1
|
Chen CS, Mueller D, Knep E, Ebitz RB, Grissom NM. Dopamine and Norepinephrine Differentially Mediate the Exploration-Exploitation Tradeoff. J Neurosci 2024; 44:e1194232024. [PMID: 39214707 PMCID: PMC11529815 DOI: 10.1523/jneurosci.1194-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Dopamine (DA) and norepinephrine (NE) have been repeatedly implicated in neuropsychiatric vulnerability, in part via their roles in mediating the decision-making processes. Although two neuromodulators share a synthesis pathway and are coactivated under states of arousal, they engage in distinct circuits and modulatory roles. However, the specific role of each neuromodulator in decision-making, in particular the exploration-exploitation tradeoff, remains unclear. Revealing how each neuromodulator contributes to exploration-exploitation tradeoff is important in guiding mechanistic hypotheses emerging from computational psychiatric approaches. To understand the differences and overlaps of the roles of these two catecholamine systems in regulating exploration, a direct comparison using the same dynamic decision-making task is needed. Here, we ran male and female mice in a restless two-armed bandit task, which encourages both exploration and exploitation. We systemically administered a nonselective DA antagonist (flupenthixol), a nonselective DA agonist (apomorphine), a NE beta-receptor antagonist (propranolol), and a NE beta-receptor agonist (isoproterenol) and examined changes in exploration within subjects across sessions. We found a bidirectional modulatory effect of dopamine on exploration. Increasing dopamine activity decreased exploration and decreasing dopamine activity increased exploration. The modulatory effect of beta-noradrenergic receptor activity on exploration was mediated by sex. Reinforcement learning model parameters suggested that dopamine modulation affected exploration via decision noise and norepinephrine modulation affected exploration via sensitivity to outcome. Together, these findings suggested that the mechanisms that govern the exploration-exploitation transition are sensitive to changes in both catecholamine functions and revealed differential roles for NE and DA in mediating exploration.
Collapse
Affiliation(s)
- Cathy S Chen
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dana Mueller
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Evan Knep
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - R Becket Ebitz
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Nicola M Grissom
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
2
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Márquez I, Treviño M. Visuomotor predictors of interception. PLoS One 2024; 19:e0308642. [PMID: 39283837 PMCID: PMC11404793 DOI: 10.1371/journal.pone.0308642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/26/2024] [Indexed: 09/22/2024] Open
Abstract
Intercepting moving targets is a fundamental skill in human behavior, influencing various domains such as sports, gaming, and other activities. In these contexts, precise visual processing and motor control are crucial for adapting and navigating effectively. Nevertheless, there are still some gaps in our understanding of how these elements interact while intercepting a moving target. This study explored the dynamic interplay among eye movements, pupil size, and interceptive hand movements, with visual and motion uncertainty factors. We developed a simple visuomotor task in which participants used a joystick to interact with a computer-controlled dot that moved along two-dimensional trajectories. This virtual system provided the flexibility to manipulate the target's speed and directional uncertainty during chase trials. We then conducted a geometric analysis based on optimal angles for each behavior, enabling us to distinguish between simple tracking and predictive trajectories that anticipate future positions of the moving target. Our results revealed the adoption of a strong interception strategy as participants approached the target. Notably, the onset and amount of optimal interception strategy depended on task parameters, such as the target's speed and frequency of directional changes. Furthermore, eye-tracking data showed that participants continually adjusted their gaze speed and position, continuously adapting to the target's movements. Finally, in successful trials, pupillary responses predicted the amount of optimal interception strategy while exhibiting an inverse relationship in trials without collisions. These findings reveal key interactions among visuomotor parameters that are crucial for solving complex interception tasks.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, México
- Laboratorio de Conducta Animal, Departamento de Psicología, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, México
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
4
|
Durand JB, Marchand S, Nasres I, Laeng B, De Castro V. Illusory light drives pupil responses in primates. J Vis 2024; 24:14. [PMID: 39046721 PMCID: PMC11271809 DOI: 10.1167/jov.24.7.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/25/2024] Open
Abstract
In humans, the eye pupils respond to both physical light sensed by the retina and mental representations of light produced by the brain. Notably, our pupils constrict when a visual stimulus is illusorily perceived brighter, even if retinal illumination is constant. However, it remains unclear whether such perceptual penetrability of pupil responses is an epiphenomenon unique to humans or whether it represents an adaptive mechanism shared with other animals to anticipate variations in retinal illumination between successive eye fixations. To address this issue, we measured the pupil responses of both humans and macaque monkeys exposed to three chromatic versions (cyan, magenta, and yellow) of the Asahi brightness illusion. We found that the stimuli illusorily perceived brighter or darker trigger differential pupil responses that are very similar in macaques and human participants. Additionally, we show that this phenomenon exhibits an analogous cyan bias in both primate species. Beyond evincing the macaque monkey as a relevant model to study the perceptual penetrability of pupil responses, our results suggest that this phenomenon is tuned to ecological conditions because the exposure to a "bright cyan-bluish sky" may be associated with increased risks of dazzle and retinal damages.
Collapse
Affiliation(s)
- Jean-Baptiste Durand
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Sarah Marchand
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Ilyas Nasres
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Vanessa De Castro
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
5
|
Dong Y, Kiyonaga A. Ocular working memory signals are flexible to behavioral priority and subjective imagery strength. J Neurophysiol 2024; 132:162-176. [PMID: 38836298 PMCID: PMC11383386 DOI: 10.1152/jn.00446.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
The pupillary light response was long considered a brainstem reflex, outside of cognitive influence. However, newer findings indicate that pupil dilation (and eye movements) can reflect content held "in mind" with working memory (WM). These findings may reshape understanding of ocular and WM mechanisms, but it is unclear whether the signals are artifactual or functional to WM. Here, we ask whether peripheral and oculomotor WM signals are sensitive to the task-relevance or "attentional state" of WM content. During eye-tracking, human participants saw both dark and bright WM stimuli, then were retroactively cued to the item that would most likely be tested. Critically, we manipulated the attentional priority among items by varying the cue reliability across blocks. We confirmed previous findings that remembering darker items is associated with larger pupils (vs. brighter), and that gaze is biased toward cued item locations. Moreover, we discovered that pupil and eye movement responses were influenced differently by WM item relevance. Feature-specific pupillary effects emerged only for highly prioritized WM items but were eliminated when cues were less reliable, and pupil effects also increased with self-reported visual imagery strength. Conversely, gaze position consistently veered toward the cued item location, regardless of cue reliability. However, biased microsaccades occurred at a higher frequency when cues were more reliable, though only during a limited post-cue time window. Therefore, peripheral sensorimotor processing is sensitive to the task-relevance or functional state of internal WM content, but pupillary and eye movement WM signals show distinct profiles. These results highlight a potential role for early visual processing in maintaining multiple WM content dimensions.NEW & NOTEWORTHY Here, we found that working memory (WM)-driven ocular inflections-feature-specific pupillary and saccadic biases-were muted for memory items that were less behaviorally relevant. This work illustrates that functionally informative goal signals may extend as early as the sensorimotor periphery, that pupil size may be under more fine-grained control than originally thought, and that ocular signals carry multiple dimensions of cognitively relevant information.
