Costa TL. Stent with Piezoelectric Transducers for High Spatial Resolution Ultrasound Neuromodulation- a Finite Element Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4966-4969. [PMID: 36085863 DOI: 10.1109/embc48229.2022.9871956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep brain stimulation is currently the only technique used in the clinical setting to modulate the neural activity of deep brain nuclei. Recently, low-intensity transcranial focused ultrasound (LIFU) has been shown to reversibly modulate brain activity through a transcranial pathway. Transcranial LIFU requires a low-frequency ultrasound of around 0.5 MHz due to skull attenuation, thus providing poor axial and lateral resolution. This paper proposes a new conceptual device that would use a stent to place a high-frequency ultrasound array within the brain vasculature to achieve high axial and lateral spatial resolution. The first part of this work identified the most commonly treated deep brain nuclei and examined the human brain vasculature for stent placement. Next, a finite element analysis was carried out using a piezoelectric array that follows the blood vessels curvature, and its ability to focus ultrasound waves in clinically relevant brain nuclei was evaluated. The analytical solution provided promising results for deep brain stimulation via a stent with ultrasound transducers for high spatial resolution neuromodulation.
Collapse
|
26
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
27
|
Sarica C, Nankoo JF, Fomenko A, Grippe TC, Yamamoto K, Samuel N, Milano V, Vetkas A, Darmani G, Cizmeci MN, Lozano AM, Chen R. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul 2022; 15:737-746. [DOI: 10.1016/j.brs.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023] Open
|
28
|
Dell'Italia J, Sanguinetti JL, Monti MM, Bystritsky A, Reggente N. Current State of Potential Mechanisms Supporting Low Intensity Focused Ultrasound for Neuromodulation. Front Hum Neurosci 2022; 16:872639. [PMID: 35547195 PMCID: PMC9081930 DOI: 10.3389/fnhum.2022.872639] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Low intensity focused ultrasound (LIFU) has been gaining traction as a non-invasive neuromodulation technology due to its superior spatial specificity relative to transcranial electrical/magnetic stimulation. Despite a growing literature of LIFU-induced behavioral modifications, the mechanisms of action supporting LIFU's parameter-dependent excitatory and suppressive effects are not fully understood. This review provides a comprehensive introduction to the underlying mechanics of both acoustic energy and neuronal membranes, defining the primary variables for a subsequent review of the field's proposed mechanisms supporting LIFU's neuromodulatory effects. An exhaustive review of the empirical literature was also conducted and studies were grouped based on the sonication parameters used and behavioral effects observed, with the goal of linking empirical findings to the proposed theoretical mechanisms and evaluating which model best fits the existing data. A neuronal intramembrane cavitation excitation model, which accounts for differential effects as a function of cell-type, emerged as a possible explanation for the range of excitatory effects found in the literature. The suppressive and other findings need additional theoretical mechanisms and these theoretical mechanisms need to have established relationships to sonication parameters.
Collapse
Affiliation(s)
- John Dell'Italia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- *Correspondence: John Dell'Italia
| | - Joseph L. Sanguinetti
- Department of Psychology, University of Arizona, Tuscon, AZ, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Martin M. Monti
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Bystritsky
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| |
Collapse
|
29
|
Heimbuch IS, Fan TK, Wu AD, Faas GC, Charles AC, Iacoboni M. Ultrasound stimulation of the motor cortex during tonic muscle contraction. PLoS One 2022; 17:e0267268. [PMID: 35442956 PMCID: PMC9020726 DOI: 10.1371/journal.pone.0267268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Transcranial ultrasound stimulation (tUS) shows potential as a noninvasive brain stimulation (NIBS) technique, offering increased spatial precision compared to other NIBS techniques. However, its reported effects on primary motor cortex (M1) are limited. We aimed to better understand tUS effects in human M1 by performing tUS of the hand area of M1 (M1hand) during tonic muscle contraction of the index finger. Stimulation during muscle contraction was chosen because of the transcranial magnetic stimulation-induced phenomenon known as cortical silent period (cSP), in which transcranial magnetic stimulation (TMS) of M1hand involuntarily suppresses voluntary motor activity. Since cSP is widely considered an inhibitory phenomenon, it presents an ideal parallel for tUS, which has often been proposed to preferentially influence inhibitory interneurons. Recording electromyography (EMG) of the first dorsal interosseous (FDI) muscle, we investigated effects on muscle activity both during and after tUS. We found no change in FDI EMG activity concurrent with tUS stimulation. Using single-pulse TMS, we found no difference in M1 excitability before versus after sparsely repetitive tUS exposure. Using acoustic simulations in models made from structural MRI of the participants that matched the experimental setups, we estimated in-brain pressures and generated an estimate of cumulative tUS exposure experienced by M1hand for each subject. We were unable to find any correlation between cumulative M1hand exposure and M1 excitability change. We also present data that suggest a TMS-induced MEP always preceded a near-threshold cSP.
