1
|
Guan J, Li H, Yang Q, Lv Y, Zhang L, Wang Y, Li S. Improving brain difference identification in autism spectrum disorder through enhanced head motion correction in ICA-AROMA. Commun Biol 2025; 8:473. [PMID: 40118993 PMCID: PMC11928684 DOI: 10.1038/s42003-025-07928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
Head motion during magnetic resonance imaging (MRI) examinations of patients with autism spectrum disorder (ASD) can influence the identification of brain differences as well as early diagnosis and precise MRI-based interventions for ASD. This study aims to address head motion issues in resting-state functional MRI (rs-fMRI) data by comparing various correction methods. Specifically, we evaluate the independent component analysis-based automatic removal of motion artifacts (ICA-AROMA) against traditional preprocessing pipelines, including head motion realignment parameters and global signal regression (GSR). Our dataset consisted of 306 participants, including 148 individuals with ASD and 158 participants with typical development (TD). We find that ICA-AROMA, particularly when combined with GSR and physiological noise correction, outperformed other strategies in differentiating ASD from TD participants based on functional connectivity (FC) analyses. The correlation of quality control with functional connectivity (QC-FC) is statistically significant in proportion and distance after applying each denoising pipeline. The mean FC between groups is significant for Yeo's 17-Network in each denoising strategy. ICA-AROMA head motion correction outperformed other strategies, revealing more significant FC networks and distinct brain regions linked to the posterior cingulate cortex and postcentral gyrus. This suggests ICA-AROMA enhances fMRI preprocessing, aiding ASD diagnosis and biomarker development.
Collapse
Affiliation(s)
- Jianwu Guan
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, 100871, China
| | - Hai Li
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Qiansu Yang
- Department of Drug and Medical Equipment, Chinese PLA General Hospital, Beijing, 100871, China
| | - Yanwei Lv
- Clinical Epidemiology and Biostatistics Research Office, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100871, China
| | - Lei Zhang
- Department of Medical Information, Chinese PLA General Hospital, Beijing, 100871, China
| | - Yi Wang
- Departmetn of Stomatology, Chinese PLA General Hospital, Beijing, 100871, China.
| | - Shijun Li
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, 100871, China.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
2
|
Liu H, Li C, Qin R, Li L, Yuan X, Chen B, Chen L, Li T, Wang X. Effective connectivity alterations of the triple network model in the co-occurrence of autism spectrum disorder and attention deficit hyperactivity disorder. Cereb Cortex 2025; 35:bhaf047. [PMID: 40037415 DOI: 10.1093/cercor/bhaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are both highly prevalent disorders and frequently co-occur. The underlying neurological mechanisms of the co-occurrence of ASD and ADHD (ASD + ADHD) remain unknown. This study focuses on investigating the effective connectivity (EC) alterations within the triple network model in individuals with ASD + ADHD. Resting-state functional magnetic resonance imaging data were obtained from 44 individuals with ASD + ADHD, 60 individuals with ASD without ADHD (ASD-only), 35 individuals with ADHD without ASD (ADHD-only), and 81 healthy controls (HC) from the Autism Brain Imaging Data Exchange II and the ADHD-200 Sample database. Spectral dynamic causal modeling was employed to explore the EC alterations within and between the default mode network, salience network, and central executive network. Our analysis showed that compared to HC, ASD + ADHD, ASD-only, and ADHD-only exhibited both shared and disorder-specific EC alterations within the triple-network model. These results have potential clinical implications for identifying ASD + ADHD, facilitating diagnostic accuracy, guiding targeted treatment approaches, and informing etiological studies.
Collapse
Affiliation(s)
- Hongzhu Liu
- School of Medical Imaging, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, Shandong, China
| | - Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Rui Qin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing 100053, China
| | - Lin Li
- Department of Radiology, Qingdao Central Hospital, No. 127, Siliunan Road, Qingdao 260042, Shandong, China
| | - Xianshun Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Baojin Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Linglong Chen
- Department of Radiology, The First Affiliated Hospital, Nanchang University, No. 1519, Dongyue Avenue, Nanchang 330006, Jiangxi, China
| | - Tong Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| |
Collapse
|
3
|
Grumbach P, Kasper J, Hipp JF, Forsyth A, Valk SL, Muthukumaraswamy S, Eickhoff SB, Schilbach L, Dukart J. Local activity alterations in autism spectrum disorder correlate with neurotransmitter properties and ketamine induced brain changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.20.24315801. [PMID: 39502665 PMCID: PMC11537324 DOI: 10.1101/2024.10.20.24315801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with altered resting-state brain function. An increased excitation-inhibition (E/I) ratio is discussed as a potential pathomechanism but in-vivo evidence of disturbed neurotransmission underlying these functional alterations remains scarce. We compared rs-fMRI local activity (LCOR) between ASD (N=405, N=395) and neurotypical controls (N=473, N=474) in two independent cohorts (ABIDE1 and ABIDE2). We then tested how these LCOR alterations co-localize with specific neurotransmitter systems derived from nuclear imaging and compared them with E/I changes induced by GABAergic (midazolam) and glutamatergic medication (ketamine). Across both cohorts, ASD subjects consistently exhibited reduced LCOR, particularly in higher-order default mode network nodes, alongside increases in bilateral temporal regions, the cerebellum, and brainstem. These LCOR alterations negatively co-localized with dopaminergic (D1, D2, DAT), glutamatergic (NMDA, mGluR5), GABAergic (GABAa) and cholinergic neurotransmission (VAChT). The NMDA-antagonist ketamine, but not GABAa-potentiator midazolam, induced LCOR changes which co-localize with D1, NMDA and GABAa receptors, thereby resembling alterations observed in ASD. We find consistent local activity alterations in ASD to be spatially associated with several major neurotransmitter systems. NMDA-antagonist ketamine induced neurochemical changes similar to ASD-related alterations, supporting the notion that pharmacological modulation of the E/I balance in healthy individuals can induce ASD-like functional brain changes. These findings provide novel insights into neurophysiological mechanisms underlying ASD.
Collapse
Affiliation(s)
- Pascal Grumbach
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Bergische Landstraße 2, 40629 Duesseldorf, Germany
| | - Jan Kasper
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann–La Roche Ltd.; Basel, Switzerland
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland; 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Sofie L. Valk
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
- Max Planck School of Cognition; Stephanstraße 1A, 04103 Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences; Stephanstraße 1A, 04103 Leipzig, Germany
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland; 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Duesseldorf; Bergische Landstraße 2, 40629 Duesseldorf, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University Munich; Nußbaumstraße 7, 80336 München
| | - Juergen Dukart
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| |
Collapse
|
4
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
5
|
Xie X, Zhou R, Fang Z, Zhang Y, Wang Q, Liu X. Seeing beyond words: Visualizing autism spectrum disorder biomarker insights. Heliyon 2024; 10:e30420. [PMID: 38694128 PMCID: PMC11061761 DOI: 10.1016/j.heliyon.2024.e30420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Objective This study employs bibliometric and visual analysis to elucidate global research trends in Autism Spectrum Disorder (ASD) biomarkers, identify critical research focal points, and discuss the potential integration of diverse biomarker modalities for precise ASD assessment. Methods A comprehensive bibliometric analysis was conducted using data from the Web of Science Core Collection database until December 31, 2022. Visualization tools, including R, VOSviewer, CiteSpace, and gCLUTO, were utilized to examine collaborative networks, co-citation patterns, and keyword associations among countries, institutions, authors, journals, documents, and keywords. Results ASD biomarker research emerged in 2004, accumulating a corpus of 4348 documents by December 31, 2022. The United States, with 1574 publications and an H-index of 213, emerged as the most prolific and influential country. The University of California, Davis, contributed significantly with 346 publications and an H-index of 69, making it the leading institution. Concerning journals, the Journal of Autism and Developmental Disorders, Autism Research, and PLOS ONE were the top three publishers of ASD biomarker-related articles among a total of 1140 academic journals. Co-citation and keyword analyses revealed research hotspots in genetics, imaging, oxidative stress, neuroinflammation, gut microbiota, and eye tracking. Emerging topics included "DNA methylation," "eye tracking," "metabolomics," and "resting-state fMRI." Conclusion The field of ASD biomarker research is dynamically evolving. Future endeavors should prioritize individual stratification, methodological standardization, the harmonious integration of biomarker modalities, and longitudinal studies to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyue Xie
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Rongyi Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Zihan Fang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Yongting Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Qirong Wang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Xiaomian Liu
- Henan University of Chinese Medicine, School of Medicine, Zhengzhou, Henan, 450046, China
| |
Collapse
|
6
|
Ahlfors SP, Graham S, Bharadwaj H, Mamashli F, Khan S, Joseph RM, Losh A, Pawlyszyn S, McGuiggan NM, Vangel M, Hämäläinen MS, Kenet T. No Differences in Auditory Steady-State Responses in Children with Autism Spectrum Disorder and Typically Developing Children. J Autism Dev Disord 2024; 54:1947-1960. [PMID: 36932270 PMCID: PMC11463296 DOI: 10.1007/s10803-023-05907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 03/19/2023]
Abstract
Auditory steady-state response (ASSR) has been studied as a potential biomarker for abnormal auditory sensory processing in autism spectrum disorder (ASD), with mixed results. Motivated by prior somatosensory findings of group differences in inter-trial coherence (ITC) between ASD and typically developing (TD) individuals at twice the steady-state stimulation frequency, we examined ASSR at 25 and 50 as well as 43 and 86 Hz in response to 25-Hz and 43-Hz auditory stimuli, respectively, using magnetoencephalography. Data were recorded from 22 ASD and 31 TD children, ages 6-17 years. ITC measures showed prominent ASSRs at the stimulation and double frequencies, without significant group differences. These results do not support ASSR as a robust ASD biomarker of abnormal auditory processing in ASD. Furthermore, the previously observed atypical double-frequency somatosensory response in ASD did not generalize to the auditory modality. Thus, the hypothesis about modality-independent abnormal local connectivity in ASD was not supported.
Collapse
Affiliation(s)
- Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Rm. 2301, Charlestown, MA, 02129, USA.
| | - Steven Graham
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Hari Bharadwaj
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
- Department of Speech, Language, & Hearing Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ainsley Losh
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie Pawlyszyn
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole M McGuiggan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Vangel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Tal Kenet
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Liloia D, Manuello J, Costa T, Keller R, Nani A, Cauda F. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur Arch Psychiatry Clin Neurosci 2024; 274:3-18. [PMID: 36599959 PMCID: PMC10787009 DOI: 10.1007/s00406-022-01541-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
- Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
8
|
Saponaro S, Lizzi F, Serra G, Mainas F, Oliva P, Giuliano A, Calderoni S, Retico A. Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders. Brain Inform 2024; 11:2. [PMID: 38194126 PMCID: PMC10776521 DOI: 10.1186/s40708-023-00217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD). MATERIAL AND METHODS We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework. RESULTS The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain. CONCLUSIONS Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.
