1
|
De Ridder D, Adhia D, Vanneste S. The brain's duck test in phantom percepts: Multisensory congruence in neuropathic pain and tinnitus. Brain Res 2024; 1844:149137. [PMID: 39103069 DOI: 10.1016/j.brainres.2024.149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Chronic neuropathic pain and chronic tinnitus have been likened to phantom percepts, in which a complete or partial sensory deafferentation results in a filling in of the missing information derived from memory. 150 participants, 50 with tinnitus, 50 with chronic pain and 50 healthy controls underwent a resting state EEG. Source localized current density is recorded from all the sensory cortices (olfactory, gustatory, somatosensory, auditory, vestibular, visual) as well as the parahippocampal area. Functional connectivity by means of lagged phase synchronization is also computed between these regions of interest. Pain and tinnitus are associated with gamma band activity, reflecting prediction errors, in all sensory cortices except the olfactory and gustatory cortex. Functional connectivity identifies theta frequency connectivity between each of the sensory cortices except the chemical senses to the parahippocampus, but not between the individual sensory cortices. When one sensory domain is deprived, the other senses may provide the parahippocampal 'contextual' area with the most likely sound or somatosensory sensation to fill in the gap, applying an abductive 'duck test' approach, i.e., based on stored multisensory congruence. This novel concept paves the way to develop novel treatments for pain and tinnitus, using multisensory (i.e. visual, vestibular, somatosensory, auditory) modulation with or without associated parahippocampal targeting.
Collapse
Affiliation(s)
- Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Divya Adhia
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. https://www.lab-clint.org
| |
Collapse
|
2
|
Hok P, Strauss S, McAuley J, Domin M, Wang AP, Rae C, Moseley GL, Lotze M. Functional connectivity in complex regional pain syndrome: A bicentric study. Neuroimage 2024; 301:120886. [PMID: 39424016 DOI: 10.1016/j.neuroimage.2024.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Brain imaging studies in complex regional pain syndrome (CRPS) have found mixed evidence for functional and structural changes in CRPS. In this cross-sectional study, we evaluated two patient cohorts from different centers and examined functional connectivity (rsFC) in 51 CRPS patients and 50 matched controls. rsFC was compared in predefined ROI pairs, but also in non-hypothesis driven analyses. Resting state (rs)fMRI changes in default mode network (DMN) and the degree rank order disruption index (kD) were additionally evaluated. Finally, imaging parameters were correlated with clinical severity and somatosensory function. Among predefined pairs, we found only weakly to moderately lower functional connectivity between the right nucleus accumbens and bilateral ventromedial prefrontal cortex in the infra-slow oscillations (ISO) band. The unconstrained ROI-to-ROI analysis revealed lower rsFC between the periaqueductal gray matter (PAG) and left anterior insula, and higher rsFC between the right sensorimotor thalamus and nucleus accumbens. In the correlation analysis, pain was positively associated with insulo-prefrontal rsFC, whereas sensorimotor thalamo-cortical rsFC was positively associated with tactile spatial resolution of the affected side. In contrast to previous reports, we found no group differences for kD or rsFC in the DMN, but detected overall lower data quality in patients. In summary, while some of the previous results were not replicated despite the larger sample size, novel findings from two independent cohorts point to potential down-regulated antinociceptive modulation by the PAG and increased connectivity within the reward system as pathophysiological mechanisms in CRPS. However, in light of the detected systematic differences in data quality between patients and healthy subjects, validity of rsFC abnormalities in CRPS should be carefully scrutinized in future replication studies.
Collapse
Affiliation(s)
- Pavel Hok
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald D-17475, Germany; Department of Neurology, University Medicine Greifswald, Greifswald, Germany; Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Sebastian Strauss
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald D-17475, Germany; Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - James McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; School of Health Sciences, University of New South Wales, Sydney, Australia
| | - Martin Domin
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald D-17475, Germany
| | - Audrey P Wang
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; DHI Lab, Research Education Network, Western Sydney Local Health District, Westmead, Australia
| | - Caroline Rae
- Neuroscience Research Australia, Sydney, Australia; School of Psychology, University of New South Wales, Kensington, Australia
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Adelaide, Australia
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald D-17475, Germany.
| |
Collapse
|
3
|
Nagamine T. Amitriptyline at low dose for burning mouth syndrome. Oral Dis 2024; 30:4650-4652. [PMID: 38622839 DOI: 10.1111/odi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Affiliation(s)
- Takahiko Nagamine
- Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu, Yamaguchi, Japan
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Li X, Qiu LY, Shi XJ, Zhu YP, He YL, Kuang HM. Abnormal Interhemispheric Functional Connectivity in Acute Pericoronitis: A Resting-State MRI Study. J Craniofac Surg 2024; 35:2099-2104. [PMID: 39171899 DOI: 10.1097/scs.0000000000010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE Acute pericoronitis (AP) is a prevalent cause of odontogenic toothache which can significantly impact brain function. Previous research has predominantly concentrated on localized brain activity. However, the synergistic changes between brain hemispheres induced by toothache and resulting abnormal functional connectivity across the brain have not been comprehensively studied. METHODS A total of 34 patients with AP and 34 healthy individuals, matched for age, sex, and education were recruited for this study. All participants underwent resting-state functional magnetic resonance imaging (rs-MRI) scans. The voxel mirror homotopic connectivity (VMHC) method was used to identify intergroup differences. Brain regions exhibiting statistically significant differences were selected as regions of interest for further functional connectivity analysis. The partial correlation method was utilized to assess the correlation between abnormal VMHC values in different regions and clinical parameters, with age and sex included as covariates. RESULTS Patients with AP exhibited reduced VMHC values in the thalamus and elevated VMHC values in the inferior frontal gyrus compared with healthy controls. Subsequent functional connectivity analyses revealed extensive changes in functional networks, predominantly affecting the default, frontoparietal, cerebellar, and pain networks. CONCLUSION Changes in functional patterns across these brain networks offer novel insights into the neurophysiological mechanisms underlying pain information processing.
Collapse
Affiliation(s)
- Xing Li
- Department of Dentistry, Nanchang People's Hospital (Third Hospital of Nanchang)
| | - Luo-Yao Qiu
- Department of Dentistry, Nanchang People's Hospital (Third Hospital of Nanchang)
| | - Xue-Jiao Shi
- Department of Dentistry, Nanchang People's Hospital (Third Hospital of Nanchang)
| | - Yu-Ping Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Lin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong-Mei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Monroe KS, Schiehser DM, Parr AW, Simmons AN, Hays Weeks CC, Bailey BA, Shahidi B. Biological markers of brain network connectivity and pain sensitivity distinguish low coping from high coping Veterans with persistent post-traumatic headache. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313761. [PMID: 39371153 PMCID: PMC11451760 DOI: 10.1101/2024.09.16.24313761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Headache is the most common type of pain following mild traumatic brain injury. Roughly half of those with persistent post-traumatic headache (PPTH) also report neck pain which is associated with greater severity and functional impact of headache. This observational cohort study aimed to identify biological phenotypes to help inform mechanism-based approaches in the management of PPTH with and without concomitant neck pain. Thirty-three military Veterans (mean (SD) = 37±16 years, 29 males) with PPTH completed a clinical assessment, quantitative sensory testing, and magnetic resonance imaging of the brain and cervical spine. Multidimensional phenotyping was performed using a Random Forest analysis and Partitioning Around Medoids (PAM) clustering of input features from three biologic domains: 1) resting state functional connectivity (rsFC) of the periaqueductal gray (PAG), 2) quality and size of cervical muscles, and 3) mechanical pain sensitivity and central modulation of pain. Two subgroups were distinguished by biological features that included forehead pressure pain threshold and rsFC between the PAG and selected nodes within the default mode, salience, and sensorimotor networks. Compared to the High Pain Coping group, the Low Pain Coping group exhibited higher pain-related anxiety (p=0.009), higher pain catastrophizing (p=0.004), lower pain self-efficacy (p=0.010), and greater headache-related disability (p=0.012). Findings suggest that greater functional connectivity of pain modulation networks involving the PAG combined with impairments in craniofacial pain sensitivity, but not cervical muscle health, distinguish a clinically important subgroup of individuals with PPTH who are less able to cope with pain and more severely impacted by headache.
Collapse
Affiliation(s)
- Katrina S Monroe
- School of Physical Therapy, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Dawn M Schiehser
- VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161; Professor, School of Medicine, Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., San Diego, CA 92093, USA
| | - Aaron W Parr
- Joint Doctoral Program in Public Health, San Diego State University/University of California San Diego, 9500 Gilman Dr. MC0863 La Jolla, CA 92093, USA
| | - Alan N Simmons
- University of California San Diego, Research Health Scientist, Center of Excellence in Stress and Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Chelsea C Hays Weeks
- University of California San Diego; VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Barbara A Bailey
- Department of Mathematics and Statistics, College of Sciences, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Dr. MC0863 La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Nhu NT, Wong CZ, Chen IY, Jan YW, Kang JH. Telehealth-delivered cognitive behavioral therapy - a potential solution to improve sleep quality and normalize the salience network in fibromyalgia: a pilot randomized trial. Brain Imaging Behav 2024:10.1007/s11682-024-00925-3. [PMID: 39287881 DOI: 10.1007/s11682-024-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Our study investigated the associations between the clinical benefits of telehealth-delivered cognitive behavioral therapy for insomnia (tele-CBT-I) and the salience network in fibromyalgia (FM). Thirty-five FM patients with comorbid insomnia were recruited and assigned into two groups: the tele-CBT-I group (n = 17) or the treatment-as-usual (TAU) group (n = 18). At baseline and post-treatment, clinical status was assessed using standardized scales, including the Insomnia Severity Index (ISI), Brief Pain Inventory, Numeric Pain Rating scale, Beck Depression Intervention version II, Beck Anxiety Intervention, Situational Fatigue Scale, and Fibromyalgia Impact Questionnaires. Resting-state functional magnetic resonance imaging was collected. We compared within- and between-group differences in clinical changes and functional connectivity (FC) of the salience network. A factor analysis of significant FCs was performed. Correlation analyses between clinical symptoms and salience FCs were conducted. The tele-CBT-I group showed sleep quality improvements after treatment that were greater than those in the TAU group (p-value = 0.038). After treatment, tele-CBT-I decreased FCs of cortical regions and increased FCs of subcortical regions compared to the TAU group. Additionally, factor analysis grouped the significant FCs into cortical factors and subcortical factors. The cortical factor value, representing the involvement of specific cortical regions of the salience network by the factor analysis, was significantly associated with ISI scores in the tele-CBT-I group (p-value = 0.0002). In conclusion, tele-CBT-I might be an adjuvant approach to improve sleep quality and normalize cortical and subcortical functions of the salience network in FM patients with comorbid insomnia.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, 94117, Vietnam
| | - Cheng-Ze Wong
- Sleep Center, Taipei Medical University-Shuang Ho Hospital Ministry of Health and Welfare, New Taipei City, 234, Taiwan
| | - Ivy Y Chen
- Department of Psychiatry and Human Behavior, University of California, Irvine, 92697, USA
| | - Ya-Wen Jan
- Department of Psychology, Chung Yuan Christian University, No. 200, Zhongbei Rd, Zhongli District, Taoyuan City, 320314, Taiwan.
| | - Jiunn-Horng Kang
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing street, Taipei, 110, Taiwan.
