1
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Takano T, Kang G, Esparza M, Matsumura B, Stevens LJ, Hiroi YJ, Tanifuji T, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Highly demarcated structural alterations in the brain and impaired social incentive learning in Tbx1 heterozygous mice. Mol Psychiatry 2024:10.1038/s41380-024-02797-x. [PMID: 39463450 DOI: 10.1038/s41380-024-02797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and changes in brain structures. However, because CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how each gene encoded in the 22q11.2 region contributes to structural alterations, associated mental illnesses, and their dimensions. Our previous studies identified Tbx1, a T-box family transcription factor encoded in the 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes and behavioral alterations relevant to affected structures in congenic Tbx1 heterozygous mice. Our data showed that the volumes of the anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were most robustly reduced in Tbx1 heterozygous mice. In an amygdala-dependent task, Tbx1 heterozygous mice were impaired in their ability to learn the incentive value of a social partner. The volumes of the primary and secondary auditory cortexes were increased, and acoustic, but not non-acoustic, sensorimotor gating was impaired in Tbx1 heterozygous mice. Our findings identify the brain's regional volume alterations and their relevant behavioral dimensions associated with Tbx1 heterozygosity.
Collapse
Affiliation(s)
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | | | - Takeshi Takano
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Gina Kang
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Marisa Esparza
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | | | - Yukiko J Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| |
Collapse
|
2
|
Tullo S, Miranda AS, Del Cid-Pellitero E, Lim MP, Gallino D, Attaran A, Patel R, Novikov V, Park M, Beraldo FH, Luo W, Shlaifer I, Durcan TM, Bussey TJ, Saksida LM, Fon EA, Prado VF, Prado MAM, Chakravarty MM. Neuroanatomical and cognitive biomarkers of alpha-synuclein propagation in a mouse model of synucleinopathy prior to onset of motor symptoms. J Neurochem 2024; 168:1546-1564. [PMID: 37804203 DOI: 10.1111/jnc.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Significant evidence suggests that misfolded alpha-synuclein (aSyn), a major component of Lewy bodies, propagates in a prion-like manner contributing to disease progression in Parkinson's disease (PD) and other synucleinopathies. In fact, timed inoculation of M83 hemizygous mice with recombinant human aSyn preformed fibrils (PFF) has shown symptomatic deficits after substantial spreading of pathogenic alpha-synuclein, as detected by markers for the phosphorylation of S129 of aSyn. However, whether accumulated toxicity impact human-relevant cognitive and structural neuroanatomical measures is not fully understood. Here we performed a single unilateral striatal PFF injection in M83 hemizygous mice, and using two assays with translational potential, ex vivo magnetic resonance imaging (MRI) and touchscreen testing, we examined the combined neuroanatomical and behavioral impact of aSyn propagation. In PFF-injected mice, we observed widespread atrophy in bilateral regions that project to or receive input from the injection site using MRI. We also identified early deficits in reversal learning prior to the emergence of motor symptoms. Our findings highlight a network of regions with related cellular correlates of pathology that follow the progression of aSyn spreading, and that affect brain areas relevant for reversal learning. Our experiments suggest that M83 hemizygous mice injected with human PFF provides a model to understand how misfolded aSyn affects human-relevant pre-clinical measures and suggest that these pre-clinical biomarkers could be used to detect early toxicity of aSyn and provide better translational measures between mice and human disease.
Collapse
Affiliation(s)
- Stephanie Tullo
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Aline S Miranda
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Departamento de Morfologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Esther Del Cid-Pellitero
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mei Peng Lim
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Gallino
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Anoosha Attaran
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Raihaan Patel
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Vladislav Novikov
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Megan Park
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Flavio H Beraldo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Mitra A, Deats SP, Dickson PE, Zhu J, Gardin J, Nieman BJ, Henkelman RM, Tsai NP, Chesler EJ, Zhang ZW, Kumar V. Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity. J Neurosci 2024; 44:e1389232024. [PMID: 38508714 PMCID: PMC11063827 DOI: 10.1523/jneurosci.1389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024] Open
Abstract
Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.
Collapse
Affiliation(s)
| | | | | | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Brian J Nieman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| |
Collapse
|
4
|
Hanrahan J, Locke DP, Cahill LS. Magnetic Resonance Imaging to Detect Structural Brain Changes in Huntington's Disease: A Review of Data from Mouse Models. J Huntingtons Dis 2024; 13:279-299. [PMID: 39213087 PMCID: PMC11494634 DOI: 10.3233/jhd-240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Structural magnetic resonance imaging (MRI) is a powerful tool to visualize 3D neuroanatomy and assess pathology and disease progression in neurodegenerative disorders such as Huntington's disease (HD). The development of mouse models of HD that reproduce many of the psychiatric, motor and cognitive impairments observed in human HD has improved our understanding of the disease and provided opportunities for testing novel therapies. Similar to the clinical scenario, MRI of mouse models of HD demonstrates onset and progression of brain pathology. Here, we provided an overview of the articles that used structural MRI in mouse models of HD to date, highlighting the differences between studies and models and describing gaps in the current state of knowledge and recommendations for future studies.
Collapse
Affiliation(s)
- Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Drew P. Locke
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
5
|
Vinh To X, Kurniawan ND, Cumming P, Nasrallah FA. A cross-comparative analysis of in vivo versus ex vivo MRI indices in a mouse model of concussion. Brain Res 2023; 1820:148562. [PMID: 37673379 DOI: 10.1016/j.brainres.2023.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND We present a cross-sectional, case-matched, and pair-wise comparison of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) measures in vivo and ex vivo in a mouse model of concussion, thus aiming to establish the concordance of structural and diffusion imaging findings in living brain and after fixation. METHODS We allocated 28 male mice aged 3-4 months to sham injury and concussion (CON) groups. CON mice had received a single concussive impact on day 0 and underwent MRI at day 2 (n = 9) or 7 (n = 10) post-impact, and sham control mice likewise underwent imaging at day 2 (n = 5) or 7 (n = 4). Immediately after the final scanning, we collected the perfusion-fixed brains, which were stored for imaging ex vivo 6-12 months later. We then compared the structural imaging, DTI, and NODDI results between different methods. RESULTS In vivo to ex vivo structural and DTI/NODDI findings were in notably poor agreement regarding the effects of concussion on structural integrity of the brain. COMPARISON WITH EXISTING METHODS ex vivo imaging was frequently done to study the effects of diseases and treatments, but our results showed that ex vivo and in vivo imaging can detect completely opposite and contradictory results. This is also the first study that compares in vivo and ex vivo NODDI. CONCLUSION Our findings call for caution in extrapolating translational capabilities obtained ex vivo to physiological measurements in vivo. The divergent findings may reflect fixation artefacts and the contribution of the glymphatic system changes.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Australia
| | | | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
6
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. RESEARCH SQUARE 2023:rs.3.rs-3070199. [PMID: 37461714 PMCID: PMC10350205 DOI: 10.21203/rs.3.rs-3070199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | - Gina Kang
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Bailey Matsumura
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Lucas J. Stevens
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, Texas 78229, USA
| |
Collapse
|
7
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545013. [PMID: 37398198 PMCID: PMC10312713 DOI: 10.1101/2023.06.14.545013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1 , a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
|
8
|
Orset T, Royo J, Santin MD, Pouget P, Thiebaut de Schotten M. A new open, high-resolution, multishell, diffusion-weighted imaging dataset of the living squirrel monkey. Sci Data 2023; 10:224. [PMID: 37081025 PMCID: PMC10119165 DOI: 10.1038/s41597-023-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Although very well adapted to brain study, Magnetic Resonance Imaging (MRI) remains limited by the facilities and capabilities required to acquire data, especially for non-human primates. Addressing the data gaps resulting from these limitations requires making data more accessible and open. In contempt of the regular use of Saimiri sciureus in neuroscience research, in vivo diffusion has yet to be openly available for this species. Here we built and made openly available a unique new resource consisting of a high-resolution, multishell diffusion-weighted dataset in the anesthetized Saimiri sciureus. The data were acquired on 11 individuals with an 11.7 T MRI scanner (isotropic resolution of 400 µm3). This paper presents an overview of our dataset and illustrates some of its possible use through example analyses. To assess the quality of our data, we analyzed long-range connections (whole-brain tractography), microstructure (Neurite Orientation Dispersion and Density Imaging), and axon diameter in the corpus callosum (ActiveAx). Constituting an essential new resource for primate evolution studies, all data are openly available.