Collapse
Affiliation(s)
- Sara Saponaro
- Medical Physics School, University of Pisa, Pisa, Italy.
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy.
| | - Francesca Lizzi
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Giacomo Serra
- Department of Physics, University of Cagliari, Cagliari, Italy
- INFN, Cagliari Division, Cagliari, Italy
| | - Francesca Mainas
- INFN, Cagliari Division, Cagliari, Italy
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Piernicola Oliva
- INFN, Cagliari Division, Cagliari, Italy
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Alessia Giuliano
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Sara Calderoni
- Developmental Psychiatry Unit - IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|
9
|
Xu L, Xue R, Ai Z, Huang Y, Liu X, Wang L, Liang D, Wang Z. Resting-State Functional Magnetic Resonance Imaging as an Indicator of Neuropsychological Changes in Type 1 Narcolepsy. Acad Radiol 2024; 31:69-81. [PMID: 37821344 DOI: 10.1016/j.acra.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023]
Abstract
RATIONALE AND OBJECTIVES To explore indicators of neuropsychological changes in patients with type 1 narcolepsy (NT1) using resting-state functional magnetic resonance imaging (rs-fMRI). MATERIALS AND METHODS Thirty-four NT1 patients and 34 age- and sex-matched healthy volunteers were recruited for neuropsychiatric assessments and rs-fMRI data acquisition. Fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and related brain functional connectivity (FC) were calculated for the two groups and compared using a two-sample t test with cluster-level FDR correction. Moreover, partial correlation analysis was performed between these functional values of changed brain regions and clinical scales. RESULTS Compared to those of healthy controls, spontaneous functional activities were significantly weakened in patients with NT1 in regions such as the left/right posterior cerebellum lobe, left inferior temporal gyrus, and left dorsolateral superior frontal gyrus, whereas those in regions such as the left middle occipital gyrus, right inferior occipital gyrus, and left/right lingual gyrus were significantly strengthened. Furthermore, NT1 patients displayed significantly changed FCs between the left/right anterior cingulate gyrus (ACG) and regions such as the left/right cerebellum, left middle occipital gyrus, and left inferior frontal gyrus in the operculum. In partial correlation analysis, the functions in the left dorsolateral superior frontal gyrus were significantly related to the Trail Making Tests (TMT) score. Moreover, the FC between the left ACG and left inferior frontal gyrus in the operculum was highly correlated with anxiety and depression features, including the Hamilton Anxiety Scale (HAMA) score and Hamilton Depression Rating Scale (HAMD-17) score. CONCLUSION Patients with NT1 exhibited abnormalities in the anterior cingulate cortex, frontal-parietal cortex, hippocampus, and left/right posterior cerebellum lobe. The deactivation of the left frontal-temporal cortex is stronger, which is involved in the cognitive decline and mental disorders in these patients. Damage to the ACG may affect its FC with other regions and cause cognition and emotion dysregulation, perhaps by impairing patients' visual pathways and frontal-temporal-parietal networks. Hence, these could be important biomarkers for their neuropsychological changes.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Zhu Ai
- Department of Neurology, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (Z.A.)
| | - Yaqin Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Xuan Liu
- Department of Neurology, Airport Hospital, General Hospital of Tianjin Medical University, Tianjin, China (X.L.)
| | - Linlin Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China (L.W.)
| | - Danqi Liang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, China (Z.W.).
| |
Collapse
|
10
|
Han J, Keedy S, de Wit H. Stimulant-like subjective effects of alcohol are not related to resting-state connectivity in healthy men. Cereb Cortex 2023; 33:9478-9488. [PMID: 37339883 PMCID: PMC10656944 DOI: 10.1093/cercor/bhad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Individual differences in subjective, stimulant-like effects of alcohol are associated with the risk of developing alcohol use disorder. Specifically, individuals who experience more pronounced stimulant-like effects from alcohol are more likely to continue and escalate their usage. The neural basis for these individual differences in subjective response is not yet known. Using a within-subject design, 27 healthy male social drinkers completed three fMRI scans after ingesting a placebo, 0.4 and 0.8 g/kg alcohol, in a randomized order under double-blind conditions. Subjective stimulant effects of alcohol were assessed at regular intervals during each session. Seed-based and regional homogeneity analyses were conducted to evaluate changes in resting-state functional connectivity in relation to the stimulant effect of alcohol. Results indicated that 0.4 g/kg alcohol increased the connectivity to thalamus, and 0.8 g/kg alcohol decreased the connectivity to ventral anterior insula, primarily from the superior parietal lobule. Both doses reduced regional homogeneity in the superior parietal lobule but without an exact overlap with clusters showing connectivity changes in the seed-based analyses. The self-reported stimulant effect of alcohol was not significantly related to changes in seed-based connectivity or regional homogeneity. These findings suggest that alcohol-induced stimulation effects are not related to these indices of neural activity.
Collapse
Affiliation(s)
- Jiaxu Han
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, United States
| | - Sarah Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, United States
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, United States
| |
Collapse
|
11
|
Xie J, Zhang W, Shen Y, Wei W, Bai Y, Zhang G, Meng N, Yue X, Wang X, Zhang X, Wang M. Abnormal spontaneous brain activity in females with autism spectrum disorders. Front Neurosci 2023; 17:1189087. [PMID: 37521682 PMCID: PMC10379634 DOI: 10.3389/fnins.2023.1189087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/08/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives To date, most studies on autism spectrum disorder (ASD) have focused on sample sets that were primarily or entirely composed of males; brain spontaneous activity changes in females remain unclear. The purpose of this study was to explore changes in the brain spontaneous neural activity in females with ASD. Methods In this study, resting-state functional magnetic resonance images (rs-fMRI) of 41 females with ASD and 41 typically developing (TD) controls were obtained from the ABDIE database. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) of the two groups were calculated to detect the regional brain activity. A two independent sample t-test was used to analyze differences between the ASD and TD groups and a p-value <0.05 was considered statistically significant after false discovery rate (FDR) correction. Pearson correlation analysis was conducted between social responsiveness scale (SRS) scores and the local activity of significantly different brain regions. Results Compared with the typically developing (TD) group, the values of ALFF and ReHo were significantly increased in the left superior temporal gyrus (STG), while the values of ReHo were significantly decreased in the left superior frontal gyrus (SFG), left middle occipital gyrus (MOG), bilateral superior parietal lobule (SPL), and bilateral precuneus in the females with ASD group. Correlation analysis showed that the ReHo of the right precuneus was positively correlated to the total SRS, social communication, and autistic mannerisms. Conclusion Spontaneous activity changes in females with ASD involved multiple brain regions and were related to clinical characteristics. Our results may provide some help for further exploring the neurobiological mechanism of females with ASD.
Collapse
Affiliation(s)
- Jiapei Xie
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weidong Zhang
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Nan Meng
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinhui Wang
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | | | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
12
|
Helmy E, Elnakib A, ElNakieb Y, Khudri M, Abdelrahim M, Yousaf J, Ghazal M, Contractor S, Barnes GN, El-Baz A. Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey. Biomedicines 2023; 11:1858. [PMID: 37509498 PMCID: PMC10376963 DOI: 10.3390/biomedicines11071858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a wide range of diseases characterized by difficulties with social skills, repetitive activities, speech, and nonverbal communication. The Centers for Disease Control (CDC) estimates that 1 in 44 American children currently suffer from ASD. The current gold standard for ASD diagnosis is based on behavior observational tests by clinicians, which suffer from being subjective and time-consuming and afford only late detection (a child must have a mental age of at least two to apply for an observation report). Alternatively, brain imaging-more specifically, magnetic resonance imaging (MRI)-has proven its ability to assist in fast, objective, and early ASD diagnosis and detection. With the recent advances in artificial intelligence (AI) and machine learning (ML) techniques, sufficient tools have been developed for both automated ASD diagnosis and early detection. More recently, the development of deep learning (DL), a young subfield of AI based on artificial neural networks (ANNs), has successfully enabled the processing of brain MRI data with improved ASD diagnostic abilities. This survey focuses on the role of AI in autism diagnostics and detection based on two basic MRI modalities: diffusion tensor imaging (DTI) and functional MRI (fMRI). In addition, the survey outlines the basic findings of DTI and fMRI in autism. Furthermore, recent techniques for ASD detection using DTI and fMRI are summarized and discussed. Finally, emerging tendencies are described. The results of this study show how useful AI is for early, subjective ASD detection and diagnosis. More AI solutions that have the potential to be used in healthcare settings will be introduced in the future.
Collapse
Affiliation(s)
- Eman Helmy
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Elgomheryia Street, Mansoura 3512, Egypt;
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Yaser ElNakieb
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Mohamed Khudri
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Mostafa Abdelrahim
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Jawad Yousaf
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | - Gregory Neal Barnes
- Department of Neurology, Pediatric Research Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| |
Collapse
|
13
|
Yamashita M, Kagitani-Shimono K, Hirano Y, Hamatani S, Nishitani S, Yao A, Kurata S, Kosaka H, Jung M, Yoshida T, Sasaki T, Matsumoto K, Kato Y, Nakanishi M, Tachibana M, Mohri I, Tsuchiya KJ, Tsujikawa T, Okazawa H, Shimizu E, Taniike M, Tomoda A, Mizuno Y. Child Developmental MRI (CDM) project: protocol for a multi-centre, cross-sectional study on elucidating the pathophysiology of attention-deficit/hyperactivity disorder and autism spectrum disorder through a multi-dimensional approach. BMJ Open 2023; 13:e070157. [PMID: 37355265 PMCID: PMC10314540 DOI: 10.1136/bmjopen-2022-070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
INTRODUCTION Neuroimaging studies on attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have demonstrated differences in extensive brain structure, activity and network. However, there remains heterogeneity and inconsistency across these findings, presumably because of the diversity of the disorders themselves, small sample sizes, and site and parameter differences in MRI scanners, and their overall pathogenesis remains unclear. To address these gaps in the literature, we will apply the travelling-subject approach to correct site differences in MRI scanners and clarify brain structure and network characteristics of children with ADHD and ASD using large samples collected in a multi-centre collaboration. In addition, we will investigate the relationship between these characteristics and genetic, epigenetic, biochemical markers, and behavioural and psychological measures. METHODS AND ANALYSIS We will collect resting-state functional MRI (fMRI) and T1-weighted and diffusion-weighted MRI data from 15 healthy adults as travelling subjects and 300 children (ADHD, n=100; ASD, n=100; and typical development, n=100) with multi-dimensional assessments. We will also apply data from more than 1000 samples acquired in our previous neuroimaging studies on ADHD and ASD. ETHICS AND DISSEMINATION The study protocol has been approved by the Research Ethics Committee of the University of Fukui Hospital (approval no: 20220601). Our study findings will be submitted to scientific peer-reviewed journals and conferences.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiyuki Hirano
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Sayo Hamatani
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Shota Nishitani
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Akiko Yao
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
| | - Sawa Kurata
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Hirotaka Kosaka
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Korea (the Republic of)
| | - Tokiko Yoshida
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Tsuyoshi Sasaki
- Department of Child Psychiatry and Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yoko Kato
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mariko Nakanishi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Tachibana
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ikuko Mohri
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji J Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Centre, University of Fukui, Fukui, Japan
| | - Eiji Shimizu
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akemi Tomoda
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Yoshifumi Mizuno
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
14
|
Nakamura T, Kaneko T, Sasayama D, Yoshizawa T, Kito Y, Fujinaga Y, Washizuka S. Cerebellar network changes in depressed patients with and without autism spectrum disorder: A case-control study. Psychiatry Res Neuroimaging 2023; 329:111596. [PMID: 36669239 DOI: 10.1016/j.pscychresns.2023.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Pathophysiological difference of depression in patients with and without autistic spectrum disorder (ASD) has not been investigated previously. Therefore, we sought to determine whether there were differences between non-ASD and ASD groups on resting-state functional magnetic resonance imaging (rs-fMRI) in patients with depression. We performed 3T MRI under resting state in 8 patients with depression and ASD and 12 patients with depression but without ASD. The ASD group showed increased functional connectivity in the cerebellar network of the left posterior inferior temporal gyrus and anterior cerebellar lobes compared to the non-ASD group in an analysis of covariance. Adding antipsychotics, antidepressants, benzodiazepines, nonbenzodiazepines, anxiolytics, hypnotics, or age as covariates showed a similar increase in functional connectivity. Thus, this study found that depressive patients with ASD had increased functional connectivity in the cerebellar network. Our findings suggest that fMRI may be able to evaluate differences in depressed patients with and without ASD.