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, 110, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
7
|
Nagamine T. Mechanisms of Drug-Associated Burning Mouth Syndrome. J Clin Psychopharmacol 2024:00004714-990000000-00290. [PMID: 39255456 DOI: 10.1097/jcp.0000000000001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
|
8
|
Chen YL, Pan LLH, Niddam DM, Hinrichs C, Wang SJ, Wu YT. Comparative analysis of rs-fMRI markers in heat and mechanical pain sensitivity. PROGRESS IN BRAIN RESEARCH 2024; 290:157-178. [PMID: 39448111 DOI: 10.1016/bs.pbr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 10/26/2024]
Abstract
This study investigates the comparative analysis of resting-state functional magnetic imaging (rs-fMRI) markers in heat and mechanical pain sensitivity among healthy adults. Using quantitative sensory testing (QST) in the orofacial area and rs-fMRI, we explored the relationship between pain sensitivities and resting-state functional connectivity (rsFC) across whole brain areas. Brain regions were spatially divided using group independent component analysis (gICA), and additional masked gICA was performed for brainstem regions. Our findings revealed that a significant number of rsFCs were correlated with either heat or mechanical pain sensitivity, with a substantial portion originating from the Sensorimotor Network (SMN). Furthermore, multivariable regression models incorporating rsFC features demonstrated predictive capabilities for pain sensitivities, with the inclusion of brainstem gICA components significantly enhancing model accuracy. Finally, a composite critical rsFC value was introduced to simplify and describe overall abnormal communication in the brain network, which could also be used in univariable regression models to predict heat and mechanical pain sensitivity.
Collapse
Affiliation(s)
- Yung-Lin Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - David M Niddam
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Clay Hinrichs
- Hackettstown Medical Center, Atlantic Health System, Hackettstown, NJ, United States
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
9
|
Vanneste S, Byczynski G, Verplancke T, Ost J, Song JJ, De Ridder D. Switching tinnitus on or off: An initial investigation into the role of the pregenual and rostral to dorsal anterior cingulate cortices. Neuroimage 2024; 297:120713. [PMID: 38944171 DOI: 10.1016/j.neuroimage.2024.120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Research indicates that hearing loss significantly contributes to tinnitus, but it alone does not fully explain its occurrence, as many people with hearing loss do not experience tinnitus. To identify a secondary factor for tinnitus generation, we examined a unique dataset of individuals with intermittent chronic tinnitus, who experience fluctuating periods of tinnitus. EEGs of healthy controls were compared to EEGs of participants who reported perceiving tinnitus on certain days, but no tinnitus on other days.. The EEG data revealed that tinnitus onset is associated with increased theta activity in the pregenual anterior cingulate cortex and decreased theta functional connectivity between the pregenual anterior cingulate cortex and the auditory cortex. Additionally, there is increased alpha effective connectivity from the dorsal anterior cingulate cortex to the pregenual anterior cingulate cortex. When tinnitus is not perceived, differences from healthy controls include increased alpha activity in the pregenual anterior cingulate cortex and heightened alpha connectivity between the pregenual anterior cingulate cortex and auditory cortex. This suggests that tinnitus is triggered by a switch involving increased theta activity in the pregenual anterior cingulate cortex and decreased theta connectivity between the pregenual anterior cingulate cortex and auditory cortex, leading to increased theta-gamma cross-frequency coupling, which correlates with tinnitus loudness. Increased alpha activity in the dorsal anterior cingulate cortex correlates with distress. Conversely, increased alpha activity in the pregenual anterior cingulate cortex can transiently suppress the phantom sound by enhancing theta connectivity to the auditory cortex. This mechanism parallels chronic neuropathic pain and suggests potential treatments for tinnitus by promoting alpha activity in the pregenual anterior cingulate cortex and reducing alpha activity in the dorsal anterior cingulate cortex through pharmacological or neuromodulatory approaches.
Collapse
Affiliation(s)
- Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, College Green 2, Dublin, Ireland; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Brai3n, Ghent, Belgium.
| | - Gabriel Byczynski
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, College Green 2, Dublin, Ireland; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | | | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, the Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, the Republic of Korea
| | - Dirk De Ridder
- Brai3n, Ghent, Belgium; Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Li J, Xu H. Abnormal structural covariance networks in young adults with recent cannabis use. Addict Behav 2024; 155:108029. [PMID: 38593597 DOI: 10.1016/j.addbeh.2024.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Recent cannabis use (RCU) exerts adverse effects on the brain. However, the effect of RCU on structural covariance networks (SCNs) is still unclear. This retrospective cross-sectional study aimed to explore the effects of RCU on SCNs in young adults in terms of whole cerebral cortical thickness (CT) and cortical surface area (CSA). METHODS A total of 117 participants taking tetrahydrocannabinol (RCU group) and 896 participants not using cannabis (control group) were included in this study. All participants underwent MRI scanning following urinalysis screening, after which FreeSurfer 5.3 was used to calculate the CT and CSA, and SCNs matrices were constructed by Brain Connectivity Toolbox. Subsequently, the global and nodal network measures of the SCNs were computed based on these matrices. A nonparametric permutation test was used to investigate the group differences by Matlab. RESULTS Regarding global network measures of CT, young adults with RCU exhibited altered small-worldness (P = 0.020) and clustering coefficient (P = 0.031) compared to controls, whereas there were no significant group differences in terms of SCNs constructed with CSA. Additionally, SCNs based on CT and CSA displayed abnormal nodal degree, nodal efficiency, and nodal betweenness centrality in vital brain regions of the triple network, including the dorsolateral and ventrolateral prefrontal cortex, and anterior cingulate cortex. CONCLUSION The effects of RCU on brain structure in young adults can be detected by SCNs, in which structural abnormalities in the triple network are dominant, indicating that RCU can be detrimental to brain function.
Collapse
Affiliation(s)
- Jiahao Li
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou 325007, China; Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou 325007, China.
| |
Collapse
|
12
|
Nagamine T. Chronic orofacial pain. Br Dent J 2024; 237:153. [PMID: 39122999 DOI: 10.1038/s41415-024-7728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024]
Affiliation(s)
- T Nagamine
- Sunlight Brain Research Center, Hofu, Yamaguchi, Japan.
| |
Collapse
|
13
|
Li X, Kass G, Wiers CE, Shi Z. The Brain Salience Network at the Intersection of Pain and Substance use Disorders: Insights from Functional Neuroimaging Research. CURRENT ADDICTION REPORTS 2024; 11:797-808. [PMID: 39156196 PMCID: PMC11329602 DOI: 10.1007/s40429-024-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Purpose of Review The brain's salience network (SN), primarily comprising the anterior insula and anterior cingulate cortex, plays a key role in detecting salient stimuli and processing physical and socioemotional pain (e.g., social rejection). Mounting evidence underscores an altered SN in the etiology and maintenance of substance use disorders (SUDs). This paper aims to synthesize recent functional neuroimaging research emphasizing the SN's involvement in SUDs and physical/socioemotional pain and explore the therapeutic prospects of targeting the SN for SUD treatment. Recent Findings The SN is repeatedly activated during the experience of both physical and socioemotional pain. Altered activation within the SN is associated with both SUDs and chronic pain conditions, characterized by aberrant activity and connectivity patterns as well as structural changes. Among individuals with SUDs, functional and structural alterations in the SN have been linked to abnormal salience attribution (e.g., heightened responsiveness to drug-related cues), impaired cognitive control (e.g., impulsivity), and compromised decision-making processes. The high prevalence of physical and socioemotional pain in the SUD population may further exacerbate SN alterations, thus contributing to hindered recovery progress and treatment failure. Interventions targeting the restoration of SN functioning, such as real-time functional MRI feedback, neuromodulation, and psychotherapeutic approaches, hold promise as innovative SUD treatments. Summary The review highlights the significance of alterations in the structure and function of the SN as potential mechanisms underlying the co-occurrence of SUDs and physical/socioemotional pain. Future work that integrates neuroimaging with other research methodologies will provide novel insights into the mechanistic role of the SN in SUDs and inform the development of next-generation treatment modalities.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Gabriel Kass
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Corinde E. Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
14
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Closed-Loop Infraslow Brain-Computer Interface can Modulate Cortical Activity and Connectivity in Individuals With Chronic Painful Knee Osteoarthritis: A Secondary Analysis of a Randomized Placebo-Controlled Clinical Trial. Clin EEG Neurosci 2024:15500594241264892. [PMID: 39056313 DOI: 10.1177/15500594241264892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Introduction. Chronic pain is a percept due to an imbalance in the activity between sensory-discriminative, motivational-affective, and descending pain-inhibitory brain regions. Evidence suggests that electroencephalography (EEG) infraslow fluctuation neurofeedback (ISF-NF) training can improve clinical outcomes. It is unknown whether such training can induce EEG activity and functional connectivity (FC) changes. A secondary data analysis of a feasibility clinical trial was conducted to determine whether EEG ISF-NF training can significantly alter EEG activity and FC between the targeted cortical regions in people with chronic painful knee osteoarthritis (OA). Methods. A parallel, two-arm, double-blind, randomized, sham-controlled clinical trial was conducted. People with chronic knee pain associated with OA were randomized to receive sham NF training or source-localized ratio ISF-NF training protocol to down-train ISF bands at the somatosensory (SSC), dorsal anterior cingulate (dACC), and uptrain pregenual anterior cingulate cortices (pgACC). Resting state EEG was recorded at baseline and immediate post-training. Results. The source localization mapping demonstrated a reduction (P = .04) in the ISF band activity at the left dorsolateral prefrontal cortex (LdlPFC) in the active NF group. Region of interest analysis yielded significant differences for ISF (P = .008), slow (P = .007), beta (P = .043), and gamma (P = .012) band activities at LdlPFC, dACC, and bilateral SSC. The FC between pgACC and left SSC in the delta band was negatively correlated with pain bothersomeness in the ISF-NF group. Conclusion. The EEG ISF-NF training can modulate EEG activity and connectivity in individuals with chronic painful knee osteoarthritis, and the observed EEG changes correlate with clinical pain measures.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Payne LA, Seidman LC, Napadow V, Nickerson LD, Kumar P. Functional connectivity associations with menstrual pain characteristics in adolescents: an investigation of the triple network model. Pain 2024:00006396-990000000-00659. [PMID: 39037861 DOI: 10.1097/j.pain.0000000000003334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
ABSTRACT Menstrual pain is associated with deficits in central pain processing, yet neuroimaging studies to date have all been limited by focusing on group comparisons of adult women with vs without menstrual pain. This study aimed to investigate the role of the triple network model (TNM) of brain networks in adolescent girls with varied menstrual pain severity ratings. One hundred participants (ages 13-19 years) completed a 6-min resting state functional magnetic resonance imaging (fMRI) scan and rated menstrual pain severity, menstrual pain interference, and cumulative menstrual pain exposure. Imaging analyses included age and gynecological age (years since menarche) as covariates. Menstrual pain severity was positively associated with functional connectivity between the cingulo-opercular salience network (cSN) and the sensory processing regions, limbic regions, and insula, and was also positively associated with connectivity between the left central executive network (CEN) and posterior regions. Menstrual pain interference was positively associated with connectivity between the cSN and widespread brain areas. In addition, menstrual pain interference was positively associated with connectivity within the left CEN, whereas connectivity both within the right CEN and between the right CEN and cortical areas outside the network (including the insula) were negatively associated with menstrual pain interference. Cumulative menstrual pain exposure shared a strong negative association with connectivity between the default mode network and other widespread regions associated with large-scale brain networks. These findings support a key role for the involvement of TNM brain networks in menstrual pain characteristics and suggest that alterations in pain processing exist in adolescents with varying levels of menstrual pain.