Collapse
Affiliation(s)
- Thomas Orset
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France.
| | - Julie Royo
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
| | | | - Pierre Pouget
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Examining litter specific variability in mice and its impact on neurodevelopmental studies. Neuroimage 2023; 269:119888. [PMID: 36681136 DOI: 10.1016/j.neuroimage.2023.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Our current understanding of litter variability in neurodevelopmental studies using mice may limit translation of neuroscientific findings. Higher variance of measures across litters than within, often termed intra-litter likeness, may be attributable to both pre- and postnatal environment. This study aimed to assess the litter-effect within behavioral assessments (2 timepoints) and anatomy using T1-weighted magnetic resonance images across 72 brain region volumes (4 timepoints) (36 C57bl/6J inbred mice; 7 litters: 19F/17M). Between-litter comparisons of brain and behavioral measures and their associations were evaluated using univariate and multivariate techniques. A power analysis using simulation methods was then performed on modeled neurodevelopment and to evaluate trade-offs between number-of-litters, number-of-mice-per-litter, and sample size. Our results show litter-specific developmental effects, from the adolescent period to adulthood for brain structure volumes and behaviors, and for their associations in adulthood. Our power simulation analysis suggests increasing the number-of-litters in experimental designs to achieve the smallest total sample size necessary for detecting different rates of change in specific brain regions. Our results demonstrate how litter-specific effects may influence development and that increasing the litters to the total sample size ratio should be strongly considered when designing neurodevelopmental studies.
Collapse
|
10
|
Rawlings-Mortimer F, Lazari A, Tisca C, Tachrount M, Martins-Bach AB, Miller KL, Lerch JP, Johansen-Berg H. 7,8-dihydroxyflavone enhances long-term spatial memory and alters brain volume in wildtype mice. Front Syst Neurosci 2023; 17:1134594. [PMID: 37008453 PMCID: PMC10057119 DOI: 10.3389/fnsys.2023.1134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: 7,8-dihydroxyflavone (7,8-DHF) is a low molecular weight compound that can cross the blood brain barrier and has been implicated in numerous functions and behaviours. It is thought to have neuroprotective capability and has been shown to alleviate symptoms in a wide range of diseases.Methods: 7,8-DHF was administered systemically to wildtype mice during Morris water maze training. Long-term spatial memory was assessed 28 days later. Ex-vivo T2-weighted (T2w) imaging was undertaken on a subset of these mice to assess brain-wide changes in volume.Results: We found that systemic 7,8-DHF administration during the training period enhanced spatial memory 28 days later. Volumetric changes were observed in numerous brain regions associated with a broad range of functions including cognition, sensory, and motor processing.Discussion: Our findings give the first whole brain overview of long-term anatomical changes following 7,8-DHF administration providing valuable information for assessing and understanding the widespread effects this drug has been shown to have in behaviour and disease.
Collapse
|
11
|
Guma E, Beauchamp A, Liu S, Levitis E, Clasen LS, Torres E, Blumenthal J, Lalonde F, Qiu LR, Hrncir H, MacKenzie-Graham A, Yang X, Arnold AP, Lerch JP, Raznahan A. A Cross-Species Neuroimaging Study of Sex Chromosome Dosage Effects on Human and Mouse Brain Anatomy. J Neurosci 2023; 43:1321-1333. [PMID: 36631267 PMCID: PMC9987571 DOI: 10.1523/jneurosci.1761-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
All eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) versus XY controls. Total brain size was substantially altered by SCT in humans (significantly decreased by XXY and increased by XYY), but not in mice. Robust and spatially convergent effects of XXY and XYY on regional brain volume were observed in humans, but not mice, when controlling for global volume differences. However, mice do show subtle effects of XXY and XYY on regional volume, although there is not a general spatial convergence in these effects within mice or between species. Notwithstanding this general lack of conservation in SCT effects, we detect several brain regions that show overlapping effects of XXY and XYY both within and between species (cerebellar, parietal, and orbitofrontal cortex), thereby nominating high priority targets for future translational dissection of SCD effects on the mammalian brain. Our study introduces a generalizable framework for comparative neuroimaging in humans and mice and applies this to achieve a cross-species comparison of SCD effects on the mammalian brain through the lens of SCT.SIGNIFICANCE STATEMENT Sex chromosome dosage (SCD) affects neuroanatomy and risk for psychopathology in humans. Performing mechanistic studies in the human brain is challenging but possible in mouse models. Here, we develop a framework for cross-species neuroimaging analysis and use this to show that an added X- or Y-chromosome significantly alters human brain anatomy but has muted effects in the mouse brain. However, we do find evidence for conserved cross-species impact of an added chromosome in the fronto-parietal cortices and cerebellum, which point to regions for future mechanistic dissection of sex chromosome dosage effects on brain development.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Liv S. Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Francois Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Lily R. Qiu
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Jason P. Lerch
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| |
Collapse
|
12
|
Bogado Lopes J, Senko AN, Bahnsen K, Geisler D, Kim E, Bernanos M, Cash D, Ehrlich S, Vernon AC, Kempermann G. Individual behavioral trajectories shape whole-brain connectivity in mice. eLife 2023; 12:e80379. [PMID: 36645260 PMCID: PMC9977274 DOI: 10.7554/elife.80379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
It is widely assumed that our actions shape our brains and that the resulting connections determine who we are. To test this idea in a reductionist setting, in which genes and environment are controlled, we investigated differences in neuroanatomy and structural covariance by ex vivo structural magnetic resonance imaging in mice whose behavioral activity was continuously tracked for 3 months in a large, enriched environment. We confirmed that environmental enrichment increases mouse hippocampal volumes. Stratifying the enriched group according to individual longitudinal behavioral trajectories, however, revealed striking differences in mouse brain structural covariance in continuously highly active mice compared to those whose trajectories showed signs of habituating activity. Network-based statistics identified distinct subnetworks of murine structural covariance underlying these differences in behavioral activity. Together, these results reveal that differentiated behavioral trajectories of mice in an enriched environment are associated with differences in brain connectivity.
Collapse
Affiliation(s)
- Jadna Bogado Lopes
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Anna N Senko
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Klaas Bahnsen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Michel Bernanos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Eating Disorder Treatment and Research CenterDresdenGermany
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's CollegeLondonUnited Kingdom
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| |
Collapse
|
13
|
Baxi M, Cetin-Karayumak S, Papadimitriou G, Makris N, van der Kouwe A, Jenkins B, Moore TL, Rosene DL, Kubicki M, Rathi Y. Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology. FRONTIERS IN NEUROIMAGING 2022; 1:947526. [PMID: 37555179 PMCID: PMC10406256 DOI: 10.3389/fnimg.2022.947526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 08/10/2023]
Abstract
Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive in-vivo imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between in-vivo dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.