Collapse
Affiliation(s)
- Toshinori Nakamura
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan.
| | - Tomoki Kaneko
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Daimei Sasayama
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Tomonari Yoshizawa
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Yoshihiro Kito
- Radiology Division, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Yasunari Fujinaga
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Shinsuke Washizuka
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| |
Collapse
|
15
|
Alamdari SB, Sadeghi Damavandi M, Zarei M, Khosrowabadi R. Cognitive theories of autism based on the interactions between brain functional networks. Front Hum Neurosci 2022; 16:828985. [PMID: 36310850 PMCID: PMC9614840 DOI: 10.3389/fnhum.2022.828985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive functions are directly related to interactions between the brain's functional networks. This functional organization changes in the autism spectrum disorder (ASD). However, the heterogeneous nature of autism brings inconsistency in the findings, and specific pattern of changes based on the cognitive theories of ASD still requires to be well-understood. In this study, we hypothesized that the theory of mind (ToM), and the weak central coherence theory must follow an alteration pattern in the network level of functional interactions. The main aim is to understand this pattern by evaluating interactions between all the brain functional networks. Moreover, the association between the significantly altered interactions and cognitive dysfunctions in autism is also investigated. We used resting-state fMRI data of 106 subjects (5-14 years, 46 ASD: five female, 60 HC: 18 female) to define the brain functional networks. Functional networks were calculated by applying four parcellation masks and their interactions were estimated using Pearson's correlation between pairs of them. Subsequently, for each mask, a graph was formed based on the connectome of interactions. Then, the local and global parameters of the graph were calculated. Finally, statistical analysis was performed using a two-sample t-test to highlight the significant differences between autistic and healthy control groups. Our corrected results show significant changes in the interaction of default mode, sensorimotor, visuospatial, visual, and language networks with other functional networks that can support the main cognitive theories of autism. We hope this finding sheds light on a better understanding of the neural underpinning of autism.
Collapse
Affiliation(s)
| | | | - Mojtaba Zarei
- University of Southern Denmark, Neurology Unit, Odense, Denmark
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
16
|
Wu X, Lin F, Zhang T, Sun H, Li J. Acquisition time for functional near-infrared spectroscopy resting-state functional connectivity in assessing autism. NEUROPHOTONICS 2022; 9:045007. [PMID: 36466187 PMCID: PMC9709191 DOI: 10.1117/1.nph.9.4.045007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Resting state functional connectivity (RSFC) can be used to assess autism spectrum disorder (ASD). Measuring RSFC usually takes 5 to 10 min, during which children with ASD may have difficulty keeping their heads motionless. Therefore, a short acquisition time for RSFC would make clinical implementation more feasible. AIM To find a suitable acquisition time necessary for measuring RSFC with functional near-infrared spectroscopy (fNIRS) for the differentiation between children with ASD and typically developing (TD) children. APPROACH We used fNIRS to record the spontaneous hemodynamic fluctuations from the bilateral temporal lobes of 25 children with ASD and 22 TD children. The recorded signals were truncated into several segments with different time windows, and then the homotopic RSFC was computed for each of these segments and compared between the two groups. RESULTS We observed even in a very short time duration of 0.5 min, the RSFC had already existed a significant difference between the two groups, and 2.0 min might be the minimal time required for measuring RSFC for accurate differentiation between the two groups. CONCLUSIONS The fNIRS-RSFC acquired even in a short time, e.g., 2.0 min, might be a reliable feature for the differentiation between children with ASD and TD children.
Collapse
Affiliation(s)
- Xiaoyin Wu
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Fang Lin
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Tingzhen Zhang
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Huiwen Sun
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Jun Li
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
- South China Normal University, Key Lab for Behavioral Economic Science and Technology, Guangzhou, China
| |
Collapse
|
17
|
Zhu XW, Zhang LL, Zhu ZM, Wang LY, Ding ZX, Fang XM. Altered intrinsic brain activity and connectivity in unaffected parents of individuals with autism spectrum disorder: a resting-state fMRI study. Front Hum Neurosci 2022; 16:997150. [PMID: 36248683 PMCID: PMC9563234 DOI: 10.3389/fnhum.2022.997150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Autism spectrum disorder (ASD) is a juvenile onset neurodevelopmental disorder with social impairment and stereotyped behavior as the main symptoms. Unaffected relatives may also exhibit similar ASD features due to genetic factors. Although previous studies have demonstrated atypical brain morphological features as well as task-state brain function abnormalities in unaffected parents with ASD children, it remains unclear the pattern of brain function in the resting state. Methods: A total of 42 unaffected parents of ASD children (pASD) and 39 age-, sex-, and handedness-matched controls were enrolled. Multiple resting-state fMRI (rsfMRI) analyzing methods were applied, including amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC), to reveal the functional abnormalities of unaffected parents in ASD-related brain regions. Spearman Rho correlation analysis between imaging metric values and the severity of ASD traits were evaluated as well. Results: ALFF, ReHo, and DC methods all revealed abnormal brain regions in the pASD group, such as the left medial orbitofrontal cortex (mOFC) and rectal gyrus (ROI-1), bilateral supplementary motor area (ROI-2), right caudate nucleus head and right amygdala/para-hippocampal gyrus (ROI-3). FC decreasing was observed between ROI-1 and right anterior cingulate cortex (ACC), ROI-2, and bilateral precuneus. FC enhancing was observed between ROI-3 and right anterior cerebellar lobe, left medial temporal gyrus, left superior temporal gyrus, left medial frontal gyrus, left precentral gyrus, right postcentral gyrus in pASD. In addition, ALFF values in ROI-1, DC values in ROI-3 were positively correlated with AQ scores in pASD (ρ1 = 0.298, P1 = 0.007; ρ2 = 0.220, P2 = 0.040), while FC values between ROI-1 and right ACC were negatively correlated with AQ scores (ρ3 = −0.334, P3 = 0.002). Conclusion: rsfMRI metrics could be used as biomarkers to reveal the underlying neurobiological feature of ASD for unaffected parents.
Collapse
Affiliation(s)
- Xiang-Wen Zhu
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Li Zhang
- Department of Child Health Care, Wuxi Children’s Hospital, Wuxi, China
| | - Zong-Ming Zhu
- Department of Radiology, Affiliated Wuxi People’s Hospital, Nanjing Medical University, Wuxi, China
| | - Luo-Yu Wang
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong-Xiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhong-Xiang Ding Xiang-Ming Fang
| | - Xiang-Ming Fang
- Department of Radiology, Affiliated Wuxi People’s Hospital, Nanjing Medical University, Wuxi, China
- *Correspondence: Zhong-Xiang Ding Xiang-Ming Fang
| |
Collapse
|
18
|
Choi H, Byeon K, Park BY, Lee JE, Valk SL, Bernhardt B, Martino AD, Milham M, Hong SJ, Park H. Diagnosis-informed connectivity subtyping discovers subgroups of autism with reproducible symptom profiles. Neuroimage 2022; 256:119212. [PMID: 35430361 DOI: 10.1016/j.neuroimage.2022.119212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
Clinical heterogeneity has been one of the main barriers to develop effective biomarkers and therapeutic strategies in autism spectrum disorder (ASD). Recognizing this challenge, much effort has been made in recent neuroimaging studies to find biologically more homogeneous subgroups (called 'neurosubtypes') in autism. However, most approaches have rarely evaluated how much the employed features in subtyping represent the core anomalies of ASD, obscuring its utility in actual clinical diagnosis. To address this, we combined two data-driven methods, 'connectome-based gradient' and 'functional random forest', collectively allowing to discover reproducible neurosubtypes based on resting-state functional connectivity profiles that are specific to ASD. Indeed, the former technique provides the features (as input for subtyping) that effectively summarize whole-brain connectome variations in both normal and ASD conditions, while the latter leverages a supervised random forest algorithm to inform diagnostic labels to clustering, which makes neurosubtyping driven by the features of ASD core anomalies. Applying this framework to the open-sharing Autism Brain Imaging Data Exchange repository data (discovery, n = 103/108 for ASD/typically developing [TD]; replication, n = 44/42 for ASD/TD), we found three dominant subtypes of functional gradients in ASD and three subtypes in TD. The subtypes in ASD revealed distinct connectome profiles in multiple brain areas, which are associated with different Neurosynth-derived cognitive functions previously implicated in autism studies. Moreover, these subtypes showed different symptom severity, which degree co-varies with the extent of functional gradient changes observed across the groups. The subtypes in the discovery and replication datasets showed similar symptom profiles in social interaction and communication domains, confirming a largely reproducible brain-behavior relationship. Finally, the connectome gradients in ASD subtypes present both common and distinct patterns compared to those in TD, reflecting their potential overlap and divergence in terms of developmental mechanisms involved in the manifestation of large-scale functional networks. Our study demonstrated a potential of the diagnosis-informed subtyping approach in developing a clinically useful brain-based classification system for future ASD research.