Collapse
Affiliation(s)
- Laura A Payne
- McLean Hospital, Belmont, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Vitaly Napadow
- Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lisa D Nickerson
- McLean Hospital, Belmont, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Poornima Kumar
- McLean Hospital, Belmont, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Cheng J, Li Y, Chen K, Cao Y, Liu K, Zhang X, Wu X, Wang Z, Liu X, Li L. Aberrant functional connectivity in anterior cingulate gyrus subregions in migraine without aura patients. Front Neurol 2024; 15:1412117. [PMID: 39087006 PMCID: PMC11288801 DOI: 10.3389/fneur.2024.1412117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background The anterior cingulate gyrus (ACG) is an important regulatory region for pain-related information. However, the ACG is composed of subregions with different functions. The mechanisms underlying the brain networks of different subregions of the ACG in patients with migraine without aura (MwoA) are currently unclear. Methods In the current study, resting-state functional magnetic resonance imaging (rsfMRI) and functional connectivity (FC) were used to investigate the functional characteristics of ACG subregions in MwoA patients. The study included 17 healthy volunteers and 28 MwoA patients. The FC calculation was based on rsfMRI data from a 3 T MRI scanner. The brain networks of the ACG subregions were compared using a general linear model to see if there were any differences between the two groups. Spearman correlation analysis was used to examine the correlation between FC values in abnormal brain regions and clinical variables. Results Compared with healthy subjects, MwoA patients showed decreased FC between left subgenual ACG and left middle cingulate gyrus and right middle temporal gyrus. Meanwhile, MwoA patients also showed increased FC between pregenual ACG and right angular gyrus and increased FC between right pregenual ACG and right superior occipital gyrus. The FC values between pregenual ACG and right superior occipital gyrus were significantly positively correlated with the visual analogue scale. Conclusion Disturbances of FC between ACG subregions and default model network and visual cortex may play a key role in neuropathological features, perception and affection of MwoA. The current study provides further insights into the complex scenario of MwoA mechanisms.
Collapse
Affiliation(s)
- Jinming Cheng
- Department of Neurology of the Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology of the Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yan Li
- Department of Neurology of the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keyang Chen
- Department of Neurology of the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yungang Cao
- Department of Neurology of the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kun Liu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Zhang
- Department of Neurology of Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Xiaoyuan Wu
- Department of Neurology of the Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhihong Wang
- Department of Neurology of the Second Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Litao Li
- Department of Neurology of the Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology of the Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Wei HL, Yu YS, Wang MY, Zhou GP, Li J, Zhang H, Zhou Z. Exploring potential neuroimaging biomarkers for the response to non-steroidal anti-inflammatory drugs in episodic migraine. J Headache Pain 2024; 25:104. [PMID: 38902598 PMCID: PMC11191194 DOI: 10.1186/s10194-024-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) are considered first-line medications for acute migraine attacks. However, the response exhibits considerable variability among individuals. Thus, this study aimed to explore a machine learning model based on the percentage of amplitude oscillations (PerAF) and gray matter volume (GMV) to predict the response to NSAIDs in migraine treatment. METHODS Propensity score matching was adopted to match patients having migraine with response and nonresponse to NSAIDs, ensuring consistency in clinical characteristics and migraine-related features. Multimodal magnetic resonance imaging was employed to extract PerAF and GMV, followed by feature selection using the least absolute shrinkage and selection operator regression and recursive feature elimination algorithms. Multiple predictive models were constructed and the final model with the smallest predictive residuals was chosen. The model performance was evaluated using the area under the receiver operating characteristic (ROCAUC) curve, area under the precision-recall curve (PRAUC), balance accuracy (BACC), sensitivity, F1 score, positive predictive value (PPV), and negative predictive value (NPV). External validation was performed using a public database. Then, correlation analysis was performed between the neuroimaging predictors and clinical features in migraine. RESULTS One hundred eighteen patients with migraine (59 responders and 59 non-responders) were enrolled. Six features (PerAF of left insula and left transverse temporal gyrus; and GMV of right superior frontal gyrus, left postcentral gyrus, right postcentral gyrus, and left precuneus) were observed. The random forest model with the lowest predictive residuals was selected and model metrics (ROCAUC, PRAUC, BACC, sensitivity, F1 score, PPV, and NPV) in the training and testing groups were 0.982, 0.983, 0.927, 0.976, 0.930, 0.889, and 0.973; and 0.711, 0.648, 0.639, 0.667,0.649, 0.632, and 0.647, respectively. The model metrics of external validation were 0.631, 0.651, 0.611, 0.808, 0.656, 0.553, and 0.706. Additionally, a significant positive correlation was found between the GMV of the left precuneus and attack time in non-responders. CONCLUSIONS Our findings suggest the potential of multimodal neuroimaging features in predicting the efficacy of NSAIDs in migraine treatment and provide novel insights into the neural mechanisms underlying migraine and its optimized treatment strategy.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Meng-Yao Wang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China.
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Department of Radiology, Nanjing Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
18
|
Ambalavanar U, Haavik H, Rotondi NK, Murphy BA. Development of the Sensory-Motor Dysfunction Questionnaire and Pilot Reliability Testing. Brain Sci 2024; 14:619. [PMID: 38928619 PMCID: PMC11202203 DOI: 10.3390/brainsci14060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Both chronic and recurrent spinal pain alter sensorimotor integration (SMI), which is demonstrated using complex neurophysiological techniques. Currently, there is no patient-reported outcome measure that documents and/or assesses SMI in populations with spinal problems. The purpose of this study was to develop the Sensory-Motor Dysfunction Questionnaire (SMD-Q) and assess its test-retest reliability and internal consistency in individuals with recurrent spinal pain. The SMD-Q was developed based on the existing literature on motor control disturbances associated with disordered SMI. The initial SMD-Q drafts underwent review by two separate panels of subject matter experts and a focus group with subclinical spine pain. Their suggestions were incorporated into the questionnaire prior to reliability testing. The questionnaire was administered twice at a seven-day interval using QualtricsTM. A total of 20 participants (14 females and 6 males; 20.95 ± 2.46 years of age) completed the study. Quadratic weighted kappa (Kw) was used to assess test-retest reliability and Cronbach's alpha (α) was used to assess internal consistency. Four items had a Kw < 0.40, seven had a 0.40 < Kw < 0.75, and one had a Kw > 0.75 (excellent agreement), with excellent internal consistency (α > 0.90). The pilot SMD-Q appears to reliably measure altered SMI, suggesting that revisions and testing with a larger sample are worth pursuing.
Collapse
Affiliation(s)
- Ushani Ambalavanar
- Faculty of Health Sciences, Institute of Technology, University of Ontario, 2000 Simcoe St. N., Oshawa, ON L1G 0C5, Canada
| | - Heidi Haavik
- Center of Chiropractic Research, New Zealand College of Chiropractic, Mount Wellington, Auckland 1060, New Zealand
| | - Nooshin Khobzi Rotondi
- Faculty of Health Sciences, Institute of Technology, University of Ontario, 2000 Simcoe St. N., Oshawa, ON L1G 0C5, Canada
| | - Bernadette Ann Murphy
- Faculty of Health Sciences, Institute of Technology, University of Ontario, 2000 Simcoe St. N., Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
19
|
Nagamine T. Responsiveness to amitriptyline in burning mouth syndrome. Gerodontology 2024. [PMID: 38837448 DOI: 10.1111/ger.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Takahiko Nagamine
- Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu, Yamaguchi, Japan
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Mathew J, Adhia DB, Hall M, De Ridder D, Mani R. EEG-Based Cortical Alterations in Individuals With Chronic Knee Pain Secondary to Osteoarthritis: A Cross-sectional Investigation. THE JOURNAL OF PAIN 2024; 25:104429. [PMID: 37989404 DOI: 10.1016/j.jpain.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Chronic painful knee osteoarthritis (OA) is a disabling physical health condition. Alterations in brain responses to arthritic changes in the knee may explain persistent pain. This study investigated source localized, resting-state electroencephalography activity and functional connectivity in people with knee OA, compared to healthy controls. Adults aged 44 to 85 years with knee OA (n = 37) and healthy control (n = 39) were recruited. Resting-state electroencephalography was collected for 10 minutes and decomposed into infraslow frequency (ISF) to gamma frequency bands. Standard low-resolution electromagnetic brain tomography statistical nonparametric maps were conducted, current densities of regions of interest were compared between groups and correlation analyses were performed between electroencephalography (EEG) measures and clinical pain and functional outcomes in the knee OA group. Standard low-resolution electromagnetic brain tomography nonparametric maps revealed higher (P = .006) gamma band activity over the right insula (RIns) in the knee OA group. A significant (P < .0001) reduction in ISF band activity at the pregenual anterior cingulate cortex, whereas higher theta, alpha, beta, and gamma band activity at the dorsal anterior cingulate cortex, pregenual anterior cingulate cortex, the somatosensory cortex, and RIns in the knee OA group were identified. ISF activity of the dorsal anterior cingulate cortex was positively correlated with pain measures and psychological distress scores. Theta and alpha activity of RIns were negatively correlated with pain interference. In conclusion, aberrations in infraslow and faster frequency EEG oscillations at sensory discriminative, motivational-affective, and descending inhibitory cortical regions were demonstrated in people with chronic painful knee OA. Moreover, EEG oscillations were correlated with pain and functional outcome measures. PERSPECTIVE: This study confirms alterations in the rsEEG oscillations and its relationship with pain experience in people with knee OA. The study provides potential cortical targets and the EEG frequency bands for neuromodulatory interventions for managing chronic pain experience in knee OA.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| | - Divya B Adhia
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Matthew Hall
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| |
Collapse
|
21
|
Armstrong M, Castellanos J, Christie D. Chronic pain as an emergent property of a complex system and the potential roles of psychedelic therapies. FRONTIERS IN PAIN RESEARCH 2024; 5:1346053. [PMID: 38706873 PMCID: PMC11066302 DOI: 10.3389/fpain.2024.1346053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Despite research advances and urgent calls by national and global health organizations, clinical outcomes for millions of people suffering with chronic pain remain poor. We suggest bringing the lens of complexity science to this problem, conceptualizing chronic pain as an emergent property of a complex biopsychosocial system. We frame pain-related physiology, neuroscience, developmental psychology, learning, and epigenetics as components and mini-systems that interact together and with changing socioenvironmental conditions, as an overarching complex system that gives rise to the emergent phenomenon of chronic pain. We postulate that the behavior of complex systems may help to explain persistence of chronic pain despite current treatments. From this perspective, chronic pain may benefit from therapies that can be both disruptive and adaptive at higher orders within the complex system. We explore psychedelic-assisted therapies and how these may overlap with and complement mindfulness-based approaches to this end. Both mindfulness and psychedelic therapies have been shown to have transdiagnostic value, due in part to disruptive effects on rigid cognitive, emotional, and behavioral patterns as well their ability to promote neuroplasticity. Psychedelic therapies may hold unique promise for the management of chronic pain.