Collapse
Affiliation(s)
- Ian S. Heimbuch
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Tiffany K. Fan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Allan D. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States of America
| | - Guido C. Faas
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Andrew C. Charles
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
30
|
Darmani G, Bergmann T, Butts Pauly K, Caskey C, de Lecea L, Fomenko A, Fouragnan E, Legon W, Murphy K, Nandi T, Phipps M, Pinton G, Ramezanpour H, Sallet J, Yaakub S, Yoo S, Chen R. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol 2022; 135:51-73. [DOI: 10.1016/j.clinph.2021.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
31
|
Liu X, Qiu F, Hou L, Wang X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front Behav Neurosci 2022; 15:820017. [PMID: 35145384 PMCID: PMC8823253 DOI: 10.3389/fnbeh.2021.820017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Brain stimulation is a critical technique in neuroscience research and clinical application. Traditional transcranial brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) have been widely investigated in neuroscience for decades. However, TMS and tDCS have poor spatial resolution and penetration depth, and DBS requires electrode implantation in deep brain structures. These disadvantages have limited the clinical applications of these techniques. Owing to developments in science and technology, substantial advances in noninvasive and precise deep stimulation have been achieved by neuromodulation studies. Second-generation brain stimulation techniques that mainly rely on acoustic, electronic, optical, and magnetic signals, such as focused ultrasound, temporal interference, near-infrared optogenetic, and nanomaterial-enabled magnetic stimulation, offer great prospects for neuromodulation. This review summarized the mechanisms, development, applications, and strengths of these techniques and the prospects and challenges in their development. We believe that these second-generation brain stimulation techniques pave the way for brain disorder therapy.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| |
Collapse
|
32
|
Matt E, Kaindl L, Tenk S, Egger A, Kolarova T, Karahasanović N, Amini A, Arslan A, Sariçiçek K, Weber A, Beisteiner R. First evidence of long-term effects of transcranial pulse stimulation (TPS) on the human brain. J Transl Med 2022; 20:26. [PMID: 35033118 PMCID: PMC8760674 DOI: 10.1186/s12967-021-03222-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background With the high spatial resolution and the potential to reach deep brain structures, ultrasound-based brain stimulation techniques offer new opportunities to non-invasively treat neurological and psychiatric disorders. However, little is known about long-term effects of ultrasound-based brain stimulation. Applying a longitudinal design, we comprehensively investigated neuromodulation induced by ultrasound brain stimulation to provide first sham-controlled evidence of long-term effects on the human brain and behavior. Methods Twelve healthy participants received three sham and three verum sessions with transcranial pulse stimulation (TPS) focused on the cortical somatosensory representation of the right hand. One week before and after the sham and verum TPS applications, comprehensive structural and functional resting state MRI investigations and behavioral tests targeting tactile spatial discrimination and sensorimotor dexterity were performed. Results Compared to sham, global efficiency significantly increased within the cortical sensorimotor network after verum TPS, indicating an upregulation of the stimulated functional brain network. Axial diffusivity in left sensorimotor areas decreased after verum TPS, demonstrating an improved axonal status in the stimulated area. Conclusions TPS increased the functional and structural coupling within the stimulated left primary somatosensory cortex and adjacent sensorimotor areas up to one week after the last stimulation. These findings suggest that TPS induces neuroplastic changes that go beyond the spatial and temporal stimulation settings encouraging further clinical applications.
Collapse
Affiliation(s)
- Eva Matt
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Lisa Kaindl
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Saskia Tenk
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anicca Egger
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Teodora Kolarova
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Nejla Karahasanović
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Ahmad Amini
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Andreas Arslan
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Kardelen Sariçiçek
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Alexandra Weber
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Roland Beisteiner
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ, Spivak N, Bystritsky A, George MS. Sonication of the Anterior Thalamus With MRI-Guided Transcranial Focused Ultrasound (tFUS) Alters Pain Thresholds in Healthy Adults: A Double-Blind, Sham-Controlled Study. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:90-99. [PMID: 35746940 PMCID: PMC9063607 DOI: 10.1176/appi.focus.20109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Abstract
(Appeared originally in Brain Stimulation 2020; 13:1805-1812) Reprinted with permission from Elsevier.