Collapse
Affiliation(s)
- Madhura Baxi
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Center for Morphometric Analysis, Massachusetts General Hospital, Charlestown, MA, United States
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andre van der Kouwe
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bruce Jenkins
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Tara L. Moore
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Douglas L. Rosene
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
14
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
15
|
Cariani P, Baker JM. Time Is of the Essence: Neural Codes, Synchronies, Oscillations, Architectures. Front Comput Neurosci 2022; 16:898829. [PMID: 35814343 PMCID: PMC9262106 DOI: 10.3389/fncom.2022.898829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Time is of the essence in how neural codes, synchronies, and oscillations might function in encoding, representation, transmission, integration, storage, and retrieval of information in brains. This Hypothesis and Theory article examines observed and possible relations between codes, synchronies, oscillations, and types of neural networks they require. Toward reverse-engineering informational functions in brains, prospective, alternative neural architectures incorporating principles from radio modulation and demodulation, active reverberant circuits, distributed content-addressable memory, signal-signal time-domain correlation and convolution operations, spike-correlation-based holography, and self-organizing, autoencoding anticipatory systems are outlined. Synchronies and oscillations are thought to subserve many possible functions: sensation, perception, action, cognition, motivation, affect, memory, attention, anticipation, and imagination. These include direct involvement in coding attributes of events and objects through phase-locking as well as characteristic patterns of spike latency and oscillatory response. They are thought to be involved in segmentation and binding, working memory, attention, gating and routing of signals, temporal reset mechanisms, inter-regional coordination, time discretization, time-warping transformations, and support for temporal wave-interference based operations. A high level, partial taxonomy of neural codes consists of channel, temporal pattern, and spike latency codes. The functional roles of synchronies and oscillations in candidate neural codes, including oscillatory phase-offset codes, are outlined. Various forms of multiplexing neural signals are considered: time-division, frequency-division, code-division, oscillatory-phase, synchronized channels, oscillatory hierarchies, polychronous ensembles. An expandable, annotative neural spike train framework for encoding low- and high-level attributes of events and objects is proposed. Coding schemes require appropriate neural architectures for their interpretation. Time-delay, oscillatory, wave-interference, synfire chain, polychronous, and neural timing networks are discussed. Some novel concepts for formulating an alternative, more time-centric theory of brain function are discussed. As in radio communication systems, brains can be regarded as networks of dynamic, adaptive transceivers that broadcast and selectively receive multiplexed temporally-patterned pulse signals. These signals enable complex signal interactions that select, reinforce, and bind common subpatterns and create emergent lower dimensional signals that propagate through spreading activation interference networks. If memory traces share the same kind of temporal pattern forms as do active neuronal representations, then distributed, holograph-like content-addressable memories are made possible via temporal pattern resonances.
Collapse
Affiliation(s)
- Peter Cariani
- Hearing Research Center, Boston University, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
16
|
Fowler CF, Goerzen D, Devenyi GA, Madularu D, Chakravarty MM, Near J. OUP accepted manuscript. Brain Commun 2022; 4:fcac072. [PMID: 35434622 PMCID: PMC9007326 DOI: 10.1093/braincomms/fcac072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Caitlin F. Fowler
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Correspondence to: Caitlin F. Fowler, CIC Pavilion Office GH-2113 Douglas Mental Health University Institute 6875 Boulevard LaSalle Montreal, Canada H4H 1R3 E-mail:
| | - Dana Goerzen
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
| | - Gabriel A. Devenyi
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Dan Madularu
- Centre for Translational NeuroImaging, Northeastern University, Boston, USA
| | - M. Mallar Chakravarty
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
- Physical Studies Research Platform, Sunnybrook Research Institute, Toronto, Canada M4N 3M5
- Department of Medical Biophysics, University of Toronto, Toronto, Canada M5G 1L7
| |
Collapse
|
17
|
Xiao J, Hornburg KJ, Cofer G, Cook JJ, Pratson F, Qi Y, Johnson GA. A time-course study of actively stained mouse brains: Diffusion tensor imaging parameters and connectomic stability over 1 year. NMR IN BIOMEDICINE 2022; 35:e4611. [PMID: 34558744 PMCID: PMC10461792 DOI: 10.1002/nbm.4611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
While the application of diffusion tensor imaging (DTI), tractography, and connectomics to fixed tissue is a common practice today, there have been limited studies examining the effects of fixation on brain microstructure over extended periods. This mouse model time-course study reports the changes of regional brain volumes and diffusion scalar parameters, such as fractional anisotropy, across 12 representative brain regions as measures of brain structural stability. The scalar DTI parameters and regional volumes were highly variable over the first 2 weeks after fixation. The same parameters were consistent over a 2-8-week window after fixation, which means confounds from tissue stability over that scanning window were minimal. Quantitative connectomes were analyzed over the same time with extension out to 1 year. While there was some change in the scalar metrics at 1 year after fixation, these changes were sufficiently small, particularly in white matter, to support reproducible connectomes over a period ranging from 2-weeks to 1-year post-fixation. These findings delineate a scanning period, during which brain volumes, diffusion scalar metrics, and connectomes are remarkably consistent.
Collapse
Affiliation(s)
- Jaclyn Xiao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Kathryn J. Hornburg
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gary Cofer
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - James J. Cook
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Forrest Pratson
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yi Qi
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - G. Allan Johnson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
18
|
Guma E, Bordignon PDC, Devenyi GA, Gallino D, Anastassiadis C, Cvetkovska V, Barry AD, Snook E, Germann J, Greenwood CMT, Misic B, Bagot RC, Chakravarty MM. Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol Psychiatry 2021; 90:328-341. [PMID: 34053674 DOI: 10.1016/j.biopsych.2021.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental disorders later in life. The impact of the gestational timing of MIA exposure on downstream development remains unclear. METHODS We characterized neurodevelopmental trajectories of mice exposed to the viral mimetic poly I:C (polyinosinic:polycytidylic acid) either on gestational day 9 (early) or on day 17 (late) using longitudinal structural magnetic resonance imaging from weaning to adulthood. Using multivariate methods, we related neuroimaging and behavioral variables for the time of greatest alteration (adolescence/early adulthood) and identified regions for further investigation using RNA sequencing. RESULTS Early MIA exposure was associated with accelerated brain volume increases in adolescence/early adulthood that normalized in later adulthood in the striatum, hippocampus, and cingulate cortex. Similarly, alterations in anxiety-like, stereotypic, and sensorimotor gating behaviors observed in adolescence normalized in adulthood. MIA exposure in late gestation had less impact on anatomical and behavioral profiles. Multivariate maps associated anxiety-like, social, and sensorimotor gating deficits with volume of the dorsal and ventral hippocampus and anterior cingulate cortex, among others. The most transcriptional changes were observed in the dorsal hippocampus, with genes enriched for fibroblast growth factor regulation, autistic behaviors, inflammatory pathways, and microRNA regulation. CONCLUSIONS Leveraging an integrated hypothesis- and data-driven approach linking brain-behavior alterations to the transcriptome, we found that MIA timing differentially affects offspring development. Exposure in late gestation leads to subthreshold deficits, whereas exposure in early gestation perturbs brain development mechanisms implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Pedro do Couto Bordignon
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Daniel Gallino
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Chloe Anastassiadis
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Institute of Medical Science & Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | | | - Amadou D Barry
- Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Emily Snook
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; University Health Network, Toronto, Ontario, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Comparison of In Vivo and Ex Vivo Magnetic Resonance Imaging in a Rat Model for Glioblastoma-Associated Epilepsy. Diagnostics (Basel) 2021; 11:diagnostics11081311. [PMID: 34441246 PMCID: PMC8393600 DOI: 10.3390/diagnostics11081311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) is frequently used for preclinical treatment monitoring in glioblastoma (GB). Discriminating between tumors and tumor-associated changes is challenging on in vivo MRI. In this study, we compared in vivo MRI scans with ex vivo MRI and histology to estimate more precisely the abnormal mass on in vivo MRI. Epileptic seizures are a common symptom in GB. Therefore, we used a recently developed GB-associated epilepsy model from our group with the aim of further characterizing the model and making it useful for dedicated epilepsy research. Ten days after GB inoculation in rat entorhinal cortices, in vivo MRI (T2w and mean diffusivity (MD)), ex vivo MRI (T2w) and histology were performed, and tumor volumes were determined on the different modalities. The estimated abnormal mass on ex vivo T2w images was significantly smaller compared to in vivo T2w images, but was more comparable to histological tumor volumes, and might be used to estimate end-stage tumor volumes. In vivo MD images displayed tumors as an outer rim of hyperintense signal with a core of hypointense signal, probably reflecting peritumoral edema and tumor mass, respectively, and might be used in the future to distinguish the tumor mass from peritumoral edema—associated with reactive astrocytes and activated microglia, as indicated by an increased expression of immunohistochemical markers—in preclinical models. In conclusion, this study shows that combining imaging techniques using different structural scales can improve our understanding of the pathophysiology in GB.