Collapse
Affiliation(s)
- Yueying Dong
- Department of Cognitive Science, University of California, San Diego, California, United States
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, California, United States
| |
Collapse
|
6
|
Becker J, Viertler M, Korn CW, Blank H. The pupil dilation response as an indicator of visual cue uncertainty and auditory outcome surprise. Eur J Neurosci 2024; 59:2686-2701. [PMID: 38469976 DOI: 10.1111/ejn.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/13/2024]
Abstract
In everyday perception, we combine incoming sensory information with prior expectations. Expectations can be induced by cues that indicate the probability of following sensory events. The information provided by cues may differ and hence lead to different levels of uncertainty about which event will follow. In this experiment, we employed pupillometry to investigate whether the pupil dilation response to visual cues varies depending on the level of cue-associated uncertainty about a following auditory outcome. Also, we tested whether the pupil dilation response reflects the amount of surprise about the subsequently presented auditory stimulus. In each trial, participants were presented with a visual cue (face image) which was followed by an auditory outcome (spoken vowel). After the face cue, participants had to indicate by keypress which of three auditory vowels they expected to hear next. We manipulated the cue-associated uncertainty by varying the probabilistic cue-outcome contingencies: One face was most likely followed by one specific vowel (low cue uncertainty), another face was equally likely followed by either of two vowels (intermediate cue uncertainty) and the third face was followed by all three vowels (high cue uncertainty). Our results suggest that pupil dilation in response to task-relevant cues depends on the associated uncertainty, but only for large differences in the cue-associated uncertainty. Additionally, in response to the auditory outcomes, the pupil dilation scaled negatively with the cue-dependent probabilities, likely signalling the amount of surprise.
Collapse
Affiliation(s)
- Janika Becker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marvin Viertler
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Helen Blank
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Antoniades CA, Spering M. Eye movements in Parkinson's disease: from neurophysiological mechanisms to diagnostic tools. Trends Neurosci 2024; 47:71-83. [PMID: 38042680 DOI: 10.1016/j.tins.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 12/04/2023]
Abstract
Movement disorders such as Parkinson's disease (PD) impact oculomotor function - the ability to move the eyes accurately and purposefully to serve a multitude of sensory, cognitive, and secondary motor tasks. Decades of neurophysiological research in monkeys and behavioral studies in humans have characterized the neural basis of healthy oculomotor control. This review links eye movement abnormalities in persons living with PD to the underlying neurophysiological mechanisms and pathways. Building on this foundation, we highlight recent progress in using eye movements to gauge symptom severity, assess treatment effects, and serve as potential precision biomarkers. We conclude that whereas eye movements provide insights into PD mechanisms, based on current evidence they appear to lack sufficient sensitivity and specificity to serve as a standalone diagnostic tool. Their full potential may be realized when combined with other disease indicators in big datasets.
Collapse
Affiliation(s)
- Chrystalina A Antoniades
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Kim JH, Yin C, Merriam EP, Roth ZN. Pupil Size Is Sensitive to Low-Level Stimulus Features, Independent of Arousal-Related Modulation. eNeuro 2023; 10:ENEURO.0005-23.2023. [PMID: 37699706 PMCID: PMC10585606 DOI: 10.1523/eneuro.0005-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Similar to a camera aperture, pupil size adjusts to the surrounding luminance. Unlike a camera, pupil size is additionally modulated both by stimulus properties and by cognitive processes, including attention and arousal, though the interdependence of these factors is unclear. We hypothesized that different stimulus properties interact to jointly modulate pupil size while remaining independent from the impact of arousal. We measured pupil responses from human observers to equiluminant stimuli during a demanding rapid serial visual presentation (RSVP) task at fixation and tested how response amplitude depends on contrast, spatial frequency, and reward level. We found that under constant luminance, unattended stimuli evoke responses that are separable from changes caused by general arousal or attention. We further uncovered a double-dissociation between task-related responses and stimulus-evoked responses, suggesting that different sources of pupil size modulation are independent of one another. Our results shed light on neural pathways underlying pupillary response.
Collapse
Affiliation(s)
- June Hee Kim
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Christine Yin
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Zvi N Roth
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Sherrill S, Watson J, Khan R, Nagai Y, Azevedo R, Tsakiris M, Garfinkel S, Critchley H. Evidence that pupil dilation and cardiac afferent signalling differentially impact the processing of emotional intensity and racial bias. Biol Psychol 2023; 183:108699. [PMID: 37775034 DOI: 10.1016/j.biopsycho.2023.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Interoceptive cardiac arousal signals (e.g., from baroreceptor firing at ventricular systole compared to diastole) have been found to enhance perception of fearful versus neutral faces. They have also been found to amplify racially biased misidentification of tools as weapons when preceded by facial images of Black versus White individuals. Since pupil size is strongly coupled to arousal, we tested if experimental manipulation of pupil size influences fear processing in emotional judgement and racial bias tasks involving measurement of cardiac signals. In a sample of 22 non-clinical participants in an emotional intensity judgement task, pupil size did not affect emotional intensity ratings. Nor did it interact with differential effects of cardiac systole versus diastole on intensity judgements of fearful and neutral faces, replicated here. In a sample of 25 non-clinical participants in a weapons identification task, larger pupil size resulted in faster response times and lower accuracy when identifying tools and weapons. However, pupil size did not interact with weapon versus tool identification, race of prime, or cardiac timing. We nevertheless replicated the observed increase in racially biased misidentification of tools as weapons following Black face primes presented at cardiac systole. Together our findings indicate that pupil dilation does not directly influence the processing of fear cues or perceived threat (as in racial bias) yet affects task performance by decreasing response times and accuracy. These findings contrast with the established effect of cardiac arousal signals on threat processing and may help focus interventions to mitigate related decision errors in high-pressure occupations.