Collapse
|
34
|
Zeng K, Darmani G, Fomenko A, Xia X, Tran S, Nankoo JF, Oghli YS, Wang Y, Lozano AM, Chen R. Induction of Human Motor Cortex Plasticity by Theta Burst Transcranial Ultrasound Stimulation. Ann Neurol 2021; 91:238-252. [PMID: 34964172 DOI: 10.1002/ana.26294] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique with advantages of high spatial precision and ability to target deep brain regions. This study aimed to develop a TUS protocol to effectively induce brain plasticity in human subjects. METHODS An 80 s train of theta burst patterned TUS (tbTUS), regularly patterned TUS (rTUS) with the same sonication duration and sham tbTUS were delievered to the motor cortex in healthy subjects. Transcranial magnetic stimulation (TMS) was used to examine changes in corticospinal excitability, intracortical inhibition and facilitation, and the site of plasticity induction. The effects of motor cortical tbTUS on a visuo-motor task and the effects of occipital cortex tbTUS on motor cortical excitability were also tested. RESULTS The tbTUS produced consistent increase in corticospinal excitability for at least 30 minutes while rTUS and sham tbTUS produced no significant change. tbTUS decreased short-interval intracortical inhibiton and increased intracortical facilitation. The effects of TMS in different current directions suggested that the site of the plastic changes was within the motor cortex. tbTUS to the occipital cortex did not change motor cortical excitability. Motor cortical tbTUS shortened movement time in a visuo-motor task. INTERPRETATION tbTUS is a novel and efficient paradigm to induce cortical plasticity in human. It has the potential to be developed for neuromodulation treatment for neurological and psychiatric disorders, and to advance neuroscience research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anton Fomenko
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xue Xia
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Stephanie Tran
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Yazan Shamli Oghli
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yanqiu Wang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Transcranial ultrasound stimulation of the human motor cortex. iScience 2021; 24:103429. [PMID: 34901788 PMCID: PMC8637484 DOI: 10.1016/j.isci.2021.103429] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
It has been 40 years since the report of long-term synaptic plasticity on the rodent brain. Transcranial ultrasound stimulation (TUS) shows advantages in spatial resolution and penetration depth when compared with electrical or magnetic stimulation. The repetitive TUS (rTUS) can induce cortical excitability alteration on animals, and persistent aftereffects were observed. However, the effects of rTUS on synaptic plasticity in humans remain unelucidated. In the current study, we applied a 15-min rTUS protocol to stimulate left primary motor cortex (l-M1) in 24 male healthy participants. The single-pulsed transcranial magnetic stimulation-evoked motor evoked potential and Stop-signal task was applied to measure the rTUS aftereffects. Here, we report that conditioning the human motor cortex using rTUS may produce long-lasting and statistically significant effects on motor cortex excitability as well as motor behavior, without harmful side effects observed. These findings suggest a considerable potential of rTUS in cortical plasticity modulation and clinical intervention for impulsivity-related disorders.
Collapse
|
36
|
Zhang T, Pan N, Wang Y, Liu C, Hu S. Transcranial Focused Ultrasound Neuromodulation: A Review of the Excitatory and Inhibitory Effects on Brain Activity in Human and Animals. Front Hum Neurosci 2021; 15:749162. [PMID: 34650419 PMCID: PMC8507972 DOI: 10.3389/fnhum.2021.749162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulation technology is important for the treatment of brain diseases. The effects of focused ultrasound on neuronal activity have been investigated since the 1920s. Low intensity transcranial focused ultrasound (tFUS) can exert non-destructive mechanical pressure effects on cellular membranes and ion channels and has been shown to modulate the activity of peripheral nerves, spinal reflexes, the cortex, and even deep brain nuclei, such as the thalamus. It has obvious advantages in terms of security and spatial selectivity. This technology is considered to have broad application prospects in the treatment of neurodegenerative disorders and neuropsychiatric disorders. This review synthesizes animal and human research outcomes and offers an integrated description of the excitatory and inhibitory effects of tFUS in varying experimental and disease conditions.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Na Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Institute of Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
37
|
Xia X, Fomenko A, Nankoo JF, Zeng K, Wang Y, Zhang J, Lozano AM, Chen R. Time course of the effects of low-intensity transcranial ultrasound on the excitability of ipsilateral and contralateral human primary motor cortex. Neuroimage 2021; 243:118557. [PMID: 34487826 DOI: 10.1016/j.neuroimage.2021.118557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique that can modulate the excitability of cortical and deep brain structures with a high degree of focality. Previous human studies showed that TUS decreases motor cortex (M1) excitability measured by transcranial magnetic stimulation (TMS), but whether the effects appear beyond sonication and whether TUS affects the excitability of other interconnected cortical areas is not known. The time course of M1 TUS on ipsilateral and contralateral M1 excitability was investigated in 22 healthy human subjects via TMS-induced motor-evoked potentials. With sonication duration of 500 ms, we found suppression of M1 excitability from 10 ms before to 20 ms after the end of sonication, and the effects were stronger with blocked design compared to interleaved design. There was no significant effect on contralateral M1 excitability. Using ex-vivo measurements, we showed that the ultrasound transducer did not affect the magnitude or time course of the TMS-induced electromagnetic field. We conclude that the online-suppressive effects of TUS on ipsilateral M1 cortical excitability slightly outlast the sonication but did not produce long-lasting effects. The absence of contralateral effects may suggest that there are little tonic interhemispheric interactions in the resting state, or the intensity of TUS was too low to induce transcallosal inhibition.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China; Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anton Fomenko