Collapse
Affiliation(s)
- Hyoungshin Choi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Kyoungseob Byeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Data Science, Inha University, Incheon, South Korea
| | - Jong-Eun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Sofie L Valk
- Otto Hahn group, Cognitive neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences; Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Michael Milham
- Center for the Developing Brain, Child Mind Institute, New York, United States; Nathan S. Kline Institute for Psychiatric Research, New York, United States
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Center for the Developing Brain, Child Mind Institute, New York, United States; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Zhao X, Zhu S, Cao Y, Cheng P, Lin Y, Sun Z, Li Y, Jiang W, Du Y. Regional homogeneity of adolescents with high-functioning autism spectrum disorder and its association with symptom severity. Brain Behav 2022; 12:e2693. [PMID: 35816591 PMCID: PMC9392530 DOI: 10.1002/brb3.2693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have revealed abnormal regional homogeneity (ReHo) in individuals with autism spectrum disorder (ASD); however, there is little consistency across the findings within these studies, partly due to small sample size and great heterogeneity among participants between studies. Additionally, few studies have explored the association between ReHo aberrance and clinical symptoms in individuals with ASD. METHODS Forty-eight adolescents with high-functioning ASD and 63 group-matched typically developing (TD) controls received functional magnetic resonance imaging at rest. Group-level analysis was performed to detect differences in ReHo between ASD and TD. Evaluation of symptom severity in individuals with ASD was based on the Autism Behavior Checklist (ABC). Voxel-wise correlation analysis was undergone to examine the correlations between the symptom severity and ReHo map in individuals with ASD within brain areas with ReHo abnormalities. RESULTS Compared with the TD controls, individuals with ASD exhibited increased ReHo in the bilateral anterior cingulate cortex, left caudate, right posterior cerebellum (cerebellar tonsil), and bilateral brainstem and decreased ReHo in the left precentral gyrus, left inferior parietal lobule, bilateral postcentral gyrus, and right anterior cerebellum (culmen). The correlation analysis indicated that the ReHo value in the brainstem was negatively associated with the ABC total scores and the scores of Relating factor, respectively. CONCLUSIONS Our findings indicated that widespread ReHo abnormalities occurred in ASD, shedding light on the underlying neurobiology of pathogenesis and symptomatology of ASD.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyi Zhu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Cao
- Department of Psychiatry, Suzhou Guangji Hospital, Suzhou, China
| | - Peipei Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiong Lin
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixin Sun
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Jiang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yasong Du
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Berto S, Treacher AH, Caglayan E, Luo D, Haney JR, Gandal MJ, Geschwind DH, Montillo AA, Konopka G. Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nat Commun 2022; 13:3328. [PMID: 35680911 PMCID: PMC9184501 DOI: 10.1038/s41467-022-31053-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression covaries with brain activity as measured by resting state functional magnetic resonance imaging (MRI). However, it is unclear how genomic differences driven by disease state can affect this relationship. Here, we integrate from the ABIDE I and II imaging cohorts with datasets of gene expression in brains of neurotypical individuals and individuals with autism spectrum disorder (ASD) with regionally matched brain activity measurements from fMRI datasets. We identify genes linked with brain activity whose association is disrupted in ASD. We identified a subset of genes that showed a differential developmental trajectory in individuals with ASD compared with controls. These genes are enriched in voltage-gated ion channels and inhibitory neurons, pointing to excitation-inhibition imbalance in ASD. We further assessed differences at the regional level showing that the primary visual cortex is the most affected region in ASD. Our results link disrupted brain expression patterns of individuals with ASD to brain activity and show developmental, cell type, and regional enrichment of activity linked genes.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alex H Treacher
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Danni Luo
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jillian R Haney
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Gandal
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Albert A Montillo
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
21
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
22
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
23
|
Reardon AM, Li K, Hu XP. Improving Between-Group Effect Size for Multi-Site Functional Connectivity Data via Site-Wise De-Meaning. Front Comput Neurosci 2021; 15:762781. [PMID: 34924984 PMCID: PMC8674307 DOI: 10.3389/fncom.2021.762781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Multi-site functional MRI (fMRI) databases are becoming increasingly prevalent in the study of neurodevelopmental and psychiatric disorders. However, multi-site databases are known to introduce site effects that may confound neurobiological and measures such as functional connectivity (FC). Although studies have been conducted to mitigate site effects, these methods often result in reduced effect size in FC comparisons between controls and patients. Methods: We present a site-wise de-meaning (SWD) strategy in multi-site FC analysis and compare its performance with two common site-effect mitigation methods, i.e., generalized linear model (GLM) and Combining Batches (ComBat) Harmonization. For SWD, after FC was calculated and Fisher z-transformed, the site-wise FC mean was removed from each subject before group-level statistical analysis. The above methods were tested on two multi-site psychiatric consortiums [Autism Brain Imaging Data Exchange (ABIDE) and Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-SNIP)]. Preservation of consistent FC alterations in patients were evaluated for each method through the effect sizes (Hedge’s g) of patients vs. controls. Results: For the B-SNIP dataset, SWD improved the effect size between schizophrenic and control subjects by 4.5–7.9%, while GLM and ComBat decreased the effect size by 22.5–42.6%. For the ABIDE dataset, SWD improved the effect size between autistic and control subjects by 2.9–5.3%, while GLM and ComBat decreased the effect size by up to 11.4%. Conclusion: Compared to the original data and commonly used methods, the SWD method demonstrated superior performance in preserving the effect size in FC features associated with disorders.
Collapse
Affiliation(s)
- Alexandra M Reardon
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Kaiming Li
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Xiaoping P Hu
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States.,Center for Advanced Neuroimaging, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
24
|
Wu X, Lin F, Sun W, Zhang T, Sun H, Li J. Relationship between Short-Range and Homotopic Long-Range Resting State Functional Connectivity in Temporal Lobes in Autism Spectrum Disorder. Brain Sci 2021; 11:1467. [PMID: 34827466 PMCID: PMC8615873 DOI: 10.3390/brainsci11111467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the relationship between short-range and homotopic long-range resting state functional connectivity (RSFC) in children with autism spectrum disorder (ASD) and typically developing (TD) children, we analyzed functional near-infrared spectroscopy (fNIRS) RSFC in 25 children with ASD and 22 age-matched TD children. The resting state fNIRS signals, including spontaneous fluctuations in the oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) concentrations, were recorded from the bilateral temporal lobes. We found that (1) there was no difference in the short-range RSFC between the left and right hemisphere in either ASD or TD group; (2) both the short-range and homotopic long-range RSFC were weaker in the ASD than TD group; and (3) the short-range RSFC was stronger than the homotopic long-range RSFC in the ASD group, whereas no such difference was observed in the TD group. These observations might be helpful for a better understanding of the underlying cortical mechanism in ASD.
Collapse
Affiliation(s)
- Xiaoyin Wu
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (X.W.); (F.L.); (W.S.); (T.Z.); (H.S.)
| | - Fang Lin
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (X.W.); (F.L.); (W.S.); (T.Z.); (H.S.)
| | - Weiting Sun
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (X.W.); (F.L.); (W.S.); (T.Z.); (H.S.)
| | - Tingzhen Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (X.W.); (F.L.); (W.S.); (T.Z.); (H.S.)
| | - Huiwen Sun
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (X.W.); (F.L.); (W.S.); (T.Z.); (H.S.)
| | - Jun Li
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (X.W.); (F.L.); (W.S.); (T.Z.); (H.S.)
- Key Lab for Behavioral Economic Science & Technology, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
25
|
Zhang T, Huang W, Wu X, Sun W, Lin F, Sun H, Li J. Altered complexity in resting-state fNIRS signal in autism: a multiscale entropy approach. Physiol Meas 2021; 42. [PMID: 34315139 DOI: 10.1088/1361-6579/ac184d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/27/2021] [Indexed: 11/12/2022]
Abstract
Objective.Feature extraction and recognition in brain signal processing is of great significance for understanding the neurological mechanism of autism spectrum disorder (ASD). Resting-state (RS) functional near-infrared spectroscopy measurement provides a way to investigate the possible alteration in ASD-related complexity of resting-state (RS) functional near-infrared spectroscopy (fNIRS) signals and to explore the relationship between brain functional connectivity and complexity.Approach.Using the multiscale entropy (MSE) of fNIRS signals recorded from the bilateral temporal lobes (TLs) on 25 children with ASD and 22 typical development (TD) children, the pattern of brain complexity was assessed for both the ASD and TD groups.Main results.The quantitative analysis of MSE revealed the increased complexity in RS-fNIRS in children with ASD, particularly in the left temporal lobe. The complexity in the RS signal and resting state functional connectivity (RSFC) were also observed to exhibit negative correlation in the medium magnitude.Significance.These results indicated that the MSE might serve as a novel measure for RS-fNIRS signals in characterizing and understanding ASD.
Collapse
Affiliation(s)
- Tingzhen Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Wen Huang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xiaoyin Wu
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Weiting Sun
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Fang Lin
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Huiwen Sun
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jun Li
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China.,Key Lab for Behavioral Economic Science & Technology, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
26
|
Altered brain activity in the bilateral frontal cortices and neural correlation with cognitive impairment in schizophrenia. Brain Imaging Behav 2021; 16:415-423. [PMID: 34449034 DOI: 10.1007/s11682-021-00516-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Cognitive impairments are core aspects of schizophrenia and are highly related to poor outcomes. However, the effect of therapy on cognitive impairments remains unsatisfactory as its biological mechanisms are not fully understood. The purpose of this study was to investigate the disrupted intrinsic neural activity of the frontal areas and to further examine the functional connectivity of frontal areas related to cognitive impairments in schizophrenia. We collected brain imaging data using a 3T Siemens Prisma MRI system in 32 patients with schizophrenia and 34 age- and sex-matched healthy controls. The mean fractional amplitude of low-frequency fluctuation (mfALFF) in the frontal regions was calculated and analyzed to evaluate regional neural activity alterations in schizophrenia. Seed regions were generated from clusters showing significant changes in mfALFF in schizophrenia, and its resting-state functional connectivity (rs-FC) with other brain regions were estimated to detect possible aberrant rs-FC indicating cognitive impairments in schizophrenia. We found that mfALFF in the bilateral frontal cortices was increased in schizophrenia. mfALFF-based rs-FC revealed that decreased rs-FC between left middle frontal gyrus (MFG) and left medial superior frontal gyrus (MFSG) was associated with poor delayed memory (r = 0.566, Bonferroni-corrected p = 0.012). These findings demonstrate increased neural activity in the frontal cortices in schizophrenia. FC analysis revealed a diminished rs-FC pattern between the left MFG and left MSFG that was associated with cognitive impairments. These findings have provided deeper insight into the alterations in brain function related to specific domains of cognitive impairment and may provide evidence for precise interventions for cognitive deficits in schizophrenia.