Collapse
Affiliation(s)
- Samantha Sherrill
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, UK; Sussex Neuroscience, University of Sussex, UK; Sussex Centre for Consciousness Science, University of Sussex, UK
| | - Jordan Watson
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, UK
| | - Riya Khan
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, UK
| | - Yoko Nagai
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, UK; Sussex Neuroscience, University of Sussex, UK
| | | | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, UK
| | - Sarah Garfinkel
- Institute of Cognitive Neuroscience, University College London, UK
| | - Hugo Critchley
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, UK; Sussex Neuroscience, University of Sussex, UK; Sussex Centre for Consciousness Science, University of Sussex, UK; Sussex Partnership NHS Foundation Trust, UK.
| |
Collapse
|
10
|
Shourkeshti A, Marrocco G, Jurewicz K, Moore T, Ebitz RB. Pupil size predicts the onset of exploration in brain and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541981. [PMID: 37292773 PMCID: PMC10245915 DOI: 10.1101/2023.05.24.541981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In uncertain environments, intelligent decision-makers exploit actions that have been rewarding in the past, but also explore actions that could be even better. Several neuromodulatory systems are implicated in exploration, based, in part, on work linking exploration to pupil size-a peripheral correlate of neuromodulatory tone and index of arousal. However, pupil size could instead track variables that make exploration more likely, like volatility or reward, without directly predicting either exploration or its neural bases. Here, we simultaneously measured pupil size, exploration, and neural population activity in the prefrontal cortex while two rhesus macaques explored and exploited in a dynamic environment. We found that pupil size under constant luminance specifically predicted the onset of exploration, beyond what could be explained by reward history. Pupil size also predicted disorganized patterns of prefrontal neural activity at both the single neuron and population levels, even within periods of exploitation. Ultimately, our results support a model in which pupil-linked mechanisms promote the onset of exploration via driving the prefrontal cortex through a critical tipping point where prefrontal control dynamics become disorganized and exploratory decisions are possible.
Collapse
Affiliation(s)
- Akram Shourkeshti
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Gabriel Marrocco
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Katarzyna Jurewicz
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - R. Becket Ebitz
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Meyyappan S, Rajan A, Mangun GR, Ding M. Top-down control of the left visual field bias in cued visual spatial attention. Cereb Cortex 2023; 33:5097-5107. [PMID: 36245213 PMCID: PMC10151882 DOI: 10.1093/cercor/bhac402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
A left visual field (LVF) bias in perceptual judgments, response speed, and discrimination accuracy has been reported in humans. Cognitive factors, such as visual spatial attention, are known to modulate or even eliminate this bias. We investigated this problem by recording pupillometry together with functional magnetic resonance imaging (fMRI) in a cued visual spatial attention task. We observed that (i) the pupil was significantly more dilated following attend-right than attend-left cues, (ii) the task performance (e.g. reaction time [RT]) did not differ between attend-left and attend-right trials, and (iii) the difference in cue-related pupil dilation between attend-left and attend-right trials was inversely related to the corresponding difference in RT. Neuroscientically, correlating the difference in cue-related pupil dilation with the corresponding cue-related fMRI difference yielded activations primarily in the right hemisphere, including the right intraparietal sulcus and the right ventrolateral prefrontal cortex. These results suggest that (i) there is an asymmetry in visual spatial attention control, with the rightward attention control being more effortful than the leftward attention control, (ii) this asymmetry underlies the reduction or the elimination of the LVF bias, and (iii) the components of the attentional control networks in the right hemisphere are likely part of the neural substrate of the observed asymmetry in attentional control.
Collapse
Affiliation(s)
- Sreenivasan Meyyappan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Center for Mind and Brain, University of California, Davis, CA 95618, USA
| | - Abhijit Rajan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - George R Mangun
- Center for Mind and Brain, University of California, Davis, CA 95618, USA
- Departments of Psychology and Neurology, University of California, Davis, CA 95616, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Yamada K, Toda K. Pupillary dynamics of mice performing a Pavlovian delay conditioning task reflect reward-predictive signals. Front Syst Neurosci 2022; 16:1045764. [PMID: 36567756 PMCID: PMC9772849 DOI: 10.3389/fnsys.2022.1045764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Pupils can signify various internal processes and states, such as attention, arousal, and working memory. Changes in pupil size have been associated with learning speed, prediction of future events, and deviations from the prediction in human studies. However, the detailed relationships between pupil size changes and prediction are unclear. We explored pupil size dynamics in mice performing a Pavlovian delay conditioning task. A head-fixed experimental setup combined with deep-learning-based image analysis enabled us to reduce spontaneous locomotor activity and to track the precise dynamics of pupil size of behaving mice. By setting up two experimental groups, one for which mice were able to predict reward in the Pavlovian delay conditioning task and the other for which mice were not, we demonstrated that the pupil size of mice is modulated by reward prediction and consumption, as well as body movements, but not by unpredicted reward delivery. Furthermore, we clarified that pupil size is still modulated by reward prediction even after the disruption of body movements by intraperitoneal injection of haloperidol, a dopamine D2 receptor antagonist. These results suggest that changes in pupil size reflect reward prediction signals. Thus, we provide important evidence to reconsider the neuronal circuit involved in computing reward prediction error. This integrative approach of behavioral analysis, image analysis, pupillometry, and pharmacological manipulation will pave the way for understanding the psychological and neurobiological mechanisms of reward prediction and the prediction errors essential to learning and behavior.