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yanqiu Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Meng Y, Pople CB, Lea-Banks H, Hynynen K, Lipsman N, Hamani C. Focused ultrasound neuromodulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:221-240. [PMID: 34446247 DOI: 10.1016/bs.irn.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Focused ultrasound (FUS) is an emerging modality for performing incisionless neurosurgical procedures including thermoablation and blood-brain barrier (BBB) modulation. Emerging evidence suggests that low intensity FUS can also be used for neuromodulation with several benefits, including high spatial precision and the possibility of targeting deep brain regions. Here we review the existing data regarding the biological mechanisms of FUS neuromodulation, the characteristics of neuronal activity altered by FUS, emerging indications for FUS neuromodulation, as well as the strengths and limitations of this approach.
Collapse
Affiliation(s)
- Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
39
|
Permezel F. Brain MRI-guided focused ultrasound conceptualised as a tool for brain network intervention. J Clin Neurosci 2021; 90:370-379. [PMID: 34275578 DOI: 10.1016/j.jocn.2021.05.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging guided high intensity focused ultrasound (HIFU) has emerged as a tool offering incisionless intervention on brain tissue. The low risk and rapid recovery from this procedure, in addition to the ability to assess for clinical benefit and adverse events intraprocedurally, makes it an ideal tool for intervention upon brain networks both for clinical and research applications. This review article proposes that conceptualising brain focused ultrasound as a tool for brain network intervention and adoption of methodology to complement this approach may result in better clinical outcomes, fewer adverse events and may unveil or allow treatment opportunities not otherwise possible. A brief introduction to network neuroscience is discussed before a description of pathological brain networks is provided for a number of conditions for which MRI-guided brain HIFU intervention has been implemented. Essential Tremor is discussed as the most advanced example of MRI-guided brain HIFU intervention adoption along with the issues that present with this treatment modality compared to alternatives. The brain network intervention paradigm is proposed to overcome these issues and a number of examples of implementation of this are discussed. The ability of low intensity MRI guided focussed ultrasound to neuromoduate brain tissue without lesioning is introduced. This tool is discussed with regards to its potential clinical application as well as its potential to further our understanding of network neuroscience via its ability to interrogate brain networks without damaging tissue. Finally, a number of current clinical trials utilising brain focused ultrasound are discussed, along with the additional applications available from the utilisation of low intensity focused ultrasound.
Collapse
Affiliation(s)
- Fiona Permezel
- Austin Hospital, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Austin Hospital, Victoria, Australia.
| |
Collapse
|
40
|
Yu K, Liu C, Niu X, He B. Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-Related Cortical Activity in Humans. IEEE Trans Biomed Eng 2021; 68:1923-1931. [PMID: 33055021 PMCID: PMC8046844 DOI: 10.1109/tbme.2020.3030892] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) is an emerging non-invasive brain stimulation tool for safely and reversibly modulating brain circuits. The effectiveness of tFUS on human brain has been demonstrated, but how tFUS influences the human voluntary motor processing in the brain remains unclear. METHODS We apply low-intensity tFUS to modulate the movement-related cortical potential (MRCP) originating from human subjects practicing a voluntary foot tapping task. 64-channel electroencephalograph (EEG) is recorded concurrently and further used to reconstruct the brain source activity specifically at the primary leg motor cortical area using the electrophysiological source imaging (ESI). RESULTS The ESI illustrates the ultrasound modulated MRCP source dynamics with high spatiotemporal resolutions. The MRCP source is imaged and its source profile is further evaluated for assessing the tFUS neuromodulatory effects on the voluntary MRCP. Moreover, the effect of ultrasound pulse repetition frequency (UPRF) is further assessed in modulating the MRCP. The ESI results show that tFUS significantly increases the MRCP source profile amplitude (MSPA) comparing to a sham ultrasound condition, and further, a high UPRF enhances the MSPA more than a low UPRF does. CONCLUSION The present results demonstrate the neuromodulatory effects of the low-intensity tFUS on enhancing the human voluntary movement-related cortical activities evidenced through the ESI. SIGNIFICANCE This work provides the first evidence of tFUS enhancing the human endogenous motor cortical activities through excitatory modulation.
