1
|
Addante RJ, Clise E, Waechter R, Bengson J, Drane DL, Perez-Caban J. A third kind of episodic memory: Context familiarity is distinct from item familiarity and recollection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603640. [PMID: 39071285 PMCID: PMC11275934 DOI: 10.1101/2024.07.15.603640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Episodic memory is accounted for with two processes: 'familiarity' when generally recognizing an item and 'recollection' when retrieving the full contextual details bound with the item. Paradoxically, people sometimes report contextual information as familiar but without recollecting details, which is not easily accounted for by existing theories. We tested a combination of item recognition confidence and source memory, focusing upon 'item-only hits with source unknown' ('item familiarity'), 'low-confidence hits with correct source memory' ('context familiarity'), and 'high-confidence hits with correct source memory' ('recollection'). Results across multiple within-subjects (trial-wise) and between subjects (individual variability) levels indicated these were behaviorally and physiologically distinct. Behaviorally, a crossover interaction was evident in response times, with context familiarity being slower than each condition during item recognition, but faster during source memory. Electrophysiologically, a Condition x Time x Location triple dissociation was evident in event-related potentials (ERPs), which was then independently replicated. Context familiarity exhibited an independent negative central effect from 800-1200 ms, differentiated from positive ERPs for item-familiarity (400 to 600 ms) and recollection (600 to 900 ms). These three conditions thus reflect mutually exclusive, fundamentally different processes of episodic memory. Context familiarity is a third distinct process of episodic memory. Summary Memory for past events is widely believed to operate through two different processes: one called 'recollection' when retrieving confident, specific details of a memory, and another called 'familiarity' when only having an unsure but conscious awareness that an item was experienced before. When people successfully retrieve details such as the source or context of a prior event, it has been assumed to reflect recollection. We demonstrate that familiarity of context is functionally distinct from familiarity of items and recollection and offer a new, tri-component model of memory. The three memory responses were differentiated across multiple behavioral and brain wave measures. What has traditionally been thought to be two kinds of memory processes are actually three, becoming evident when using sensitive enough multi-measures. Results are independently replicated across studies from different labs. These data reveal that context familiarity is a third process of human episodic memory.
Collapse
|
2
|
Deodato M, Melcher D. Aperiodic EEG Predicts Variability of Visual Temporal Processing. J Neurosci 2024; 44:e2308232024. [PMID: 39168653 PMCID: PMC11450528 DOI: 10.1523/jneurosci.2308-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024] Open
Abstract
The human brain exhibits both oscillatory and aperiodic, or 1/f, activity. Although a large body of research has focused on the relationship between brain rhythms and sensory processes, aperiodic activity has often been overlooked as functionally irrelevant. Prompted by recent findings linking aperiodic activity to the balance between neural excitation and inhibition, we investigated its effects on the temporal resolution of perception. We recorded electroencephalography (EEG) from participants (both sexes) during the resting state and a task in which they detected the presence of two flashes separated by variable interstimulus intervals. Two-flash discrimination accuracy typically follows a sigmoid function whose steepness reflects perceptual variability or inconsistent integration/segregation of the stimuli. We found that individual differences in the steepness of the psychometric function correlated with EEG aperiodic exponents over posterior scalp sites. In other words, participants with flatter EEG spectra (i.e., greater neural excitation) exhibited increased sensory noise, resulting in shallower psychometric curves. Our finding suggests that aperiodic EEG is linked to sensory integration processes usually attributed to the rhythmic inhibition of neural oscillations. Overall, this correspondence between aperiodic neural excitation and behavioral measures of sensory noise provides a more comprehensive explanation of the relationship between brain activity and sensory integration and represents an important extension to theories of how the brain samples sensory input over time.
Collapse
Affiliation(s)
- Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Krasich K, Woldorff MG, De Brigard F, Sinnott-Armstrong W, Mudrik L. Prestimulus alpha phase, not only power, modulates conscious perception. Comment on "Beyond task response-Pre-stimulus activity modulates contents of consciousness" by G. Northoff, F. Zilio & J. Zhang. Phys Life Rev 2024; 50:123-125. [PMID: 39068900 DOI: 10.1016/j.plrev.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Kristina Krasich
- Department of Psychology, Elon University, Elon, NC, United States
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychiatry, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Neurobiology, Duke University, Durham, NC, United States
| | - Felipe De Brigard
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Philosophy, Duke University, Durham, NC, United States
| | - Walter Sinnott-Armstrong
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Philosophy, Duke University, Durham, NC, United States
| | - Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Canadian Institute for Advanced Research, (CIFAR), Brain, Mind, and Consciousness, Program, Toronto, ON, Canada.
| |
Collapse
|
4
|
Sabaghypour S, Navi FFT, Basiri N, Shakibaei F, Zirak N. Differential roles of brain oscillations in numerical processing: evidence from resting-state EEG and mental number line. Front Hum Neurosci 2024; 18:1357900. [PMID: 38974482 PMCID: PMC11224460 DOI: 10.3389/fnhum.2024.1357900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Recent works point to the importance of emotions in special-numerical associations. There remains a notable gap in understanding the electrophysiological underpinnings of such associations. Exploring resting-state (rs) EEG, particularly in frontal regions, could elucidate emotional aspects, while other EEG measures might offer insights into the cognitive dimensions correlating with behavioral performance. The present work investigated the relationship between rs-EEG measures (emotional and cognitive traits) and performance in the mental number line (MNL). EEG activity in theta (3-7 Hz), alpha (8-12 Hz, further subdivided into low-alpha and high-alpha), sensorimotor rhythm (SMR, 13-15 Hz), beta (16-25 Hz), and high-beta/gamma (28-40 Hz) bands was assessed. 76 university students participated in the study, undergoing EEG recordings at rest before engaging in a computerized number-to-position (CNP) task. Analysis revealed significant associations between frontal asymmetry, specific EEG frequencies, and MNL performance metrics (i.e., mean direction bias, mean absolute error, and mean reaction time). Notably, theta and beta asymmetries correlated with direction bias, while alpha peak frequency (APF) and beta activity related to absolute errors in numerical estimation. Moreover, the study identified significant correlations between relative amplitude indices (i.e., theta/beta ratio, theta/SMR ratio) and both absolute errors and reaction times (RTs). Our findings offer novel insights into the emotional and cognitive aspects of EEG patterns and their links to MNL performance.
Collapse
Affiliation(s)
- Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | | - Fereshteh Shakibaei
- Behavioral Science Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negin Zirak
- Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Sano M, Nishiura Y, Morikawa I, Hoshino A, Uemura JI, Iwatsuki K, Hirata H, Hoshiyama M. Analysis of the alpha activity envelope in electroencephalography in relation to the ratio of excitatory to inhibitory neural activity. PLoS One 2024; 19:e0305082. [PMID: 38870189 PMCID: PMC11175473 DOI: 10.1371/journal.pone.0305082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Alpha waves, one of the major components of resting and awake cortical activity in human electroencephalography (EEG), are known to show waxing and waning, but this phenomenon has rarely been analyzed. In the present study, we analyzed this phenomenon from the viewpoint of excitation and inhibition. The alpha wave envelope was subjected to secondary differentiation. This gave the positive (acceleration positive, Ap) and negative (acceleration negative, An) values of acceleration and their ratio (Ap-An ratio) at each sampling point of the envelope signals for 60 seconds. This analysis was performed on 36 participants with Alzheimer's disease (AD), 23 with frontotemporal dementia (FTD) and 29 age-matched healthy participants (NC) whose data were provided as open datasets. The mean values of the Ap-An ratio for 60 seconds at each EEG electrode were compared between the NC and AD/FTD groups. The AD (1.41 ±0.01 (SD)) and FTD (1.40 ±0.02) groups showed a larger Ap-An ratio than the NC group (1.38 ±0.02, p<0.05). A significant correlation between the envelope amplitude of alpha activity and the Ap-An ratio was observed at most electrodes in the NC group (Pearson's correlation coefficient, r = -0.92 ±0.15, mean for all electrodes), whereas the correlation was disrupted in AD (-0.09 ±0.21, p<0.05) and disrupted in the frontal region in the FTD group. The present method analyzed the envelope of alpha waves from a new perspective, that of excitation and inhibition, and it could detect properties of the EEG, Ap-An ratio, that have not been revealed by existing methods. The present study proposed a new method to analyze the alpha activity envelope in electroencephalography, which could be related to excitatory and inhibitory neural activity.
Collapse
Affiliation(s)
- Misako Sano
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Yuko Nishiura
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Izumi Morikawa
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
- Music Division, Nagoya University of the Arts, Kitanagoya, Japan
| | - Aiko Hoshino
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Jun-ichi Uemura
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Minoru Hoshiyama
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Morrone JM, Pedlar CR. Selective cortical adaptations associated with neural efficiency in visuospatial tasks - the comparison of electroencephalographic profiles of expert and novice artists. Neuropsychologia 2024; 198:108854. [PMID: 38493826 DOI: 10.1016/j.neuropsychologia.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Visuospatial cognition encapsulates an individual's ability to efficiently navigate and make sense of the multimodal cues from their surroundings, and therefore has been linked to expert performance across multiple domains, including sports, performing arts, and highly skilled tasks, such as drawing (Morrone and Minini, 2023). As neural efficiency posits a task-specific functional reorganization facilitated by long-term training, the present study employs a visuospatial construction task as a means of investigating the neurophysiological adaptations associated with expert visuospatial cognitive performance. Electroencephalogram (EEG) data acquisitions were used to evaluate the event-related changes (ER%) and statistical topographic maps of nine expert versus nine novice artists. The expert artists displayed overall higher global ER% compared to the novices within task-active intervals. Significant increases in relative ER% were found in the theta (t (10) = 3.528, p = 0.003, CI = [27.3,120.9]), lower-alpha (t (10) = 3.751, p = 0.002, CI = [28.2,110.5]), upper-alpha (t (10) = 3.829, p = 0.002, CI = [50.2,189.8]), and low beta (t (10) = 4.342, p < 0.001, CI = [37.0,114.9]) frequency bands, when comparing the experts to the novice participants. These results were particularly found in the frontal (t (14) = 2.014, p = 0.032, CI = [7.7,245.4]) and occipital (t (14) = 2.647, p = 0.010, CI = [45.0,429.7]) regions. Further, a significant decrease in alpha ER% from lower to upper activity (t (8) = 4.475, p = 0.001, CI = [21.0, 65.8]) was found across cortical regions in the novice group. Notably, greater deviation between lower and upper-alpha activity was found across scalp locations in the novice group, compared to the experts. Overall, the findings demonstrate potential local and global EEG-based indices of selective cortical adaptations within a task requiring a high degree of visuospatial cognition, although further work is needed to replicate these findings across other domains.