Collapse
Affiliation(s)
- Kota Yamada
- Department of Psychology, Keio University, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koji Toda
- Department of Psychology, Keio University, Tokyo, Japan
| |
Collapse
|
13
|
Do pupillary responses during authentic slot machine use reflect arousal or screen luminance fluctuations? A proof-of-concept study. PLoS One 2022; 17:e0272070. [PMID: 35877672 PMCID: PMC9312385 DOI: 10.1371/journal.pone.0272070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Modern slot machines are among the more harmful forms of gambling. Psychophysiological measures may provide a window into mental processes that underpin these harms. Here we investigated pupil dilation derived from eye tracking as a means of capturing changes in sympathetic nervous system arousal following outcomes on a real slot machine. We hypothesized that positively reinforcing slot machine outcomes would be associated with increases in arousal, reflected in larger pupil diameter. We further examined the contribution of game luminance fluctuations on pupil diameter. In Experiment 1A, experienced slot machine gamblers (N = 53) played a commercially-available slot machine in a laboratory for 20 minutes while wearing mobile eye tracking glasses. Analyses differentiated loss outcomes, wins, losses-disguised-as-wins, and (free-spin) bonus features. Bonus features were associated with rapid increases in pupil diameter following the onset of outcome-related audiovisual feedback, relative to losses. In Experiment 1B, luminance data were extracted from captured screen videos (derived from Experiment 1A) to characterize on-screen luminance changes that could modulate pupil diameter. Bonus features and wins were associated with pronounced and complex fluctuations in screen luminance (≈50 L and ≈25L, respectively). However, the pupil dilation that was observed to bonus features in Experiment 1A coincided temporally with only negligible changes in screen luminance, providing partial evidence that the pupil dilation to bonus features may be due to arousal. In Experiment 2, 12 participants viewed pairs of stimuli (scrambled slot machine images) at luminance difference thresholds of ≈25L, ≈50L, and ≈100L. Scrambled images presented at luminance differences of ≈25L and greater were sufficient to cause pupillary responses. Overall, pupillometry may detect event-related changes in sympathetic nervous system arousal following gambling outcomes, but researchers must pay careful attention to substantial in-game luminance changes that may confound arousal-based interpretations.
Collapse
|
14
|
Abstract
For over 100 years, eye movements have been studied and used as indicators of human sensory and cognitive functions. This review evaluates how eye movements contribute to our understanding of the processes that underlie decision-making. Eye movement metrics signify the visual and task contexts in which information is accumulated and weighed. They indicate the efficiency with which we evaluate the instructions for decision tasks, the timing and duration of decision formation, the expected reward associated with a decision, the accuracy of the decision outcome, and our ability to predict and feel confident about a decision. Because of their continuous nature, eye movements provide an exciting opportunity to probe decision processes noninvasively in real time. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Miriam Spering
- Department of Ophthalmology & Visual Sciences and the Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada;
| |
Collapse
|
15
|
Burlingham CS, Mirbagheri S, Heeger DJ. A unified model of the task-evoked pupil response. SCIENCE ADVANCES 2022; 8:eabi9979. [PMID: 35442730 PMCID: PMC9020670 DOI: 10.1126/sciadv.abi9979] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The pupil dilates and reconstricts following task events. It is popular to model this task-evoked pupil response as a linear transformation of event-locked impulses, whose amplitudes are used as estimates of arousal. We show that this model is incorrect and propose an alternative model based on the physiological finding that a common neural input drives saccades and pupil size. The estimates of arousal from our model agreed with key predictions: Arousal scaled with task difficulty and behavioral performance but was invariant to small differences in trial duration. Moreover, the model offers a unified explanation for a wide range of phenomena: entrainment of pupil size and saccades to task timing, modulation of pupil response amplitude and noise with task difficulty, reaction time-dependent modulation of pupil response timing and amplitude, a constrictory pupil response time-locked to saccades, and task-dependent distortion of this saccade-locked pupil response.
Collapse
Affiliation(s)
| | - Saghar Mirbagheri
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - David J. Heeger
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
16
|
Pupil size variations reveal covert shifts of attention induced by numbers. Psychon Bull Rev 2022; 29:1844-1853. [PMID: 35384595 DOI: 10.3758/s13423-022-02094-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
The pupil light response is more than a pure reflexive mechanism that reacts to the amount of light entering the eye. The pupil size may also react to the luminance of objects lying in the visual periphery, revealing the locus of covert attention. In the present study, we took advantage of this response to study the spatial coding of abstract concepts with no physical counterpart: numbers. The participants' gaze was maintained fixed in the middle of a screen whose left and right parts were dark or bright, and variations in pupil size were recorded during an auditory number comparison task. The results showed that small numbers accentuated pupil dilation when the darker part of the screen was on the left, while large numbers accentuated pupil dilation when the darker part of the screen was on the right. This finding provides direct evidence for covert attention shifts on a left-to-right oriented mental spatial representation of numbers. From a more general perspective, it shows that the pupillary response to light is subject to modulation from spatial attention mechanisms operating on mental contents.
Collapse
|
17
|
Tortelli C, Pomè A, Turi M, Igliozzi R, Burr DC, Binda P. Contextual Information Modulates Pupil Size in Autistic Children. Front Neurosci 2022; 16:752871. [PMID: 35431787 PMCID: PMC9011183 DOI: 10.3389/fnins.2022.752871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent Bayesian models suggest that perception is more “data-driven” and less dependent on contextual information in autistic individuals than others. However, experimental tests of this hypothesis have given mixed results, possibly due to the lack of objectivity of the self-report methods typically employed. Here we introduce an objective no-report paradigm based on pupillometry to assess the processing of contextual information in autistic children, together with a comparison clinical group. After validating in neurotypical adults a child-friendly pupillometric paradigm, in which we embedded test images within an animation movie that participants watched passively, we compared pupillary response to images of the sun and meaningless control images in children with autism vs. age- and IQ-matched children presenting developmental disorders unrelated to the autistic spectrum. Both clinical groups showed stronger pupillary constriction for the sun images compared with control images, like the neurotypical adults. However, there was no detectable difference between autistic children and the comparison group, despite a significant difference in pupillary light responses, which were enhanced in the autistic group. Our report introduces an objective technique for studying perception in clinical samples and children. The lack of statistically significant group differences in our tests suggests that autistic children and the comparison group do not show large differences in perception of these stimuli. This opens the way to further studies testing contextual processing at other levels of perception.