Collapse
Affiliation(s)
- Kai Yu
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Xiaodan Niu
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bin He
- Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Effects of Transcranial Ultrasound Stimulation on Trigeminal Blink Reflex Excitability. Brain Sci 2021; 11:brainsci11050645. [PMID: 34063492 PMCID: PMC8156436 DOI: 10.3390/brainsci11050645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
Recent evidence indicates that transcranial ultrasound stimulation (TUS) modulates sensorimotor cortex excitability. However, no study has assessed possible TUS effects on the excitability of deeper brain areas, such as the brainstem. In this study, we investigated whether TUS delivered on the substantia nigra, superior colliculus, and nucleus raphe magnus modulates the excitability of trigeminal blink reflex, a reliable neurophysiological technique to assess brainstem functions in humans. The recovery cycle of the trigeminal blink reflex (interstimulus intervals of 250 and 500 ms) was tested before (T0), and 3 (T1) and 30 min (T2) after TUS. The effects of substantia nigra-TUS, superior colliculus-TUS, nucleus raphe magnus-TUS and sham-TUS were assessed in separate and randomized sessions. In the superior colliculus-TUS session, the conditioned R2 area increased at T1 compared with T0, while T2 and T0 values did not differ. Results were independent of the interstimulus intervals tested and were not related to trigeminal blink reflex baseline (T0) excitability. Conversely, the conditioned R2 area was comparable at T0, T1, and T2 in the nucleus raphe magnus-TUS and substantia nigra-TUS sessions. Our findings demonstrate that the excitability of brainstem circuits, as evaluated by testing the recovery cycle of the trigeminal blink reflex, can be increased by TUS. This result may reflect the modulation of inhibitory interneurons within the superior colliculus.
Collapse
|
42
|
Park C, Chen M, Kim T. Implication of auditory confounding in interpreting somatosensory and motor responses in low-intensity focused transcranial ultrasound stimulation. J Neurophysiol 2021; 125:2356-2360. [PMID: 33978511 DOI: 10.1152/jn.00701.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (LI-tFUS) stimulation is a noninvasive neuromodulation tool that demonstrates high target localization accuracy and depth penetration. It has been shown to modulate activities in the primary motor and somatosensory cortex. Previous studies in animals as well as in humans, illustrated in the recently published paper in Brain Stimulation by Braun et al. [Braun V, Blackmore J, Cleveland RO, Butler CR. Brain Stimul 13: 1527-1534, 2020], acknowledged the possibility of indirect stimulation of the peripheral auditory pathway that could confound the somatosensory and motor responses observed with LI-tFUS stimulation. Here, we discuss the implications and interpretations of auditory confounding in the context of neuromodulation.
Collapse
Affiliation(s)
- Christine Park
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Mengyue Chen
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Taewon Kim
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
43
|
Asan AS, Kang Q, Oralkan Ö, Sahin M. Entrainment of cerebellar Purkinje cell spiking activity using pulsed ultrasound stimulation. Brain Stimul 2021; 14:598-606. [PMID: 33774207 PMCID: PMC8164992 DOI: 10.1016/j.brs.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Focused ultrasound (FUS) has excellent characteristics over other non-invasive stimulation methods in terms of spatial resolution and steering capability of the target. FUS has not been tested in the cerebellar cortex and cellular effects of FUS are not fully understood. OBJECTIVE/HYPOTHESIS To investigate how the activity of cerebellar Purkinje cells (PCs) is modulated by FUS with varying pulse durations and pulse repetition frequencies. METHODS A glass microelectrode was inserted into the cerebellar vermis lobule 6 from the dorsal side to extracellularly record single unit activity of the PCs in anesthetized rats. Ultrasonic stimulation (500 kHz) was applied through a coupling cone, filled with degassed water, from the posterior side to target the recording area with varying pulse durations and frequencies. RESULTS Simple spike (SS) activity of PCs was entrained by the FUS pattern where the probability of spike occurrences peaked at around 1 ms following the onset of the stimulus regardless of its duration (0.5, 1, or 2 ms). The level of entrainment was stronger with shorter pulse durations at 50-Hz pulse repetition frequency (PRF), however, peri-event histograms spread wider and the peaks delayed slightly at 100-Hz PRF, suggesting involvement of a long-lasting inhibitory mechanism. There was no significant difference between the average firing rates in the baseline and stimulation periods. CONCLUSION FUS can entrain spiking activity of single cells on a spike-by-spike basis as demonstrated here in the rat cerebellar cortex. The observed modulation potentially results from the aggregate of excitatory and inhibitory effects of FUS on the entire cortical network rather than on the PCs alone.