Collapse
Affiliation(s)
- Maya Armstrong
- Department of Family & Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joel Castellanos
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Devon Christie
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Nhu NT, Chen DYT, Yang YCSH, Lo YC, Kang JH. Associations Between Brain-Gut Axis and Psychological Distress in Fibromyalgia: A Microbiota and Magnetic Resonance Imaging Study. THE JOURNAL OF PAIN 2024; 25:934-945. [PMID: 37866648 DOI: 10.1016/j.jpain.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
An altered brain-gut axis is suspected to be one of the pathomechanisms in fibromyalgia (FM). This cross-sectional study investigated the associations among altered microbiota, psychological distress, and brain functional connectivity (FC) in FM. We recruited 25 FM patients and 25 healthy people in the present study. Psychological distress was measured using standardized questionnaires. Microbiota analysis was performed on the participants' stools. Functional magnetic resonance imaging data were acquired, and seed-based resting-state FC (rs-FC) analysis was conducted with the salience network nodes as seeds. Linear regression and mediation analyses evaluated microbiota, symptoms, and rs-FCs associations. We found altered microbiota diversity in FM, of which Phascolarctobacterium and Lachnoclostridium taxa increased the most and Faecalibacterium taxon decreased the most compared to controls. The Phascolarctobacterium abundance significantly predicted Beck depression inventory (BDI-II) scores in FM (β = 6.83; P = .033). Rs-FCs from salience network nodes were reduced in FM, of which rs-FCs from the right lateral rostral prefrontal cortex (RPFC) to the lateral occipital cortex, superior division right (RPFC-sLOC) could be predicted by BDI-II scores in patients (β = -.0064; P = .0054). In addition, the BDI-II score was a mediator in the association between Phascolarctobacterium abundance and rs-FCs of RPFC-sLOC (ab = -.06; 95% CI: -.16 to -9.10-3). In conclusion, microbial dysbiosis might be associated with altered neural networks mediated by psychological distress in FM, emphasizing the critical role of the brain-gut axis in FM's non-pain symptoms and supporting further analysis of mechanism-targeted therapies to reduce FM symptoms. PERSPECTIVE: Our study suggests microbial dysbiosis might be associated with psychological distress and the altered salience network, supporting the role of brain-gut axis dysfunction in fibromyalgia pathomechanisms. Further targeting therapies for microbial dysbiosis should be investigated to manage fibromyalgia patients in the future.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- International PhD program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University - Shuang-Ho Hospital, New Taipei City, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- International PhD program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Yasoda-Mohan A, Vanneste S. Development, Insults and Predisposing Factors of the Brain's Predictive Coding System to Chronic Perceptual Disorders-A Life-Course Examination. Brain Sci 2024; 14:86. [PMID: 38248301 PMCID: PMC10813926 DOI: 10.3390/brainsci14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The predictive coding theory is currently widely accepted as the theoretical basis of perception and chronic perceptual disorders are explained as the maladaptive compensation of the brain to a prediction error. Although this gives us a general framework to work with, it is still not clear who may be more susceptible and/or vulnerable to aberrations in this system. In this paper, we study changes in predictive coding through the lens of tinnitus and pain. We take a step back to understand how the predictive coding system develops from infancy, what are the different neural and bio markers that characterise this system in the acute, transition and chronic phases and what may be the factors that pose a risk to the aberration of this system. Through this paper, we aim to identify people who may be at a higher risk of developing chronic perceptual disorders as a reflection of aberrant predictive coding, thereby giving future studies more facets to incorporate in their investigation of early markers of tinnitus, pain and other disorders of predictive coding. We therefore view this paper to encourage the thinking behind the development of preclinical biomarkers to maladaptive predictive coding.
Collapse
Affiliation(s)
- Anusha Yasoda-Mohan
- Global Brain Health Institute, Trinity College Dublin, D02 R123 Dublin, Ireland;
- Trinity College Institute for Neuroscience, Trinity College Dublin, D02 R123 Dublin, Ireland
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, D02 R123 Dublin, Ireland
| | - Sven Vanneste
- Global Brain Health Institute, Trinity College Dublin, D02 R123 Dublin, Ireland;
- Trinity College Institute for Neuroscience, Trinity College Dublin, D02 R123 Dublin, Ireland
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, D02 R123 Dublin, Ireland
| |
Collapse
|
24
|
Sandoval Ortega RA, Renard M, Cohen MX, Nevian T. Interactive effects of pain and arousal state on heart rate and cortical activity in the mouse anterior cingulate and somatosensory cortices. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100157. [PMID: 38764613 PMCID: PMC11099324 DOI: 10.1016/j.ynpai.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Sensory disconnection is a hallmark of sleep, yet the cortex retains some ability to process sensory information. Acute noxious stimulation during sleep increases the heart rate and the likelihood of awakening, indicating that certain mechanisms for pain sensing and processing remain active. However, processing of somatosensory information, including pain, during sleep remains underexplored. To assess somatosensation in natural sleep, we simultaneously recorded heart rate and local field potentials in the anterior cingulate (ACC) and somatosensory (S1) cortices of naïve, adult male mice, while applying noxious and non-noxious stimuli to their hind paws throughout their sleep-wake cycle. Noxious stimuli evoked stronger heart rate increases in both wake and non-rapid eye movement sleep (NREMS), and resulted in larger awakening probability in NREMS, as compared to non-noxious stimulation, suggesting differential processing of noxious and non-noxious information during sleep. Somatosensory information differentially reached S1 and ACC in sleep, eliciting complex transient and sustained responses in the delta, alpha, and gamma frequency bands as well as somatosensory evoked potentials. These dynamics depended on sleep state, the behavioral response to the stimulation and stimulation intensity (non-noxious vs. noxious). Furthermore, we found a correlation of the heart rate with the gamma band in S1 in the absence of a reaction in wake and sleep for noxious stimulation. These findings confirm that somatosensory information, including nociception, is sensed and processed during sleep even in the absence of a behavioral response.
Collapse
Affiliation(s)
| | - Margot Renard
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Michael X. Cohen
- Synchronization in Neural Systems Lab, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
25
|
He H, Luo H, Qian B, Xu H, Zhang G, Zou X, Zou J. Autonomic Nervous System Dysfunction Is Related to Chronic Prostatitis/Chronic Pelvic Pain Syndrome. World J Mens Health 2024; 42:1-28. [PMID: 37118962 PMCID: PMC10782122 DOI: 10.5534/wjmh.220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/30/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common and non-lethal urological condition with painful symptoms. The complexity of CP/CPPS's pathogenesis and lack of efficient etiological diagnosis results in incomplete treatment and recurrent episodes, causing long-term mental and psychological suffering in patients. Recent findings indicate that the autonomic nervous system involves in CP/CPPS, including sensory, sympathetic, parasympathetic, and central nervous systems. Neuro-inflammation and sensitization of sensory nerves lead to persistent inflammation and pain. Sympathetic and parasympathetic alterations affect the cardiovascular and reproductive systems and the development of prostatitis. Central sensitization lowers pain thresholds and increases pelvic pain perception in chronic prostatitis. Therefore, this review summarized the detailed processes and mechanisms of the critical role of the autonomic nervous system in developing CP/CPPS. Furthermore, it describes the neurologically relevant substances and channels or receptors involved in this process, which provides new perspectives for new therapeutic approaches to CP/CPPS.
Collapse
Affiliation(s)
- Hailan He
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China.
| |
Collapse
|
26
|
Nagamine T, Watanabe T. The Catastrophic Perception of Pain in Burning Mouth Syndrome May be Associated with Sympathetic Tone as Indicated by the QTc Interval. INNOVATIONS IN CLINICAL NEUROSCIENCE 2024; 21:8-9. [PMID: 38495607 PMCID: PMC10941860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Affiliation(s)
- Takahiko Nagamine
- Dr. Nagamine is with Sunlight Brain Research Center in Hofu, Yamaguchi, Japan, and Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University in Tokyo, Japan
| | - Takeshi Watanabe
- Dr. Watanabe is with Department of Preventive Medicine, Tokushima University in Tokushima, Japan
| |
Collapse
|
27
|
Lee J, Lazaridou A, Paschali M, Loggia ML, Berry MP, Dan-Mikael E, Isenburg K, Anzolin A, Grahl A, Wasan AD, Napadow V, Edwards RR. A Randomized Controlled Neuroimaging Trial of Cognitive Behavioral Therapy for Fibromyalgia Pain. Arthritis Rheumatol 2024; 76:130-140. [PMID: 37727908 PMCID: PMC10842345 DOI: 10.1002/art.42672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE Fibromyalgia (FM) is characterized by pervasive pain-related symptomatology and high levels of negative affect. Mind-body treatments such as cognitive behavioral therapy (CBT) appear to foster improvement in FM via reductions in pain-related catastrophizing, a set of negative, pain-amplifying cognitive and emotional processes. However, the neural underpinnings of CBT's catastrophizing-reducing effects remain uncertain. This randomized controlled mechanistic trial was designed to assess CBT's effects on pain catastrophizing and its underlying brain circuitry. METHODS Of 114 enrolled participants, 98 underwent a baseline neuroimaging assessment and were randomized to 8 weeks of individual CBT or a matched FM education control (EDU) condition. RESULTS Compared with EDU, CBT produced larger decreases in pain catastrophizing post treatment (P < 0.05) and larger reductions in pain interference and symptom impact. Decreases in pain catastrophizing played a significant role in mediating those functional improvements in the CBT group. At baseline, brain functional connectivity between the ventral posterior cingulate cortex (vPCC), a key node of the default mode network (DMN), and somatomotor and salience network regions was increased during catastrophizing thoughts. Following CBT, vPCC connectivity to somatomotor and salience network areas was reduced. CONCLUSION Our results suggest clinically important and CBT-specific associations between somatosensory/motor- and salience-processing brain regions and the DMN in chronic pain. These patterns of connectivity may contribute to individual differences (and treatment-related changes) in somatic self-awareness. CBT appears to provide clinical benefits at least partially by reducing pain-related catastrophizing and producing adaptive alterations in DMN functional connectivity.