Collapse
Affiliation(s)
- Chiara Tortelli
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Antonella Pomè
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Firenze, Firenze, Italy
| | - Marco Turi
- Fondazione Stella Maris Mediterraneo, Matera, Italy
| | | | - David C. Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Firenze, Firenze, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- *Correspondence: Paola Binda,
| |
Collapse
|
18
|
Megemont M, McBurney-Lin J, Yang H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity. eLife 2022; 11:70510. [PMID: 35107419 PMCID: PMC8809893 DOI: 10.7554/elife.70510] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
Pupil diameter is often treated as a noninvasive readout of activity in the locus coeruleus (LC). However, how accurately it can be used to index LC activity is not known. To address this question, we established a graded relationship between pupil size changes and LC spiking activity in mice, where pupil dilation increased monotonically with the number of LC spikes. However, this relationship exists with substantial variability such that pupil diameter can only be used to accurately predict a small fraction of LC activity on a moment-by-moment basis. In addition, pupil exhibited large session-to-session fluctuations in response to identical optical stimulation in the LC. The variations in the pupil–LC relationship were strongly correlated with decision bias-related behavioral variables. Together, our data show that substantial variability exists in an overall graded relationship between pupil diameter and LC activity, and further suggest that the pupil–LC relationship is dynamically modulated by brain states, supporting and extending our previous findings (Yang et al., 2021).
Collapse
Affiliation(s)
- Marine Megemont
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, United States
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, United States
| |
Collapse
|
19
|
Pandey P, Ray S. Influence of the Location of a Decision Cue on the Dynamics of Pupillary Light Response. Front Hum Neurosci 2022; 15:755383. [PMID: 35153699 PMCID: PMC8826249 DOI: 10.3389/fnhum.2021.755383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
The pupils of the eyes reflexively constrict in light and dilate in dark to optimize retinal illumination. Non-visual cognitive factors, like attention, arousal, decision-making, etc., also influence pupillary light response (PLR). During passive viewing, the eccentricity of a stimulus modulates the pupillary aperture size driven by spatially weighted corneal flux density (CFD), which is the product of luminance and the area of the stimulus. Whether the scope of attention also influences PLR remains unclear. In this study, we contrasted the pupil dynamics between diffused and focused attentional conditions during decision-making, while the global CFD remained the same in the two conditions. A population of 20 healthy humans participated in a pair of forced choice tasks. They distributed attention to the peripheral decision cue in one task, and concentrated at the center in the other to select the target from four alternatives for gaze orientation. The location of this cue did not influence participants' reaction time (RT). However, the magnitude of constriction was significantly less in the task that warranted attention to be deployed at the center than on the periphery. We observed similar pupil dynamics when participants either elicited or canceled a saccadic eye movement, which ruled out pre-saccadic obligatory attentional orientation contributing to PLR. We further addressed how the location of attentional deployment might have influenced PLR. We simulated a biomechanical model of PLR with visual stimulation of different strengths as inputs corresponding to the two attentional conditions. In this homeomorphic model, the computational characteristic of each element was derived from the physiological and/or mechanical properties of the corresponding biological element. The simulation of this model successfully mimicked the observed data. In contrast to common belief that the global ambient luminosity drives pupillary response, the results of our study suggest that the effective CFD (eCFD) determined via the luminance multiplied by the size of the stimulus at the location of deployed attention in the visual space is critical for the magnitude of pupillary constriction.
Collapse
Affiliation(s)
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| |
Collapse
|
20
|
Mahanama B, Jayawardana Y, Rengarajan S, Jayawardena G, Chukoskie L, Snider J, Jayarathna S. Eye Movement and Pupil Measures: A Review. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2021.733531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eye-tracking research directions.
Collapse
|
21
|
Kuraoka K, Nakamura K. Facial temperature and pupil size as indicators of internal state in primates. Neurosci Res 2022; 175:25-37. [PMID: 35026345 DOI: 10.1016/j.neures.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
Studies in human subjects have revealed that autonomic responses provide objective and biologically relevant information about cognitive and affective states. Measures of autonomic responses can also be applied to studies of non-human primates, which are neuro-anatomically and physically similar to humans. Facial temperature and pupil size are measured remotely and can be applied to physiological experiments in primates, preferably in a head-fixed condition. However, detailed guidelines for the use of these measures in non-human primates is lacking. Here, we review the neuronal circuits and methodological considerations necessary for measuring and analyzing facial temperature and pupil size in non-human primates. Previous studies have shown that the modulation of these measures primarily reflects sympathetic reactions to cognitive and emotional processes, including alertness, attention, and mental effort, over different time scales. Integrated analyses of autonomic, behavioral, and neurophysiological data in primates are promising methods that reflect multiple dimensions of emotion and could potentially provide tools for understanding the mechanisms underlying neuropsychiatric disorders and vulnerabilities characterized by cognitive and affective disturbances.
Collapse
Affiliation(s)
- Koji Kuraoka
- Department of Physiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
22
|
Eberhardt LV, Strauch C, Hartmann TS, Huckauf A. Increasing pupil size is associated with improved detection performance in the periphery. Atten Percept Psychophys 2022; 84:138-149. [PMID: 34820766 PMCID: PMC8795034 DOI: 10.3758/s13414-021-02388-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
Visible light enters our body via the pupil. By changing its size, the pupil shapes visual input. Small apertures increase the resolution of high spatial frequencies, thus allowing discrimination of fine details. Large apertures, in contrast, provide a better signal-to-noise ratio, because more light can enter the eye. This should lead to better detection performance of peripheral stimuli. Experiment 1 shows that the effect can reliably be demonstrated even in a less controlled online setting. In Experiment 2, pupil size was measured in a laboratory using an eye tracker. The findings replicate findings showing that large pupils provide an advantage for peripheral detection of faint stimuli. Moreover, not only pupil size during information intake in the current trial n, but also its interaction with pupil size preceding information intake, i.e., in trial n-1, predicted performance. This suggests that in addition to absolute pupil size, the extent of pupillary change provides a mechanism to modulate perceptual functions. The results are discussed in terms of low-level sensory as well as higher-level arousal-driven changes in stimulus processing.