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
7
|
Peylo C, Romberg-Taylor C, Behnke L, Sauseng P. Dynamic alpha power modulations and slow negative potentials track natural shifts of spatio-temporal attention. Psychophysiology 2024; 61:e14498. [PMID: 38071405 DOI: 10.1111/psyp.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 04/17/2024]
Abstract
Alpha power modulations and slow negative potentials have previously been associated with anticipatory processes in spatial and temporal top-down attention. In typical experimental designs, however, neural responses triggered by transient stimulus onsets can interfere with attention-driven activity patterns and our interpretation of such. Here, we investigated these signatures of spatio-temporal attention in a dynamic paradigm free from potentially confounding stimulus-driven activity using electroencephalography. Participants attended the cued side of a bilateral stimulus rotation and mentally counted how often one of two remembered sample orientations (i.e., the target) was displayed while ignoring the uncued side and non-target orientation. Afterwards, participants performed a delayed match-to-sample task, in which they indicated if the orientation of a probe stimulus matched the corresponding sample orientation (previously target or non-target). We observed dynamic alpha power reductions and slow negative waves around task-relevant points in space and time (i.e., onset of the target orientation in the cued hemifield) over posterior electrodes contralateral to the locus of attention. In contrast to static alpha power lateralization, these dynamic signatures correlated with subsequent memory performance (primarily detriments for matching probes of the non-target orientation), suggesting a preferential allocation of attention to task-relevant locations and time points at the expense of reduced resources and impaired performance for information outside the current focus of attention. Our findings suggest that humans can naturally and dynamically focus their attention at relevant points in space and time and that such spatio-temporal attention shifts can be reflected by dynamic alpha power modulations and slow negative potentials.
Collapse
Affiliation(s)
- Charline Peylo
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Larissa Behnke
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Melcón M, Stern E, Kessel D, Arana L, Poch C, Campo P, Capilla A. Perception of near-threshold visual stimuli is influenced by prestimulus alpha-band amplitude but not by alpha phase. Psychophysiology 2024; 61:e14525. [PMID: 38234038 DOI: 10.1111/psyp.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Ongoing brain activity preceding visual stimulation has been suggested to shape conscious perception. According to the pulsed inhibition framework, bouts of functional inhibition arise in each alpha cycle (every ~100 ms), allowing information to be processed in a pulsatile manner. Consequently, it has been hypothesized that perceptual outcome can be influenced by the specific phase of alpha oscillations prior to the stimulus onset, although empirical findings are controversial. In this study, we aimed to shed light on the role of prestimulus alpha oscillations in visual perception. To this end, we recorded electroencephalographic activity, while participants performed three near-threshold visual detection tasks with different attentional involvement: a no-cue task, a noninformative cue task (50% validity), and an informative cue task (100% validity). Cluster-based permutation statistics were complemented with Bayesian analyses to test the effect of prestimulus oscillatory amplitude and phase on visual awareness. We additionally examined whether these effects differed in trials with low and high oscillatory amplitude, as expected from the pulsed inhibition theory. Our results show a clear effect of prestimulus alpha amplitude on conscious perception, but only when alpha fluctuated spontaneously. In contrast, we did not find any evidence that prestimulus alpha phase influenced perceptual outcome, not even when differentiating between low- and high-amplitude trials. Furthermore, Bayesian analysis provided moderate evidence in favor of the absence of phase effects. Taken together, our results challenge the central theoretical predictions of the pulsed inhibition framework, at least for the particular experimental conditions used here.
Collapse
Grants
- PGC2018-100682-B-I00 Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación, Spain / FEDER, UE (MCIU/AEI/FEDER, UE)
- PID2019-111335GA-I00 Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación, Spain / FEDER, UE (MCIU/AEI/FEDER, UE)
- PID2021-125841NB-I00 Ministerio de Ciencia e Innovación / Agencia Estatal de Investigación, Spain / FEDER, UE (MCIN/AEI/ 10.13039/501100011033 /FEDER, UE)
- Comunidad de Madrid
Collapse
Affiliation(s)
- María Melcón
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK
| | - Enrique Stern
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Dominique Kessel
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lydia Arana
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Claudia Poch
- Departamento de Educación, Universidad de Nebrija, Madrid, Spain
| | - Pablo Campo
- Departamento de Psicología Básica, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Almudena Capilla
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Jensen O. Distractor inhibition by alpha oscillations is controlled by an indirect mechanism governed by goal-relevant information. COMMUNICATIONS PSYCHOLOGY 2024; 2:36. [PMID: 38665356 PMCID: PMC11041682 DOI: 10.1038/s44271-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in cognition is intensively investigated. While intracranial animal recordings demonstrate that alpha oscillations are associated with decreased neuronal excitability, it is been questioned whether alpha oscillations are under direct control from frontoparietal areas to suppress visual distractors. We here point to a revised mechanism in which alpha oscillations are controlled by an indirect mechanism governed by the load of goal-relevant information - a view compatible with perceptual load theory. We will outline how this framework can be further tested and discuss the consequences for network dynamics and resource allocation in the working brain.
Collapse
Affiliation(s)
- Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B152TT UK
| |
Collapse
|
10
|
Kawashima T, Nakayama R, Amano K. Theoretical and Technical Issues Concerning the Measurement of Alpha Frequency and the Application of Signal Detection Theory: Comment on Buergers and Noppeney (2022). J Cogn Neurosci 2024; 36:691-699. [PMID: 37255466 DOI: 10.1162/jocn_a_02010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Classical and recent evidence has suggested that alpha oscillations play a critical role in temporally discriminating or binding successively presented items. Challenging this view, Buergers and Noppeney [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022] found that by combining EEG, psychophysics, and signal detection theory, neither prestimulus nor resting-state alpha frequency influences perceptual sensitivity and bias in the temporal binding task. We propose the following four points that should be considered when interpreting the role of alpha oscillations, and especially their frequency, on perceptual temporal binding: (1) Multiple alpha components can be contaminated in conventional EEG analysis; (2) the effect of alpha frequency on perception will interact with alpha power; (3) prestimulus and resting-state alpha frequency can be different from poststimulus alpha frequency, which is the frequency during temporal binding and should be more directly related to temporal binding; and (4) when applying signal detection theory under the assumption of equal variance, the assumption is often incomplete and can be problematic (e.g., the magnitude relationships between individuals in parametric sensitivity may change when converted into nonparametric sensitivity). Future directions, including solutions to each of the issues, are discussed.
Collapse
|
11
|
Trajkovic J, Di Gregorio F, Thut G, Romei V. Transcranial magnetic stimulation effects support an oscillatory model of ERP genesis. Curr Biol 2024; 34:1048-1058.e4. [PMID: 38377998 DOI: 10.1016/j.cub.2024.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Whether prestimulus oscillatory brain activity contributes to the generation of post-stimulus-evoked neural responses has long been debated, but findings remain inconclusive. We first investigated the hypothesized relationship via EEG recordings during a perceptual task with this correlational evidence causally probed subsequently by means of online rhythmic transcranial magnetic stimulation. Both approaches revealed a close link between prestimulus individual alpha frequency (IAF) and P1 latency, with faster IAF being related to shorter latencies, best explained via phase-reset mechanisms. Moreover, prestimulus alpha amplitude predicted P3 size, best explained via additive (correlational and causal evidence) and baseline shift mechanisms (correlational evidence), each with distinct prestimulus alpha contributors. Finally, in terms of performance, faster prestimulus IAF and shorter P1 latencies were both associated with higher task accuracy, while lower prestimulus alpha amplitudes and higher P3 amplitudes were associated with higher confidence ratings. Our results are in favor of the oscillatory model of ERP genesis and modulation, shedding new light on the mechanistic relationship between prestimulus oscillations and functionally relevant evoked components.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Francesco Di Gregorio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, MVLS, University of Glasgow, Glasgow G128QB, UK
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid 28015, Spain.
| |
Collapse
|
12
|
Cobos MI, Melcón M, Rodríguez-San Esteban P, Capilla A, Chica AB. The role of brain oscillations in feature integration. Psychophysiology 2024; 61:e14467. [PMID: 37990794 DOI: 10.1111/psyp.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023]
Abstract
Our sensory system is able to build a unified perception of the world, which although rich, is limited and inaccurate. Sometimes, features from different objects are erroneously combined. At the neural level, the role of the parietal cortex in feature integration is well-known. However, the brain dynamics underlying correct and incorrect feature integration are less clear. To explore the temporal dynamics of feature integration, we studied the modulation of different frequency bands in trials in which feature integration was correct or incorrect. Participants responded to the color of a shape target, surrounded by distractors. A calibration procedure ensured that accuracy was around 70% in each participant. To explore the role of expectancy in feature integration, we introduced an unexpected feature to the target in the last blocks of trials. Results demonstrated the contribution of several frequency bands to feature integration. Alpha and beta power was reduced for hits compared to illusions. Moreover, gamma power was overall larger during the experiment for participants who were aware of the unexpected target presented during the last blocks of trials (as compared to unaware participants). These results demonstrate that feature integration is a complex process that can go wrong at different stages of information processing and is influenced by top-down expectancies.
