1
|
Zoller H, Garcia Perez C, Betel Geijo Fernández J, Zu Castell W. Measuring and understanding information storage and transfer in a simulated human gut microbiome. PLoS Comput Biol 2024; 20:e1012359. [PMID: 39288161 PMCID: PMC11407623 DOI: 10.1371/journal.pcbi.1012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Considering biological systems as information processing entities and analyzing their organizational structure via information-theoretic measures has become an established approach in life sciences. We transfer this framework to a field of broad general interest, the human gut microbiome. We use BacArena, a software combining agent-based modelling and flux-balance analysis, to simulate a simplified human intestinal microbiome (SIHUMI). In a first step, we derive information theoretic measures from the simulated abundance data, and, in a second step, relate them to the metabolic processes underlying the abundance data. Our study provides further evidence on the role of active information storage as an indicator of unexpected structural change in the observed system. Besides, we show that information transfer reflects coherent behavior in the microbial community, both as a reaction to environmental changes and as a result of direct effective interaction. In this sense, purely abundance-based information theoretic measures can provide meaningful insight on metabolic interactions within bacterial communities. Furthermore, we shed light on the important however little noticed technical aspect of distinguishing immediate and delayed effects in the interpretation of local information theoretical measures.
Collapse
Affiliation(s)
- Hannah Zoller
- Department Geoinformation, Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam, Germany
| | | | | | - Wolfgang Zu Castell
- Department Geoinformation, Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam, Germany
- Department of Mathematics, Technical University of Munich, Germany
| |
Collapse
|
2
|
Rudelt L, González Marx D, Spitzner FP, Cramer B, Zierenberg J, Priesemann V. Signatures of hierarchical temporal processing in the mouse visual system. PLoS Comput Biol 2024; 20:e1012355. [PMID: 39173067 PMCID: PMC11373856 DOI: 10.1371/journal.pcbi.1012355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
A core challenge for the brain is to process information across various timescales. This could be achieved by a hierarchical organization of temporal processing through intrinsic mechanisms (e.g., recurrent coupling or adaptation), but recent evidence from spike recordings of the rodent visual system seems to conflict with this hypothesis. Here, we used an optimized information-theoretic and classical autocorrelation analysis to show that information- and correlation timescales of spiking activity increase along the anatomical hierarchy of the mouse visual system under visual stimulation, while information-theoretic predictability decreases. Moreover, intrinsic timescales for spontaneous activity displayed a similar hierarchy, whereas the hierarchy of predictability was stimulus-dependent. We could reproduce these observations in a basic recurrent network model with correlated sensory input. Our findings suggest that the rodent visual system employs intrinsic mechanisms to achieve longer integration for higher cortical areas, while simultaneously reducing predictability for an efficient neural code.
Collapse
Affiliation(s)
- Lucas Rudelt
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Daniel González Marx
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - F Paul Spitzner
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Benjamin Cramer
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Johannes Zierenberg
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
| |
Collapse
|
3
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
4
|
Sparacino L, Antonacci Y, Barà C, Švec D, Javorka M, Faes L. A method to assess linear self-predictability of physiologic processes in the frequency domain: application to beat-to-beat variability of arterial compliance. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1346424. [PMID: 38638612 PMCID: PMC11024367 DOI: 10.3389/fnetp.2024.1346424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
The concept of self-predictability plays a key role for the analysis of the self-driven dynamics of physiological processes displaying richness of oscillatory rhythms. While time domain measures of self-predictability, as well as time-varying and local extensions, have already been proposed and largely applied in different contexts, they still lack a clear spectral description, which would be significantly useful for the interpretation of the frequency-specific content of the investigated processes. Herein, we propose a novel approach to characterize the linear self-predictability (LSP) of Gaussian processes in the frequency domain. The LSP spectral functions are related to the peaks of the power spectral density (PSD) of the investigated process, which is represented as the sum of different oscillatory components with specific frequency through the method of spectral decomposition. Remarkably, each of the LSP profiles is linked to a specific oscillation of the process, and it returns frequency-specific measures when integrated along spectral bands of physiological interest, as well as a time domain self-predictability measure with a clear meaning in the field of information theory, corresponding to the well-known information storage, when integrated along the whole frequency axis. The proposed measure is first illustrated in a theoretical simulation, showing that it clearly reflects the degree and frequency-specific location of predictability patterns of the analyzed process in both time and frequency domains. Then, it is applied to beat-to-beat time series of arterial compliance obtained in young healthy subjects. The results evidence that the spectral decomposition strategy applied to both the PSD and the spectral LSP of compliance identifies physiological responses to postural stress of low and high frequency oscillations of the process which cannot be traced in the time domain only, highlighting the importance of computing frequency-specific measures of self-predictability in any oscillatory physiologic process.