Collapse
Affiliation(s)
- Lisa Valentina Eberhardt
- General Psychology, Faculty of Engineering, Computer Science and Psychology, Ulm University, Albert-Einstein-Allee 47, 89069, Ulm, Germany.
| | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Tim Samuel Hartmann
- General Psychology, Faculty of Engineering, Computer Science and Psychology, Ulm University, Albert-Einstein-Allee 47, 89069, Ulm, Germany
| | - Anke Huckauf
- General Psychology, Faculty of Engineering, Computer Science and Psychology, Ulm University, Albert-Einstein-Allee 47, 89069, Ulm, Germany
| |
Collapse
|
23
|
Robert B, Kimchi EY, Watanabe Y, Chakoma T, Jing M, Li Y, Polley DB. A functional topography within the cholinergic basal forebrain for encoding sensory cues and behavioral reinforcement outcomes. eLife 2021; 10:e69514. [PMID: 34821218 PMCID: PMC8654357 DOI: 10.7554/elife.69514] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) project throughout the cortex to regulate arousal, stimulus salience, plasticity, and learning. Although often treated as a monolithic structure, the basal forebrain features distinct connectivity along its rostrocaudal axis that could impart regional differences in BFCN processing. Here, we performed simultaneous bulk calcium imaging from rostral and caudal BFCNs over a 1-month period of variable reinforcement learning in mice. BFCNs in both regions showed equivalently weak responses to unconditioned visual stimuli and anticipated rewards. Rostral BFCNs in the horizontal limb of the diagonal band were more responsive to reward omission, more accurately classified behavioral outcomes, and more closely tracked fluctuations in pupil-indexed global brain state. Caudal tail BFCNs in globus pallidus and substantia innominata were more responsive to unconditioned auditory stimuli, orofacial movements, aversive reinforcement, and showed robust associative plasticity for punishment-predicting cues. These results identify a functional topography that diversifies cholinergic modulatory signals broadcast to downstream brain regions.
Collapse
Affiliation(s)
- Blaise Robert
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Eyal Y Kimchi
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Neurology, Massachusetts General HospitalBostonUnited States
| | - Yurika Watanabe
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Tatenda Chakoma
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, BeijingBeijingChina
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
24
|
Fernández G, Parra MA. Oculomotor Behaviors and Integrative Memory Functions in the Alzheimer's Clinical Syndrome. J Alzheimers Dis 2021; 82:1033-1044. [PMID: 34151787 DOI: 10.3233/jad-201189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Biological information drawn from eye-tracking metrics is providing evidence regarding drivers of cognitive decline in Alzheimer's disease. In particular, pupil size has proved useful to investigate cognitive performance during online activities. OBJECTIVE To investigate the oculomotor correlates of impaired performance of patients with mild Alzheimer's Clinical Syndrome (ACS) on a recently developed memory paradigm, namely the Short-Term Memory Binding Test (STMBT). METHODS We assessed a sample of eighteen healthy controls (HC) and eighteen patients with a diagnosis of mild ACS with the STMBT while we recorded their oculomotor behaviors using pupillometry and eye-tracking. RESULTS As expected, a group (healthy controls versus ACS) by condition (Unbound Colours versus Bound Colours) interaction was found whereby behavioral group differences were paramount in the Bound Colours condition. Healthy controls' pupils dilated significantly more in the Bound Colours than in the Unbound Colours condition, a discrepancy not observed in ACS patients. Furthermore, ROC analysis revealed the abnormal pupil behaviors distinguished ACS patients from healthy controls with values of sensitivity and specify of 100%, thus outperforming both recognition scores and gaze duration. CONCLUSION The biological correlates of Short-Term Memory Binding impairments appear to involve a network much wider than we have thought to date, which expands across cortical and subcortical structures. We discuss these findings focusing on their implications for our understanding of neurocognitive phenotypes in the preclinical stages of Alzheimer's disease and potential development of cognitive biomarkers that can support ongoing initiatives to prevent dementia.
Collapse
Affiliation(s)
- Gerardo Fernández
- Chief Scientific Officer, ViewMind Inc., New York, NY, USA.,Axis Neurociencias, Bahía Blanca, Argentina.,Instituto de Investigaciones en Ingeniería Eléctrica (IIIE) (UNS-CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| |
Collapse
|
25
|
Thoma D. Emotion regulation by attentional deployment moderates bilinguals' language-dependent emotion differences. Cogn Emot 2021; 35:1121-1135. [PMID: 34041997 DOI: 10.1080/02699931.2021.1929853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Unbalanced bilinguals react differently to emotional stimuli in their first (L1) and second (L2) language. However, the size and direction of the emotion difference varies across emotions and tasks, so that its causes are controversial. Therefore, we investigated if the attentional resources bilinguals allocate to emotion processing moderate their language-dependent emotions. In two experiments, we crossed language and emotion regulation. Study 1 compared effects of distraction and concentration on bilingual emotion-word valence ratings. Study 2 induced positive emotion-focused rumination (or not) prior to a simulated, video-based online-dating activity. It measured emotional attraction to dating candidates speaking the participant's L1 or L2 in pupillary, eye-fixation and self-report responses. The studies found reduced L2 emotions when emotion processing was distracted or when its level was low to start with. Yet, if bilinguals concentrated or had ruminated on their emotions, their self-reported and physiological emotionality was comparable or even stronger in L2, relative to L1. The findings suggest that bilinguals' language-dependent emotions vary with differential language-processing automaticity. We propose that the observed emotion-regulation moderation generates further testable predictions about where and when language choice is relevant for bilinguals' emotions.