Collapse
Affiliation(s)
- M I Cobos
- Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada (UGR), Granada, Spain
- Department of Experimental Psychology, University of Granada (UGR), Granada, Spain
| | - M Melcón
- Department of Biological and Health Psychology, Autonomous University of Madrid (UAM), Madrid, Spain
| | - P Rodríguez-San Esteban
- Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada (UGR), Granada, Spain
- Department of Experimental Psychology, University of Granada (UGR), Granada, Spain
| | - A Capilla
- Department of Biological and Health Psychology, Autonomous University of Madrid (UAM), Madrid, Spain
| | - A B Chica
- Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada (UGR), Granada, Spain
- Department of Experimental Psychology, University of Granada (UGR), Granada, Spain
| |
Collapse
|
13
|
Lombardi F, Herrmann HJ, Parrino L, Plenz D, Scarpetta S, Vaudano AE, de Arcangelis L, Shriki O. Beyond pulsed inhibition: Alpha oscillations modulate attenuation and amplification of neural activity in the awake resting state. Cell Rep 2023; 42:113162. [PMID: 37777965 PMCID: PMC10842118 DOI: 10.1016/j.celrep.2023.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Alpha oscillations are a distinctive feature of the awake resting state of the human brain. However, their functional role in resting-state neuronal dynamics remains poorly understood. Here we show that, during resting wakefulness, alpha oscillations drive an alternation of attenuation and amplification bouts in neural activity. Our analysis indicates that inhibition is activated in pulses that last for a single alpha cycle and gradually suppress neural activity, while excitation is successively enhanced over a few alpha cycles to amplify neural activity. Furthermore, we show that long-term alpha amplitude fluctuations-the "waxing and waning" phenomenon-are an attenuation-amplification mechanism described by a power-law decay of the activity rate in the "waning" phase. Importantly, we do not observe such dynamics during non-rapid eye movement (NREM) sleep with marginal alpha oscillations. The results suggest that alpha oscillations modulate neural activity not only through pulses of inhibition (pulsed inhibition hypothesis) but also by timely enhancement of excitation (or disinhibition).
Collapse
Affiliation(s)
- Fabrizio Lombardi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy.
| | - Hans J Herrmann
- Departamento de Fisica, Universitade Federal do Ceara, Fortaleza 60451-970, Ceara, Brazil; PMMH, ESPCI, 7 quai St. Bernard, 75005 Paris, France
| | - Liborio Parrino
- Sleep Disorders Center, Department of Neurosciences, University of Parma, 43121 Parma, Italy
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, NIH, Bethesda, MD 20892, USA
| | - Silvia Scarpetta
- Department of Physics, University of Salerno, 84084 Fisciano, Italy; INFN sez, Napoli Gr. Coll, 84084 Fisciano, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, 41125 Modena, Italy; Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lucilla de Arcangelis
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, 81100 Caserta, Italy.
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-sheva, Israel.
| |
Collapse
|
14
|
Iivanainen J, Carter TR, Trumbo MCS, McKay J, Taulu S, Wang J, Stephen JM, Schwindt PDD, Borna A. Single-trial classification of evoked responses to auditory tones using OPM- and SQUID-MEG. J Neural Eng 2023; 20:056032. [PMID: 37748476 DOI: 10.1088/1741-2552/acfcd9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Objective.Optically pumped magnetometers (OPMs) are emerging as a near-room-temperature alternative to superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG). In contrast to SQUIDs, OPMs can be placed in a close proximity to subject's scalp potentially increasing the signal-to-noise ratio and spatial resolution of MEG. However, experimental demonstrations of these suggested benefits are still scarce. Here, to compare a 24-channel OPM-MEG system to a commercial whole-head SQUID system in a data-driven way, we quantified their performance in classifying single-trial evoked responses.Approach.We measured evoked responses to three auditory tones in six participants using both OPM- and SQUID-MEG systems. We performed pairwise temporal classification of the single-trial responses with linear discriminant analysis as well as multiclass classification with both EEGNet convolutional neural network and xDAWN decoding.Main results.OPMs provided higher classification accuracies than SQUIDs having a similar coverage of the left hemisphere of the participant. However, the SQUID sensors covering the whole helmet had classification scores larger than those of OPMs for two of the tone pairs, demonstrating the benefits of a whole-head measurement.Significance.The results demonstrate that the current OPM-MEG system provides high-quality data about the brain with room for improvement for high bandwidth non-invasive brain-computer interfacing.
Collapse
Affiliation(s)
- Joonas Iivanainen
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Tony R Carter
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Michael C S Trumbo
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Jim McKay
- Candoo Systems Inc, Port Coquitlam, BC, Canada
| | - Samu Taulu
- University of Washington, Seattle, WA, United States of America
| | - Jun Wang
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, United States of America
- Department of Neurology, The University of Texas at Austin, Austin, TX, United States of America
| | - Julia M Stephen
- The Mind Research Network a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, United States of America
| | - Peter D D Schwindt
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Amir Borna
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| |
Collapse
|
15
|
Vigué-Guix I, Soto-Faraco S. Using occipital ⍺-bursts to modulate behavior in real-time. Cereb Cortex 2023; 33:9465-9477. [PMID: 37365814 DOI: 10.1093/cercor/bhad217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Pre-stimulus endogenous neural activity can influence the processing of upcoming sensory input and subsequent behavioral reactions. Despite it is known that spontaneous oscillatory activity mostly appears in stochastic bursts, typical approaches based on trial averaging fail to capture this. We aimed at relating spontaneous oscillatory bursts in the alpha band (8-13 Hz) to visual detection behavior, via an electroencephalography-based brain-computer interface (BCI) that allowed for burst-triggered stimulus presentation in real-time. According to alpha theories, we hypothesized that visual targets presented during alpha-bursts should lead to slower responses and higher miss rates, whereas targets presented in the absence of bursts (low alpha activity) should lead to faster responses and higher false alarm rates. Our findings support the role of bursts of alpha oscillations in visual perception and exemplify how real-time BCI systems can be used as a test bench for brain-behavioral theories.
Collapse
Affiliation(s)
- Irene Vigué-Guix
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
16
|
Houshmand Chatroudi A, Yotsumoto Y. No evidence for the effect of entrainment's phase on duration reproduction and precision of regular intervals. Eur J Neurosci 2023; 58:3037-3057. [PMID: 37369629 DOI: 10.1111/ejn.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Perception of time is not always veridical; rather, it is subjected to distortions. One such compelling distortion is that the duration of regularly spaced intervals is often overestimated. One account suggests that excitatory phases of neural entrainment concomitant with such stimuli play a major role. However, assessing the correlation between the power of entrained oscillations and time dilation has yielded inconclusive results. In this study, we evaluated whether phase characteristics of neural oscillations impact time dilation. For this purpose, we entrained 10-Hz oscillations and experimentally manipulated the presentation of flickers so that they were presented either in-phase or out-of-phase relative to the established rhythm. Simultaneous electroencephalography (EEG) recordings confirmed that in-phase and out-of-phase flickers had landed on different inhibitory phases of high-amplitude alpha oscillations. Moreover, to control for confounding factors of expectancy and masking, we created two additional conditions. Results, supplemented by the Bayesian analysis, indicated that the phase of entrained visual alpha oscillation does not differentially affect flicker-induced time dilation. Repeating the same experiment with regularly spaced auditory stimuli replicated the null findings. Moreover, we found a robust enhancement of precision for the reproduction of flickers relative to static stimuli that were partially supported by entrainment models. We discussed our results within the framework of neural oscillations and time-perception models, suggesting that inhibitory cycles of visual alpha may have little relevance to the overestimation of regularly spaced intervals. Moreover, based on our findings, we proposed that temporal oscillators, assumed in entrainment models, may act independently of excitatory phases in the brain's lower level sensory areas.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Tseng CH, Chen JH, Hsu SM. The Effect of the Peristimulus α Phase on Visual Perception through Real-Time Phase-Locked Stimulus Presentation. eNeuro 2023; 10:ENEURO.0128-23.2023. [PMID: 37507226 PMCID: PMC10436686 DOI: 10.1523/eneuro.0128-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
The α phase has been theorized to reflect fluctuations in cortical excitability and thereby impose a cyclic influence on visual perception. Despite its appeal, this notion is not fully substantiated, as both supporting and opposing evidence has been recently reported. In contrast to previous research, this study examined the effect of the peristimulus instead of prestimulus phase on visual detection through a real-time phase-locked stimulus presentation (PLSP) approach. Specifically, we monitored phase data from magnetoencephalography (MEG) recordings over time, with a newly developed algorithm based on adaptive Kalman filtering (AKF). This information guided online presentations of masked stimuli that were phased-locked to different stages of the α cycle while healthy humans concurrently performed detection tasks. Behavioral evidence showed that the overall detection rate did not significantly vary according to the four predetermined peristimulus α phases. Nevertheless, the follow-up analyses highlighted that the phase at 90° relative to 180° likely enhanced detection. Corroborating neural parietal activity showed that early interaction between α phases and incoming stimuli orchestrated the neural representation of the hits and misses of the stimuli. This neural representation varied according to the phase and in turn shaped the behavioral outcomes. In addition to directly investigating to what extent fluctuations in perception can be ascribed to the α phases, this study suggests that phase-dependent perception is not as robust as previously presumed, and might also depend on how the stimuli are differentially processed as a result of a stimulus-phase interaction, in addition to reflecting alternations of the perceptual states between phases.