Collapse
|
20
|
Stinnett G, Taheri N, Villanova J, Bohloul A, Guo X, Esposito EP, Xiao Z, Stueber D, Avendano C, Decuzzi P, Pautler RG, Colvin VL. 2D Gadolinium Oxide Nanoplates as T 1 Magnetic Resonance Imaging Contrast Agents. Adv Healthc Mater 2021; 10:e2001780. [PMID: 33882196 DOI: 10.1002/adhm.202001780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Millions of people a year receive magnetic resonance imaging (MRI) contrast agents for the diagnosis of conditions as diverse as fatty liver disease and cancer. Gadolinium chelates, which provide preferred T1 contrast, are the current standard but face an uncertain future due to increasing concerns about their nephrogenic toxicity as well as poor performance in high-field MRI scanners. Gadolinium-containing nanocrystals are interesting alternatives as they bypass the kidneys and can offer the possibility of both intracellular accumulation and active targeting. Nanocrystal contrast performance is notably limited, however, as their organic coatings block water from close interactions with surface Gadoliniums. Here, these steric barriers to water exchange are minimized through shape engineering of plate-like nanocrystals that possess accessible Gadoliniums at their edges. Sulfonated surface polymers promote second-sphere relaxation processes that contribute remarkable contrast even at the highest fields (r1 = 32.6 × 10-3 m Gd-1 s-1 at 9.4 T). These noncytotoxic materials release no detectable free Gadolinium even under mild acidic conditions. They preferentially accumulate in the liver of mice with a circulation half-life 50% longer than commercial agents. These features allow these T1 MRI contrast agents to be applied for the first time to the ex vivo detection of nonalcoholic fatty liver disease in mice.
Collapse
Affiliation(s)
- Gary Stinnett
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX 77030 USA
| | - Nasim Taheri
- Departments of Chemistry and Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Jake Villanova
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Arash Bohloul
- Departments of Chemistry and Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Xiaoting Guo
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Edward P. Esposito
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Zhen Xiao
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Deanna Stueber
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Carolina Avendano
- Departments of Chemistry and Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Paolo Decuzzi
- Department of Translational Imaging and Department of Nanomedicine The Methodist Hospital Research Institute Houston TX 77030 USA
- Laboratory of Nanotechnology for Precision Medicine Fondazione Istituto Italiano di Tecnologia Genoa 16163 Italy
| | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX 77030 USA
| | - Vicki L. Colvin
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| |
Collapse
|
21
|
Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage 2021; 230:117744. [PMID: 33524576 PMCID: PMC8063174 DOI: 10.1016/j.neuroimage.2021.117744] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increased understanding of the importance of myelination in healthy brain function and neuropsychiatric diseases. Non-invasive microstructural magnetic resonance imaging (MRI) holds the potential to expand and translate these insights to basic and clinical human research, but the sensitivity and specificity of different MR markers to myelination is a subject of debate. To consolidate current knowledge on the topic, we perform a systematic review and meta-analysis of studies that validate microstructural imaging by combining it with myelin histology. We find meta-analytic evidence for correlations between various myelin histology metrics and markers from different MRI modalities, including fractional anisotropy, radial diffusivity, macromolecular pool, magnetization transfer ratio, susceptibility and longitudinal relaxation rate, but not mean diffusivity. Meta-analytic correlation effect sizes range widely, between R2 = 0.26 and R2 = 0.82. However, formal comparisons between MRI-based myelin markers are limited by methodological variability, inconsistent reporting and potential for publication bias, thus preventing the establishment of a single most sensitive strategy to measure myelin with MRI. To facilitate further progress, we provide a detailed characterisation of the evaluated studies as an online resource. We also share a set of 12 recommendations for future studies validating putative MR-based myelin markers and deploying them in vivo in humans.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
22
|
Ellegood J, Petkova SP, Kinman A, Qiu LR, Adhikari A, Wade AA, Fernandes D, Lindenmaier Z, Creighton A, Nutter LMJ, Nord AS, Silverman JL, Lerch JP. Neuroanatomy and behavior in mice with a haploinsufficiency of AT-rich interactive domain 1B (ARID1B) throughout development. Mol Autism 2021; 12:25. [PMID: 33757588 PMCID: PMC7986278 DOI: 10.1186/s13229-021-00432-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND One of the causal mechanisms underlying neurodevelopmental disorders (NDDs) is chromatin modification and the genes that regulate chromatin. AT-rich interactive domain 1B (ARID1B), a chromatin modifier, has been linked to autism spectrum disorder and to affect rare and inherited genetic variation in a broad set of NDDs. METHODS A novel preclinical mouse model of Arid1b deficiency was created and validated to characterize and define neuroanatomical, behavioral and transcriptional phenotypes. Neuroanatomy was assessed ex vivo in adult animals and in vivo longitudinally from birth to adulthood. Behavioral testing was also performed throughout development and tested all aspects of motor, learning, sociability, repetitive behaviors, seizure susceptibility, and general milestones delays. RESULTS We validated decreased Arid1b mRNA and protein in Arid1b+/- mice, with signatures of increased axonal and synaptic gene expression, decreased transcriptional regulator and RNA processing expression in adult Arid1b+/- cerebellum. During neonatal development, Arid1b+/- mice exhibited robust impairments in ultrasonic vocalizations (USVs) and metrics of developmental growth. In addition, a striking sex effect was observed neuroanatomically throughout development. Behaviorally, as adults, Arid1b+/- mice showed low motor skills in open field exploration and normal three-chambered approach. Arid1b+/- mice had learning and memory deficits in novel object recognition but not in visual discrimination and reversal touchscreen tasks. Social interactions in the male-female social dyad with USVs revealed social deficits on some but not all parameters. No repetitive behaviors were observed. Brains of adult Arid1b+/- mice had a smaller cerebellum and a larger hippocampus and corpus callosum. The corpus callosum increase seen here contrasts previous reports which highlight losses in corpus callosum volume in mice and humans. LIMITATIONS The behavior and neuroimaging analyses were done on separate cohorts of mice, which did not allow a direct correlation between the imaging and behavioral findings, and the transcriptomic analysis was exploratory, with no validation of altered expression beyond Arid1b. CONCLUSIONS This study represents a full validation and investigation of a novel model of Arid1b+/- haploinsufficiency throughout development and highlights the importance of examining both sexes throughout development in NDDs.