Collapse
Affiliation(s)
- Ahmet S Asan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Qi Kang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ömer Oralkan
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
44
|
Liu C, Yu K, Niu X, He B. Transcranial Focused Ultrasound Enhances Sensory Discrimination Capability through Somatosensory Cortical Excitation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1356-1366. [PMID: 33622622 PMCID: PMC8011531 DOI: 10.1016/j.ultrasmedbio.2021.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 05/20/2023]
Abstract
Low-intensity transcranial focused ultrasound (tFUS) has emerged as a non-invasive brain neuromodulation tool with high spatial specificity. Previous studies attributed tFUS-enhanced sensory performance to the ultrasound-induced inhibitory neural effects. However, to date there is no direct evidence validating the neural mechanism underlying ultrasound-mediated somatosensory enhancement. In this study, healthy human subjects (N = 9) were asked to perform tactile vibration frequency discrimination tasks while tFUS was directed onto the primary somatosensory cortex. During this task, we simultaneously recorded 64-channel electroencephalography (EEG) signals and investigated the brain responses at both EEG sensors and source domains by means of electrophysiological source imaging (ESI). The behavioral results indicated that the subjects' discrimination ability was improved by tFUS with an increased percentage of correct responses. EEG and ESI results revealed that tFUS neuromodulation was able to improve sensory discrimination capability through excitatory effects at the targeted sensory cortex.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Xiaodan Niu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
45
|
Guo H, Baker G, Hartle K, Fujiwara E, Wang J, Zhang Y, Xing J, Lyu H, Li XM, Chen J. Exploratory study on neurochemical effects of low-intensity pulsed ultrasound in brains of mice. Med Biol Eng Comput 2021; 59:1099-1110. [PMID: 33881705 DOI: 10.1007/s11517-021-02351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/19/2021] [Indexed: 01/25/2023]
Abstract
There is now a relatively large body of evidence suggesting a relationship between dysfunction of myelin and oligodendrocytes and the etiology of several neuropsychiatric disorders, including depression and schizophrenia, and also suggesting that ultrasound methods may alleviate some of the symptoms of depression. We have applied low-intensity pulsed ultrasound (LIPUS) to the brains of mice treated with the demyelinating drug cuprizone, a drug that has been used as the basis for a rodent model relevant to a number of psychiatric and neurologic disorders including depression, schizophrenia, and multiple sclerosis. Prior to conducting the studies in mice, preliminary studies were carried out on the effects of LIPUS in vitro in neuron-like SH-SY5Y cells and primary glial cells. In subsequent studies in mice, female C57BL/6 mice were restrained in plastic tubes for 20 min daily with the ultrasound transducer near the end of the tube directly above the mouse's head. LIPUS was used at an intensity of 25 mW/cm2 once daily for 22 days in control mice and in mice undergoing daily repetitive restraint stress (RRS). Behavioral or neurochemical studies were done on the mice or the brain tissue obtained from them. The studies in vitro indicated that LIPUS stimulation at an intensity of 15 mW/cm2 delivered for 5 min daily for 3 days in an enclosed sterile cell culture plate in an incubator increased the viability of SH-SY5Y and primary glial cells. In the studies in mice, LIPUS elevated levels of doublecortin, a marker for neurogenesis, in the cortex compared to levels in the RRS mice and caused a trend in elevation of brain levels of brain-derived neurotrophic factor in the hippocampus relative to control levels. LIPUS also increased sucrose preference (a measure of the attenuation of anhedonia, a common symptom of several psychiatric disorders) in the RRS model in mice. The ability of LIPUS administered daily to rescue damaged myelin and oligodendrocytes was studied in mice treated chronically with cuprizone for 35 days. LIPUS increased cortex and corpus callosum levels of myelin basic protein, a protein marker for mature oligodendrocytes, and neural/glial antigen 2, a protein marker for oligodendrocyte precursor cells, relative to levels in the cuprizone + sham animals. These results of this exploratory study suggest that future comprehensive time-related studies with LIPUS on brain chemistry and behavior related to neuropsychiatric disorders are warranted. Exploratory Study on Neurochemical Effects of Low Intensity Pulsed Ultrasound in Brains of Mice. Upper part of figure: LIPUS device and in-vitro cell experimental set-up. The center image is the LIPUS generating box; the image in the upper left shows the cell experiment set-up; the image in the upper right shows a zoomed-in sketch for the cell experiment; the image in the lower left shows the set-up of repetitive restraint stress (RRS) with a mouse; the image in the lower middle shows the set-up of LIPUS treatment of a mouse; the image in the lower right shows a zoomed-in sketch for the LIPUS treatment of a mouse.