Collapse
Affiliation(s)
- Chih-Hsin Tseng
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan (Republic of China)
| | - Jyh-Horng Chen
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan (Republic of China)
| | - Shen-Mou Hsu
- Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, Taipei 10617, Taiwan (Republic of China)
- MOST AI Biomedical Research Center, Tainan City 701, Taiwan (Republic of China)
| |
Collapse
|
18
|
Vinodh Kumar G, Lacey S, Sathian K. Physical activity is associated with behavioral and neural changes across the lifespan. Neurosci Lett 2023:137355. [PMID: 37391064 DOI: 10.1016/j.neulet.2023.137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Physical activity is known to positively impact brain structure and function, but its effects on resting-state functional connectivity (rsFC) and its relationship with complex tasks as a function of age remain unclear. Here, we address these issues in a large population-based sample (N=540) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) repository. We relate levels of physical activity to rsFC patterns in magnetoencephalographic (MEG) and functional magnetic resonance imaging (fMRI) data, and to measures of executive function and visuomotor adaptation, across the lifespan. We show that higher self-reported daily physical activity is associated with lower alpha-band (8-12Hz) global coherence, indicating weaker synchrony of neural oscillations in this band. Physical activity affected between-network connectivity of resting-state functional networks, although its effects on individual networks did not survive correction for multiple comparisons. Furthermore, our results indicate that greater engagement in day-to-day physical activity is associated with better visuomotor adaptation, across the lifespan. Overall, our findings indicate that rsFC metrics indexed by MEG and fMRI are sensitive indicators of the brain's response to physical activity, and that a physically active lifestyle affects multiple aspects of neural function across the lifespan.
Collapse
Affiliation(s)
- G Vinodh Kumar
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0859, USA
| | - Simon Lacey
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0859, USA; Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0859, USA
| | - K Sathian
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0859, USA; Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0859, USA; Department of Psychology, Penn State College of Liberal Arts, University Park, PA, USA.
| |
Collapse
|
19
|
Hardy SM, Jensen O, Wheeldon L, Mazaheri A, Segaert K. Modulation in alpha band activity reflects syntax composition: an MEG study of minimal syntactic binding. Cereb Cortex 2023; 33:497-511. [PMID: 35311899 PMCID: PMC9890467 DOI: 10.1093/cercor/bhac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography, we investigated the neural mechanisms involved in binding at the syntax level, in a task where contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and pseudo-verb wordlists that did not require binding ("cugged grushes"). Relative to no binding, we found that syntactic binding was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized language regions. First, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05 to 0.1 s), which we suggest reflects an expectation of binding to occur. Second, during binding of the target word (0.15-0.25 s), we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex, which we suggest reflects alpha-driven cortical disinhibition serving to strengthen communication within the syntax composition neural network. Altogether, our findings highlight the critical role of rapid spatial-temporal alpha band activity in controlling the allocation, transfer, and coordination of the brain's resources during syntax composition.
Collapse
Affiliation(s)
- Sophie M Hardy
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Psychology, University of Warwick, Coventry CV4 7AL, UK
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Linda Wheeldon
- Department of Foreign Languages and Translations, University of Agder, Kristiansand 4630, Norway
| | - Ali Mazaheri
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Pan Y, Popov T, Frisson S, Jensen O. Saccades are locked to the phase of alpha oscillations during natural reading. PLoS Biol 2023; 21:e3001968. [PMID: 36649331 PMCID: PMC9882905 DOI: 10.1371/journal.pbio.3001968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/27/2023] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
We saccade 3 to 5 times per second when reading. However, little is known about the neuronal mechanisms coordinating the oculomotor and visual systems during such rapid processing. Here, we ask if brain oscillations play a role in the temporal coordination of the visuomotor integration. We simultaneously acquired MEG and eye-tracking data while participants read sentences silently. Every sentence was embedded with a target word of either high or low lexical frequency. Our key finding demonstrated that saccade onsets were locked to the phase of alpha oscillations (8 to 13 Hz), and in particular, for saccades towards low frequency words. Source modelling demonstrated that the alpha oscillations to which the saccades were locked, were generated in the right-visual motor cortex (BA 7). Our findings suggest that the alpha oscillations serve to time the processing between the oculomotor and visual systems during natural reading, and that this coordination becomes more pronounced for demanding words.
Collapse
Affiliation(s)
- Yali Pan
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Tzvetan Popov
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Steven Frisson
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Prestimulus oscillatory brain activity interacts with evoked recurrent processing to facilitate conscious visual perception. Sci Rep 2022; 12:22126. [PMID: 36550141 PMCID: PMC9780344 DOI: 10.1038/s41598-022-25720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated whether prestimulus alpha-band oscillatory activity and stimulus-elicited recurrent processing interact to facilitate conscious visual perception. Participants tried to perceive a visual stimulus that was perceptually masked through object substitution masking (OSM). We showed that attenuated prestimulus alpha power was associated with greater negative-polarity stimulus-evoked ERP activity that resembled the visual awareness negativity (VAN), previously argued to reflect recurrent processing related to conscious perception. This effect, however, was not associated with better perception. Instead, when prestimulus alpha power was elevated, a preferred prestimulus alpha phase was associated with a greater VAN-like negativity, which was then associated with better cue perception. Cue perception was worse when prestimulus alpha power was elevated but the stimulus occurred at a nonoptimal prestimulus alpha phase and the VAN-like negativity was low. Our findings suggest that prestimulus alpha activity at a specific phase enables temporally selective recurrent processing that facilitates conscious perception in OSM.
Collapse
|
22
|
Kawashima T, Shibusawa S, Amano K. Frequency- and Phase-Dependent Effects of Auditory Entrainment on Attentional Blink. Eur J Neurosci 2022; 56:4411-4424. [PMID: 35796700 DOI: 10.1111/ejn.15760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Attentional blink (AB) is the impaired detection of a second target (T2) after a first target has been identified. In this paper, we investigated the functional roles of alpha and theta oscillations on AB by determining how much preceding rhythmic auditory stimulation affected the performance of AB. Healthy young adults participated in the experiment online. We found that when two targets were embedded in rapid serial visual presentation (RSVP) of distractors at 10 Hz (i.e., alpha frequency), the magnitude of AB increased with auditory stimuli. The increase was limited to the case when the frequency and phase of auditory stimuli matched the following RSVP stream. On the contrary, when only two targets were presented without a distractor, auditory stimuli at theta, not alpha, increased the AB magnitude. These results indicate that neural oscillations at two different frequencies, namely, alpha and theta, are involved in attentional blink.
Collapse
Affiliation(s)
- Tomoya Kawashima
- Graduate School of Human Sciences, Osaka University.,Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Shuka Shibusawa
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT) and Osaka University.,Japan Society for the Promotion of Science
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT) and Osaka University.,Graduate School of Information Science and Technology, The University of Tokyo
| |
Collapse
|
23
|
Pros and cons in tinnitus brain: Enhancement of global connectivity for alpha and delta waves. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110497. [PMID: 34922998 DOI: 10.1016/j.pnpbp.2021.110497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 12/17/2022]
Abstract
Interactions among cortical areas of tinnitus brain remained unclear. Weaker alpha and stronger delta activities in tinnitus have been noted over auditory cortices. However, the interplay between a single substrate with whole brain within alpha/delta band remained unknown. Thirty-one patients with chronic tinnitus were recruited. Thirty-four healthy volunteers served as controls. Magnetoencephalographic measurements of spontaneous activities were performed. The strength of alpha/delta activities was analyzed. By dividing cortices into 38 regions of interest (ROIs), measurements of connectivity were performed using amplitude envelope correlation (AEC). Global connectivity was calculated by adding and averaging connectivity of single ROI with every other region. There were no significant differences in mean power of alpha and delta band between groups, despite the trend of stronger alpha and weaker delta band in controls. The global connectivity of alpha wave was significantly stronger in tinnitus for left frontal pole, and of delta wave for bilateral pars orbitalis, bilateral superior temporal, bilateral middle temporal, right pars triangularis, right transverse temporal, right inferior temporal, and right supra-marginal. The global connectivity of alpha/delta waves was enhanced for tinnitus in designated ROIs of frontal/temporal/parietal lobes. The underlying mechanism(s) might be associated with augmentation/modulation of tinnitus perception. Our results corroborated the evolving consensus about neural correlates inside frontal/temporal/parietal lobes as essential elements of hubs for central processing of tinnitus. Further study to explore the resolution of effective connectivity between those ROIs and respective substrates by using AEC will be necessary for the evaluation of pathogenetic scenario for tinnitus.
Collapse
|
24
|
Tuning alpha rhythms to shape conscious visual perception. Curr Biol 2022; 32:988-998.e6. [PMID: 35090592 DOI: 10.1016/j.cub.2022.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/31/2023]
Abstract
It is commonly held that what we see and what we believe we see are overlapping phenomena. However, dissociations between sensory events and their subjective interpretation occur in the general population and in clinical disorders, raising the question as to whether perceptual accuracy and its subjective interpretation represent mechanistically dissociable events. Here, we uncover the role that alpha oscillations play in shaping these two indices of human conscious experience. We used electroencephalography (EEG) to measure occipital alpha oscillations during a visual detection task, which were then entrained using rhythmic-TMS. We found that controlling prestimulus alpha frequency by rhythmic-TMS modulated perceptual accuracy, but not subjective confidence in it, whereas controlling poststimulus (but not prestimulus) alpha amplitude modulated how well subjective confidence judgments can distinguish between correct and incorrect decision, but not accuracy. These findings provide the first causal evidence of a double dissociation between alpha speed and alpha amplitude, linking alpha frequency to spatiotemporal sampling resources and alpha amplitude to the internal, subjective representation and interpretation of sensory events.