Collapse
Affiliation(s)
- J Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.
| | - S P Petkova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
| | - A Kinman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - L R Qiu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - A Adhikari
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - A A Wade
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
| | - D Fernandes
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Z Lindenmaier
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - A Creighton
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - L M J Nutter
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - A S Nord
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
- Department of Neurobiology, Physiology and Behavior, University of California - Davis, Davis, CA, USA
| | - J L Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - J P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Ma D, Cardoso MJ, Zuluaga MA, Modat M, Powell NM, Wiseman FK, Cleary JO, Sinclair B, Harrison IF, Siow B, Popuri K, Lee S, Matsubara JA, Sarunic MV, Beg MF, Tybulewicz VLJ, Fisher EMC, Lythgoe MF, Ourselin S. Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome - a comprehensive morphometric analysis with active staining contrast-enhanced MRI. Neuroimage 2020; 223:117271. [PMID: 32835824 PMCID: PMC8417772 DOI: 10.1016/j.neuroimage.2020.117271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer.
Collapse
Affiliation(s)
- Da Ma
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom; School of Engineering Science, Simon Fraser University, Burnaby, Canada.
| | - Manuel J Cardoso
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Maria A Zuluaga
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Data Science Department, EURECOM, France
| | - Marc Modat
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Nick M Powell
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Frances K Wiseman
- UK Dementia Research Institute at University College London, UK London; Down Syndrome Consortium (LonDownS), London, United Kingdom
| | - Jon O Cleary
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; Department of Radiology, Guy´s and St Thomas' NHS Foundation Trust, United Kingdom; Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, University of Melbourne, Melbourne, Australia
| | - Benjamin Sinclair
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Bernard Siow
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Science, University of British Columbia, Vancouver, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Victor L J Tybulewicz
- The Francis Crick Institute, London, United Kingdom; Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | | | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Sebastien Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| |
Collapse
|
24
|
Fletcher EJR, Finlay CJ, Amor Lopez A, Crum WR, Vernon AC, Duty S. Neuroanatomical and Microglial Alterations in the Striatum of Levodopa-Treated, Dyskinetic Hemi-Parkinsonian Rats. Front Neurosci 2020; 14:567222. [PMID: 33041762 PMCID: PMC7522511 DOI: 10.3389/fnins.2020.567222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
Dyskinesia associated with chronic levodopa treatment in Parkinson’s disease is associated with maladaptive striatal plasticity. The objective of this study was to examine whether macroscale structural changes, as captured by magnetic resonance imaging (MRI) accompany this plasticity and to identify plausible cellular contributors in a rodent model of levodopa-induced dyskinesia. Adult male Sprague-Dawley rats were rendered hemi-parkinsonian by stereotaxic injection of 6-hydroxydopamine into the left medial forebrain bundle prior to chronic treatment with saline (control) or levodopa to induce abnormal involuntary movements (AIMs), reflective of dyskinesia. Perfusion-fixed brains underwent ex vivo structural MRI before sectioning and staining for cellular markers. Chronic treatment with levodopa induced significant AIMs (p < 0.0001 versus saline). The absolute volume of the ipsilateral, lesioned striatum was increased in levodopa-treated rats resulting in a significant difference in percentage volume change when compared to saline-treated rats (p < 0.01). Moreover, a significant positive correlation was found between this volume change and AIMs scores for individual levodopa-treated rats (r = 0.96; p < 0.01). The density of Iba1+ cells was increased within the lesioned versus intact striatum (p < 0.01) with no difference between treatment groups. Conversely, Iba1+ microglia soma size was significantly increased (p < 0.01) in the lesioned striatum of levodopa-treated but not saline-treated rats. Soma size was not, however, significantly correlated with either AIMs or MRI volume change. Although GFAP+ astrocytes were elevated in the lesioned versus intact striatum (p < 0.001), there was no difference between treatment groups. No statistically significant effects of either lesion or treatment on RECA1, a marker for blood vessels, were observed. Collectively, these data suggest chronic levodopa treatment in 6-hydroxydopamine lesioned rats is associated with increased striatal volume that correlates with the development of AIMs. The accompanying increase in number and size of microglia, however, cannot alone explain this volume expansion. Further multi-modal studies are warranted to establish the brain-wide effects of chronic levodopa treatment.
Collapse
Affiliation(s)
- Edward J R Fletcher
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Clare J Finlay
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ana Amor Lopez
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - William R Crum
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Susan Duty
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Anderson RJ, Cook JJ, Delpratt N, Nouls JC, Gu B, McNamara JO, Avants BB, Johnson GA, Badea A. Small Animal Multivariate Brain Analysis (SAMBA) - a High Throughput Pipeline with a Validation Framework. Neuroinformatics 2020; 17:451-472. [PMID: 30565026 PMCID: PMC6584586 DOI: 10.1007/s12021-018-9410-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While many neuroscience questions aim to understand the human brain, much current knowledge has been gained using animal models, which replicate genetic, structural, and connectivity aspects of the human brain. While voxel-based analysis (VBA) of preclinical magnetic resonance images is widely-used, a thorough examination of the statistical robustness, stability, and error rates is hindered by high computational demands of processing large arrays, and the many parameters involved therein. Thus, workflows are often based on intuition or experience, while preclinical validation studies remain scarce. To increase throughput and reproducibility of quantitative small animal brain studies, we have developed a publicly shared, high throughput VBA pipeline in a high-performance computing environment, called SAMBA. The increased computational efficiency allowed large multidimensional arrays to be processed in 1–3 days—a task that previously took ~1 month. To quantify the variability and reliability of preclinical VBA in rodent models, we propose a validation framework consisting of morphological phantoms, and four metrics. This addresses several sources that impact VBA results, including registration and template construction strategies. We have used this framework to inform the VBA workflow parameters in a VBA study for a mouse model of epilepsy. We also present initial efforts towards standardizing small animal neuroimaging data in a similar fashion with human neuroimaging. We conclude that verifying the accuracy of VBA merits attention, and should be the focus of a broader effort within the community. The proposed framework promotes consistent quality assurance of VBA in preclinical neuroimaging, thus facilitating the creation and communication of robust results.