Collapse
Affiliation(s)
- Jeungchan Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Discovery Center for Recovery from Chronic Pain, Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Asimina Lazaridou
- Department of Anesthesiology, Perioperative & Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Myrella Paschali
- Department of Anesthesiology, Perioperative & Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael P. Berry
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ellingsen Dan-Mikael
- Department of School of Health Sciences, Kristiania University College, Oslo, Norway
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kylie Isenburg
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alessandra Anzolin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Discovery Center for Recovery from Chronic Pain, Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arvina Grahl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Discovery Center for Recovery from Chronic Pain, Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ajay D. Wasan
- Department of Anesthesiology and Perioperative Medicine, Center for Innovation in Pain Care, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Discovery Center for Recovery from Chronic Pain, Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert R. Edwards
- Department of Anesthesiology, Perioperative & Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Mathew J, Perez TM, Adhia DB, De Ridder D, Mani R. Is There a Difference in EEG Characteristics in Acute, Chronic, and Experimentally Induced Musculoskeletal Pain States? a Systematic Review. Clin EEG Neurosci 2024; 55:101-120. [PMID: 36377346 DOI: 10.1177/15500594221138292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroencephalographic (EEG) alterations have been demonstrated in acute, chronic, and experimentally induced musculoskeletal (MSK) pain conditions. However, there is no cumulative evidence on the associated EEG characteristics differentiating acute, chronic, and experimentally induced musculoskeletal pain states, especially compared to healthy controls. The present systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines (PRISMA) to review and summarize available evidence for cortical brain activity and connectivity alterations in acute, chronic, and experimentally induced MSK pain states. Five electronic databases were systematically searched from their inception to 2022. A total of 3471 articles were screened, and 26 full articles (five studies on chronic pain and 21 studies on experimentally induced pain) were included for the final synthesis. Using the Downs and Black risk of assessment tool, 92% of the studies were assessed as low to moderate quality. The review identified a 'very low' level of evidence for the changes in EEG and subjective outcome measures for both chronic and experimentally induced MSK pain based on the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. Overall, the findings of this review indicate a trend toward decreased alpha and beta EEG power in evoked chronic clinical pain conditions and increased theta and alpha power in resting-state EEG recorded from chronic MSK pain conditions. EEG characteristics are unclear under experimentally induced pain conditions.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Tyson Michael Perez
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Chen C, Tassou A, Morales V, Scherrer G. Graph theory analysis reveals an assortative pain network vulnerable to attacks. Sci Rep 2023; 13:21985. [PMID: 38082002 PMCID: PMC10713541 DOI: 10.1038/s41598-023-49458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
The neural substrate of pain experience has been described as a dense network of connected brain regions. However, the connectivity pattern of these brain regions remains elusive, precluding a deeper understanding of how pain emerges from the structural connectivity. Here, we employ graph theory to systematically characterize the architecture of a comprehensive pain network, including both cortical and subcortical brain areas. This structural brain network consists of 49 nodes denoting pain-related brain areas, linked by edges representing their relative incoming and outgoing axonal projection strengths. Within this network, 63% of brain areas share reciprocal connections, reflecting a dense network. The clustering coefficient, a measurement of the probability that adjacent nodes are connected, indicates that brain areas in the pain network tend to cluster together. Community detection, the process of discovering cohesive groups in complex networks, successfully reveals two known subnetworks that specifically mediate the sensory and affective components of pain, respectively. Assortativity analysis, which evaluates the tendency of nodes to connect with other nodes that have similar features, indicates that the pain network is assortative. Finally, robustness, the resistance of a complex network to failures and perturbations, indicates that the pain network displays a high degree of error tolerance (local failure rarely affects the global information carried by the network) but is vulnerable to attacks (selective removal of hub nodes critically changes network connectivity). Taken together, graph theory analysis unveils an assortative structural pain network in the brain that processes nociceptive information. Furthermore, the vulnerability of this network to attack presents the possibility of alleviating pain by targeting the most connected brain areas in the network.
Collapse
Affiliation(s)
- Chong Chen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Valentina Morales
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- New York Stem Cell Foundation ‒ Robertson Investigator, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
30
|
Raymaekers V, Meeuws S, Goudman L, der Steen GV, Moens M, Vanloon M, Ridder DD, Menovsky T, Vesper J, Plazier M. Patient profiling and outcome assessment in spinal cord stimulation for chronic back and/or leg pain (the PROSTIM study): a study protocol. Pain Manag 2023; 13:677-687. [PMID: 38054386 DOI: 10.2217/pmt-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Spinal cord stimulation (SCS) is a well-established treatment option in the multidisciplinary approach to chronic back and leg pain. Nevertheless, careful patient selection remains crucial to provide the most optimal treatment and prevent treatment failure. We report the protocol for the PROSTIM study, an ongoing prospective, multicentric and observational clinical study (NCT05349695) that aims to identify different patient clusters and their outcomes after SCS. Patients are recruited in different centers in Europe. Analysis focuses on identifying significant patient clusters based on different health domains and the changes in biopsychosocial variables 6 weeks, 3 and 12 months after implantation. This study is the first to include a biopsychosocial cluster analysis to identify significant patient groups and their response to treatment with SCS.
Collapse
Affiliation(s)
- Vincent Raymaekers
- Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, 2650, Belgium
- Faculty of Medicine & Life Science, Hasselt University, Hasselt, 3500, Belgium
- Department of Neurosurgery, Antwerp University Hospital, Antwerp, 2650, Belgium
| | - Sacha Meeuws
- Department of Neurosurgery Jessa Hospital, Hasselt, 3500, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels, 1090, Belgium
- STIMULUS consortium (reSearch & TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology & Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
- Research Foundation-Flanders (FWO), Brussels, 1090, Belgium
| | | | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels, 1090, Belgium
- STIMULUS consortium (reSearch & TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology & Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Maarten Vanloon
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6211, The Netherlands
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tomas Menovsky
- Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, 2650, Belgium
- Department of Neurosurgery, Antwerp University Hospital, Antwerp, 2650, Belgium
| | - Jan Vesper
- Department of Stereotactic & Functional Neurosurgery, University Hospital Düsseldorf, Düsseldorf, 40204, Germany
| | - Mark Plazier
- Faculty of Medicine & Life Science, Hasselt University, Hasselt, 3500, Belgium
- Department of Neurosurgery Jessa Hospital, Hasselt, 3500, Belgium
| |
Collapse
|
31
|
Flores-Cortes M, Guerra-Armas J, Pineda-Galan C, La Touche R, Luque-Suarez A. Sensorimotor Uncertainty of Immersive Virtual Reality Environments for People in Pain: Scoping Review. Brain Sci 2023; 13:1461. [PMID: 37891829 PMCID: PMC10604973 DOI: 10.3390/brainsci13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Decision making and action execution both rely on sensory information, and their primary objective is to minimise uncertainty. Virtual reality (VR) introduces uncertainty due to the imprecision of perceptual information. The concept of "sensorimotor uncertainty" is a pivotal element in the interplay between perception and action within the VR environment. The role of immersive VR in the four stages of motor behaviour decision making in people with pain has been previously discussed. These four processing levels are the basis to understand the uncertainty that a patient experiences when using VR: sensory information, current state, transition rules, and the outcome obtained. METHODS This review examines the different types of uncertainty that a patient may experience when they are immersed in a virtual reality environment in a context of pain. Randomised clinical trials, a secondary analysis of randomised clinical trials, and pilot randomised clinical trials related to the scope of Sensorimotor Uncertainty in Immersive Virtual Reality were included after searching. RESULTS Fifty studies were included in this review. They were divided into four categories regarding the type of uncertainty the intervention created and the stage of the decision-making model. CONCLUSIONS Immersive virtual reality makes it possible to alter sensorimotor uncertainty, but studies of higher methodological quality are needed on this topic, as well as an exploration into the patient profile for pain management using immersive VR.
Collapse
Affiliation(s)
- Mar Flores-Cortes
- Faculty of Health Sciences, University of Malaga, 29071 Malaga, Spain
| | | | | | - Roy La Touche
- Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), 28008 Madrid, Spain
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| | - Alejandro Luque-Suarez
- Faculty of Health Sciences, University of Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga (IBIMA), 29071 Malaga, Spain
| |
Collapse
|
32
|
Piriyaprasath K, Kakihara Y, Kurahashi A, Taiyoji M, Kodaira K, Aihara K, Hasegawa M, Yamamura K, Okamoto K. Preventive Roles of Rice- koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice. Nutrients 2023; 15:3989. [PMID: 37764773 PMCID: PMC10535605 DOI: 10.3390/nu15183989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This study determined the effect of daily administration of Rice-koji on anxiety and nociception in mice subjected to repeated forced swim stress (FST). In a parallel experiment, it was determined whether ergothioneine (EGT) contained in Rice-koji displayed similar effects. Anxiety and nociception were assessed behaviorally using multiple procedures. c-Fos and FosB immunoreactivities were quantified to assess the effect of both treatments on neural responses in the paraventricular nucleus of the hypothalamus (PVN), nucleus raphe magnus (NRM), and lumbar spinal dorsal horn (DH). FST increased anxiety- and pain-like behaviors in the hindpaw. Rice-koji or EGT significantly prevented these behaviors after FST. In the absence of formalin, both treatments prevented decreased FosB expressions in the PVN after FST, while no effect was seen in the NRM and DH. In the presence of formalin, both treatments prevented changes in c-Fos and FosB expressions in all areas in FST mice. Further, in vitro experiments using SH-SY5Y cells were conducted. Rice-koji and EGT did not affect cell viability but changed the level of brain-derived neurotrophic factor. In conclusion, Rice-koji could reduce anxiety and pain associated with psychophysical stress, possibly mediated by the modulatory effects of EGT on neural functions in the brain.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Atsushi Kurahashi
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Mayumi Taiyoji
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Kazuya Kodaira
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Kotaro Aihara
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Division of General Dentistry and Dental Clinical Education Unit, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
33
|
Rivi V, Rigillo G, Toscano Y, Benatti C, Blom JMC. Narrative Review of the Complex Interaction between Pain and Trauma in Children: A Focus on Biological Memory, Preclinical Data, and Epigenetic Processes. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1217. [PMID: 37508714 PMCID: PMC10378710 DOI: 10.3390/children10071217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The incidence and collective impact of early adverse experiences, trauma, and pain continue to increase. This underscores the urgent need for translational efforts between clinical and preclinical research to better understand the underlying mechanisms and develop effective therapeutic approaches. As our understanding of these issues improves from studies in children and adolescents, we can create more precise preclinical models and ultimately translate our findings back to clinical practice. A multidisciplinary approach is essential for addressing the complex and wide-ranging effects of these experiences on individuals and society. This narrative review aims to (1) define pain and trauma experiences in childhood and adolescents, (2) discuss the relationship between pain and trauma, (3) consider the role of biological memory, (4) decipher the relationship between pain and trauma using preclinical data, and (5) examine the role of the environment by introducing the importance of epigenetic processes. The ultimate scope is to better understand the wide-ranging effects of trauma, abuse, and chronic pain on children and adolescents, how they occur, and how to prevent or mitigate their effects and develop effective treatment strategies that address both the underlying causes and the associated physiological and psychological effects.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ylenia Toscano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna Maria Catharina Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
34
|
Vanneste S, De Ridder D. BurstDR spinal cord stimulation rebalances pain input and pain suppression in the brain in chronic neuropathic pain. Brain Stimul 2023; 16:1186-1195. [PMID: 37541579 DOI: 10.1016/j.brs.2023.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Chronic pain is processed by at least three well-known pathways, two pain provoking pathways including a medial 'suffering' and lateral 'painfulness' pathway. A third descending pain pathway modulates pain but is predominantly inhibitory. Chronic pain can be seen as an imbalance between the two pain-provoking and the pain inhibitory pathways. If this assumption is correct, then the imbalance between pain input and pain suppression should reverse and normalize in response to successful, i.e., pain reducing burstDR spinal cord stimulation, one of the current treatment options for neuropathic pain. MATERIALS AND METHODS Fifteen patients, who received spinal cord stimulation for failed back surgery were included in this study, using source localized electrical brain activity and connectivity recording via EEG to identify the purported imbalance. RESULTS BurstDR spinal cord stimulation induces a significant change in EEG activity in both the left and right somatosensory cortex (SSC) for both θ and γ oscillations. In the dorsal anterior cingulate cortex (dACC), we observed a significant drop in both α and β oscillations. This reduction is accompanied by a change in pain intensity and suffering. BurstDR spinal cord stimulation is also associated with a reduction in θ at the pregenual anterior cingulate cortex (pgACC). Analyzing effective connectivity indicates that for the θ band, more information is sent from the pgACC to the left and right SSC. For α, increased information is sent from the pgACC to the dACC and both the left and right SSC. This is associated with a reduced θ-γ coupling in the SSC and reduced α-β coupling in dACC. CONCLUSION This study suggests that chronic pain is indeed an imbalance between the ascending and descending pathways in the brain and that burst spinal cord stimulation can normalize this imbalance in the brain.