Collapse
|
25
|
Pre-Stimulus Alpha-Band Phase Gates Early Visual Cortex Responses. Neuroimage 2022; 253:119060. [PMID: 35283286 DOI: 10.1016/j.neuroimage.2022.119060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Alpha-band (8-13 Hz) oscillations have been shown to phasically inhibit perceptual reports in human observers, yet the underlying physiological mechanism of this effect is debated. According to contrasting models, based primarily on animal experiments, alpha activity is thought to either originate from specialized cells in the visual thalamus and periodically inhibit the relay of visual information to the primary visual cortex (V1) in a feedforward manner, or to propagate from higher visual areas back to V1 in a feedback manner. Human neurophysiological evidence in favor of either hypothesis, both, or neither, has been limited. To help address this issue, we explored the link between pre-stimulus alpha phase and visual electroencephalography (EEG) responses thought to arise from afferent input onto human V1. Specially-designed visual stimuli were used to elicit large amplitude C1 event-related potentials (ERP), with polarity, topography, and timing indicative of striate genesis. Single-trial circular-linear associations between pre-stimulus phase and post-stimulus global field power (GFP) during the C1 time window revealed significant effects peaking in the alpha frequency band. Control analyses ruling out the potential confound of post-stimulus data bleeding into the pre-stimulus window demonstrated that GFP amplitude decreases as pre-stimulus alpha phase deviates from an individual's preferred phase. These findings demonstrate an early locus - suggesting that the phase of pre-stimulus alpha oscillations could modulate visual processing by gating the feedforward flow of sensory input between the thalamus and V1, although other models are potentially compatible.
Collapse
|
26
|
Tabarelli D, Brancaccio A, Zrenner C, Belardinelli P. Functional Connectivity States of Alpha Rhythm Sources in the Human Cortex at Rest: Implications for Real-Time Brain State Dependent EEG-TMS. Brain Sci 2022; 12:348. [PMID: 35326304 PMCID: PMC8946162 DOI: 10.3390/brainsci12030348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alpha is the predominant rhythm of the human electroencephalogram, but its function, multiple generators and functional coupling patterns are still relatively unknown. In this regard, alpha connectivity patterns can change between different cortical generators depending on the status of the brain. Therefore, in the light of the communication through coherence framework, an alpha functional network depends on the functional coupling patterns in a determined state. This notion has a relevance for brain-state dependent EEG-TMS because, beyond the local state, a network connectivity overview at rest could provide further and more comprehensive information for the definition of 'instantaneous state' at the stimulation moment, rather than just the local state around the stimulation site. For this reason, we studied functional coupling at rest in 203 healthy subjects with MEG data. Sensor signals were source localized and connectivity was studied at the Individual Alpha Frequency (IAF) between three different cortical areas (occipital, parietal and prefrontal). Two different and complementary phase-coherence metrices were used. Our results show a consistent connectivity between parietal and prefrontal regions whereas occipito-prefrontal connectivity is less marked and occipito-parietal connectivity is extremely low, despite physical closeness. We consider our results a relevant add-on for informed, individualized real-time brain state dependent stimulation, with possible contributions to novel, personalized non-invasive therapeutic approaches.
Collapse
Affiliation(s)
- Davide Tabarelli
- Center for Mind/Brain Sciences—CIMeC, University of Trento, I-38123 Trento, Italy; (D.T.); (A.B.)
| | - Arianna Brancaccio
- Center for Mind/Brain Sciences—CIMeC, University of Trento, I-38123 Trento, Italy; (D.T.); (A.B.)
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4, Canada;
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences—CIMeC, University of Trento, I-38123 Trento, Italy; (D.T.); (A.B.)
- Department of Neurology & Stroke, University of Tübingen, D-72070 Tübingen, Germany
| |
Collapse
|
27
|
Isabella SL, Cheyne JA, Cheyne D. Inhibitory Control in the Absence of Awareness: Interactions Between Frontal and Motor Cortex Oscillations Mediate Implicitly Learned Responses. Front Hum Neurosci 2022; 15:786035. [PMID: 35002659 PMCID: PMC8727746 DOI: 10.3389/fnhum.2021.786035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive control of action is associated with conscious effort and is hypothesised to be reflected by increased frontal theta activity. However, the functional role of these increases in theta power, and how they contribute to cognitive control remains unknown. We conducted an MEG study to test the hypothesis that frontal theta oscillations interact with sensorimotor signals in order to produce controlled behaviour, and that the strength of these interactions will vary with the amount of control required. We measured neuromagnetic activity in 16 healthy adults performing a response inhibition (Go/Switch) task, known from previous work to modulate cognitive control requirements using hidden patterns of Go and Switch cues. Learning was confirmed by reduced reaction times (RT) to patterned compared to random Switch cues. Concurrent measures of pupil diameter revealed changes in subjective cognitive effort with stimulus probability, even in the absence of measurable behavioural differences, revealing instances of covert variations in cognitive effort. Significant theta oscillations were found in five frontal brain regions, with theta power in the right middle frontal and right premotor cortices parametrically increasing with cognitive effort. Similar increases in oscillatory power were also observed in motor cortical gamma, suggesting an interaction. Right middle frontal and right precentral theta activity predicted changes in pupil diameter across all experimental conditions, demonstrating a close relationship between frontal theta increases and cognitive control. Although no theta-gamma cross-frequency coupling was found, long-range theta phase coherence among the five significant sources between bilateral middle frontal, right inferior frontal, and bilateral premotor areas was found, thus providing a mechanism for the relay of cognitive control between frontal and motor areas via theta signalling. Furthermore, this provides the first evidence for the sensitivity of frontal theta oscillations to implicit motor learning and its effects on cognitive load. More generally these results present a possible a mechanism for this frontal theta network to coordinate response preparation, inhibition and execution.
Collapse
Affiliation(s)
- Silvia L Isabella
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - J Allan Cheyne
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - Douglas Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Institute of Medical Sciences and Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Fiene M, Radecke JO, Misselhorn J, Sengelmann M, Herrmann CS, Schneider TR, Schwab BC, Engel AK. tACS phase-specifically biases brightness perception of flickering light. Brain Stimul 2022; 15:244-253. [PMID: 34990876 DOI: 10.1016/j.brs.2022.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 01/01/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Visual phenomena like brightness illusions impressively demonstrate the highly constructive nature of perception. In addition to physical illumination, the subjective experience of brightness is related to temporal neural dynamics in visual cortex. OBJECTIVE Here, we asked whether biasing the temporal pattern of neural excitability in visual cortex by transcranial alternating current stimulation (tACS) modulates brightness perception of concurrent rhythmic visual stimuli. METHODS Participants performed a brightness discrimination task of two flickering lights, one of which was targeted by same-frequency electrical stimulation at varying phase shifts. tACS was applied with an occipital and a periorbital active control montage, based on simulations of electrical currents using finite element head models. RESULTS Experimental results reveal that flicker brightness perception is modulated dependent on the phase shift between sensory and electrical stimulation, solely under occipital tACS. Phase-specific modulatory effects by tACS were dependent on flicker-evoked neural phase stability at the tACS-targeted frequency, recorded prior to electrical stimulation. Further, the optimal timing of tACS application leading to enhanced brightness perception was correlated with the neural phase delay of the cortical flicker response. CONCLUSIONS Our results corroborate the role of temporally coordinated neural activity in visual cortex for brightness perception of rhythmic visual input in humans. Phase-specific behavioral modulations by tACS emphasize its efficacy to transfer perceptually relevant temporal information to the cortex. These findings provide an important step towards understanding the basis of visual perception and further confirm electrical stimulation as a tool for advancing controlled modulations of neural activity and related behavior.
Collapse
Affiliation(s)
- Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.
| | - Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Malte Sengelmann
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Bettina C Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
29
|
Ogata K, Nakazono H, Ikeda T, Oka SI, Goto Y, Tobimatsu S. After-Effects of Intermittent Theta-Burst Stimulation Are Differentially and Phase-Dependently Suppressed by α- and β-Frequency Transcranial Alternating Current Stimulation. Front Hum Neurosci 2021; 15:750329. [PMID: 34867243 PMCID: PMC8636087 DOI: 10.3389/fnhum.2021.750329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation (TMS) is known to produce excitatory after-effects over the primary motor cortex (M1). Recently, transcranial alternating current stimulation (tACS) at 10 Hz (α) and 20 Hz (β) have been shown to modulate M1 excitability in a phase-dependent manner. Therefore, we hypothesized that tACS would modulate the after-effects of iTBS depending on the stimulation frequency and phase. To test our hypothesis, we examined the effects of α- and β-tACS on iTBS using motor evoked potentials (MEPs). Eighteen and thirteen healthy participants were recruited for α and β tACS conditions, respectively. tACS electrodes were attached over the left M1 and Pz. iTBS over left M1 was performed concurrently with tACS. The first pulse of the triple-pulse burst of iTBS was controlled to match the peak (90°) or trough (270°) phase of the tACS. A sham tACS condition was used as a control in which iTBS was administered without tACS. Thus, each participant was tested in three conditions: the peak and trough of the tACS phases and sham tACS. As a result, MEPs were enhanced after iTBS without tACS (sham condition), as observed in previous studies. α-tACS suppressed iTBS effects at the peak phase but not at the trough phase, while β-tACS suppressed the effects at both phases. Thus, although both types of tACS inhibited the facilitatory effects of iTBS, only α-tACS did so in a phase-dependent manner. Phase-dependent inhibition by α-tACS is analogous to our previous finding in which α-tACS inhibited MEPs online at the peak condition. Conversely, β-tACS reduced the effects of iTBS irrespective of its phase. The coupling of brain oscillations and tACS rhythms is considered important in the generation of spike-timing-dependent plasticity. Additionally, the coupling of θ and γ oscillations is assumed to be important for iTBS induction through long-term potentiation (LTP). Therefore, excessive coupling between β oscillations induced by tACS and γ or θ oscillations induced by iTBS might disturb the coupling of θ and γ oscillations during iTBS. To conclude, the action of iTBS is differentially modulated by neuronal oscillations depending on whether α- or β-tACS is applied.
