1
|
Chen Y, Du Y. The Application of Deuteration Strategy in Drug Design. ChemMedChem 2025; 20:e202400836. [PMID: 39715028 DOI: 10.1002/cmdc.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Deuterated drugs, which are derived from the subtle exchange of a protium atom with a deuterium atom in drug molecules, exhibit significant differences in pharmaceutical characteristics compared to their parent drugs. With the advantages of improving pharmacokinetic properties, reducing toxicity, inhibiting the interconversion between chiral drugs and restricting drug interactions, deuterated drugs have attracted widespread attention from medicinal chemists. This review highlights the application of deuteration strategies in drug design, summarizing the progress of all deuterated drugs available in the market or still under investigation to provide a reference for all researchers engaged deuterated drug development.
Collapse
Affiliation(s)
- Yuzhu Chen
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| | - Yunfei Du
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| |
Collapse
|
2
|
He M, Su D, Zhang R, Xu P, Han D, Huang L, Zou Y. Sex Disparity in the Nutrition-Related Determinants of Mild Cognitive Impairment: A Case-Control Study. Nutrients 2025; 17:248. [PMID: 39861377 PMCID: PMC11767367 DOI: 10.3390/nu17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Sex differences in nutrition-related determinants of mild cognitive impairment (MCI) exist among the elderly. This study aimed to explore sex-specific influencing factors of MCI. METHODS A case-control study was conducted in 2020 involving 1086 elderly people aged 55 years and above from four sites in Zhejiang Province, China. Data on demographics, cognitive assessment, depression scale, daily food intake, and physical examinations were collected. The assessment of plant-based diet patterns depended on an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). Multivariate logistic regression models were employed to assess the determinants of MCI in females and males. RESULTS Among 571 females, 141 (24.7%) had MCI, and 126 (24.5%) had MCI among 514 male participants. In females, the multivariate analysis revealed that being unmarried/divorced/widowed (OR = 1.95, 95% CI: 1.10-3.45), having depression (OR = 6.06, 95% CI: 1.87-19.66), and having a uPDI score ≥ 55 (OR = 2.41, 95% CI: 1.50-3.89) were associated with a significantly elevated risk of MCI. Conversely, a cereal consumption of ≥300 g/d (OR = 0.32, 95% CI: 0.19-0.53) was linked to a significantly reduced risk. In males, vegetable consumption ≥ 150 g/d (OR = 0.39, 95% CI: 0.23-0.66), vegetable oil consumption ≥ 22 g/d (OR = 0.502, 95% CI: 0.307-0.820), and cereal consumption ≥ 300 g/d (OR = 0.44, 95% CI: 0.27-0.71) were associated with a lower MCI risk. Meanwhile, rural residence (OR = 1.90, 95% CI: 1.12-3.25) and advanced age, especially 75 years old and above (OR = 4.71, 95% CI: 2.44-9.12), were also risk factors in males. Notably, the Restricted Cubic Spline (RCS) model showed that females with a uPDI score < 55 had a lower prevalence of MCI, while those with a score ≥ 55 faced a higher risk. CONCLUSIONS This study indicates potential sex disparities in the risk factors for MCI. Future research should prospectively establish causal relationships. Additionally, precise intervention strategies are urgently needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zou
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.H.); (D.S.); (R.Z.); (P.X.); (D.H.); (L.H.)
| |
Collapse
|
3
|
Park J, Simpson C, Patel K. Lecanemab: A Humanized Monoclonal Antibody for the Treatment of Early Alzheimer Disease. Ann Pharmacother 2024; 58:1045-1053. [PMID: 38095619 DOI: 10.1177/10600280231218253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
OBJECTIVE To review current pharmacology, pharmacokinetics/pharmacodynamics, safety, and efficacy of lecanemab in patients with Alzheimer disease. DATA SOURCES A literature search of PubMed (April 1, 2016-November 15, 2023) and ClinicalTrials.gov search were conducted using the following search terms: lecanemab and BAN2401. Additional articles were identified by hand from references. STUDY SELECTION AND DATA EXTRACTION We included English-language clinical trials, randomized controlled trials, reviews, and systematic reviews evaluating lecanemab pharmacology, efficacy, or safety in humans for the management of Alzheimer disease. DATA SYNTHESIS In the Clarity AD phase III trial, lecanemab led to a decrease in brain amyloid levels and showed moderate improvement in clinical measures of cognition and function. At 18 months, lecanemab 10 mg/kg biweekly exhibited a lower least squares mean change from baseline (1.21) compared to placebo (1.66) of Clinical Dementia Rating-Sum of Boxes score, signifying a significant difference of -0.45 (95% CI, -0.67 to -0.23; P < 0.001). In a subset of 698 participants, lecanemab reduced brain amyloid burden by -59.1 Centiloids (95% CI, -62.6 to -55.6). Lecanemab demonstrated favorable differences in Alzheimer Disease Assessment Scale-cognitive subscale 14, Alzheimer Disease Composite Score, and Alzheimer Disease Cooperative Study-Mild Cognitive Impairment-Activities of Daily Living scores. Adverse events included infusion-related reactions (26.4%) and amyloid-related imaging abnormalities (12.6%). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Lecanemab reduces cognitive decline but raises concerns about intravenous administration, cost, and magnetic resonance imaging needs. Ongoing trials exploring subcutaneous dosing and positron emission tomography scans may offer solutions. CONCLUSION Lecanemab is a humanized monoclonal antibody that is selective for soluble amyloid-beta (Aβ) aggregates. Lecanemab has exhibited a decrease in brain Aβ plaques and moderately less decline on clinical measures of cognitive function.