Collapse
Affiliation(s)
- Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
35
|
De Ridder D, Friston K, Sedley W, Vanneste S. A parahippocampal-sensory Bayesian vicious circle generates pain or tinnitus: a source-localized EEG study. Brain Commun 2023; 5:fcad132. [PMID: 37223127 PMCID: PMC10202557 DOI: 10.1093/braincomms/fcad132] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/14/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
Pain and tinnitus share common pathophysiological mechanisms, clinical features, and treatment approaches. A source-localized resting-state EEG study was conducted in 150 participants: 50 healthy controls, 50 pain, and 50 tinnitus patients. Resting-state activity as well as functional and effective connectivity was computed in source space. Pain and tinnitus were characterized by increased theta activity in the pregenual anterior cingulate cortex, extending to the lateral prefrontal cortex and medial anterior temporal lobe. Gamma-band activity was increased in both auditory and somatosensory cortex, irrespective of the pathology, and extended to the dorsal anterior cingulate cortex and parahippocampus. Functional and effective connectivity were largely similar in pain and tinnitus, except for a parahippocampal-sensory loop that distinguished pain from tinnitus. In tinnitus, the effective connectivity between parahippocampus and auditory cortex is bidirectional, whereas the effective connectivity between parahippocampus and somatosensory cortex is unidirectional. In pain, the parahippocampal-somatosensory cortex is bidirectional, but parahippocampal auditory cortex unidirectional. These modality-specific loops exhibited theta-gamma nesting. Applying a Bayesian brain model of brain functioning, these findings suggest that the phenomenological difference between auditory and somatosensory phantom percepts result from a vicious circle of belief updating in the context of missing sensory information. This finding may further our understanding of multisensory integration and speaks to a universal treatment for pain and tinnitus-by selectively disrupting parahippocampal-somatosensory and parahippocampal-auditory theta-gamma activity and connectivity.
Collapse
Affiliation(s)
- Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sven Vanneste
- Correspondence to: Sven Vanneste Lab for Clinical & Integrative Neuroscience Global Brain Health Institute and Institute of Neuroscience Trinity College Dublin, College Green 2, Dublin D02 PN40, Ireland E-mail:
| |
Collapse
|
36
|
Kowalski JL, Morse LR, Troy K, Nguyen N, Battaglino RA, Falci SP, Linnman C. Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. Neuroimage Clin 2023; 38:103414. [PMID: 37244076 PMCID: PMC10238876 DOI: 10.1016/j.nicl.2023.103414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/29/2023]
Abstract
Many individuals with spinal cord injury live with debilitating chronic pain that may be neuropathic, nociceptive, or a combination of both in nature. Identification of brain regions demonstrating altered connectivity associated with the type and severity of pain experience may elucidate underlying mechanisms, as well as treatment targets. Resting state and sensorimotor task-based magnetic resonance imaging data were collected in 37 individuals with chronic spinal cord injury. Seed-based correlations were utilized to identify resting state functional connectivity of regions with established roles in pain processing: the primary motor and somatosensory cortices, cingulate, insula, hippocampus, parahippocampal gyri, thalamus, amygdala, caudate, putamen, and periaqueductal gray matter. Resting state functional connectivity alterations and task-based activation associated with individuals' pain type and intensity ratings on the International Spinal Cord Injury Basic Pain Dataset (0-10 scale) were evaluated. We found that intralimbic and limbostriatal resting state connectivity alterations are uniquely associated with neuropathic pain severity, whereas thalamocortical and thalamolimbic connectivity alterations are associated specifically with nociceptive pain severity. The joint effect and contrast of both pain types were associated with altered limbocortical connectivity. No significant differences in task-based activation were identified. These findings suggest that the experience of pain in individuals with spinal cord injury may be associated with unique alterations in resting state functional connectivity dependent upon pain type.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Spaulding Neuroimaging Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th St, Charlestown, Boston, MA, United States; Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Karen Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Scott P Falci
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States; Department of Neurosurgery, Swedish Medical Center, 501 E Hampden Ave, Englewood, CO 80113, United States.
| | - Clas Linnman
- Spaulding Neuroimaging Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th St, Charlestown, Boston, MA, United States; Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
37
|
Delgado-Gallén S, Soler MD, Cabello-Toscano M, Abellaneda-Pérez K, Solana-Sánchez J, España-Irla G, Roca-Ventura A, Bartrés-Faz D, Tormos JM, Pascual-Leone A, Cattaneo G. Brain system segregation and pain catastrophizing in chronic pain progression. Front Neurosci 2023; 17:1148176. [PMID: 37008229 PMCID: PMC10060861 DOI: 10.3389/fnins.2023.1148176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Pain processing involves emotional and cognitive factors that can modify pain perception. Increasing evidence suggests that pain catastrophizing (PC) is implicated, through pain-related self-thoughts, in the maladaptive plastic changes related to the maintenance of chronic pain (CP). Functional magnetic resonance imaging (fMRI) studies have shown an association between CP and two main networks: default mode (DMN) and dorsoattentional (DAN). Brain system segregation degree (SyS), an fMRI framework used to quantify the extent to which functional networks are segregated from each other, is associated with cognitive abilities in both healthy individuals and neurological patients. We hypothesized that individuals suffering from CP would show worst health-related status compared to healthy individuals and that, within CP individuals, longitudinal changes in pain experience (pain intensity and affective interference), could be predicted by SyS and PC subdomains (rumination, magnification, and helplessness). To assess the longitudinal progression of CP, two pain surveys were taken before and after an in-person assessment (physical evaluation and fMRI). We first compared the sociodemographic, health-related, and SyS data in the whole sample (no pain and pain groups). Secondly, we ran linear regression and a moderation model only in the pain group, to see the predictive and moderator values of PC and SyS in pain progression. From our sample of 347 individuals (mean age = 53.84, 55.2% women), 133 responded to having CP, and 214 denied having CP. When comparing groups, results showed significant differences in health-related questionnaires, but no differences in SyS. Within the pain group, helplessness (β = 0.325; p = 0.003), higher DMN (β = 0.193; p = 0.037), and lower DAN segregation (β = 0.215; p = 0.014) were strongly associated with a worsening in pain experience over time. Moreover, helplessness moderated the association between DMN segregation and pain experience progression (p = 0.003). Our findings indicate that the efficient functioning of these networks and catastrophizing could be used as predictors of pain progression, bringing new light to the influence of the interplay between psychological aspects and brain networks. Consequently, approaches focusing on these factors could minimize the impact on daily life activities.
Collapse
Affiliation(s)
- Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- *Correspondence: Selma Delgado-Gallén,
| | - MD Soler
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - María Cabello-Toscano
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Josep M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Centro de Investigación Traslacional San Alberto Magno, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| |
Collapse
|
38
|
Chen C, Tassou A, Morales V, Scherrer G. Graph theory analysis reveals an assortative pain network vulnerable to attacks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531580. [PMID: 36945626 PMCID: PMC10028857 DOI: 10.1101/2023.03.08.531580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The neural substrate of pain experience has been described as a dense network of connected brain regions. However, the connectivity pattern of these brain regions remains elusive, precluding a deeper understanding of how pain emerges from the structural connectivity. Here, we use graph theory to systematically characterize the architecture of a comprehensive pain network, including both cortical and subcortical brain areas. This structural brain network consists of 49 nodes denoting pain-related brain areas, linked by edges representing their relative incoming and outgoing axonal projection strengths. Sixty-three percent of brain areas in this structural pain network share reciprocal connections, reflecting a dense network. The clustering coefficient, a measurement of the probability that adjacent nodes are connected, indicates that brain areas in the pain network tend to cluster together. Community detection, the process of discovering cohesive groups in complex networks, successfully reveals two known subnetworks that specifically mediate the sensory and affective components of pain, respectively. Assortativity analysis, which evaluates the tendency of nodes to connect with other nodes with similar features, indicates that the pain network is assortative. Finally, robustness, the resistance of a complex network to failures and perturbations, indicates that the pain network displays a high degree of error tolerance (local failure rarely affects the global information carried by the network) but is vulnerable to attacks (selective removal of hub nodes critically changes network connectivity). Taken together, graph theory analysis unveils an assortative structural pain network in the brain processing nociceptive information, and the vulnerability of this network to attack opens up the possibility of alleviating pain by targeting the most connected brain areas in the network.