Collapse
Affiliation(s)
- Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Takuro Ikeda
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Shin-Ichiro Oka
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Yoshinobu Goto
- School of Medicine, International University of Health and Welfare, Naritaa, Japan
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
30
|
Pagnotta MF, Pascucci D, Plomp G. Selective attention involves a feature-specific sequential release from inhibitory gating. Neuroimage 2021; 246:118782. [PMID: 34879253 DOI: 10.1016/j.neuroimage.2021.118782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/18/2022] Open
Abstract
Selective attention is a fundamental cognitive mechanism that allows our brain to preferentially process relevant sensory information, while filtering out distracting information. Attention is thought to flexibly gate the communication of irrelevant information through top-down alpha-rhythmic (8-12 Hz) functional connections, which influence early visual processing. However, the dynamic effects of top-down influence on downstream visual processing remain unknown. Here, we used electroencephalography to investigate local and network effects of selective attention while subjects attended to distinct features of identical stimuli. We found that attention-related changes in the functional brain network organization emerge shortly after stimulus onset, accompanied by an overall decrease of functional connectivity. Signatures of attentional selection were evident from a sequential release from alpha-band parietal gating in feature-selective areas. The directed connectivity paths and temporal evolution of this release from gating were consistent with the sensory effect of each feature, providing a neural basis for how visual processing quickly prioritizes relevant information in functionally specialized areas.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| | - David Pascucci
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland; Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
31
|
Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability. Neuroimage 2021; 247:118746. [PMID: 34875382 DOI: 10.1016/j.neuroimage.2021.118746] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.
Collapse
|
32
|
Jensen O, Pan Y, Frisson S, Wang L. An oscillatory pipelining mechanism supporting previewing during visual exploration and reading. Trends Cogn Sci 2021; 25:1033-1044. [PMID: 34544653 PMCID: PMC7615059 DOI: 10.1016/j.tics.2021.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/15/2022]
Abstract
Humans have a remarkable ability to efficiently explore visual scenes and text using eye movements. Humans typically make eye movements (saccades) every ~250 ms. Since saccade initiation and execution take 100 ms, this leaves only ~150 ms to recognize the fixated object (or word) while simultaneously previewing candidates for the next saccade goal. We propose a pipelining mechanism where serial processing occurs within a specific brain region, whereas parallel processing occurs across different brain regions. The mechanism is timed by alpha oscillations that coordinate the saccades, visual recognition, and previewing in the cortical hierarchy. Consequently, the neuronal mechanism supporting natural vision and saccades must be studied in unison to uncover the brain mechanisms supporting visual exploration and reading.
Collapse
Affiliation(s)
- Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Yali Pan
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Steven Frisson
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Lin Wang
- Department of Psychiatry and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Psychology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
33
|
Moheimanian L, Paraskevopoulou SE, Adamek M, Schalk G, Brunner P. Modulation in cortical excitability disrupts information transfer in perceptual-level stimulus processing. Neuroimage 2021; 243:118498. [PMID: 34428572 DOI: 10.1016/j.neuroimage.2021.118498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022] Open
Abstract
Despite significant interest in the neural underpinnings of behavioral variability, little light has been shed on the cortical mechanism underlying the failure to respond to perceptual-level stimuli. We hypothesized that cortical activity resulting from perceptual-level stimuli is sensitive to the moment-to-moment fluctuations in cortical excitability, and thus may not suffice to produce a behavioral response. We tested this hypothesis using electrocorticographic recordings to follow the propagation of cortical activity in six human subjects that responded to perceptual-level auditory stimuli. Here we show that for presentations that did not result in a behavioral response, the likelihood of cortical activity decreased from auditory cortex to motor cortex, and was related to reduced local cortical excitability. Cortical excitability was quantified using instantaneous voltage during a short window prior to cortical activity onset. Therefore, when humans are presented with an auditory stimulus close to perceptual-level threshold, moment-by-moment fluctuations in cortical excitability determine whether cortical responses to sensory stimulation successfully connect auditory input to a resultant behavioral response.
Collapse
Affiliation(s)
- Ladan Moheimanian
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | | | - Markus Adamek
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Department of Neurology, Albany Medical College, Albany, NY, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Peylo C, Hilla Y, Sauseng P. Cause or consequence? Alpha oscillations in visuospatial attention. Trends Neurosci 2021; 44:705-713. [PMID: 34167840 DOI: 10.1016/j.tins.2021.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
A well-established finding in the literature of human studies is that alpha activity (rhythmical brain activity around 10 Hz) shows retinotopic amplitude modulation during shifts in visual attention. Thus, it has long been argued that alpha amplitude modulation might play a crucial role in attention-driven alterations in visual information processing. Recently, there has been a revival of the topic, driven in part by new studies directly investigating the possible causal relationship between alpha activity and responses to visual input, both neuronally and perceptually. Here, we discuss evidence for and against a causal role of alpha activity in visual attentional processing. We conclude with hypotheses regarding the mechanisms by which top-down-modulated alpha activity in the parietal cortex might select visual information for attentive processing.
Collapse
Affiliation(s)
- Charline Peylo
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yannik Hilla
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
35
|
Sordini L, Garrudo FFF, Rodrigues CAV, Linhardt RJ, Cabral JMS, Ferreira FC, Morgado J. Effect of Electrical Stimulation Conditions on Neural Stem Cells Differentiation on Cross-Linked PEDOT:PSS Films. Front Bioeng Biotechnol 2021; 9:591838. [PMID: 33681153 PMCID: PMC7928331 DOI: 10.3389/fbioe.2021.591838] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to culture and differentiate neural stem cells (NSCs) to generate functional neural populations is attracting increasing attention due to its potential to enable cell-therapies to treat neurodegenerative diseases. Recent studies have shown that electrical stimulation improves neuronal differentiation of stem cells populations, highlighting the importance of the development of electroconductive biocompatible materials for NSC culture and differentiation for tissue engineering and regenerative medicine. Here, we report the use of the conjugated polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS CLEVIOS P AI 4083) for the manufacture of conductive substrates. Two different protocols, using different cross-linkers (3-glycidyloxypropyl)trimethoxysilane (GOPS) and divinyl sulfone (DVS) were tested to enhance their stability in aqueous environments. Both cross-linking treatments influence PEDOT:PSS properties, namely conductivity and contact angle. However, only GOPS-cross-linked films demonstrated to maintain conductivity and thickness during their incubation in water for 15 days. GOPS-cross-linked films were used to culture ReNcell-VM under different electrical stimulation conditions (AC, DC, and pulsed DC electrical fields). The polymeric substrate exhibits adequate physicochemical properties to promote cell adhesion and growth, as assessed by Alamar Blue® assay, both with and without the application of electric fields. NSCs differentiation was studied by immunofluorescence and quantitative real-time polymerase chain reaction. This study demonstrates that the pulsed DC stimulation (1 V/cm for 12 days), is the most efficient at enhancing the differentiation of NSCs into neurons.
Collapse
Affiliation(s)
- Laura Sordini
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Fábio F F Garrudo
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Carlos A V Rodrigues
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Gamma power abnormalities in a Fmr1-targeted transgenic rat model of fragile X syndrome. Sci Rep 2020; 10:18799. [PMID: 33139785 PMCID: PMC7608556 DOI: 10.1038/s41598-020-75893-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is characteristically displayed intellectual disability, hyperactivity, anxiety, and abnormal sensory processing. Electroencephalography (EEG) abnormalities are also observed in subjects with FXS, with many researchers paying attention to these as biomarkers. Despite intensive preclinical research using Fmr1 knock out (KO) mice, an effective treatment for FXS has yet to be developed. Here, we examined Fmr1-targeted transgenic rats (Fmr1-KO rats) as an alternative preclinical model of FXS. We characterized the EEG phenotypes of Fmr1-KO rats by measuring basal EEG power and auditory steady state response (ASSR) to click trains of stimuli at a frequency of 10–80 Hz. Fmr1-KO rats exhibited reduced basal alpha power and enhanced gamma power, and these rats showed enhanced locomotor activity in novel environment. While ASSR clearly peaked at around 40 Hz, both inter-trial coherence (ITC) and event-related spectral perturbation (ERSP) were significantly reduced at the gamma frequency band in Fmr1-KO rats. Fmr1-KO rats showed gamma power abnormalities and behavioral hyperactivity that were consistent with observations reported in mouse models and subjects with FXS. These results suggest that gamma power abnormalities are a translatable biomarker among species and demonstrate the utility of Fmr1-KO rats for investigating drugs for the treatment of FXS.