Collapse
Affiliation(s)
- Laura Sparacino
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Dávid Švec
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Javorka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Hermann G, Tödt I, Tagliazucchi E, Todtenhaupt IK, Laufs H, von Wegner F. Propofol Reversibly Attenuates Short-Range Microstate Ordering and 20 Hz Microstate Oscillations. Brain Topogr 2024; 37:329-342. [PMID: 38228923 DOI: 10.1007/s10548-023-01023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Microstate sequences summarize the changing voltage patterns measured by electroencephalography, using a clustering approach to reduce the high dimensionality of the underlying data. A common approach is to restrict the pattern matching step to local maxima of the global field power (GFP) and to interpolate the microstate fit in between. In this study, we investigate how the anesthetic propofol affects microstate sequence periodicity and predictability, and how these metrics are changed by interpolation. We performed two frequency analyses on microstate sequences, one based on time-lagged mutual information, the other based on Fourier transform methodology, and quantified the effects of interpolation. Resting-state microstate sequences had a 20 Hz frequency peak related to dominant 10 Hz (alpha) rhythms, and the Fourier approach demonstrated that all five microstate classes followed this frequency. The 20 Hz periodicity was reversibly attenuated under moderate propofol sedation, as shown by mutual information and Fourier analysis. Characteristic microstate frequencies could only be observed in non-interpolated microstate sequences and were masked by smoothing effects of interpolation. Information-theoretic analysis revealed faster microstate dynamics and larger entropy rates under propofol, whereas Shannon entropy did not change significantly. In moderate sedation, active information storage decreased for non-interpolated sequences. Signatures of non-equilibrium dynamics were observed in non-interpolated sequences, but no changes were observed between sedation levels. All changes occurred while subjects were able to perform an auditory perception task. In summary, we show that low dose propofol reversibly increases the randomness of microstate sequences and attenuates microstate oscillations without correlation to cognitive task performance. Microstate dynamics between GFP peaks reflect physiological processes that are not accessible in interpolated sequences.
Collapse
Affiliation(s)
- Gesine Hermann
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Inken Tödt
- Institute of Sexual Medicine & Forensic Psychiatry and Psychotherapy, Christian-Albrechts University, Schwanenweg 24, 24105, Kiel, Germany
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Inga Karin Todtenhaupt
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Helmut Laufs
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Frederic von Wegner
- School of Biomedical Sciences, UNSW, Wallace Wurth Building, Kensington, NSW, 2052, Australia.
| |
Collapse
|
6
|
Voges N, Lima V, Hausmann J, Brovelli A, Battaglia D. Decomposing Neural Circuit Function into Information Processing Primitives. J Neurosci 2024; 44:e0157232023. [PMID: 38050070 PMCID: PMC10866194 DOI: 10.1523/jneurosci.0157-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023] Open
Abstract
It is challenging to measure how specific aspects of coordinated neural dynamics translate into operations of information processing and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms-such as self-sustained or propagating activity and nonlinear summation of inputs-do not directly give rise to high-level functions. Nevertheless, they already implement simple the information carried by neural activity. Here, we propose that distinct functions, such as stimulus representation, working memory, or selective attention, stem from different combinations and types of low-level manipulations of information or information processing primitives. To test this hypothesis, we combine approaches from information theory with simulations of multi-scale neural circuits involving interacting brain regions that emulate well-defined cognitive functions. Specifically, we track the information dynamics emergent from patterns of neural dynamics, using quantitative metrics to detect where and when information is actively buffered, transferred or nonlinearly merged, as possible modes of low-level processing (storage, transfer and modification). We find that neuronal subsets maintaining representations in working memory or performing attentional gain modulation are signaled by their boosted involvement in operations of information storage or modification, respectively. Thus, information dynamic metrics, beyond detecting which network units participate in cognitive processing, also promise to specify how and when they do it, that is, through which type of primitive computation, a capability that may be exploited for the analysis of experimental recordings.