Collapse
|
39
|
Chen XM, Wen Y, Chen S, Jin X, Liu C, Wang W, Kong N, Ling DY, Huang Q, Chai JE, Zhao XL, Li J, Xu MS, Jiang Z, Du HG. Traditional Chinese Manual Therapy (Tuina) reshape the function of default mode network in patients with lumbar disc herniation. Front Neurosci 2023; 17:1125677. [PMID: 37008205 PMCID: PMC10050335 DOI: 10.3389/fnins.2023.1125677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
PurposeInvestigating the changes of regional homogeneity (ReHo) values and both static and dynamic functional connectivity (FC) before and after Traditional Chinese Manual Therapy (Tuina) in patients with lumbar disk herniation (LDH) through resting-state functional magnetic resonance imaging (RS-fMRI). Based on this, we observe the effect of Tuina on the above abnormal changes.MethodsPatients with LDH (n = 27) and healthy controls (HCs) (n = 28) were recruited. The functional magnetic resonance imaging (fMRI) scanning was performed two times in LDH patients, before Tuina (time point 1, LDH-pre) and after the sixth Tuina (time point 2, LDH-pos). And for one time in HCs which received no intervention. The ReHo values were compared between LDH-pre and HCs. The significant clusters detected by ReHo analysis were selected as seeds to calculate static functional connectivity (sFC). We also applied the sliding-window to perform dynamic functional connectivity (dFC). To evaluate the Tuina effect, the mean ReHo and FC values (both static and dynamic) were extracted from significant clusters and compared between LDH and HCs.ResultsIn comparison to HCs, LDH patients displayed decreased ReHo in the left orbital part middle frontal gyrus (LO-MFG). For sFC analysis, no significant difference was found. However, we found decreased dFC variance between LO-MFG and the left Fusiform, and increased dFC variance in the left orbital inferior frontal gyrus and left precuneus. Both ReHo and dFC values revealed after Tuina, the brain activities in LDH patients were similar to HCs.ConclusionThe present study characterized the altered patterns of regional homogeneity in spontaneous brain activity and those of functional connectivity in patients with LDH. Tuina can reshape the function of the default mode network (DMN) in LDH patients, which may contribute to the analgesic effect of Tuina in LDH patients.
Collapse
Affiliation(s)
- Xiao-Min Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ya Wen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shao Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chen Liu
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wei Wang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dong-Ya Ling
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qin Huang
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jin-Er Chai
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiao-Lei Zhao
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jie Li
- Department of Radiology, Changshu No.2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Mao-Sheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhong Jiang
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Zhong Jiang,
| | - Hong-Gen Du
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- *Correspondence: Hong-Gen Du,
| |
Collapse
|
40
|
Qassim H, Zhao Y, Ströbel A, Regensburger M, Buchfelder M, de Oliveira DS, Del Vecchio A, Kinfe T. Deep Brain Stimulation for Chronic Facial Pain: An Individual Participant Data (IPD) Meta-Analysis. Brain Sci 2023; 13:brainsci13030492. [PMID: 36979302 PMCID: PMC10046035 DOI: 10.3390/brainsci13030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Despite available, advanced pharmacological and behavioral therapies, refractory chronic facial pain of different origins still poses a therapeutic challenge. In circumstances where there is insufficient responsiveness to pharmacological/behavioral therapies, deep brain stimulation should be considered as a potential effective treatment option. We performed an individual participant data (IPD) meta-analysis including searches on PubMed, Embase, and the Cochrane Library (2000–2022). The primary endpoint was the change in pain intensity (visual analogue scale; VAS) at a defined time-point of ≤3 months post-DBS. In addition, correlation and regression analyses were performed to identify predictive markers (age, duration of pain, frequency, amplitude, intensity, contact configuration, and the DBS target). A total of seven trials consisting of 54 screened patients met the inclusion criteria. DBS significantly reduced the pain levels after 3 months without being related to a specific DBS target, age, contact configuration, stimulation intensity, frequency, amplitude, or chronic pain duration. Adverse events were an infection or lead fracture (19%), stimulation-induced side effects (7%), and three deaths (unrelated to DBS—from cancer progression or a second stroke). Although comparable long-term data are lacking, the current published data indicate that DBS (thalamic and PVG/PAG) effectively suppresses facial pain in the short-term. However, the low-quality evidence, reporting bias, and placebo effects must be considered in future randomized-controlled DBS trials for facial pain.
Collapse
Affiliation(s)
- Hebatallah Qassim
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yining Zhao
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Armin Ströbel
- Center for Clinical Studies (CCS), Medical Faculty, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin Regensburger
- Division of Molecular Neurology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Daniela Souza de Oliveira
- Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
41
|
Yan H, Lau WKW, Eickhoff SB, Long J, Song X, Wang C, Zhao J, Feng X, Huang R, Wang M, Zhang X, Zhang R. Charting the neural circuits disruption in inhibitory control and its subcomponents across psychiatric disorders: A neuroimaging meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110618. [PMID: 36002101 DOI: 10.1016/j.pnpbp.2022.110618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Inhibitory control, comprising cognitive inhibition and response inhibition, showed consistent deficits among several major psychiatric disorders. We aim to identify the trans-diagnostic convergence of neuroimaging abnormalities underlying inhibitory control across psychiatric disorders. METHODS Inhibitory control tasks neuroimaging, including functional magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography articles published in PubMed and Web of Science before April 2020 comparing healthy controls with patients with several psychiatric disorders were searched. RESULTS 146 experiments on 2653 patients with different disorders and 2764 control participants were included. Coordinates of case-control differences coded by diagnosis and inhibitory control components were analyzed using activation likelihood estimation. A robust trans-diagnostic pattern of aberrant brain activation in the bilateral cingulate gyri extending to medial frontal gyri, right insula, bilateral lentiform nuclei, right inferior frontal gyrus, right precuneus extending to inferior parietal lobule, and right supplementary motor area were detected. Frontostriatal pathways are the commonly disrupted neural circuits in the inhibitory control across psychiatric disorders. Furthermore, Patients showed aberrant activation in the dorsal frontal inhibitory system in cognitive inhibition, while in the frontostriatal system in response inhibition across disorders. CONCLUSION Consistent with the Research Domain Criteria initiative, current findings show that psychiatric disorders may be productively formulated as a phenotype of trans-diagnostic neurocircuit disruption. Our results provide new insights for future research into mental disorders with inhibition-related dysfunctions.
Collapse
Affiliation(s)
- Haifeng Yan
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Science and Education, The People's Hospital of Gaozhou, Gaozhou, PR China
| | - Way K W Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, PR China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jüelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Chanyu Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Jiubo Zhao
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China
| | - Xiangang Feng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, PR China
| | - Maosheng Wang
- Department of Science and Education, The People's Hospital of Gaozhou, Gaozhou, PR China
| | - Xiaoyuan Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
42
|
Rostami F, Abbasi Z, Fereidoni M. Long-term follow-up of intracerebroventricular injection of streptozotocin-inducing pain sensitization. Behav Pharmacol 2022; 33:542-550. [PMID: 36256700 DOI: 10.1097/fbp.0000000000000701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Age is known to be the major risk factor for both pain sensation and sporadic Alzheimer's disease (sAD). Pain management in AD is a critical health condition. However, assessing pain in sAD patients is challenging. The intracerebroventricularly injected streptozotocin (icv-STZ) rat model of sAD has been brought to the fore as a hopefully suitable model that could mimic some features of sAD. However, the exact mechanism by which this agent may induce AD-like pathology is largely unknown. In some studies, analgesic drugs have been suggested as possible prevention of AD and icv-STZ-induced AD-like pathology. Therefore, this study used formalin and tail-flick tests to investigate whether different doses of icv-STZ injections could affect acute and inflammatory pain sensation and edema volume over time. Behavioral responses were observed at four testing time points (1, 2.5, 3.5, and 6 months postinjection). The results indicate that icv-STZ was able to significantly decrease the animals' formalin pain threshold in both a time- and dose-dependent manner. Formalin-induced acute and chronic pain scores of animals treated with streptozotocin 3 mg/kg (STZ3) increased dramatically 2.5 months after injection and persisted thereafter. The augmentation in pain score induced by streptozotocin 1 mg/kg (STZ1) was observed from 3.5 months after STZ injection. However, the effect of streptozotocin 0.5 mg/kg (STZ0.5) was NS until 6 months after injection. However, formalin-induced paw edema occurred with a longer delay and was not detectable in STZ0.5-treated animals. In addition, only STZ3-treated animals significantly reduced the thermal pain threshold of animals 6 months after injection. These observations indicate that icv-STZ can sensitize central and/or peripheral receptors to pain. The effect of STZ is dose- and time-dependent. AD-like pathology induced by icv-STZ could be partially activated via pain processing pathways. Therefore, anti-inflammatory agents could alleviate AD-like symptoms via pain treatments.
Collapse
Affiliation(s)
- Farzaneh Rostami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
43
|
Sitsen E, Khalili-Mahani N, de Rover M, Dahan A, Niesters M. Effect of spinal anesthesia-induced deafferentation on pain processing in healthy male volunteers: A task-related fMRI study. FRONTIERS IN PAIN RESEARCH 2022; 3:1001148. [PMID: 36530772 PMCID: PMC9748364 DOI: 10.3389/fpain.2022.1001148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Spinal anesthesia causes short-term deafferentation and alters the crosstalk among brain regions involved in pain perception and pain modulation. In the current study, we examined the effect of spinal anesthesia on pain response to noxious thermal stimuli in non-deafferented skin areas using a functional magnetic resonance imaging (fMRI) paradigm. METHODS Twenty-two healthy subjects participated in the study. We performed a task-based fMRI study using a randomized crossover design. Subjects were scanned under two conditions (spinal anesthesia or control) at two-time points: before and after spinal anesthesia. Spinal anesthesia resulted in sensory loss up to dermatome Th6. Calibrated heat-pain stimuli were administered to the right forearm (C8-Th1) using a box-car design (blocks of 10s on/25s off) during MRI scanning. Pain perception was measured using a visual analogue scale (1-100) at the beginning and the end of each session. Generalized estimating equations were used to examine the effect of intervention by time by order on pain scores. Similarly, higher-level effects were tested with appropriate general linear models (accounting for within-subject variations in session and time) to examine: (1) Differences in BOLD response to pain stimulus under spinal anesthesia versus control; and (2) Effects of spinal anesthesia on pain-related modulation of the cerebral activation. RESULTS Complete fMRI data was available for eighteen participants. Spinal anesthesia was associated with moderate pain score increase. Significant differences in brain response to noxious thermal stimuli were present in comparison of spinal versus control condition (post-pre). Spinal condition was associated with higher BOLD signal in the bilateral inferior parietal lobule and lower BOLD signal in bilateral postcentral and precentral gyrus. Within the angular regions, we observed a positive correlation between pain scores and BOLD signal. These observations were independent from order effect (whether the spinal anesthesia was administered in the first or the second visit). However, we did observe order effect on brain regions including medial prefrontal regions, possibly related to anticipation of the experience of spinal anesthesia. CONCLUSIONS The loss of sensory and motor activity caused by spinal anesthesia has a significant impact on brain regions involved in the sensorimotor and cognitive processing of noxious heat pain stimuli. Our results indicate that the anticipation or experience of a strong somatosensory response to the spinal intervention might confound and contribute to increased sensitivity to cognitive pain processing. Future studies must account for individual differences in subjective experience of pain sensation within the experimental context.