Collapse
|
37
|
Sadaghiani S, Dombert PL, Løvstad M, Funderud I, Meling TR, Endestad T, Knight RT, Solbakk AK, D'Esposito M. Lesions to the Fronto-Parietal Network Impact Alpha-Band Phase Synchrony and Cognitive Control. Cereb Cortex 2020; 29:4143-4153. [PMID: 30535068 DOI: 10.1093/cercor/bhy296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
Long-range phase synchrony in the α-oscillation band (near 10 Hz) has been proposed to facilitate information integration across anatomically segregated regions. Which areas may top-down regulate such cross-regional integration is largely unknown. We previously found that the moment-to-moment strength of high-α band (10-12 Hz) phase synchrony co-varies with activity in a fronto-parietal (FP) network. This network is critical for adaptive cognitive control functions such as cognitive flexibility required during set-shifting. Using electroencephalography (EEG) in 23 patients with focal frontal lobe lesions (resected tumors), we tested the hypothesis that the FP network is necessary for modulation of high-α band phase synchrony. Global phase-synchrony was measured using an adaptation of the phase-locking value (PLV) in a sliding window procedure, which allowed for measurement of changes in EEG-based resting-state functional connectivity across time. As hypothesized, the temporal modulation (range and standard deviation) of high-α phase synchrony was reduced as a function of FP network lesion extent, mostly due to dorsolateral prefrontal cortex (dlPFC) lesions. Furthermore, patients with dlPFC lesions exhibited reduced cognitive flexibility as measured by the Trail-Making Test (set-shifting). Our findings provide evidence that the FP network is necessary for modulatory control of high-α band long-range phase synchrony, and linked to cognitive flexibility.
Collapse
Affiliation(s)
- Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign, 61801 Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at 61801 Urbana-Champaign, Urbana, IL, USA.,Department of Psychology, Helen Wills Neuroscience Institute, University of California, 94720 Berkeley, CA, USA
| | - Pascasie L Dombert
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, 94720 Berkeley, CA, USA.,Psychology and Neuroscience Programme, Maastricht Universirty, 6229 ER Maastricht, The Netherlands
| | - Marianne Løvstad
- Department of Psychology, University of Oslo, 0373 Oslo, Norway.,Department of Research, Sunnaas Rehabilitation Hospital, 1453 Nesodden, Norway
| | - Ingrid Funderud
- Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Torstein R Meling
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0373 Oslo, Norway
| | - Tor Endestad
- Department of Psychology, University of Oslo, 0373 Oslo, Norway.,Department of Neuropsychology, Helgeland Hospital, 8657 Mosjøen, Norway
| | - Robert T Knight
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, 94720 Berkeley, CA, USA
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, 0373 Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0373 Oslo, Norway.,Department of Neuropsychology, Helgeland Hospital, 8657 Mosjøen, Norway
| | - Mark D'Esposito
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, 94720 Berkeley, CA, USA
| |
Collapse
|
38
|
Nested oscillations and brain connectivity during sequential stages of feature-based attention. Neuroimage 2020; 223:117354. [PMID: 32916284 DOI: 10.1016/j.neuroimage.2020.117354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
Brain mechanisms of visual selective attention involve both local and network-level activity changes at specific oscillatory rhythms, but their interplay remains poorly explored. Here, we investigate anticipatory and reactive effects of feature-based attention using separate fMRI and EEG recordings, while participants attended to one of two spatially overlapping visual features (motion and orientation). We focused on EEG source analysis of local neuronal rhythms and nested oscillations and on graph analysis of connectivity changes in a network of fMRI-defined regions of interest, and characterized a cascade of attentional effects at multiple spatial scales. We discuss how the results may reconcile several theories of selective attention, by showing how β rhythms support anticipatory information routing through increased network efficiency, while reactive α-band desynchronization patterns and increased α-γ coupling in task-specific sensory areas mediate stimulus-evoked processing of task-relevant signals.
Collapse
|
39
|
Makov S, Zion Golumbic E. Irrelevant Predictions: Distractor Rhythmicity Modulates Neural Encoding in Auditory Cortex. Cereb Cortex 2020; 30:5792-5805. [DOI: 10.1093/cercor/bhaa153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 04/10/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Dynamic attending theory suggests that predicting the timing of upcoming sounds can assist in focusing attention toward them. However, whether similar predictive processes are also applied to background noises and assist in guiding attention “away” from potential distractors, remains an open question. Here we address this question by manipulating the temporal predictability of distractor sounds in a dichotic listening selective attention task. We tested the influence of distractors’ temporal predictability on performance and on the neural encoding of sounds, by comparing the effects of Rhythmic versus Nonrhythmic distractors. Using magnetoencephalography we found that, indeed, the neural responses to both attended and distractor sounds were affected by distractors’ rhythmicity. Baseline activity preceding the onset of Rhythmic distractor sounds was enhanced relative to nonrhythmic distractor sounds, and sensory response to them was suppressed. Moreover, detection of nonmasked targets improved when distractors were Rhythmic, an effect accompanied by stronger lateralization of the neural responses to attended sounds to contralateral auditory cortex. These combined behavioral and neural results suggest that not only are temporal predictions formed for task-irrelevant sounds, but that these predictions bear functional significance for promoting selective attention and reducing distractibility.
Collapse
Affiliation(s)
- Shiri Makov
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elana Zion Golumbic
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
40
|
van Moorselaar D, Slagter HA. Inhibition in selective attention. Ann N Y Acad Sci 2020; 1464:204-221. [PMID: 31951294 PMCID: PMC7155061 DOI: 10.1111/nyas.14304] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/04/2023]
Abstract
Our ability to focus on goal-relevant aspects of the environment is critically dependent on our ability to ignore or inhibit distracting information. One perspective is that distractor inhibition is under similar voluntary control as attentional facilitation of target processing. However, a rapidly growing body of research shows that distractor inhibition often relies on prior experience with the distracting information or other mechanisms that need not rely on active representation in working memory. Yet, how and when these different forms of inhibition are neurally implemented remains largely unclear. Here, we review findings from recent behavioral and neuroimaging studies to address this outstanding question. We specifically explore how experience with distracting information may change the processing of that information in the context of current predictive processing views of perception: by modulating a distractor's representation already in anticipation of the distractor, or after integration of top-down and bottom-up sensory signals. We also outline directions for future research necessary to enhance our understanding of how the brain filters out distracting information.
Collapse
Affiliation(s)
- Dirk van Moorselaar
- Department of Experimental and Applied PsychologyVrije Universiteit Amsterdam and Institute of Brain and Behavior AmsterdamAmsterdamthe Netherlands
| | - Heleen A. Slagter
- Department of Experimental and Applied PsychologyVrije Universiteit Amsterdam and Institute of Brain and Behavior AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
41
|
Jaušovec N. The neural code of intelligence: From correlation to causation. Phys Life Rev 2019; 31:171-187. [PMID: 31706924 DOI: 10.1016/j.plrev.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/18/2019] [Indexed: 01/03/2023]
Abstract
Research into the neural underpinning of intelligence has mainly adopted a construct perspective: trying to find structural and functional brain characteristics that would accommodate the psychological concept of g. Few attempts have been made to explain intelligence exclusively based on brain characteristics - the brain perspective. From a methodological viewpoint the brain intelligence relation has been studied by means of correlational and interventional studies. The later providing a causal elucidation of the brain - intelligence relation. The best neuro-anatomical predictor of intelligence is brain volume showing a modest positive correlation with g, explaining between 9 to 16% of variance. The most likely explanation was that larger brains, containing more neurons, have a greater computational power and in that way allow more complex cognitive processing. Correlations with brain surface, thickness, convolution and callosal shape showed less consistent patterns. The development of diffusion tensor imaging has allowed researchers to look also into the microstructure of brain tissue. Consistently observed was a positively correlation between white matter integrity and intelligence, supporting the idea that efficient information transfer between hemispheres and brain areas is crucial for higher intellectual competence. Based on functional studies of the brain intelligence relationship three theories have been put forward: the neural efficiency, the P-FIT and the multi demand (MD) system theory. On the other hand, The Network Neuroscience Theory of g, based on methods from mathematics, physics, and computer science, is an example for the brain perspective on neurobiological underpinning of intelligence. In this framework network flexibility and dynamics provide the foundation for general intelligence. With respect to intervention studies the most promising results have been achieved with noninvasive brain stimulation and behavioral training providing tentative support for findings put forward by the correlational approach. To date the best consensus based on the diversity of results reported would be that g is predominantly determined by lateral prefrontal attentional control of structured sensory episodes in posterior brain areas. The capacity of flexible transitions between these network states represents the essence of intelligence - g.
Collapse
|
42
|
Van Diepen RM, Foxe JJ, Mazaheri A. The functional role of alpha-band activity in attentional processing: the current zeitgeist and future outlook. Curr Opin Psychol 2019; 29:229-238. [DOI: 10.1016/j.copsyc.2019.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
|
43
|
Attention differentially modulates the amplitude of resonance frequencies in the visual cortex. Neuroimage 2019; 203:116146. [PMID: 31493535 DOI: 10.1016/j.neuroimage.2019.116146] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 11/22/2022] Open
Abstract
Rhythmic visual stimuli (flicker) elicit rhythmic brain responses at the frequency of the stimulus, and attention generally enhances these oscillatory brain responses (steady state visual evoked potentials, SSVEPs). Although SSVEP responses have been tested for flicker frequencies up to 100 Hz [Herrmann, 2001], effects of attention on SSVEP amplitude have only been reported for lower frequencies (up to ~30 Hz), with no systematic comparison across a wide, finely sampled frequency range. Does attention modulate SSVEP amplitude at higher flicker frequencies (gamma band, 30-80 Hz), and is attentional modulation constant across frequencies? By isolating SSVEP responses from the broadband EEG signal using a multivariate spatiotemporal source separation method, we demonstrate that flicker in the alpha and gamma bands elicit strongest and maximally phase stable brain responses (resonance), on which the effect of attention is opposite: positive for gamma and negative for alpha. Finding subject-specific gamma resonance frequency and a positive attentional modulation of gamma-band SSVEPs points to the untapped potential of flicker as a non-invasive tool for studying the causal effects of interactions between visual gamma-band rhythmic stimuli and endogenous gamma oscillations on perception and attention.