Collapse
|
4
|
Hroudová J, Fišar Z. Alzheimer's disease approaches - Focusing on pathology, biomarkers and clinical trial candidates. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111069. [PMID: 38917881 DOI: 10.1016/j.pnpbp.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The strategy for the development of new drugs for Alzheimer's disease (AD) recognizes that an effective therapy requires early therapeutic intervention and a multifactorial approach that considers the individual initiators of AD development. Current knowledge of AD includes the understanding of pathophysiology, risk factors, biomarkers, and the evolving patterns of biomarker abnormalities. This knowledge is essential in identifying potential molecular targets for new drug development. This review summarizes promising AD drug candidates, many of which are currently in phase 2 or 3 clinical trials. New agents are classified according to the Common Alzheimer's Disease Research Ontology (CADRO). The main targets of new drugs for AD are processes related to amyloid beta and tau neurotoxicity, neurotransmission, inflammation, metabolism and bioenergetics, synaptic plasticity, and oxidative stress. These interventions are aimed at preventing disease onset and slowing or eliminating disease progression. The efficacy of pharmacotherapy may be enhanced by combining these drugs with other treatments, antioxidants, and dietary supplements. Ongoing research into AD pathophysiology, risk factors, biomarkers, and the dynamics of biomarker abnormalities may contribute to the understanding of AD and offer hope for effective therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
5
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Meca AD, Boboc IKS, Mititelu-Tartau L, Bogdan M. Unlocking the Potential: Semaglutide's Impact on Alzheimer's and Parkinson's Disease in Animal Models. Curr Issues Mol Biol 2024; 46:5929-5949. [PMID: 38921025 PMCID: PMC11202139 DOI: 10.3390/cimb46060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Semaglutide (SEM), a glucagon-like peptide-1 receptor agonist, has garnered increasing interest for its potential therapeutic effects in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). This review provides a comprehensive description of SEM's mechanism of action and its effects in preclinical studies of these debilitating conditions. In animal models of AD, SEM has proved beneficial effects on multiple pathological hallmarks of the disease. SEM administration has been associated with reductions in amyloid-beta plaque deposition and mitigation of neuroinflammation. Moreover, SEM treatment has been shown to ameliorate behavioral deficits related to anxiety and social interaction. SEM-treated animals exhibit improvements in spatial learning and memory retention tasks, as evidenced by enhanced performance in maze navigation tests and novel object recognition assays. Similarly, in animal models of PD, SEM has demonstrated promising neuroprotective effects through various mechanisms. These include modulation of neuroinflammation, enhancement of mitochondrial function, and promotion of neurogenesis. Additionally, SEM has been shown to improve motor function and ameliorate dopaminergic neuronal loss, offering the potential for disease-modifying treatment strategies. Overall, the accumulating evidence from preclinical studies suggests that SEM holds promise as a novel therapeutic approach for AD and PD. Further research is warranted to elucidate the underlying mechanisms of SEM's neuroprotective effects and to translate these findings into clinical applications for the treatment of these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| |
Collapse
|
7
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Shukla AK, Misra S. Evidences and therapeutic advantages of donanemab in the treatment of early Alzheimer's disease. J Basic Clin Physiol Pharmacol 2024; 35:25-29. [PMID: 38053285 DOI: 10.1515/jbcpp-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
The humanised monoclonal antibody donanemab is being developed to treat early onset Alzheimer's disease (AD). This drug targets N-truncated pyroglutamate amyloid-peptide at position 3 (N3pG), a modified form of deposited amyloid-peptide. The symptoms of Alzheimer's disease include gradual memory loss and other cognitive impairments. This disease is characterized by amyloid plaques, which are formed as a result of an accumulation of amyloid-(A-β) peptides. Despite granting donanemab breakthrough therapy designation in June 2021, the FDA rejected donanemab's accelerated approval application in January 2023, due to inadequate safety data. According to the baseline amyloid level, the time to achieve plaque clearance (amyloid plaque level <24.1 centiloids) varied. Patients with higher baseline levels were more likely to achieve amyloid clearance. The safety of the drug was demonstrated by amyloid-related imaging abnormalities (ARIA), which ranged from 26.1 to 30.5 % in the studies. Clinical trial results have shown that donanemab delays cognitive and functional deterioration in patients with mild to moderate AD. However, it is not yet known whether donenameb offers therapeutic benefits that can change and improve the clinical condition of AD patients. To achieve significant clinical benefits in AD patients with cognitive impairment, further studies may be needed to investigate the interaction between A-β plaque reduction and toxic tau levels.