Collapse
Affiliation(s)
- Nicole Voges
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Vinicius Lima
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
| | - Johannes Hausmann
- R&D Department, Hyland Switzerland Sarl, Corcelles NE 2035, Switzerland
| | - Andrea Brovelli
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Demian Battaglia
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67000, France
| |
Collapse
|
7
|
Antonacci Y, Barà C, Zaccaro A, Ferri F, Pernice R, Faes L. Time-varying information measures: an adaptive estimation of information storage with application to brain-heart interactions. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1242505. [PMID: 37920446 PMCID: PMC10619917 DOI: 10.3389/fnetp.2023.1242505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system. To address this limitation, we propose a time-varying approach based on the recursive least squares algorithm (RLS) for estimating IS at each time instant, in non-stationary conditions. We tested this approach in simulated time-varying dynamics and in the analysis of electroencephalographic (EEG) signals recorded from healthy volunteers and timed with the heartbeat to investigate brain-heart interactions. In simulations, we show that the proposed approach allows to track both abrupt and slow changes in the information stored in a physiological system. These changes are reflected in its evolution and variability over time. The analysis of brain-heart interactions reveals marked differences across the cardiac cycle phases of the variability of the time-varying IS. On the other hand, the average IS values exhibit a weak modulation over parieto-occiptal areas of the scalp. Our study highlights the importance of developing more advanced methods for measuring IS that account for non-stationarity in physiological systems. The proposed time-varying approach based on RLS represents a useful tool for identifying spatio-temporal dynamics within the neurocardiac system and can contribute to the understanding of brain-heart interactions.
Collapse
Affiliation(s)
- Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Clawson W, Waked B, Madec T, Ghestem A, Quilichini PP, Battaglia D, Bernard C. Perturbed Information Processing Complexity in Experimental Epilepsy. J Neurosci 2023; 43:6573-6587. [PMID: 37550052 PMCID: PMC10513075 DOI: 10.1523/jneurosci.0383-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
Comorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we test the hypothesis that primitive processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex in experimental epilepsy in adult, male Wistar rats. We find that information storage and sharing are organized into substates across the stereotypic states of slow and theta oscillations in both epilepsy and control conditions. However, their internal composition and organization through time are disrupted in epilepsy, partially losing brain state selectivity compared with controls, and shifting toward a regimen of disorder. We propose that the alteration of information processing at this algorithmic level of computation, the theoretical intermediate level between structure and function, may be a mechanism behind the emergent and widespread comorbidities associated with epilepsy, and perhaps other disorders.SIGNIFICANCE STATEMENT Comorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we show that basic processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex (two regions involved in memory processes) in experimental epilepsy. Such disruption of information processing at the algorithmic level itself could underlie the general performance impairments in epilepsy.
Collapse
Affiliation(s)
- Wesley Clawson
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Benjamin Waked
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Tanguy Madec
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Antoine Ghestem
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Pascale P Quilichini
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Demian Battaglia
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
9
|
Varley TF. Decomposing past and future: Integrated information decomposition based on shared probability mass exclusions. PLoS One 2023; 18:e0282950. [PMID: 36952508 PMCID: PMC10035902 DOI: 10.1371/journal.pone.0282950] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023] Open
Abstract
A core feature of complex systems is that the interactions between elements in the present causally constrain their own futures, and the futures of other elements as the system evolves through time. To fully model all of these interactions (between elements, as well as ensembles of elements), it is possible to decompose the total information flowing from past to future into a set of non-overlapping temporal interactions that describe all the different modes by which information can be stored, transferred, or modified. To achieve this, I propose a novel information-theoretic measure of temporal dependency (Iτsx) based on the logic of local probability mass exclusions. This integrated information decomposition can reveal emergent and higher-order interactions within the dynamics of a system, as well as refining existing measures. To demonstrate the utility of this framework, I apply the decomposition to spontaneous spiking activity recorded from dissociated neural cultures of rat cerebral cortex to show how different modes of information processing are distributed over the system. Furthermore, being a localizable analysis, Iτsx can provide insight into the computational structure of single moments. I explore the time-resolved computational structure of neuronal avalanches and find that different types of information atoms have distinct profiles over the course of an avalanche, with the majority of non-trivial information dynamics happening before the first half of the cascade is completed. These analyses allow us to move beyond the historical focus on single measures of dependency such as information transfer or information integration, and explore a panoply of different relationships between elements (and groups of elements) in complex systems.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States of America
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States of America
| |
Collapse
|
10
|
Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering (Basel) 2023; 10:bioengineering10030372. [PMID: 36978763 PMCID: PMC10044923 DOI: 10.3390/bioengineering10030372] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks.