Collapse
Affiliation(s)
- Huining Guo
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Glen Baker
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Kelly Hartle
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Junhui Wang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jida Xing
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Haiyan Lyu
- Department of Pharmacy, Xianyue Hospital, Xiamen, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada. .,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| | - Jie Chen
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada. .,Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
46
|
Neuromodulation-Based Stem Cell Therapy in Brain Repair: Recent Advances and Future Perspectives. Neurosci Bull 2021; 37:735-745. [PMID: 33871821 DOI: 10.1007/s12264-021-00667-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell transplantation holds a promising future for central nervous system repair. Current challenges, however, include spatially and temporally defined cell differentiation and maturation, plus the integration of transplanted neural cells into host circuits. Here we discuss the potential advantages of neuromodulation-based stem cell therapy, which can improve the viability and proliferation of stem cells, guide migration to the repair site, orchestrate the differentiation process, and promote the integration of neural circuitry for functional rehabilitation. All these advantages of neuromodulation make it one potentially valuable tool for further improving the efficiency of stem cell transplantation.
Collapse
|
47
|
Kim T, Park C, Chhatbar PY, Feld J, Mac Grory B, Nam CS, Wang P, Chen M, Jiang X, Feng W. Effect of Low Intensity Transcranial Ultrasound Stimulation on Neuromodulation in Animals and Humans: An Updated Systematic Review. Front Neurosci 2021; 15:620863. [PMID: 33935626 PMCID: PMC8079725 DOI: 10.3389/fnins.2021.620863] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: Although low-intensity transcranial ultrasound stimulation (LI-TUS) has received more recognition for its neuromodulation potential, there remains a crucial knowledge gap regarding the neuromodulatory effects of LI-TUS and its potential for translation as a therapeutic tool in humans. Objective: In this review, we summarized the findings reported by recently published studies regarding the effect of LI-TUS on neuromodulation in both animals and humans. We also aim to identify challenges and opportunities for the translation process. Methods: A literature search of PubMed, Medline, EMBASE, and Web of Science was performed from January 2019 to June 2020 with the following keywords and Boolean operators: [transcranial ultrasound OR transcranial focused ultrasound OR ultrasound stimulation] AND [neuromodulation]. The methodological quality of the animal studies was assessed by the SYRCLE's risk of bias tool, and the quality of human studies was evaluated by the PEDro score and the NIH quality assessment tool. Results: After applying the inclusion and exclusion criteria, a total of 26 manuscripts (24 animal studies and two human studies) out of 508 reports were included in this systematic review. Although both inhibitory (10 studies) and excitatory (16 studies) effects of LI-TUS were observed in animal studies, only inhibitory effects have been reported in primates (five studies) and human subjects (two studies). The ultrasonic parameters used in animal and human studies are different. The SYRCLE quality score ranged from 25 to 43%, with a majority of the low scores related to performance and detection bias. The two human studies received high PEDro scores (9/10). Conclusion: LI-TUS appears to be capable of targeting both superficial and deep cerebral structures to modulate cognitive or motor behavior in both animals and humans. Further human studies are needed to more precisely define the effective modulation parameters and thereby translate this brain modulatory tool into the clinic.