Collapse
Affiliation(s)
- Elske Sitsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mischa de Rover
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute of Brain and Cognition, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
44
|
Thanh Nhu N, Chen DYT, Kang JH. Identification of Resting-State Network Functional Connectivity and Brain Structural Signatures in Fibromyalgia Using a Machine Learning Approach. Biomedicines 2022; 10:biomedicines10123002. [PMID: 36551758 PMCID: PMC9775534 DOI: 10.3390/biomedicines10123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Abnormal resting-state functional connectivity (rs-FC) and brain structure have emerged as pathological hallmarks of fibromyalgia (FM). This study investigated and compared the accuracy of network rs-FC and brain structural features in identifying FM with a machine learning (ML) approach. Twenty-six FM patients and thirty healthy controls were recruited. Clinical presentation was measured by questionnaires. After MRI acquisitions, network rs-FC z-score and network-based gray matter volume matrices were exacted and preprocessed. The performance of feature selection and classification methods was measured. Correlation analyses between predictive features in final models and clinical data were performed. The combination of the recursive feature elimination (RFE) selection method and support vector machine (rs-FC data) or logistic regression (structural data), after permutation importance feature selection, showed high performance in distinguishing FM patients from pain-free controls, in which the rs-FC ML model outperformed the structural ML model (accuracy: 0.91 vs. 0.86, AUC: 0.93 vs. 0.88). The combined rs-FC and structural ML model showed the best performance (accuracy: 0.95, AUC: 0.95). Additionally, several rs-FC features in the final ML model correlated with FM's clinical data. In conclusion, ML models based on rs-FC and brain structural MRI features could effectively differentiate FM patients from pain-free subjects.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho 94117, Vietnam
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University-Shuang-Ho Hospital, New Taipei City 235, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jiunn-Horng Kang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27372181 (ext. 1236)
| |
Collapse
|
45
|
Alcon CA, Wang-Price S. Non-invasive brain stimulation and pain neuroscience education in the cognitive-affective treatment of chronic low back pain: Evidence and future directions. FRONTIERS IN PAIN RESEARCH 2022; 3:959609. [PMID: 36438443 PMCID: PMC9686004 DOI: 10.3389/fpain.2022.959609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Chronic low back pain (CLBP) is among the leading causes of disability worldwide. Beyond the physical and functional limitations, people's beliefs, cognitions, and perceptions of their pain can negatively influence their prognosis. Altered cognitive and affective behaviors, such as pain catastrophizing and kinesiophobia, are correlated with changes in the brain and share a dynamic and bidirectional relationship. Similarly, in the presence of persistent pain, attentional control mechanisms, which serve to organize relevant task information are impaired. These deficits demonstrate that pain may be a predominant focus of attentional resources, leaving limited reserve for other cognitively demanding tasks. Cognitive dysfunction may limit one's capacity to evaluate, interpret, and revise the maladaptive thoughts and behaviors associated with catastrophizing and fear. As such, interventions targeting the brain and resultant behaviors are compelling. Pain neuroscience education (PNE), a cognitive intervention used to reconceptualize a person's pain experiences, has been shown to reduce the effects of pain catastrophizing and kinesiophobia. However, cognitive deficits associated with chronic pain may impact the efficacy of such interventions. Non-invasive brain stimulation (NIBS), such as transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) has been shown to be effective in the treatment of anxiety, depression, and pain. In addition, as with the treatment of most physical and psychological diagnoses, an active multimodal approach is considered to be optimal. Therefore, combining the neuromodulatory effects of NIBS with a cognitive intervention such as PNE could be promising. This review highlights the cognitive-affective deficits associated with CLBP while focusing on current evidence for cognition-based therapies and NIBS.
Collapse
Affiliation(s)
- Cory A. Alcon
- Department of Physical Therapy, High Point University, High Point, NC, United States
- School of Physical Therapy, Texas Woman’s University, Dallas, TX, United States
- Correspondence: Cory A. Alcon
| | - Sharon Wang-Price
- School of Physical Therapy, Texas Woman’s University, Dallas, TX, United States
| |
Collapse
|
46
|
Adhia DB, Mani R, Reynolds JN, Hall M, Vanneste S, De Ridder D. High-Definition Transcranial Infraslow Pink-Noise Stimulation Can Influence Functional and Effective Cortical Connectivity in Individuals With Chronic Low Back Pain: A Pilot Randomized Placebo-Controlled Study. Neuromodulation 2022:S1094-7159(22)01225-9. [DOI: 10.1016/j.neurom.2022.08.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
|
47
|
Lin WY, Hsieh JC, Lu CC, Ono Y. Altered metabolic connectivity between the amygdala and default mode network is related to pain perception in patients with cancer. Sci Rep 2022; 12:14105. [PMID: 35982228 PMCID: PMC9388574 DOI: 10.1038/s41598-022-18430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated the neural correlates for chronic cancer pain conditions by retrospectively analyzing whole brain regions on 18F-fluoro-2-deoxyglucose-positron emission tomography images acquired from 80 patients with head and neck squamous cell carcinoma and esophageal cancer. The patients were divided into three groups according to perceived pain severity and type of analgesic treatment, namely patients not under analgesic treatment because of no or minor pain, patients with good pain control under analgesic treatment, and patients with poor pain control despite analgesic treatment. Uncontrollable cancer pain enhanced the activity of the hippocampus, amygdala, inferior temporal gyrus, and temporal pole. Metabolic connectivity analysis further showed that amygdala co-activation with the hippocampus was reduced in the group with poor pain control and preserved in the groups with no or minor pain and good pain control. The increased although imbalanced activity of the medial temporal regions may represent poor pain control in patients with cancer. The number of patients who used anxiolytics was higher in the group with poor pain control, whereas the usage rates were comparable between the other two groups. Therefore, further studies should investigate the relationship between psychological conditions and pain in patients with cancer and analyze the resultant brain activity.Trial registration: This study was registered at clinicaltrials.gov on 9/3/20 (NCT04537845).
Collapse
Affiliation(s)
- Wen-Ying Lin
- grid.19188.390000 0004 0546 0241Department of Anesthesiology, National Taiwan University Cancer Center, Taipei, Taiwan ,grid.412094.a0000 0004 0572 7815Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Chu Lu
- grid.412094.a0000 0004 0572 7815Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yumie Ono
- grid.411764.10000 0001 2106 7990School of Science and Technology, Meiji University, Kawasaki, Japan
| |
Collapse
|
48
|
Bogdanova OV, Bogdanov VB, Pizano A, Bouvard M, Cazalets JR, Mellen N, Amestoy A. The Current View on the Paradox of Pain in Autism Spectrum Disorders. Front Psychiatry 2022; 13:910824. [PMID: 35935443 PMCID: PMC9352888 DOI: 10.3389/fpsyt.2022.910824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which affects 1 in 44 children and may cause severe disabilities. Besides socio-communicational difficulties and repetitive behaviors, ASD also presents as atypical sensorimotor function and pain reactivity. While chronic pain is a frequent co-morbidity in autism, pain management in this population is often insufficient because of difficulties in pain evaluation, worsening their prognosis and perhaps driving higher mortality rates. Previous observations have tended to oversimplify the experience of pain in autism as being insensitive to painful stimuli. Various findings in the past 15 years have challenged and complicated this dogma. However, a relatively small number of studies investigates the physiological correlates of pain reactivity in ASD. We explore the possibility that atypical pain perception in people with ASD is mediated by alterations in pain perception, transmission, expression and modulation, and through interactions between these processes. These complex interactions may account for the great variability and sometimes contradictory findings from the studies. A growing body of evidence is challenging the idea of alterations in pain processing in ASD due to a single factor, and calls for an integrative view. We propose a model of the pain cycle that includes the interplay between the molecular and neurophysiological pathways of pain processing and it conscious appraisal that may interfere with pain reactivity and coping in autism. The role of social factors in pain-induced response is also discussed. Pain assessment in clinical care is mostly based on subjective rather than objective measures. This review clarifies the strong need for a consistent methodology, and describes innovative tools to cope with the heterogeneity of pain expression in ASD, enabling individualized assessment. Multiple measures, including self-reporting, informant reporting, clinician-assessed, and purely physiological metrics may provide more consistent results. An integrative view on the regulation of the pain cycle offers a more robust framework to characterize the experience of pain in autism.
Collapse
Affiliation(s)
- Olena V. Bogdanova
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Volodymyr B. Bogdanov
- Laboratoire EA 4136 – Handicap Activité Cognition Santé HACS, Collège Science de la Sante, Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, Bordeaux, France
| | - Adrien Pizano
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| | - Manuel Bouvard
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| | - Jean-Rene Cazalets
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Nicholas Mellen
- Department of Neurology, University of Louisville, Louisville, KY, United States
| | - Anouck Amestoy
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| |
Collapse
|
49
|
De Ridder D, Vanneste S, Song JJ, Adhia D. Tinnitus and the triple network model: a perspective. Clin Exp Otorhinolaryngol 2022; 15:205-212. [PMID: 35835548 PMCID: PMC9441510 DOI: 10.21053/ceo.2022.00815] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tinnitus is defined as the conscious awareness of a sound without an identifiable external sound source, and tinnitus disorder as tinnitus with associated suffering. Chronic tinnitus has been anatomically and phenomenologically separated into three pathways: a lateral “sound” pathway, a medial “suffering” pathway, and a descending noise-canceling pathway. Here, the triple network model is proposed as a unifying framework common to neuropsychiatric disorders. It proposes that abnormal interactions among three cardinal networks—the self-representational default mode network, the behavioral relevance-encoding salience network and the goal-oriented central executive network—underlie brain disorders. Tinnitus commonly leads to negative cognitive, emotional, and autonomic responses, phenomenologically expressed as tinnitus-related suffering, processed by the medial pathway. This anatomically overlaps with the salience network, encoding the behavioral relevance of the sound stimulus. Chronic tinnitus can also become associated with the self-representing default mode network and becomes an intrinsic part of the self-percept. This is likely an energy-saving evolutionary adaptation, by detaching tinnitus from sympathetic energy-consuming activity. Eventually, this can lead to functional disability by interfering with the central executive network. In conclusion, these three pathways can be extended to a triple network model explaining all tinnitus-associated comorbidities. This model paves the way for the development of individualized treatment modalities.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand (Aotearoa)
| | - Sven Vanneste
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jae-Jin Song
- Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand (Aotearoa)
| |
Collapse
|
50
|
Abstract
Deep, dreamless sleep is considered the only “normal” state under which consciousness is lost. The main reason for the voluntary, external induction of an unconscious state, via general anesthesia, is to silence the brain circuitry of nociception. In this article, I describe the perception of pain as a neural and behavioral correlate of consciousness. I briefly mention the brain areas and parameters that are connected to the presence of consciousness, mainly by virtue of their absence under deep anesthesia, and parallel those to brain areas responsible for the perception of pain. Activity in certain parts of the cortex and thalamus, and the interaction between them, will be the main focus of discussion as they represent a common ground that connects our general conscious state and our ability to sense the environment around us, including the painful stimuli. A plethora of correlative and causal evidence has been described thus far to explain the brain’s involvement in consciousness and nociception. Despite the great advancement in our current knowledge, the manifestation and true nature of the perception of pain, or any conscious experience, are far from being fully understood.
Collapse
|