Collapse
Affiliation(s)
- Dieter Thoma
- Department of English Linguistics, University of Mannheim, Mannheim, Germany
| |
Collapse
|
26
|
Castellotti S, Conti M, Feitosa-Santana C, Del Viva MM. Pupillary response to representations of light in paintings. J Vis 2021; 20:14. [PMID: 33052409 PMCID: PMC7571318 DOI: 10.1167/jov.20.10.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is known that, although the level of light is the primary determinant of pupil size, cognitive factors can also affect pupil diameter. It has been demonstrated that photographs of the sun produce pupil constriction independently of their luminance and other low-level features, suggesting that high-level visual processing may also modulate pupil response. Here, we measure pupil response to artistic paintings of the sun, moon, or containing a uniform lighting, that, being mediated by the artist's interpretation of reality and his technical rendering, require an even higher level of interpretation compared with photographs. We also study how chromatic content and spatial layout affect the results by presenting grey-scale and inverted versions of each painting. Finally, we assess directly with a categorization test how subjective image interpretation affects pupil response. We find that paintings with the sun elicit a smaller pupil size than paintings with the moon, or paintings containing no visible light source. The effect produced by sun paintings is reduced by disrupting contextual information, such as by removing color or manipulating the relations between paintings features that make more difficult to identify the source of light. Finally, and more importantly, pupil diameter changes according to observers’ interpretation of the scene represented in the same stimulus. In conclusion, results show that the subcortical pupillary response to light is modulated by subjective interpretation of luminous objects, suggesting the involvement of cortical systems in charge of cognitive processes, such as attention, object recognition, familiarity, memory, and imagination.
Collapse
Affiliation(s)
| | - Martina Conti
- Department of Neurofarba, University of Florence, Florence, Italy.,
| | - Claudia Feitosa-Santana
- Federal University of ABC, Sao Bernardo do Campo, Brazil.,Neuroscience for Human Development, Sao Paulo, Brazil.,
| | | |
Collapse
|
27
|
Wilson RC, Bonawitz E, Costa VD, Ebitz RB. Balancing exploration and exploitation with information and randomization. Curr Opin Behav Sci 2021; 38:49-56. [PMID: 33184605 PMCID: PMC7654823 DOI: 10.1016/j.cobeha.2020.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Explore-exploit decisions require us to trade off the benefits of exploring unknown options to learn more about them, with exploiting known options, for immediate reward. Such decisions are ubiquitous in nature, but from a computational perspective, they are notoriously hard. There is therefore much interest in how humans and animals make these decisions and recently there has been an explosion of research in this area. Here we provide a biased and incomplete snapshot of this field focusing on the major finding that many organisms use two distinct strategies to solve the explore-exploit dilemma: a bias for information ('directed exploration') and the randomization of choice ('random exploration'). We review evidence for the existence of these strategies, their computational properties, their neural implementations, as well as how directed and random exploration vary over the lifespan. We conclude by highlighting open questions in this field that are ripe to both explore and exploit.
Collapse
Affiliation(s)
- Robert C. Wilson
- Department of Psychology, University of Arizona, Tucson AZ USA
- Cognitive Science Program, University of Arizona, Tucson AZ USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson AZ USA
| | | | - Vincent D. Costa
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR USA
| | - R. Becket Ebitz
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Close facial emotions enhance physiological responses and facilitate perceptual discrimination. Cortex 2021; 138:40-58. [PMID: 33677327 DOI: 10.1016/j.cortex.2021.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/22/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Accumulating evidence indicates that the peripersonal space (PPS) constitutes a privileged area for efficient processing of proximal stimuli, allowing to flexibly adapt our behavior both to the physical and social environment. Whether and how behavioral and physiological signatures of PPS relate to each other in emotional contexts remains, though, elusive. Here, we addressed this question by having participants to discriminate male from female faces depicting different emotions (happiness, anger or neutral) and presented at different distances (50 cm-300 cm) while we measured the reaction time and accuracy of their responses, as well as pupillary diameter, heart rate and heart rate variability. Results showed facilitation of participants' performances (i.e., faster response time) when faces were presented close compared to far from the participants, even when controlling for retinal size across distances. These behavioral effects were accompanied by significant modulation of participants' physiological indexes when faces were presented in PPS. Interestingly, both PPS representation and physiological signals were affected by features of the seen faces such as the emotional valence, its sex and the participants' sex, revealing the profound impact of social context onto the autonomic state and behavior within PPS. Together, these findings suggest that both external and internal signals contribute in shaping PPS representation.
Collapse
|
29
|
Zandi B, Khanh TQ. Deep learning-based pupil model predicts time and spectral dependent light responses. Sci Rep 2021; 11:841. [PMID: 33436693 PMCID: PMC7803766 DOI: 10.1038/s41598-020-79908-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Although research has made significant findings in the neurophysiological process behind the pupillary light reflex, the temporal prediction of the pupil diameter triggered by polychromatic or chromatic stimulus spectra is still not possible. State of the art pupil models rested in estimating a static diameter at the equilibrium-state for spectra along the Planckian locus. Neither the temporal receptor-weighting nor the spectral-dependent adaptation behaviour of the afferent pupil control path is mapped in such functions. Here we propose a deep learning-driven concept of a pupil model, which reconstructs the pupil's time course either from photometric and colourimetric or receptor-based stimulus quantities. By merging feed-forward neural networks with a biomechanical differential equation, we predict the temporal pupil light response with a mean absolute error below 0.1 mm from polychromatic (2007 [Formula: see text] 1 K, 4983 [Formula: see text] 3 K, 10,138 [Formula: see text] 22 K) and chromatic spectra (450 nm, 530 nm, 610 nm, 660 nm) at 100.01 ± 0.25 cd/m2. This non-parametric and self-learning concept could open the door to a generalized description of the pupil behaviour.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| |
Collapse
|
30
|
Abstract
Pupil size is an easily accessible, noninvasive online indicator of various perceptual and cognitive processes. Pupil measurements have the potential to reveal continuous processing dynamics throughout an experimental trial, including anticipatory responses. However, the relatively sluggish (~2 s) response dynamics of pupil dilation make it challenging to connect changes in pupil size to events occurring close together in time. Researchers have used models to link changes in pupil size to specific trial events, but such methods have not been systematically evaluated. Here we developed and evaluated a general linear model (GLM) pipeline that estimates pupillary responses to multiple rapid events within an experimental trial. We evaluated the modeling approach using a sample dataset in which multiple sequential stimuli were presented within 2-s trials. We found: (1) Model fits improved when the pupil impulse response function (PuRF) was fit for each observer. PuRFs varied substantially across individuals but were consistent for each individual. (2) Model fits also improved when pupil responses were not assumed to occur simultaneously with their associated trial events, but could have non-zero latencies. For example, pupil responses could anticipate predictable trial events. (3) Parameter recovery confirmed the validity of the fitting procedures, and we quantified the reliability of the parameter estimates for our sample dataset. (4) A cognitive task manipulation modulated pupil response amplitude. We provide our pupil analysis pipeline as open-source software (Pupil Response Estimation Toolbox: PRET) to facilitate the estimation of pupil responses and the evaluation of the estimates in other datasets.