Collapse
|
27
|
Zhang J, Kucyi A, Raya J, Nielsen AN, Nomi JS, Damoiseaux JS, Greene DJ, Horovitz SG, Uddin LQ, Whitfield-Gabrieli S. What have we really learned from functional connectivity in clinical populations? Neuroimage 2021; 242:118466. [PMID: 34389443 DOI: 10.1016/j.neuroimage.2021.118466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 02/09/2023] Open
Abstract
Functional connectivity (FC), or the statistical interdependence of blood-oxygen dependent level (BOLD) signals between brain regions using fMRI, has emerged as a widely used tool for probing functional abnormalities in clinical populations due to the promise of the approach across conceptual, technical, and practical levels. With an already vast and steadily accumulating neuroimaging literature on neurodevelopmental, psychiatric, and neurological diseases and disorders in which FC is a primary measure, we aim here to provide a high-level synthesis of major concepts that have arisen from FC findings in a manner that cuts across different clinical conditions and sheds light on overarching principles. We highlight that FC has allowed us to discover the ubiquity of intrinsic functional networks across virtually all brains and clarify typical patterns of neurodevelopment over the lifespan. This understanding of typical FC maturation with age has provided important benchmarks against which to evaluate divergent maturation in early life and degeneration in late life. This in turn has led to the important insight that many clinical conditions are associated with complex, distributed, network-level changes in the brain, as opposed to solely focal abnormalities. We further emphasize the important role that FC studies have played in supporting a dimensional approach to studying transdiagnostic clinical symptoms and in enhancing the multimodal characterization and prediction of the trajectory of symptom progression across conditions. We highlight the unprecedented opportunity offered by FC to probe functional abnormalities in clinical conditions where brain function could not be easily studied otherwise, such as in disorders of consciousness. Lastly, we suggest high priority areas for future research and acknowledge critical barriers associated with the use of FC methods, particularly those related to artifact removal, data denoising and feasibility in clinical contexts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Aaron Kucyi
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Jovicarole Raya
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Jessica S Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Lucina Q Uddin
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
28
|
Comparable level of aggression between patients with behavioural addiction and healthy subjects. Transl Psychiatry 2021; 11:375. [PMID: 34226502 PMCID: PMC8257714 DOI: 10.1038/s41398-021-01502-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Heightened aggression is identified in several psychiatric disorders, including addiction. In this preliminary study with a relatively small number of samples, aggression in subjects diagnosed with behavioural addiction (BA) was implicitly assessed using the point subtraction aggression paradigm (PSAP) test along with measurements of oxy- and deoxyhaemoglobin dynamics in the prefrontal cortex (PFC) during the test using functional near-infrared spectroscopy. Aggression in BA patients was no higher than that of healthy control (CT) subjects in the PSAP test. Although no apparent increase or decrease in haemoglobin concentrations was observed in the PFC of either BA patients or CT subjects, abnormal correlations within the PFC network were present in BA patients. Consistent with comparable aggression between the groups, blood concentrations of the sex hormone testosterone, which has been shown to be associated with aggressiveness, was even lower in BA patients than in CT subjects. In contrast, when a set of questionnaire surveys for the assessment of aggression were administered, BA patients rated themselves as more aggressive than non-BA subjects. Collectively, these results suggest that aggression may not be heightened in BA, but BA patients may overestimate their aggressiveness, raising concerns about the use of questionnaire surveys for assessments of affective traits such as aggression in behavioural addiction.
Collapse
|
29
|
Harikumar A, Evans DW, Dougherty CC, Carpenter KL, Michael AM. A Review of the Default Mode Network in Autism Spectrum Disorders and Attention Deficit Hyperactivity Disorder. Brain Connect 2021; 11:253-263. [PMID: 33403915 PMCID: PMC8112713 DOI: 10.1089/brain.2020.0865] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to examine the relationships between brain function and phenotypic features in neurodevelopmental disorders. Techniques such as resting-state functional connectivity (FC) have enabled the identification of the primary networks of the brain. One fMRI network, in particular, the default mode network (DMN), has been implicated in social-cognitive deficits in autism spectrum disorders (ASD) and attentional deficits in attention deficit hyperactivity disorder (ADHD). Given the significant clinical and genetic overlap between ASD and ADHD, surprisingly, no reviews have compared the clinical, developmental, and genetic correlates of DMN in ASD and ADHD and here we address this knowledge gap. We find that, compared with matched controls, ASD studies show a mixed pattern of both stronger and weaker FC in the DMN and ADHD studies mostly show stronger FC. Factors such as age, intelligence quotient, medication status, and heredity affect DMN FC in both ASD and ADHD. We also note that most DMN studies make ASD versus ADHD group comparisons and fail to consider ASD+ADHD comorbidity. We conclude, by identifying areas for improvement and by discussing the importance of using transdiagnostic approaches such as the Research Domain Criteria (RDoC) to fully account for the phenotypic and genotypic heterogeneity and overlap of ASD and ADHD.
Collapse
Affiliation(s)
- Amritha Harikumar
- Department of Psychiatry, Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Address correspondence to: Amritha Harikumar, Department of Psychological Sciences, Rice University, 6566 Main St, BRC 780B, Houston, TX 77030, USA
| | - David W. Evans
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Chase C. Dougherty
- Department of Psychiatry, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kimberly L.H. Carpenter
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Andrew M. Michael
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
30
|
Lan Z, Xu S, Wu Y, Xia L, Hua K, Li M, Liu M, Yin Y, Li C, Huang S, Feng Y, Jiang G, Wang T. Alterations of Regional Homogeneity in Preschool Boys With Autism Spectrum Disorders. Front Neurosci 2021; 15:644543. [PMID: 33828452 PMCID: PMC8019812 DOI: 10.3389/fnins.2021.644543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives The study was aimed at investigating the alterations of local spontaneous brain activity in preschool boys with autism spectrum disorders (ASD). Methods Based on regional homogeneity (ReHo), the acquired resting state functional magnetic resonance imaging (fMRI) data sets, which included 86 boys with ASD and 54 typically developing (TD) boys, were used to detect regional brain activity. Pearson correlation analysis was used to study the relationship between abnormal ReHo value and the Childhood Autism Rating Scale (CARS), Autism Behavior Checklist (ABC), developmental quotient, and age. Results In the ASD group, we found increased ReHo in the right calcarine as well as decreased ReHo in the opercular part of the left inferior frontal gyrus, the left middle temporal gyrus, the left angular gyrus, and the right medial orbital frontal cortex (p < 0.05, false discovery rate correction). We did not find a correlation between the results of brain regions and the CARS, ABC, and age. Conclusions Our study found spontaneous activity changes in multiple brain regions, especially the visual and language-related areas of ASD, that may help to further understand the clinical characteristics of boys with ASD.
Collapse
Affiliation(s)
- Zhihong Lan
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Likun Xia
- Department of Magnetic Resonance Imaging, People's Hospital of Yuxi City, Yuxi, China
| | - Kelei Hua
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chunlong Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shumei Huang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Feng
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
31
|
Jao Keehn RJ, Pueschel EB, Gao Y, Jahedi A, Alemu K, Carper R, Fishman I, Müller RA. Underconnectivity Between Visual and Salience Networks and Links With Sensory Abnormalities in Autism Spectrum Disorders. J Am Acad Child Adolesc Psychiatry 2021; 60:274-285. [PMID: 32126259 PMCID: PMC7483217 DOI: 10.1016/j.jaac.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The anterior insular cortex (AI), which is a part of the salience network, is critically involved in visual awareness, multisensory perception, and social and emotional processing, among other functions. In children and adolescents with autism spectrum disorders (ASDs), evidence has suggested aberrant functional connectivity (FC) of AI compared with typically developing peers. While recent studies have primarily focused on the functional connections between salience and social networks, much less is known about connectivity between AI and primary sensory regions, including visual areas, and how these patterns may be linked to autism symptomatology. METHOD The current investigation implemented functional magnetic resonance imaging to examine resting-state FC patterns of salience and visual networks in children and adolescents with ASDs compared with typically developing controls, and to relate them to behavioral measures. RESULTS Functional underconnectivity was found in the ASD group between left AI and bilateral visual cortices. Moreover, in an ASD subgroup with more atypical visual sensory profiles, FC was positively correlated with abnormal social motivational responsivity. CONCLUSION Findings of reduced FC between salience and visual networks in ASDs potentially indicate deficient selection of salient information. Moreover, in children and adolescents with ASDs who show strongly atypical visual sensory profiles, connectivity at seemingly more neurotypical levels may be paradoxically associated with greater impairment of social motivation.
Collapse
Affiliation(s)
- R Joanne Jao Keehn
- Brain Development Imaging Laboratories, San Diego State University, California.
| | - Ellyn B Pueschel
- Brain Development Imaging Laboratories, San Diego State University, California
| | - Yangfeifei Gao
- Brain Development Imaging Laboratories, San Diego State University, California; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, California
| | - Afrooz Jahedi
- Brain Development Imaging Laboratories, San Diego State University, California; San Diego State University/Claremont Graduate University Joint Doctoral Program in Computational Statistics, California
| | - Kalekirstos Alemu
- Brain Development Imaging Laboratories, San Diego State University, California
| | - Ruth Carper
- Brain Development Imaging Laboratories, San Diego State University, California; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, San Diego State University, California; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, San Diego State University, California; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, California
| |
Collapse
|
32
|
Pua EPK, Thomson P, Yang JYM, Craig JM, Ball G, Seal M. Individual Differences in Intrinsic Brain Networks Predict Symptom Severity in Autism Spectrum Disorders. Cereb Cortex 2021; 31:681-693. [PMID: 32959054 DOI: 10.1093/cercor/bhaa252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
The neurobiology of heterogeneous neurodevelopmental disorders such as Autism Spectrum Disorders (ASD) is still unknown. We hypothesized that differences in subject-level properties of intrinsic brain networks were important features that could predict individual variation in ASD symptom severity. We matched cases and controls from a large multicohort ASD dataset (ABIDE-II) on age, sex, IQ, and image acquisition site. Subjects were matched at the individual level (rather than at group level) to improve homogeneity within matched case-control pairs (ASD: n = 100, mean age = 11.43 years, IQ = 110.58; controls: n = 100, mean age = 11.43 years, IQ = 110.70). Using task-free functional magnetic resonance imaging, we extracted intrinsic functional brain networks using projective non-negative matrix factorization. Intrapair differences in strength in subnetworks related to the salience network (SN) and the occipital-temporal face perception network were robustly associated with individual differences in social impairment severity (T = 2.206, P = 0.0301). Findings were further replicated and validated in an independent validation cohort of monozygotic twins (n = 12; 3 pairs concordant and 3 pairs discordant for ASD). Individual differences in the SN and face-perception network are centrally implicated in the neural mechanisms of social deficits related to ASD.