Collapse
Affiliation(s)
- Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Jody Feld
- Physical Therapy Division, Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brian Mac Grory
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Chang S Nam
- Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, United States
| | - Pu Wang
- Department of Rehabilitation Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shengzhen, China
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
48
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol 2021; 19:334-348. [PMID: 32691714 PMCID: PMC8033967 DOI: 10.2174/1570159x18666200720175253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background For more than seven decades, ultrasound has been used as an imaging and diagnostic tool. Today, new technologies, such as focused ultrasound (FUS) neuromodulation, have revealed some innovative, potential applications. However, those applications have been barely studied to deal with neuropathic pain (NP), a cluster of chronic pain syndromes with a restricted response to conventional pharmaceuticals. Objective To analyze the therapeutic potential of low-intensity (LIFUS) and high-intensity (HIFUS) FUS for managing NP. Methods We performed a narrative review, including clinical and experimental ultrasound neuromodulation studies published in three main database repositories. Discussion Evidence shows that FUS may influence several mechanisms relevant for neuropathic pain management such as modulation of ion channels, glutamatergic neurotransmission, cerebral blood flow, inflammation and neurotoxicity, neuronal morphology and survival, nerve regeneration, and remyelination. Some experimental models have shown that LIFUS may reduce allodynia after peripheral nerve damage. At the same time, a few clinical studies support its beneficial effect on reducing pain in nerve compression syndromes. In turn, Thalamic HIFUS ablation can reduce NP from several etiologies with minor side-effects, but some neurological sequelae might be permanent. HIFUS is also useful in lowering non-neuropathic pain in several disorders. Conclusion Although an emerging set of studies brings new evidence on the therapeutic potential of both LIFUS and HIFUS for managing NP with minor side-effects, we need more controlled clinical trials to conclude about its safety and efficacy.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Alberto González-Aguilar
- Neuro-oncology Unit, Instituto Nacional de Neurología y Neurocirugia Manuel Velasco Suarez, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Hugo Sandoval
- Sociomedical Research Unit, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P.14389, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| |
Collapse
|
49
|
Huerta TS, Devarajan A, Tsaava T, Rishi A, Cotero V, Puleo C, Ashe J, Coleman TR, Chang EH, Tracey KJ, Chavan SS. Targeted peripheral focused ultrasound stimulation attenuates obesity-induced metabolic and inflammatory dysfunctions. Sci Rep 2021; 11:5083. [PMID: 33658532 PMCID: PMC7930257 DOI: 10.1038/s41598-021-84330-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity, a growing health concern, is associated with an increased risk of morbidity and mortality. Chronic low-grade inflammation is implicated in obesity-driven metabolic complications. Peripheral focused ultrasound stimulation (pFUS) is an emerging non-invasive technology that modulates inflammation. Here, we reasoned that focused ultrasound stimulation of the liver may alleviate obesity-related inflammation and other comorbidities. After 8 weeks on a high-fat high-carbohydrate "Western" diet, C57BL/6J mice were subjected to either sham stimulation or focused ultrasound stimulation at the porta hepatis. Daily liver-focused ultrasound stimulation for 8 weeks significantly decreased body weight, circulating lipids and mitigated dysregulation of adipokines. In addition, liver-focused ultrasound stimulation significantly reduced hepatic cytokine levels and leukocyte infiltration. Our findings demonstrate the efficacy of hepatic focused ultrasound for alleviating obesity and obesity-associated complications in mice. These findings suggest a previously unrecognized potential of hepatic focused ultrasound as a possible novel noninvasive approach in the context of obesity.
Collapse
Affiliation(s)
- Tomás S Huerta
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Alex Devarajan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tea Tsaava
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | | | | | - Jeffrey Ashe
- GE Research, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Thomas R Coleman
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
50
|
Lee W, Weisholtz DS, Strangman GE, Yoo SS. Safety Review and Perspectives of Transcranial Focused Ultrasound Brain Stimulation. BRAIN & NEUROREHABILITATION 2021; 14:e4. [PMID: 36742103 PMCID: PMC9879416 DOI: 10.12786/bn.2021.14.e4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 11/08/2022] Open
Abstract
Ultrasound is an important theragnostic modality in modern medicine. Technical advancement of both acoustic focusing and transcranial delivery have enabled administration of ultrasound waves to localized brain areas with few millimeters of spatial specificity and penetration depth sufficient to reach the thalamus. Transcranial focused ultrasound (tFUS) given at a low acoustic intensity has been shown to increase or suppress the excitability of region-specific brain areas. The neuromodulatory effects can outlast the sonication, suggesting the possibility of inducing neural plasticity needed for neurorehabilitation. Increasing numbers of studies have shown the efficacy and excellent safety profile of the technique, yet comparisons among the safety-related parameters have not been compiled. This review aims to provide safety information and perspectives of tFUS brain stimulation. First, the acoustic parameters most relevant to thermal/mechanical tissue damage are discussed along with regulated parameters for existing ultrasound therapies/diagnostic imaging. Subsequently, the parameters used in studies of large animals, non-human primates, and humans are surveyed and summarized in terms of the acoustic intensity and the mechanical index. The pulse-mode operation and the use of low ultrasound frequency for tFUS-mediated brain stimulation warrant the establishment of new safety guidelines/recommendations for the use of the technique among healthy volunteers, with additional cautionary requirements for its clinical translation.
Collapse
Affiliation(s)
- Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel S. Weisholtz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary E. Strangman
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Translational Research Institute, Houston, TX, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|