Collapse
Affiliation(s)
- Ajay Kumar Shukla
- Department of Pharmacology, AIIMS Bhopal, Bhopal, Madhya Pradesh, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, Haryana, India
| |
Collapse
|
9
|
Vejandla B, Savani S, Appalaneni R, Veeravalli RS, Gude SS. Alzheimer's Disease: The Past, Present, and Future of a Globally Progressive Disease. Cureus 2024; 16:e51705. [PMID: 38313929 PMCID: PMC10838557 DOI: 10.7759/cureus.51705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a significant 21st-century public health challenge. This article delves into AD's neurodegenerative complexities, highlighting cognitive decline, memory impairment, and societal burdens. Mechanistically, protein misfolding, amyloid-beta (Aβ) pathway abnormalities, and genetic/environmental factors are discussed. The pivotal amyloid hypothesis is dissected, focusing on Aβ aggregation's role in synaptic dysfunction and neurodegeneration. The review showcases promising therapeutic strategies, including anti-amyloid antibodies and β/γ-secretase inhibitors targeting Aβ production. Notably, the FDA-approved Lecanemab signifies a breakthrough, slowing disease progression. Anti-Tau therapies' emergence is highlighted, addressing late-stage intervention. Tau aggregation blockers and anti-Tau antibodies offer potential against intracellular tau pathology. The review underscores collaborative efforts to uncover AD's secrets and pave the way for memory preservation.
Collapse
Affiliation(s)
| | - Sarah Savani
- Medicine, Loyola University Chicago Stritch School of Medicine, Chicago, USA
| | | | | | - Sai Sravya Gude
- Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, USA
| |
Collapse
|
10
|
Aljassabi A, Zieneldien T, Kim J, Regmi D, Cao C. Alzheimer's Disease Immunotherapy: Current Strategies and Future Prospects. J Alzheimers Dis 2024; 98:755-772. [PMID: 38489183 DOI: 10.3233/jad-231163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is an extremely complex and heterogeneous pathology influenced by many factors contributing to its onset and progression, including aging, amyloid-beta (Aβ) plaques, tau fibril accumulation, inflammation, etc. Despite promising advances in drug development, there is no cure for AD. Although there have been substantial advancements in understanding the pathogenesis of AD, there have been over 200 unsuccessful clinical trials in the past decade. In recent years, immunotherapies have been at the forefront of these efforts. Immunotherapy alludes to the immunological field that strives to identify disease treatments via the enhancement, suppression, or induction of immune responses. Interestingly, immunotherapy in AD is a relatively new approach for non-infectious disease. At present, antibody therapy (passive immunotherapy) that targets anti-Aβ aimed to prevent the fibrillization of Aβ peptides and disrupt pre-existing fibrils is a predominant AD immunotherapy due to the continuous failure of active immunotherapy for AD. The most rational and safe strategies will be those targeting the toxic molecule without triggering an abnormal immune response, offering therapeutic advantages, thus making clinical trial design more efficient. This review offers a concise overview of immunotherapeutic strategies, including active and passive immunotherapy for AD. Our review encompasses approved methods and those presently under investigation in clinical trials, while elucidating the recent challenges, complications, successes, and potential treatments. Thus, immunotherapies targeting Aβ throughout the disease progression using a mutant oligomer-Aβ stimulated dendritic cell vaccine may offer a promising therapy in AD.
Collapse
Affiliation(s)
- Ali Aljassabi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Deepika Regmi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
12
|
Mehta RI, Mehta RI. The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines 2023; 11:408. [PMID: 36830944 PMCID: PMC9953491 DOI: 10.3390/biomedicines11020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and irreversible neurodegenerative disorder with unknown etiology. While its cause is unclear, a number of theories have been proposed to explain the pathogenesis of AD. In large part, these have centered around potential causes for intracerebral accumulation of beta-amyloid (βA) and tau aggregates. Yet, persons with AD dementia often exhibit autopsy evidence of mixed brain pathologies including a myriad of vascular changes, vascular brain injuries, complex brain inflammation, and mixed protein inclusions in addition to hallmark neuropathologic lesions of AD, namely insoluble βA plaques and neurofibrillary tangles (NFTs). Epidemiological data demonstrate that overlapping lesions diminish the βA plaque and NFT threshold necessary to precipitate clinical dementia. Moreover, a subset of persons who exhibit AD pathology remain resilient to disease while other persons with clinically-defined AD dementia do not exhibit AD-defining neuropathologic lesions. It is increasingly recognized that AD is a pathologically heterogeneous and biologically multifactorial disease with uncharacterized biologic phenomena involved in its genesis and progression. Here, we review the literature with regard to neuropathologic criteria and incipient AD changes, and discuss converging concepts regarding vascular and immune factors in AD.
Collapse
Affiliation(s)
- Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|