Collapse
Affiliation(s)
- Emmanuel Peng Kiat Pua
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville VIC 3010, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Medicine, Austin Health, University of Melbourne, Parkville VIC 3010, Australia
| | - Phoebe Thomson
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Suite (NACIS), The Royal Children's Hospital, Parkville VIC 3052, Australia
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia.,Molecular Epidemiology, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong VIC 3220, Australia
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
33
|
Yu Y, Wang X, Yang J, Qiu J. The role of the MTG in negative emotional processing in young adults with autistic-like traits: A fMRI task study. J Affect Disord 2020; 276:890-897. [PMID: 32739707 DOI: 10.1016/j.jad.2020.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Few previous studies explored negative emotion processing in autistic-like traits people using task-based fMRI. In this study, we applied task fMRI to determine the relationship between negative emotion processing and social skill within autistic-like traits people. aimed to find which brain areas specificity play a key role in emotional processing. METHODS 106 of Chinese individuals measured with AQ. Then applied emotion regulation task to explore the difference in brain activation and functional connectivity in individuals with autistic traits. RESULTS The results showed increased activation in the right middle temporal gyrus (MTG). The mediation analysis showed the right MTG mediates the relationship between autistic-like traits and negative emotion. Generalized psychophysiological interaction (gPPI) analysis also suggested that the right MTG shows significant functional connectivity with the left parahippocampal gyrus (PHG) and left precuneus cortex. LIMITATIONS Our sample are university students, there may have a bias in the sample compared to sub-average and have no differences between the gender, we will broaden the sample size and take the gender into account. We use two conditions as our focused theme, we want to use a more specific task to explore negative emotion in autistic-like traits people. CONCLUSIONS The results showed that the right MTG was an important brain region in individuals with autistic-like traits, and our study provides a wider discussion about autism brain activation and functional connectivity patterns and the use the MTG as a hallmark in individuals with autistic-like traits.
Collapse
Affiliation(s)
- Yaxu Yu
- School of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Xiaoqin Wang
- School of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Junyi Yang
- School of education science, Xinyang Normal University, Henan, China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, China.
| |
Collapse
|
34
|
Wang J, Zhang L, Wang Q, Chen L, Shi J, Chen X, Li Z, Shen D. Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3137-3147. [PMID: 32305905 DOI: 10.1109/tmi.2020.2987817] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The resting-state functional magnetic resonance imaging (rs-fMRI) reflects functional activity of brain regions by blood-oxygen-level dependent (BOLD) signals. Up to now, many computer-aided diagnosis methods based on rs-fMRI have been developed for Autism Spectrum Disorder (ASD). These methods are mostly the binary classification approaches to determine whether a subject is an ASD patient or not. However, the disease often consists of several sub-categories, which are complex and thus still confusing to many automatic classification methods. Besides, existing methods usually focus on the functional connectivity (FC) features in grey matter regions, which only account for a small portion of the rs-fMRI data. Recently, the possibility to reveal the connectivity information in the white matter regions of rs-fMRI has drawn high attention. To this end, we propose to use the patch-based functional correlation tensor (PBFCT) features extracted from rs-fMRI in white matter, in addition to the traditional FC features from gray matter, to develop a novel multi-class ASD diagnosis method in this work. Our method has two stages. Specifically, in the first stage of multi-source domain adaptation (MSDA), the source subjects belonging to multiple clinical centers (thus called as source domains) are all transformed into the same target feature space. Thus each subject in the target domain can be linearly reconstructed by the transformed subjects. In the second stage of multi-view sparse representation (MVSR), a multi-view classifier for multi-class ASD diagnosis is developed by jointly using both views of the FC and PBFCT features. The experimental results using the ABIDE dataset verify the effectiveness of our method, which is capable of accurately classifying each subject into a respective ASD sub-category.
Collapse
|
35
|
Kozhemiako N, Nunes AS, Vakorin V, Iarocci G, Ribary U, Doesburg SM. Alterations in Local Connectivity and Their Developmental Trajectories in Autism Spectrum Disorder: Does Being Female Matter? Cereb Cortex 2020; 30:5166-5179. [PMID: 32368779 DOI: 10.1093/cercor/bhaa109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is diagnosed more often in males with a ratio of 1:4 females/males. This bias is even stronger in neuroimaging studies. There is a growing evidence suggesting that local connectivity and its developmental trajectory is altered in ASD. Here, we aim to investigate how local connectivity and its age-related trajectories vary with ASD in both males and females. We used resting-state fMRI data from the ABIDE I and II repository: males (n = 102) and females (n = 92) with ASD, and typically developing males (n = 104) and females (n = 92) aged between 6 and 26. Local connectivity was quantified as regional homogeneity. We found increases in local connectivity in participants with ASD in the somatomotor and limbic networks and decreased local connectivity within the default mode network. These alterations were more pronounced in females with ASD. In addition, the association between local connectivity and ASD symptoms was more robust in females. Females with ASD had the most distinct developmental trajectories of local connectivity compared with other groups. Overall, our findings of more pronounced local connectivity alterations in females with ASD could indicate a greater etiological load for an ASD diagnosis in this group congruent with the female protective effect hypothesis.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Adonay S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Vasily Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Fraser Health, British Columbia Health Authority, Surrey, BC V3T 5X3, Canada
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Urs Ribary
- Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Department of Psychology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Department of Pediatrics and Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
36
|
Resting-state abnormalities of posterior cingulate in autism spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:139-159. [PMID: 32711808 DOI: 10.1016/bs.pmbts.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) plays pivotal roles in cognitive, social and emotional processing, as well as early neural development that supports complex interactions among different neural networks. Alterations in its local and long-range connectivity during resting state are often implicated in neuropathology of neurodevelopmental disorders such as autism spectrum disorder (ASD). ASD is characterized by social and communication deficits, as well as restricted and repetitive behaviors and interests. Individuals with ASD demonstrate persistent disturbances in cognitive and social-emotional functioning, and their PCC exhibits both local and long-range resting state abnormalities compared to typically developing healthy controls. In terms of regional metrics, only the dorsal part of the PCC showed local underconnectivity. As to long-range connectivity measures, the most replicated finding in ASD studies is the reduced functional coupling between the PCC and medial prefrontal cortex (MPFC), which may represent a core neuropathology of ASD unrelated to medication effects. Functional importance of these resting state abnormalities to ASD and directions of future study are discussed at the end of this chapter.
Collapse
|
37
|
Wang M, Zhang D, Huang J, Yap PT, Shen D, Liu M. Identifying Autism Spectrum Disorder With Multi-Site fMRI via Low-Rank Domain Adaptation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:644-655. [PMID: 31395542 PMCID: PMC7169995 DOI: 10.1109/tmi.2019.2933160] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a wide range of symptoms. Identifying biomarkers for accurate diagnosis is crucial for early intervention of ASD. While multi-site data increase sample size and statistical power, they suffer from inter-site heterogeneity. To address this issue, we propose a multi-site adaption framework via low-rank representation decomposition (maLRR) for ASD identification based on functional MRI (fMRI). The main idea is to determine a common low-rank representation for data from the multiple sites, aiming to reduce differences in data distributions. Treating one site as a target domain and the remaining sites as source domains, data from these domains are transformed (i.e., adapted) to a common space using low-rank representation. To reduce data heterogeneity between the target and source domains, data from the source domains are linearly represented in the common space by those from the target domain. We evaluated the proposed method on both synthetic and real multi-site fMRI data for ASD identification. The results suggest that our method yields superior performance over several state-of-the-art domain adaptation methods.
Collapse
Affiliation(s)
- Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Jiashuang Huang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
38
|
Jin Y, Choi J, Lee S, Kim JW, Hong Y. Pathogenetical and Neurophysiological Features of Patients with Autism Spectrum Disorder: Phenomena and Diagnoses. J Clin Med 2019; 8:E1588. [PMID: 31581672 PMCID: PMC6832208 DOI: 10.3390/jcm8101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is accompanied by social deficits, repetitive and restricted interests, and altered brain development. The majority of ASD patients suffer not only from ASD itself but also from its neuropsychiatric comorbidities. Alterations in brain structure, synaptic development, and misregulation of neuroinflammation are considered risk factors for ASD and neuropsychiatric comorbidities. Electroencephalography has been developed to quantitatively explore effects of these neuronal changes of the brain in ASD. The pineal neurohormone melatonin is able to contribute to neural development. Also, this hormone has an inflammation-regulatory role and acts as a circadian key regulator to normalize sleep. These functions of melatonin may play crucial roles in the alleviation of ASD and its neuropsychiatric comorbidities. In this context, this article focuses on the presumable role of melatonin and suggests that this hormone could be a therapeutic agent for ASD and its related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Seunghoon Lee
- Gimhae Industry Promotion & Biomedical Foundation, Gimhae 50969, Korea.
| | - Jong Won Kim
- Department of Healthcare Information Technology, College of Bio-Nano Information Technology, Inje University, Gimhae 50834, Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
39
|
Mogadam A, Keller AE, Arnold PD, Schachar R, Lerch JP, Anagnostou E, Pang EW. Magnetoencephalographic (MEG) brain activity during a mental flexibility task suggests some shared neurobiology in children with neurodevelopmental disorders. J Neurodev Disord 2019; 11:19. [PMID: 31426750 PMCID: PMC6701152 DOI: 10.1186/s11689-019-9280-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children with neurodevelopmental disorders (NDDs) exhibit a shared phenotype that involves executive dysfunctions including impairments in mental flexibility (MF). It is of interest to understand if this phenotype stems from some shared neurobiology. METHODS To investigate this possibility, we used magnetoencephalography (MEG) neuroimaging to compare brain activity in children (n = 88; 8-15 years) with autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD), as they completed a set-shifting/mental flexibility task. RESULTS Neuroimaging results revealed a similar parietal activation profile across the NDD, groups suggesting a link to their shared phenotype. Differences in frontal activity differentiated the three clinical groups. Brain-behaviour analyses showed a link with repetitive behaviours suggesting shared dysfunction in the associative loop of the corticostriatal system. CONCLUSION Our study supports the notion that NDDs may exist along a complex phenotypic/biological continuum. All NDD groups showed a sustained parietal activity profile suggesting that they share a strong reliance on the posterior parietal cortices to complete the mental flexibility task; future studies could elucidate whether this is due to delayed brain development or compensatory functioning. The differences in frontal activity may play a role in differentiating the NDDs. The OCD group showed sustained prefrontal activity that may be reflective of hyperfrontality. The ASD group showed reduced frontal activation suggestive of frontal dysfunction and the ADHD group showed an extensive hypoactivity that included frontal and parietal regions. Brain-behaviour analyses showed a significant correlation with repetitive behaviours which may reflect dysfunction in the associative loop of the corticostriatal system, linked to inflexible behaviours.