Collapse
|
31
|
Cherng YG, Crevecoeur F, Wang CA. Effects of pupillary light and darkness reflex on the generation of pro- And anti-saccades. Eur J Neurosci 2020; 53:1769-1782. [PMID: 33314426 DOI: 10.1111/ejn.15083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Saccades are often directed toward a stimulus that provides useful information for observers to navigate the visual world. The quality of visual signals of a stimulus is influenced by global luminance, and the pupil constricts or dilates after a luminance increase or decrease, respectively, to optimize visual signals for further information processing. Although luminance level changes regularly in the real environment, saccades are mostly studied in the luminance-unchanged setup. Whether pupillary responses triggered by global luminance changes modulate saccadic behavior are yet to be explored. Through varying background luminance level in an interleaved pro- and anti-saccade paradigm, we investigated the modulation of pupillary luminance responses on the generation of reflexive and voluntary saccades. Subjects were instructed to either automatically look at the peripheral stimulus (pro-saccade) or to suppress the automatic response and voluntarily look in the opposite direction from the stimulus (anti-saccade). Level of background luminance was increased (light), decreased (dark), or unchanged (control) during the instructed fixation period. Saccade reaction time distributions of correct pro- and anti-saccades in the light and dark conditions were differed significantly from those in the control condition. Moreover, the luminance condition modulated saccade kinematics, showing reduced performances in the light condition than in the control condition, particularly in pro-saccades. Modeling results further suggested that both pupil diameter and pupil size derivative significantly modulated saccade behavior, though effect sizes were small and mainly mediated by intersubject differences. Together, our results demonstrated the influence of pupillary luminance responses on the generation of pro- and anti-saccades.
Collapse
Affiliation(s)
- Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Frédéric Crevecoeur
- Institute of information Technologies, Electronics and Applied Mathematics (ICTEAM), Institute of Neuroscience, UCLouvain, Belgium.,Institute of Neuroscience, UCLouvain, Belgium
| | - Chin-An Wang
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Research Center of Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
32
|
Schwiedrzik CM, Sudmann SS. Pupil Diameter Tracks Statistical Structure in the Environment to Increase Visual Sensitivity. J Neurosci 2020; 40:4565-4575. [PMID: 32371603 PMCID: PMC7275858 DOI: 10.1523/jneurosci.0216-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Pupil diameter determines how much light hits the retina and, thus, how much information is available for visual processing. This is regulated by a brainstem reflex pathway. Here, we investigate whether this pathway is under the control of internal models about the environment. This would allow adjusting pupil dynamics to environmental statistics to augment information transmission. We present image sequences containing internal temporal structure to humans of either sex and male macaque monkeys. We then measure whether the pupil tracks this temporal structure not only at the rate of luminance variations, but also at the rate of statistics not available from luminance information alone. We find entrainment to environmental statistics in both species. This entrainment directly affects visual processing by increasing sensitivity at the environmentally relevant temporal frequency. Thus, pupil dynamics are matched to the temporal structure of the environment to optimize perception, in line with an active sensing account.SIGNIFICANCE STATEMENT When light hits the retina, the pupil reflexively constricts. This determines how much light and thus how much information is available for visual processing. We show that the rate at which the pupil constricts and dilates is matched to the temporal structure of our visual environment, although this information is not directly contained in the light variations that usually trigger reflexive pupil constrictions. Adjusting pupil diameter in accordance with environmental regularities optimizes information transmission at ecologically relevant temporal frequencies. We show that this is the case in humans and macaque monkeys, suggesting that the reflex pathways that regulate pupil diameter are under some degree of cognitive control across primate species.
Collapse
Affiliation(s)
- Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
- Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Sandrin S Sudmann
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
- Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Joshi S, Gold JI. Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn Sci 2020; 24:466-480. [PMID: 32331857 PMCID: PMC7271902 DOI: 10.1016/j.tics.2020.03.005] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Cognitively driven pupil modulations reflect certain underlying brain functions. What do these reflections tell us? Here, we review findings that have identified key roles for three neural systems: cortical modulation of the pretectal olivary nucleus (PON), which controls the pupillary light reflex; the superior colliculus (SC), which mediates orienting responses, including pupil changes to salient stimuli; and the locus coeruleus (LC)-norepinephrine (NE) neuromodulatory system, which mediates relationships between pupil-linked arousal and cognition. We discuss how these findings can inform the interpretation of pupil measurements in terms of activation of these neural systems. We also highlight caveats, open questions, and key directions for future experiments for improving these interpretations in terms of the underlying neural dynamics throughout the brain.
Collapse
Affiliation(s)
- Siddhartha Joshi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Beukema S. The Pupillary Response to the Unknown: Novelty Versus Familiarity. Iperception 2019; 10:2041669519874817. [PMID: 31523417 PMCID: PMC6732862 DOI: 10.1177/2041669519874817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Abstract
Object recognition is a type of perception that enables observers to recognize familiar shapes and categorize them into real-world identities. In this preregistered study, we aimed to determine whether pupil size changes occur during the perception and recognition of identifiable objects. We compared pupil size changes for familiar objects, nonobjects, and random noise. Nonobjects and noise produced greater pupil dilation than familiar objects. Contrary to previous evidence showing greater pupil dilation to stimuli with more perceptual and affective content, these results indicate a greater pupil dilation to stimuli that are unidentifiable. This is consistent with the relative salience of novelty compared to familiarity at the physiological level driving the pupil response.
Collapse
Affiliation(s)
- Steve Beukema
- McGill Vision Research, Department of
Ophthalmology, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|