Collapse
Affiliation(s)
- Robert J Anderson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - James J Cook
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Natalie Delpratt
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Biomedical Engineering, Duke University Medical Center, 3302, Durham, NC, 27710, USA
| | - John C Nouls
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bin Gu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - James O McNamara
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Biomedical Engineering, Duke University Medical Center, 3302, Durham, NC, 27710, USA
| | - Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Biomedical Engineering, Duke University Medical Center, 3302, Durham, NC, 27710, USA.
| |
Collapse
|
26
|
Unno K, Sumiyoshi A, Konishi T, Hayashi M, Taguchi K, Muguruma Y, Inoue K, Iguchi K, Nonaka H, Kawashima R, Hasegawa-Ishii S, Shimada A, Nakamura Y. Theanine, the Main Amino Acid in Tea, Prevents Stress-Induced Brain Atrophy by Modifying Early Stress Responses. Nutrients 2020; 12:nu12010174. [PMID: 31936294 PMCID: PMC7019546 DOI: 10.3390/nu12010174] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic stress can impair the health of human brains. An important strategy that may prevent the accumulation of stress may be the consumption of functional foods. When senescence-accelerated mice prone 10 (SAMP10), a stress-sensitive strain, were loaded with stress using imposed male mouse territoriality, brain volume decreased. However, in mice that ingested theanine (6 mg/kg), the main amino acid in tea leaves, brain atrophy was suppressed, even under stress. On the other hand, brain atrophy was not clearly observed in a mouse strain that aged normally (Slc:ddY). The expression level of the transcription factor Npas4 (neuronal PAS domain protein 4), which regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity, decreased in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but increased in mice that ingested theanine. Lipocalin 2 (Lcn2), the expression of which increased in response to stress, was significantly high in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but not in mice that ingested theanine. These data suggest that Npas4 and Lcn2 are involved in the brain atrophy and stress vulnerability of SAMP10 mice, which are prevented by the consumption of theanine, causing changes in the expression of these genes.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
- Correspondence: ; Tel.: +81-54-264-5822
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan;
| | - Michiko Hayashi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Yoshio Muguruma
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Kazuaki Iguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| |
Collapse
|
27
|
Le NA, Kuo W, Müller B, Kurtcuoglu V, Spingler B. Crosslinkable polymeric contrast agent for high-resolution X-ray imaging of the vascular system. Chem Commun (Camb) 2020; 56:5885-5888. [DOI: 10.1039/c9cc09883f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A contrast agent for X-ray micro computed tomography (μCT), called XlinCA, that combines reliable perfusion and permanent retention and contrast properties, was developed for ex vivo imaging.
Collapse
Affiliation(s)
- Ngoc An Le
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Willy Kuo
- Institute of Physiology
- University of Zurich
- 8057 Zurich
- Switzerland
- National Centre of Competence in Research
| | - Bert Müller
- Biomaterials Science Center
- Department of Biomedical Engineering
- University of Basel
- 4123 Allschwil
- Switzerland
| | - Vartan Kurtcuoglu
- Institute of Physiology
- University of Zurich
- 8057 Zurich
- Switzerland
- National Centre of Competence in Research
| | | |
Collapse
|
28
|
Doostdar N, Kim E, Grayson B, Harte MK, Neill JC, Vernon AC. Global brain volume reductions in a sub-chronic phencyclidine animal model for schizophrenia and their relationship to recognition memory. J Psychopharmacol 2019; 33:1274-1287. [PMID: 31060435 DOI: 10.1177/0269881119844196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive deficits and structural brain changes co-occur in patients with schizophrenia. Improving our understanding of the relationship between these is important to develop improved therapeutic strategies. Back-translation of these findings into rodent models for schizophrenia offers a potential means to achieve this goal. AIMS The purpose of this study was to determine the extent of structural brain changes and how these relate to cognitive behaviour in a sub-chronic phencyclidine rat model. METHODS Performance in the novel object recognition task was examined in female Lister Hooded rats at one and six weeks after sub-chronic phencyclidine (2 mg/kg intra-peritoneal, n=15) and saline controls (1 ml/kg intra-peritoneal, n=15). Locomotor activity following acute phencyclidine challenge was also measured. Brain volume changes were assessed in the same animals using ex vivo structural magnetic resonance imaging and computational neuroanatomical analysis at six weeks. RESULTS Female sub-chronic phencyclidine-treated Lister Hooded rats spent significantly less time exploring novel objects (p<0.05) at both time-points and had significantly greater locomotor activity response to an acute phencyclidine challenge (p<0.01) at 3-4 weeks of washout. At six weeks, sub-chronic phencyclidine-treated Lister Hooded rats displayed significant global brain volume reductions (p<0.05; q<0.05), without apparent regional specificity. Relative volumes of the perirhinal cortex however were positively correlated with novel object exploration time only in sub-chronic phencyclidine rats at this time-point. CONCLUSION A sustained sub-chronic phencyclidine-induced cognitive deficit in novel object recognition is accompanied by global brain volume reductions in female Lister Hooded rats. The relative volumes of the perirhinal cortex however are positively correlated with novel object exploration, indicating some functional relevance.
Collapse
Affiliation(s)
- Nazanin Doostdar
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ben Grayson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
29
|
Ma D, Holmes HE, Cardoso MJ, Modat M, Harrison IF, Powell NM, O'Callaghan JM, Ismail O, Johnson RA, O'Neill MJ, Collins EC, Beg MF, Popuri K, Lythgoe MF, Ourselin S. Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation. Front Neurosci 2019; 13:11. [PMID: 30733665 PMCID: PMC6354066 DOI: 10.3389/fnins.2019.00011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022] Open
Abstract
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
Collapse
Affiliation(s)
- Da Ma
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom.,School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Holly E Holmes
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Manuel J Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Nick M Powell
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - James M O'Callaghan
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ozama Ismail
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mirza F Beg
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Karteek Popuri
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
30
|
Wood TC, Edye ME, Harte MK, Neill JC, Prinssen EP, Vernon AC. Mapping the impact of exposure to maternal immune activation on juvenile Wistar rat brain macro- and microstructure during early post-natal development. Brain Neurosci Adv 2019; 3:2398212819883086. [PMID: 31742236 PMCID: PMC6861131 DOI: 10.1177/2398212819883086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maternal immune activation is consistently associated with elevated risk for multiple psychiatric disorders in the affected offspring. Related to this, an important goal of our work is to explore the impact of maternal immune activation effects across the lifespan. In this context, we recently reported the effects of polyriboinosinic-polyribocytidylic acid-induced maternal immune activation at gestational day 15, immediately prior to birth, at gestational day 21 and again at post-natal day 21, providing a systematic assessment of plasma interleukin 6, body temperature and weight alterations in pregnant rats and preliminary evidence for gross morphological changes and microglial neuropathology in both male and female offsprings at these time points. Here, we sought to complement and extend these data by characterising in more detail the mesoscale impact of gestational polyriboinosinic-polyribocytidylic acid exposure at gestational day 15 on the neuroanatomy of the juvenile (post-natal day 21) rat brain using high-resolution, ex vivo anatomical magnetic resonance imaging in combination with atlas-based segmentation. Our preliminary data suggest subtle neuroanatomical effects of gestational polyriboinosinic-polyribocytidylic acid exposure (n = 10) relative to saline controls (n = 10) at this time-point. Specifically, we found an increase in the relative volume of the diagonal domain in polyriboinosinic-polyribocytidylic acid offspring (p < 0.01 uncorrected), which just failed to pass stringent multiple comparisons correction (actual q = 0.07). No statistically significant microstructural alterations were detectable using diffusion tensor imaging. Further studies are required to map the proximal effects of maternal immune activation on the developing rodent brain from foetal to early post-natal life and confirm our findings herein.