Collapse
Affiliation(s)
- Alexandra Mogadam
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada
| | - Anne E Keller
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada.,Genetics and Genome Biology, SickKids Research Institute, Toronto, Canada
| | - Russell Schachar
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Elizabeth W Pang
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada. .,Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada. .,Division of Neurology, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
| |
Collapse
|
40
|
Jao Keehn RJ, Nair S, Pueschel EB, Linke AC, Fishman I, Müller RA. Atypical Local and Distal Patterns of Occipito-frontal Functional Connectivity are Related to Symptom Severity in Autism. Cereb Cortex 2019; 29:3319-3330. [PMID: 30137241 PMCID: PMC7342606 DOI: 10.1093/cercor/bhy201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASDs) are increasingly prevalent neurodevelopmental disorders characterized by sociocommunicative impairments. Growing consensus indicates that neurobehavioral abnormalities require explanation in terms of interconnected networks. Despite theoretical speculations about increased local and reduced distal connectivity, links between local and distal functional connectivity have not been systematically investigated in ASDs. Specifically, it remains open whether hypothesized local overconnectivity may reflect isolated versus overly integrative processing. Resting state functional MRI data from 57 children and adolescents with ASDs and 51 typically developing (TD) participants were included. In regional homogeneity (ReHo) analyses, pericalcarine visual cortex was found be locally overconnected (ASD > TD). Using this region as seed in whole-brain analyses, we observed overconnectivity in distal regions, specifically middle frontal gyri, for an ASD subgroup identified through k-means clustering. While in this subgroup local occipital to distal frontal overconnectivity was associated with greater symptom severity, a second subgroup showed the opposite pattern of connectivity and symptom severity correlations. Our findings suggest that increased local connectivity in ASDs is region-specific and may be partially associated with more integrative long-distance connectivity. Results also highlight the need to test for subtypes, as differential patterns of brain-behavior links were observed in two distinct subgroups of our ASD cohort.
Collapse
Affiliation(s)
- R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Sangeeta Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Psychology, University of Alabama, at Birmingham, Birmingham, AL, USA
| | - Ellyn B Pueschel
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Annika C Linke
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
41
|
d'Albis MA, Guevara P, Guevara M, Laidi C, Boisgontier J, Sarrazin S, Duclap D, Delorme R, Bolognani F, Czech C, Bouquet C, Ly-Le Moal M, Holiga S, Amestoy A, Scheid I, Gaman A, Leboyer M, Poupon C, Mangin JF, Houenou J. Local structural connectivity is associated with social cognition in autism spectrum disorder. Brain 2019; 141:3472-3481. [PMID: 30423029 DOI: 10.1093/brain/awy275] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The current theory implying local, short-range overconnectivity in autism spectrum disorder, contrasting with long-range underconnectivity, is based on heterogeneous results, on limited data involving functional connectivity studies, on heterogeneous paediatric populations and non-specific methodologies. In this work, we studied short-distance structural connectivity in a homogeneous population of males with high-functioning autism spectrum disorder and used a novel methodology specifically suited for assessing U-shaped short-distance tracts, including a recently developed tractography-based atlas of the superficial white matter fibres. We acquired diffusion-weighted MRI for 58 males (27 subjects with high-functioning autism spectrum disorder and 31 control subjects) and extracted the mean generalized fractional anisotropy of 63 short-distance tracts. Neuropsychological evaluation included Wechsler Adult Intelligence Scale IV (WAIS-IV), Communication Checklist-Adult, Empathy Quotient, Social Responsiveness Scale and Behaviour Rating Inventory of Executive Function-Adult (BRIEF-A). In contradiction with the models of short-range over-connectivity in autism spectrum disorder, we found that patients with autism spectrum disorder had a significantly decreased anatomical connectivity in a component comprising 13 short tracts compared to controls. Specific short-tract atypicalities in temporal lobe and insula were significantly associated with clinical manifestations of autism spectrum disorder such as social awareness, language structure, pragmatic skills and empathy, emphasizing their importance in social dysfunction. Short-range decreased anatomical connectivity may thus be an important substrate of social deficits in autism spectrum disorder, in contrast with current models.
Collapse
Affiliation(s)
- Marc-Antoine d'Albis
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Pamela Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Miguel Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile.,Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Charles Laidi
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Jennifer Boisgontier
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France
| | - Samuel Sarrazin
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Delphine Duclap
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Richard Delorme
- Fondation Fondamental, Créteil, France.,Service de psychiatrie de l'enfant et de l'adolescent, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France.,Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
| | - Federico Bolognani
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | - Christian Czech
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | - Céline Bouquet
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | | | - Stefan Holiga
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | - Anouck Amestoy
- Charles Perrens Hospital, Autism Expert Center, Bordeaux, France
| | - Isabelle Scheid
- INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Alexandru Gaman
- INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Marion Leboyer
- INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Cyril Poupon
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | | | - Josselin Houenou
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
42
|
Resting-state abnormalities in Autism Spectrum Disorders: A meta-analysis. Sci Rep 2019; 9:3892. [PMID: 30846796 PMCID: PMC6405852 DOI: 10.1038/s41598-019-40427-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
The gold standard for clinical assessment of Autism Spectrum Disorders (ASD) relies on assessing behavior via semi-structured play-based interviews and parent interviews. Although these methods show good sensitivity and specificity in diagnosing ASD cases, behavioral assessments alone may hinder the identification of asymptomatic at-risk group. Resting-state functional magnetic resonance imaging (rs-fMRI) could be an appropriate approach to produce objective neural markers to supplement behavioral assessments due to its non-invasive and task-free nature. Previous neuroimaging studies reported inconsistent resting-state abnormalities in ASD, which may be explained by small sample sizes and phenotypic heterogeneity in ASD subjects, and/or the use of different analytical methods across studies. The current study aims to investigate the local resting-state abnormalities of ASD regardless of subject age, IQ, gender, disease severity and methodological differences, using activation likelihood estimation (ALE). MEDLINE/PubMed databases were searched for whole-brain rs-fMRI studies on ASD published until Feb 2018. Eight experiments involving 424 subjects were included in the ALE meta-analysis. We demonstrate two ASD-related resting-state findings: local underconnectivity in the dorsal posterior cingulate cortex (PCC) and in the right medial paracentral lobule. This study contributes to uncovering a consistent pattern of resting-state local abnormalities that may serve as potential neurobiological markers for ASD.
Collapse
|
43
|
Gotts SJ, Ramot M, Jasmin K, Martin A. Altered resting-state dynamics in autism spectrum disorder: Causal to the social impairment? Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:28-36. [PMID: 30414457 DOI: 10.1016/j.pnpbp.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by profound impairments in social abilities and by restricted interests and repetitive behaviors. Much work in the past decade has been dedicated to understanding the brain-bases of ASD, and in the context of resting-state functional connectivity fMRI in high-functioning adolescents and adults, the field has established a set of reliable findings: decreased cortico-cortical interactions among brain regions thought to be engaged in social processing, along with a simultaneous increase in thalamo-cortical and striato-cortical interactions. However, few studies have attempted to manipulate these altered patterns, leading to the question of whether such patterns are actually causally involved in producing the corresponding behavioral impairments. We discuss a few such recent attempts in the domains of fMRI neurofeedback and overt social interaction during scanning, and we conclude that the evidence of causal involvement is somewhat mixed. We highlight the potential role of the thalamus and striatum in ASD and emphasize the need for studies that directly compare scanning during multiple cognitive states in addition to the resting-state.
Collapse
Affiliation(s)
- Stephen J Gotts
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States.
| | - Michal Ramot
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States
| | - Kyle Jasmin
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States; Department of Psychological Sciences, Birkbeck University of London, London, UK
| | - Alex Martin
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States
| |
Collapse
|
44
|
Tomasi D, Volkow ND. Reduced Local and Increased Long-Range Functional Connectivity of the Thalamus in Autism Spectrum Disorder. Cereb Cortex 2019; 29:573-585. [PMID: 29300843 PMCID: PMC6319176 DOI: 10.1093/cercor/bhx340] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/26/2017] [Indexed: 12/22/2022] Open
Abstract
It is hypothesized that brain network abnormalities in autism spectrum disorder (ASD) reflect local overconnectivity and long-range underconnectivity. However, this is not a consistent finding in recent studies, which could reflect the developmental nature and the heterogeneity of ASD. Here, we tested 565 ASD and 602 neurotypical (NT) males, and 91 ASD and 233 NT females using local functional connectivity density (lFCD) mapping and seed-voxel correlation analyses to assess how local and long-range connectivities differ in ASD. Compared with NT males, ASD males had lower and weaker age-related increases in thalamic lFCD, which were associated with symptoms of autism. Post-hoc seed-voxel correlation analyses for the thalamus cluster revealed stronger connectivity with auditory, somatosensory, motoric, and interoceptive cortices for ASD than for NT, both in males and in females, which decreased with age in both ASD and NT. These results document the disruption of local thalamic connectivity and dysregulation of thalamo-cortical networks, which might contribute to perceptual, motoric, and interoceptive impairments, and are also consistent with a developmental delay in functional connectivity in ASD.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
- National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
45
|
Mash LE, Linke AC, Olson LA, Fishman I, Liu TT, Müller RA. Transient states of network connectivity are atypical in autism: A dynamic functional connectivity study. Hum Brain Mapp 2019; 40:2377-2389. [PMID: 30681228 DOI: 10.1002/hbm.24529] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
There is ample evidence of atypical functional connectivity (FC) in autism spectrum disorders (ASDs). However, transient relationships between neural networks cannot be captured by conventional static FC analyses. Dynamic FC (dFC) approaches have been used to identify repeating, transient connectivity patterns ("states"), revealing spatiotemporal network properties not observable in static FC. Recent studies have found atypical dFC in ASDs, but questions remain about the nature of group differences in transient connectivity, and the degree to which states persist or change over time. This study aimed to: (a) describe and relate static and dynamic FC in typical development and ASDs, (b) describe group differences in transient states and compare them with static FC patterns, and (c) examine temporal stability and flexibility between identified states. Resting-state functional magnetic resonance imaging (fMRI) data were collected from 62 ASD and 57 typically developing (TD) children and adolescents. Whole-brain, data-driven regions of interest were derived from group independent component analysis. Sliding window analysis and k-means clustering were used to explore dFC and identify transient states. Across all regions, static overconnnectivity and increased variability over time in ASDs predominated. Furthermore, significant patterns of group differences emerged in two transient states that were not observed in the static FC matrix, with group differences in one state primarily involving sensory and motor networks, and in the other involving higher-order cognition networks. Default mode network segregation was significantly reduced in ASDs in both states. Results highlight that dynamic approaches may reveal more nuanced transient patterns of atypical FC in ASDs.