Collapse
|
44
|
Chapeton JI, Haque R, Wittig JH, Inati SK, Zaghloul KA. Large-Scale Communication in the Human Brain Is Rhythmically Modulated through Alpha Coherence. Curr Biol 2019; 29:2801-2811.e5. [PMID: 31422882 DOI: 10.1016/j.cub.2019.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Recent evidence has suggested that coherent neuronal oscillations may serve as a gating mechanism for flexibly modulating communication between brain regions. For this to occur, such oscillations should be robust and coherent between brain regions that also demonstrate time-locked correlations, with time delays that match the phase delays of the coherent oscillations. Here, by analyzing functional connectivity in both the time and frequency domains, we demonstrate that alpha oscillations satisfy these constraints and are well suited for modulating communication over large spatial scales in the human brain. We examine intracranial EEG in the human temporal lobe and find robust alpha oscillations that are coherent between brain regions with center frequencies that are consistent within each individual participant. Regions demonstrating coherent narrowband oscillations also exhibit time-locked broadband correlations with a consistent time delay, a requirement for an efficient communication channel. The phase delays of the coherent alpha oscillations match the time delays of the correlated components, and importantly, both broadband correlations and neuronal spiking activity are modulated by the phase of the oscillations. These results are specific to the alpha band and build upon emerging evidence suggesting that alpha oscillations may play an active role in cortical function. Our data therefore provide evidence that large-scale communication in the human brain may be rhythmically modulated by alpha oscillations.
Collapse
Affiliation(s)
- Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafi Haque
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara K Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Abstract
Neural oscillations are widely studied using methods based on the Fourier transform, which models data as sums of sinusoids. This has successfully uncovered numerous links between oscillations and cognition or disease. However, neural data are nonsinusoidal, and these nonsinusoidal features are increasingly linked to a variety of behavioral and cognitive states, pathophysiology, and underlying neuronal circuit properties. We present a new analysis framework, one that is complementary to existing Fourier and Hilbert transform-based approaches, that quantifies oscillatory features in the time domain on a cycle-by-cycle basis. We have released this cycle-by-cycle analysis suite as "bycycle," a fully documented, open-source Python package with detailed tutorials and troubleshooting cases. This approach performs tests to assess whether an oscillation is present at any given moment and, if so, quantifies each oscillatory cycle by its amplitude, period, and waveform symmetry, the latter of which is missed with the use of conventional approaches. In a series of simulated event-related studies, we show how conventional Fourier and Hilbert transform approaches can conflate event-related changes in oscillation burst duration as increased oscillatory amplitude and as a change in the oscillation frequency, even though those features were unchanged in simulation. Our approach avoids these errors. Furthermore, we validate this approach in simulation and against experimental recordings of patients with Parkinson's disease, who are known to have nonsinusoidal beta (12-30 Hz) oscillations.NEW & NOTEWORTHY We introduce a fully documented, open-source Python package, bycycle, for analyzing neural oscillations on a cycle-by-cycle basis. This approach is complementary to traditional Fourier and Hilbert transform-based approaches but avoids specific pitfalls. First, bycycle confirms an oscillation is present, to avoid analyzing aperiodic, nonoscillatory data as oscillations. Next, it quantifies nonsinusoidal aspects of oscillations, increasingly linked to neural circuit physiology, behavioral states, and diseases. This approach is tested against simulated and real data.
Collapse
Affiliation(s)
- Scott Cole
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Bradley Voytek
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California.,Department of Cognitive Science, University of California, San Diego, La Jolla, California.,Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California
| |
Collapse
|
46
|
An J, Yadav T, Hessburg JP, Francis JT. Reward Expectation Modulates Local Field Potentials, Spiking Activity and Spike-Field Coherence in the Primary Motor Cortex. eNeuro 2019; 6:ENEURO.0178-19.2019. [PMID: 31171607 PMCID: PMC6595440 DOI: 10.1523/eneuro.0178-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023] Open
Abstract
Reward modulation (M1) could be exploited in developing an autonomously updating brain-computer interface (BCI) based on a reinforcement learning (RL) architecture. For an autonomously updating RL-based BCI system, we would need a reward prediction error, or a state-value representation from the user's neural activity, which the RL-BCI agent could use to update its BCI decoder. In order to understand the multifaceted effects of reward on M1 activity, we investigated how neural spiking, oscillatory activities and their functional interactions are modulated by conditioned stimuli related reward expectation. To do so, local field potentials (LFPs) and single/multi-unit activities were recorded simultaneously and bilaterally from M1 cortices while four non-human primates (NHPs) performed cued center-out reaching or grip force tasks either manually using their right arm/hand or observed passively. We found that reward expectation influenced the strength of α (8-14 Hz) power, α-γ comodulation, α spike-field coherence (SFC), and firing rates (FRs) in general in M1. Furthermore, we found that an increase in α-band power was correlated with a decrease in neural spiking activity, that FRs were highest at the trough of the α-band cycle and lowest at the peak of its cycle. These findings imply that α oscillations modulated by reward expectation have an influence on spike FR and spike timing during both reaching and grasping tasks in M1. These LFP, spike, and spike-field interactions could be used to follow the M1 neural state in order to enhance BCI decoding (An et al., 2018; Zhao et al., 2018).
Collapse
Affiliation(s)
- Junmo An
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Taruna Yadav
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - John P Hessburg
- Department of Physiology and Pharmacology, Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Joseph T Francis
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| |
Collapse
|
47
|
Iemi L, Busch NA, Laudini A, Haegens S, Samaha J, Villringer A, Nikulin VV. Multiple mechanisms link prestimulus neural oscillations to sensory responses. eLife 2019; 8:e43620. [PMID: 31188126 PMCID: PMC6561703 DOI: 10.7554/elife.43620] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Spontaneous fluctuations of neural activity may explain why sensory responses vary across repeated presentations of the same physical stimulus. To test this hypothesis, we recorded electroencephalography in humans during stimulation with identical visual stimuli and analyzed how prestimulus neural oscillations modulate different stages of sensory processing reflected by distinct components of the event-related potential (ERP). We found that strong prestimulus alpha- and beta-band power resulted in a suppression of early ERP components (C1 and N150) and in an amplification of late components (after 0.4 s), even after controlling for fluctuations in 1/f aperiodic signal and sleepiness. Whereas functional inhibition of sensory processing underlies the reduction of early ERP responses, we found that the modulation of non-zero-mean oscillations (baseline shift) accounted for the amplification of late responses. Distinguishing between these two mechanisms is crucial for understanding how internal brain states modulate the processing of incoming sensory information.
Collapse
Affiliation(s)
- Luca Iemi
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
| | - Niko A Busch
- Institute of PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Annamaria Laudini
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Saskia Haegens
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Jason Samaha
- Department of PsychologyUniversity of California, Santa CruzSanta CruzUnited States
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Vadim V Nikulin
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyCharité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| |
Collapse
|
48
|
Padmanaban V, Inati S, Ksendzovsky A, Zaghloul K. Clinical advances in photosensitive epilepsy. Brain Res 2019; 1703:18-25. [DOI: 10.1016/j.brainres.2018.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/21/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
|
49
|
Teng X, Tian X, Doelling K, Poeppel D. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process. Eur J Neurosci 2018; 48:2770-2782. [PMID: 29044763 PMCID: PMC5904023 DOI: 10.1111/ejn.13742] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/16/2017] [Accepted: 09/28/2017] [Indexed: 11/29/2022]
Abstract
Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands (~1-8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize acoustic information.
Collapse
Affiliation(s)
| | - Xing Tian
- New York University Shanghai, Shanghai, China, 200122
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China 200062
| | - Keith Doelling
- Department of Psychology, New York University, New York, NY, USA 10003
- Center for Neural Science, New York University, New York, NY, USA 10003
| | - David Poeppel
- Max-Planck-Institute, 60322 Frankfurt, Germany
- Department of Psychology, New York University, New York, NY, USA 10003
| |
Collapse
|
50
|
Iwasaki M, Noguchi Y, Kakigi R. Neural correlates of time distortion in a preaction period. Hum Brain Mapp 2018; 40:804-817. [PMID: 30276935 DOI: 10.1002/hbm.24413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/19/2018] [Accepted: 09/24/2018] [Indexed: 11/09/2022] Open
Abstract
An intention to move distorts the perception of time. For example, a visual stimulus presented during the preparation of manual movements is perceived longer than actual. Although neural mechanisms underlying this action-induced time distortion have been unclear, here we propose a new model in which the distortion is caused by a sensory-motor interaction mediated by alpha rhythm. It is generally known that viewing a stimulus induces a reduction in amplitude of occipital 10-Hz wave ("alpha-blocking"). Preparing manual movements are also known to reduce alpha power in the motor cortex ("mu-suppression"). When human participants prepared movements while viewing a stimulus, we found that those two types of classical alpha suppression interacted in the third (time-processing) region in the brain, inducing a prominent decrease in alpha power in the supplementary motor cortex (SMA). Interestingly, this alpha suppression in the SMA occurred in an asymmetric manner (such that troughs of alpha rhythm was more strongly suppressed than peaks), which can produce a gradual increase (slow shift of baseline) in neural activity. Since the neural processing in the SMA encodes a subjective time length for a sensory event, the increased activity in this region (by the asymmetric alpha suppression) would cause an overestimation of elapsed time, resulting in the action-induced time distortion. Those results showed a unique role of alpha wave enabling communications across distant (visual, motor, and time-processing) regions in the brain and further suggested a new type of sensory-motor interaction based on neural desynchronization (rather than synchronization).
Collapse
Affiliation(s)
- Miho Iwasaki
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|