Collapse
Affiliation(s)
- Tobias C Wood
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michelle E Edye
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eric P Prinssen
- Roche Innovation Centre Basel, Grenzacherstrasse, Switzerland
| | - Anthony C Vernon
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, Guy's Hospital Campus, King's College London, London, UK
| |
Collapse
|
31
|
Gatto RG, Li W, Gao J, Magin RL. In vivo diffusion MRI detects early spinal cord axonal pathology in a mouse model of amyotrophic lateral sclerosis. NMR IN BIOMEDICINE 2018; 31:e3954. [PMID: 30117615 DOI: 10.1002/nbm.3954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Diffusion magnetic resonance imaging (MRI) exhibits contrast that identifies macro- and microstructural changes in neurodegenerative diseases. Previous studies have shown that MR diffusion tensor imaging (DTI) can observe changes in spinal cord white matter in animals and humans affected with symptomatic amyotrophic lateral sclerosis (ALS). The goal of this preclinical work was to investigate the sensitivity of DTI for the detection of signs of tissue damage before symptoms appear. High-field MRI data were acquired using a 9.4-T animal scanner to examine the spinal cord of an ALS mouse model at pre- and post-symptomatic stages (days 80 and 120, respectively). The MRI results were validated using yellow fluorescent protein (YFP) via optical microscopy of spinal cord tissue slices collected from the YFP,G93A-SOD1 mouse strain. DTI maps of diffusion-weighted imaging (DWI) signal intensity, mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) were computed for axial slices of the lumbar region of the spinal cord. Significant changes were observed in FA (6.7% decrease, p < 0.01), AD (19.5% decrease, p < 0.01) and RD (16.1% increase, p < 0.001) at postnatal day 80 (P80). These differences were correlated with changes in axonal fluorescence intensity and membrane cellular markers. This study demonstrates the value of DTI as a potential tool to detect the underlying pathological progression associated with ALS, and may accelerate the discovery of therapeutic strategies for patients with this disease.
Collapse
Affiliation(s)
- Rodolfo G Gatto
- University of Illinois at Chicago, Anatomy and Cell Biology, Chicago, IL, USA
| | - Weiguo Li
- University of Illinois at Chicago, Bioengineering, Chicago, IL, USA
| | - Jin Gao
- University of Illinois at Chicago, Bioengineering, Chicago, IL, USA
| | - Richard L Magin
- University of Illinois at Chicago, Bioengineering, Chicago, IL, USA
| |
Collapse
|
32
|
Nieman BJ, van Eede MC, Spring S, Dazai J, Henkelman RM, Lerch JP. MRI to Assess Neurological Function. ACTA ACUST UNITED AC 2018; 8:e44. [PMID: 29927554 DOI: 10.1002/cpmo.44] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article describes a detailed set of protocols for mouse brain imaging using MRI. We focus primarily on measuring changes in neuroanatomy, and provide both instructions for mouse preparation and details on image acquisition, image processing, and statistics. Practical details as well as theoretical considerations are provided. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jun Dazai
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada.,Corresponding author:
| |
Collapse
|
33
|
Impact of X/Y genes and sex hormones on mouse neuroanatomy. Neuroimage 2018; 173:551-563. [PMID: 29501873 DOI: 10.1016/j.neuroimage.2018.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/05/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy.
Collapse
|
34
|
Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease. PLoS One 2017; 12:e0180733. [PMID: 28738061 PMCID: PMC5524324 DOI: 10.1371/journal.pone.0180733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.
Collapse
|
35
|
Crum WR, Sawiak SJ, Chege W, Cooper JD, Williams SC, Vernon AC. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: A longitudinal in vivo MRI study. Brain Behav Immun 2017; 63:50-59. [PMID: 27940258 PMCID: PMC5441572 DOI: 10.1016/j.bbi.2016.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
Genetic and environmental risk factors for psychiatric disorders are suggested to disrupt the trajectory of brain maturation during adolescence, leading to the development of psychopathology in adulthood. Rodent models are powerful tools to dissect the specific effects of such risk factors on brain maturational profiles, particularly when combined with Magnetic Resonance Imaging (MRI; clinically comparable technology). We therefore investigated the effect of maternal immune activation (MIA), an epidemiological risk factor for adult-onset psychiatric disorders, on rat brain maturation using atlas and tensor-based morphometry analysis of longitudinal in vivo MR images. Exposure to MIA resulted in decreases in the volume of several cortical regions, the hippocampus, amygdala, striatum, nucleus accumbens and unexpectedly, the lateral ventricles, relative to controls. In contrast, the volumes of the thalamus, ventral mesencephalon, brain stem and major white matter tracts were larger, relative to controls. These volumetric changes were maximal between post-natal day 50 and 100 with no differences between the groups thereafter. These data are consistent with and extend prior studies of brain structure in MIA-exposed rodents. Apart from the ventricular findings, these data have robust face validity to clinical imaging findings reported in studies of individuals at high clinical risk for a psychiatric disorder. Further work is now required to address the relationship of these MRI changes to behavioral dysfunction and to establish thier cellular correlates.
Collapse
Affiliation(s)
- William R. Crum
- Department of Neuroimaging Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - Winfred Chege
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Jonathan D. Cooper
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, UK
| | - Steven C.R. Williams
- Department of Neuroimaging Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, UK,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK,Corresponding author at: Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, UK.Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology and NeuroscienceKing’s College LondonMaurice Wohl Clinical Neuroscience Institute5 Cutcombe RoadLondonSE5 9RTUK
| |
Collapse
|
36
|
Feng L, Jeon T, Yu Q, Ouyang M, Peng Q, Mishra V, Pletikos M, Sestan N, Miller MI, Mori S, Hsiao S, Liu S, Huang H. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct 2017. [PMID: 28634624 DOI: 10.1007/s00429-017-1463-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.
Collapse
Affiliation(s)
- Lei Feng
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China.,Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Tina Jeon
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiaowen Yu
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinmu Peng
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihovil Pletikos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Steven Hsiao
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Holmes HE, Powell NM, Ma D, Ismail O, Harrison IF, Wells JA, Colgan N, O'Callaghan JM, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, O'Neill MJ, Collins EC, Fisher EMC, Ourselin S, Lythgoe MF. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy. Front Neuroinform 2017; 11:20. [PMID: 28408879 PMCID: PMC5374887 DOI: 10.3389/fninf.2017.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our “in-skull” preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.
Collapse
Affiliation(s)
- Holly E Holmes
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Nick M Powell
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Da Ma
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Ozama Ismail
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ian F Harrison
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Jack A Wells
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Niall Colgan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - James M O'Callaghan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | | | - Zeshan Ahmed
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | | | - Alice Fisher
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | - M Jorge Cardoso
- Centre for Medical Image Computing, University College LondonLondon, UK
| | - Marc Modat
- Centre for Medical Image Computing, University College LondonLondon, UK
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonLondon, UK
| | | | - Mark F Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| |
Collapse
|
38
|
In vivo microscopic voxel-based morphometry with a brain template to characterize strain-specific structures in the mouse brain. Sci Rep 2017; 7:85. [PMID: 28273899 PMCID: PMC5427914 DOI: 10.1038/s41598-017-00148-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Hundreds of inbred mouse strains are established for use in a broad spectrum of basic research fields, including genetics, neuroscience, immunology, and cancer. Inbred mice exhibit identical intra-strain genetics and divergent inter-strain phenotypes. The cognitive and behavioral divergences must be controlled by the variances of structure and function of their brains; however, the underlying morphological features of strain-to-strain difference remain obscure. Here, in vivo microscopic magnetic resonance imaging was optimized to image the mouse brains by using an isotropic resolution of 80 μm. Next, in vivo templates were created from the data from four major inbred mouse strains (C57Bl/6, BALB/cBy, C3H/He, and DBA/2). A strain-mixed brain template was also created, and the template was then employed to establish automatic voxel-based morphometry (VBM) for the mouse brain. The VBM assessment revealed strain-specific brain morphologies concerning the gray matter volume of the four strains, with a smaller volume in the primary visual cortex for the C3H/He strain, and a smaller volume in the primary auditory cortex and field CA1 of the hippocampus for the DBA/2 strain. These findings would contribute to the basis of for understanding morphological phenotype of the inbred mouse strain and may indicate a relationship between brain morphology and strain-specific cognition and behavior.