Collapse
Affiliation(s)
- Lisa E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| | - Annika C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Lindsay A Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Thomas T Liu
- Center for Functional MRI, Department of Radiology, University of California San Diego, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| |
Collapse
|
46
|
Spera G, Retico A, Bosco P, Ferrari E, Palumbo L, Oliva P, Muratori F, Calderoni S. Evaluation of Altered Functional Connections in Male Children With Autism Spectrum Disorders on Multiple-Site Data Optimized With Machine Learning. Front Psychiatry 2019; 10:620. [PMID: 31616322 PMCID: PMC6763745 DOI: 10.3389/fpsyt.2019.00620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
No univocal and reliable brain-based biomarkers have been detected to date in Autism Spectrum Disorders (ASD). Neuroimaging studies have consistently revealed alterations in brain structure and function of individuals with ASD; however, it remains difficult to ascertain the extent and localization of affected brain networks. In this context, the application of Machine Learning (ML) classification methods to neuroimaging data has the potential to contribute to a better distinction between subjects with ASD and typical development controls (TD). This study is focused on the analysis of resting-state fMRI data of individuals with ASD and matched TD, available within the ABIDE collection. To reduce the multiple sources of heterogeneity that impact on understanding the neural underpinnings of autistic condition, we selected a subgroup of 190 subjects (102 with ASD and 88 TD) according to the following criteria: male children (age range: 6.5-13 years); rs-fMRI data acquired with open eyes; data from the University sites that provided the largest number of scans (KKI, NYU, UCLA, UM). Connectivity values were evaluated as the linear correlation between pairs of time series of brain areas; then, a Linear kernel Support Vector Machine (L-SVM) classification, with an inter-site cross-validation scheme, was carried out. A permutation test was conducted to identify over-connectivity and under-connectivity alterations in the ASD group. The mean L-SVM classification performance, in terms of the area under the ROC curve (AUC), was 0.75 ± 0.05. The highest performance was obtained using data from KKI, NYU and UCLA sites in training and data from UM as testing set (AUC = 0.83). Specifically, stronger functional connectivity (FC) in ASD with respect to TD involve (p < 0.001) the angular gyrus with the precuneus in the right (R) hemisphere, and the R frontal operculum cortex with the pars opercularis of the left (L) inferior frontal gyrus. Weaker connections in ASD group with respect to TD are the intra-hemispheric R temporal fusiform cortex with the R hippocampus, and the L supramarginal gyrus with L planum polare. The results indicate that both under- and over-FC occurred in a selected cohort of ASD children relative to TD controls, and that these functional alterations are spread in different brain networks.
Collapse
Affiliation(s)
- Giovanna Spera
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | | | - Elisa Ferrari
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy.,Scuola Normale Superiore, Faculty of Sciences, Pisa, Italy
| | - Letizia Palumbo
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Piernicola Oliva
- Department of Chemistry, and Pharmacy, University of Sassari, Sassari, Italy.,National Institute for Nuclear Physics (INFN), Cagliari Division, Cagliari, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
47
|
Rendall AR, Perrino PA, Buscarello AN, Fitch RH. Shank3B mutant mice display pitch discrimination enhancements and learning deficits. Int J Dev Neurosci 2018; 72:13-21. [DOI: 10.1016/j.ijdevneu.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amanda R. Rendall
- Yale University School of Medicine, Pediatrics464 Congress AveNew Haven06520‐8055CTUSA
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Peter A. Perrino
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Alexzandrea N. Buscarello
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - R. Holly Fitch
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| |
Collapse
|
48
|
Nair S, Jao Keehn RJ, Berkebile MM, Maximo JO, Witkowska N, Müller RA. Local resting state functional connectivity in autism: site and cohort variability and the effect of eye status. Brain Imaging Behav 2018; 12:168-179. [PMID: 28197860 DOI: 10.1007/s11682-017-9678-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with prominent impairments in sociocommunicative abilities, which have been linked to anomalous brain network organization. Despite ample evidence of atypical long-distance connectivity, the literature on local connectivity remains small and divergent. We used resting-state functional MRI regional homogeneity (ReHo) as a local connectivity measure in comparative analyses across several well-matched low-motion subsamples from the Autism Brain Imaging Data Exchange and in-house data, with a grand total of 147 ASD and 184 typically developing (TD) participants, ages 7-18 years. We tested for group differences in each subsample, with additional focus on the difference between eyes-open and eyes-closed resting states. Despite selection of highest quality data and tight demographic and motion matching between groups and across samples, few effects in exactly identical loci (voxels) were found across samples. However, there was gross consistency across all eyes-open samples of local overconnectivity (ASD > TD) in posterior, visual regions. There was also gross consistency of local underconnectivity (ASD < TD) in cingulate gyrus, although exact loci varied between mid/posterior and anterior sections. While all eyes-open datasets showed the described gross similarities, the pattern of group differences for participants scanned with eyes closed was different, with local overconnectivity in ASD in posterior cingulate gyrus, but underconnectivity in some visual regions. Our findings suggest that fMRI local connectivity measures may be relatively susceptible to site and cohort variability and that some previous inconsistencies in the ASD ReHo literature may be reconciled by more careful consideration of eye status.
Collapse
Affiliation(s)
- Sangeeta Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - Michael M Berkebile
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - José Omar Maximo
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA.,Department of Psychology, University of Alabama, Birmingham, AL, USA
| | - Natalia Witkowska
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
49
|
Wang W, Liu J, Shi S, Liu T, Ma L, Ma X, Tian J, Gong Q, Wang M. Altered Resting-State Functional Activity in Patients With Autism Spectrum Disorder: A Quantitative Meta-Analysis. Front Neurol 2018; 9:556. [PMID: 30087648 PMCID: PMC6066523 DOI: 10.3389/fneur.2018.00556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2018] [Indexed: 02/05/2023] Open
Abstract
Background: There is accumulating evidence showing that patients with autism spectrum disorder (ASD) have obvious changes in resting-state functional brain activity. So far, there have been no meta-analyses of the resting-state brain activity alterations in patients with ASD. We attempted to explore the resting-state functional activity changes in patients with ASD, possibly providing a new perspective for investigating the pathophysiology of patients with ASD. Methods: We screened relevant studies published before August 2017 in PubMed, Ovid, Web of Science, China National Knowledge Infrastructure (CNKI), and the Wan-fang database. Fifteen resting-state functional neural activity datasets (including 382 patients and 348 healthy controls) were included. Through the use of the effect-size signed differential mapping (ES-SDM) method, we carried out a meta-analysis of resting-state functional activity studies of patients with ASD. Results: Compared with healthy controls, patients with ASD showed hyperactivity in the right supplementary motor area, middle frontal gyrus, inferior frontal gyrus, the left precentral gyrus, and the bilateral cerebellum hemispheric lobule (VIII/IX), and hypoactivity in the right middle temporal gyrus, superior temporal gyrus, and the left precuneus, posterior cingulate cortex, median cingulate cortex, and bilateral cerebellum (crus I). Conclusion: This meta-analysis indicates that patients with ASD have significant and robust resting-state brain activity alterations in the language comprehension network, inferior-posterior cerebellum, default mode network (DMN), and cerebellar crus I. These brain regions may serve as specific regions of interest for further studies of ASD, which will allow us to further clarify the neurobiological mechanisms in patients with ASD.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Jia Liu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojie Shi
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Taiyuan Liu
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Lun Ma
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoyue Ma
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, China.,Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
50
|
Pereira AM, Campos BM, Coan AC, Pegoraro LF, de Rezende TJR, Obeso I, Dalgalarrondo P, da Costa JC, Dreher JC, Cendes F. Differences in Cortical Structure and Functional MRI Connectivity in High Functioning Autism. Front Neurol 2018; 9:539. [PMID: 30042724 PMCID: PMC6048242 DOI: 10.3389/fneur.2018.00539] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 06/18/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a complex group of neurodevelopmental conditions characterized by deficits in communication and social behaviors. We examined the functional connectivity (FC) of the default mode network (DMN) and its relation to multimodal morphometry to investigate superregional, system-level alterations in a group of 22 adolescents and young adults with high-functioning autism compared to age-, and intelligence quotient-matched 29 healthy controls. The main findings were that ASD patients had gray matter (GM) reduction, decreased cortical thickness and larger cortical surface areas in several brain regions, including the cingulate, temporal lobes, and amygdala, as well as increased gyrification in regions associated with encoding visual memories and areas of the sensorimotor component of the DMN, more pronounced in the left hemisphere. Moreover, patients with ASD had decreased connectivity between the posterior cingulate cortex, and areas of the executive control component of the DMN and increased FC between the anteromedial prefrontal cortex and areas of the sensorimotor component of the DMN. Reduced cortical thickness in the right inferior frontal lobe correlated with higher social impairment according to the scores of the Autism Diagnostic Interview-Revised (ADI-R). Reduced cortical thickness in left frontal regions, as well as an increased cortical thickness in the right temporal pole and posterior cingulate, were associated with worse scores on the communication domain of the ADI-R. We found no association between scores on the restrictive and repetitive behaviors domain of ADI-R with structural measures or FC. The combination of these structural and connectivity abnormalities may help to explain some of the core behaviors in high-functioning ASD and need to be investigated further.
Collapse
Affiliation(s)
- Alessandra M. Pereira
- Neuroimaging Laboratory, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotechnology, University of Campinas, Campinas, Brazil
- Department of Pediatrics, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Brunno M. Campos
- Neuroimaging Laboratory, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotechnology, University of Campinas, Campinas, Brazil
| | - Ana C. Coan
- Neuroimaging Laboratory, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotechnology, University of Campinas, Campinas, Brazil
| | - Luiz F. Pegoraro
- Department of Psychiatry, State University of Campinas, Campinas, Brazil
| | - Thiago J. R. de Rezende
- Neuroimaging Laboratory, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotechnology, University of Campinas, Campinas, Brazil
| | - Ignacio Obeso
- Center for Cognitive Neuroscience, Reward and Decision Making Group, Centre National de la Recherche Scientifique, UMR 5229, Lyon, France
- Centro Integral en Neurociencias A.C., Hospital HM Puerta del Sur en Madrid, Madrid, Spain
| | | | - Jaderson C. da Costa
- Department of Pediatrics, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jean-Claude Dreher
- Center for Cognitive Neuroscience, Reward and Decision Making Group, Centre National de la Recherche Scientifique, UMR 5229, Lyon, France
| | - Fernando Cendes
- Neuroimaging Laboratory, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotechnology, University of Campinas, Campinas, Brazil
| |
Collapse
|