Collapse
|
39
|
de Guzman AE, Wong MD, Gleave JA, Nieman BJ. Variations in post-perfusion immersion fixation and storage alter MRI measurements of mouse brain morphometry. Neuroimage 2016; 142:687-695. [DOI: 10.1016/j.neuroimage.2016.06.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 11/15/2022] Open
|
40
|
Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia. Sci Rep 2016; 6:34946. [PMID: 27721451 PMCID: PMC5056355 DOI: 10.1038/srep34946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 11/08/2022] Open
Abstract
To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia.
Collapse
|
41
|
Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. Neuroimage 2016; 131:55-72. [DOI: 10.1016/j.neuroimage.2015.08.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022] Open
|
42
|
Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain. J Neurosci Methods 2016; 267:62-73. [PMID: 27079699 DOI: 10.1016/j.jneumeth.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, substantial differences in the anatomical organisation of human and rodent brain prevent a straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, the vast majority of the published approaches rely on tailored routines that address single morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex workflow required to process images and quantify structural alterations. NEW METHOD Here we provide a detailed description of semi-automated registration-based procedures for voxel based morphometry, cortical thickness estimation and automated anatomical labelling of the mouse brain. The approach relies on the sequential use of advanced image processing tools offered by ANTs, a flexible open source toolkit freely available to the scientific community. RESULTS To illustrate our procedures, we described their application to quantify morphological alterations in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison recently described by us and other research groups. We show that the approach can reliably detect both focal and large-scale grey matter alterations using complementary readouts. COMPARISON WITH EXISTING METHODS No detailed operational workflows for mouse imaging are available for direct comparison with our methods. However, empirical assessment of the mapped inter-strain differences is in good agreement with the findings of other groups using analogous approaches. CONCLUSION The detailed operational workflows described here are expected to help the implementation of rodent morphoanatomical methods by non-expert users, and ultimately promote the use of these tools across the preclinical neuroimaging community.
Collapse
|
43
|
Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain. Neuroscience 2016; 318:12-21. [DOI: 10.1016/j.neuroscience.2016.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/17/2022]
|
44
|
Holmes HE, Colgan N, Ismail O, Ma D, Powell NM, O'Callaghan JM, Harrison IF, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, Walker-Samuel S, Fisher EMC, Ourselin S, O'Neill MJ, Wells JA, Collins EC, Lythgoe MF. Imaging the accumulation and suppression of tau pathology using multiparametric MRI. Neurobiol Aging 2016; 39:184-94. [PMID: 26923415 PMCID: PMC4782737 DOI: 10.1016/j.neurobiolaging.2015.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/30/2023]
Abstract
Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology-a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes.
Collapse
Affiliation(s)
- Holly E Holmes
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK.
| | - Niall Colgan
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Ozama Ismail
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Da Ma
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Nick M Powell
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - James M O'Callaghan
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Ian F Harrison
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | | | | | | | - M J Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Simon Walker-Samuel
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - Jack A Wells
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Mark F Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| |
Collapse
|
45
|
Nieman BJ, de Guzman AE, Gazdzinski LM, Lerch JP, Chakravarty MM, Pipitone J, Strother D, Fryer C, Bouffet E, Laughlin S, Laperriere N, Riggs L, Skocic J, Mabbott DJ. White and Gray Matter Abnormalities After Cranial Radiation in Children and Mice. Int J Radiat Oncol Biol Phys 2015; 93:882-91. [DOI: 10.1016/j.ijrobp.2015.07.2293] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|
46
|
Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning. Nat Commun 2015; 6:7582. [PMID: 26151911 PMCID: PMC4506522 DOI: 10.1038/ncomms8582] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/21/2015] [Indexed: 01/27/2023] Open
Abstract
Neuroimaging has provided compelling data about the brain. Yet the underlying mechanisms of many neuroimaging techniques have not been elucidated. Here we report a voxel-based morphometry (VBM) study of Thy1-YFP mice following auditory fear conditioning complemented by confocal microscopy analysis of cortical thickness, neuronal morphometric features and nuclei size/density. Significant VBM results included the nuclei of the amygdala, the insula and the auditory cortex. There were no significant VBM changes in a control brain area. Focusing on the auditory cortex, confocal analysis showed that fear conditioning led to a significantly increased density of shorter and wider dendritic spines, while there were no spine differences in the control area. Of all the morphology metrics studied, the spine density was the only one to show significant correlation with the VBM signal. These data demonstrate that learning-induced structural changes detected by VBM may be partially explained by increases in dendritic spine density. Voxel-based morphometry (VBM) involves comparisons of high resolution structural images of the brain between groups, but what causes changes in the VBM signal is unclear. Here the authors perform a VBM study of Thy1-YFP mice following auditory fear conditioning and propose that the signal changes can be partially explained by increases in dendritic spine density.
Collapse
|
47
|
Johnson GA. Magnetic resonance histology. J Magn Reson Imaging 2015; 42:1-2. [DOI: 10.1002/jmri.24774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- G. Allan Johnson
- Duke Center for In Vivo Microscopy; Department of Radiology; Duke University Medical Center; Durham NC USA
| |
Collapse
|
48
|
Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA. A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data. Cereb Cortex 2015; 25:4628-37. [PMID: 26048951 PMCID: PMC4715247 DOI: 10.1093/cercor/bhv121] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data.
Collapse
Affiliation(s)
- Evan Calabrese
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gary Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
49
|
MRI-detectable changes in mouse brain structure induced by voluntary exercise. Neuroimage 2015; 113:175-83. [DOI: 10.1016/j.neuroimage.2015.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022] Open
|
50
|
Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA. A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 2015; 117:408-16. [PMID: 26037056 DOI: 10.1016/j.neuroimage.2015.05.072] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 12/27/2022] Open
Abstract
The rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate for modeling the structure and function of the brain. Brain atlases, and particularly those based on magnetic resonance imaging (MRI), have become important tools for understanding normal brain structure, and for identifying structural abnormalities resulting from disease states, exposures, and/or aging. Diffusion tensor imaging (DTI)-based MRI brain atlases are widely used in both human and macaque brain imaging studies because of the unique contrasts, quantitative diffusion metrics, and diffusion tractography that they can provide. Previous MRI and DTI atlases of the rhesus brain have been limited by low contrast and/or low spatial resolution imaging. Here we present a microscopic resolution MRI/DTI atlas of the rhesus brain based on 10 postmortem brain specimens. The atlas includes both structural MRI and DTI image data, a detailed three-dimensional segmentation of 241 anatomic structures, diffusion tractography, cortical thickness estimates, and maps of anatomic variability among atlas specimens. This atlas incorporates many useful features from previous work, including anatomic label nomenclature and ontology, data orientation, and stereotaxic reference frame, and further extends prior analyses with the inclusion of high-resolution multi-contrast image data.
Collapse
Affiliation(s)
- Evan Calabrese
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA
| | - Yundi Shi
- Department of Computer Science, Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin A Styner
- Department of Computer Science, Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|