Collapse
Affiliation(s)
- Giovanni Chiarion
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
11
|
Barà C, Sparacino L, Pernice R, Antonacci Y, Porta A, Kugiumtzis D, Faes L. Comparison of discretization strategies for the model-free information-theoretic assessment of short-term physiological interactions. CHAOS (WOODBURY, N.Y.) 2023; 33:033127. [PMID: 37003789 DOI: 10.1063/5.0140641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
This work presents a comparison between different approaches for the model-free estimation of information-theoretic measures of the dynamic coupling between short realizations of random processes. The measures considered are the mutual information rate (MIR) between two random processes X and Y and the terms of its decomposition evidencing either the individual entropy rates of X and Y and their joint entropy rate, or the transfer entropies from X to Y and from Y to X and the instantaneous information shared by X and Y. All measures are estimated through discretization of the random variables forming the processes, performed either via uniform quantization (binning approach) or rank ordering (permutation approach). The binning and permutation approaches are compared on simulations of two coupled non-identical Hènon systems and on three datasets, including short realizations of cardiorespiratory (CR, heart period and respiration flow), cardiovascular (CV, heart period and systolic arterial pressure), and cerebrovascular (CB, mean arterial pressure and cerebral blood flow velocity) measured in different physiological conditions, i.e., spontaneous vs paced breathing or supine vs upright positions. Our results show that, with careful selection of the estimation parameters (i.e., the embedding dimension and the number of quantization levels for the binning approach), meaningful patterns of the MIR and of its components can be achieved in the analyzed systems. On physiological time series, we found that paced breathing at slow breathing rates induces less complex and more coupled CR dynamics, while postural stress leads to unbalancing of CV interactions with prevalent baroreflex coupling and to less complex pressure dynamics with preserved CB interactions. These results are better highlighted by the permutation approach, thanks to its more parsimonious representation of the discretized dynamic patterns, which allows one to explore interactions with longer memory while limiting the curse of dimensionality.
Collapse
Affiliation(s)
- Chiara Barà
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Dimitris Kugiumtzis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
12
|
Varley TF, Sporns O, Schaffelhofer S, Scherberger H, Dann B. Information-processing dynamics in neural networks of macaque cerebral cortex reflect cognitive state and behavior. Proc Natl Acad Sci U S A 2023; 120:e2207677120. [PMID: 36603032 PMCID: PMC9926243 DOI: 10.1073/pnas.2207677120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
One of the essential functions of biological neural networks is the processing of information. This includes everything from processing sensory information to perceive the environment, up to processing motor information to interact with the environment. Due to methodological limitations, it has been historically unclear how information processing changes during different cognitive or behavioral states and to what extent information is processed within or between the network of neurons in different brain areas. In this study, we leverage recent advances in the calculation of information dynamics to explore neural-level processing within and between the frontoparietal areas AIP, F5, and M1 during a delayed grasping task performed by three macaque monkeys. While information processing was high within all areas during all cognitive and behavioral states of the task, interareal processing varied widely: During visuomotor transformation, AIP and F5 formed a reciprocally connected processing unit, while no processing was present between areas during the memory period. Movement execution was processed globally across all areas with predominance of processing in the feedback direction. Furthermore, the fine-scale network structure reconfigured at the neuron level in response to different grasping conditions, despite no differences in the overall amount of information present. These results suggest that areas dynamically form higher-order processing units according to the cognitive or behavioral demand and that the information-processing network is hierarchically organized at the neuron level, with the coarse network structure determining the behavioral state and finer changes reflecting different conditions.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Psychological & Brain Sciences, Indiana University47405-7007, Bloomington, IN
- School of Informatics, Computing, and Engineering, Indiana University47405-7007, Bloomington, IN
| | - Olaf Sporns
- Department of Psychological & Brain Sciences, Indiana University47405-7007, Bloomington, IN
| | - Stefan Schaffelhofer
- Neurobiology Laboratory, German Primate Center37077, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen37073, Goettingen, Germany
| | - Hansjörg Scherberger
- Neurobiology Laboratory, German Primate Center37077, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen37073, Goettingen, Germany
| | - Benjamin Dann
- Neurobiology Laboratory, German Primate Center37077, Goettingen, Germany
| |
Collapse
|
13
|
Sorrentino P, Rabuffo G, Baselice F, Troisi Lopez E, Liparoti M, Quarantelli M, Sorrentino G, Bernard C, Jirsa V. Dynamical interactions reconfigure the gradient of cortical timescales. Netw Neurosci 2023; 7:73-85. [PMID: 37334007 PMCID: PMC10270712 DOI: 10.1162/netn_a_00270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/14/2022] [Indexed: 09/18/2023] Open
Abstract
The functional organization of the brain is usually presented with a back-to-front gradient of timescales, reflecting regional specialization with sensory areas (back) processing information faster than associative areas (front), which perform information integration. However, cognitive processes require not only local information processing but also coordinated activity across regions. Using magnetoencephalography recordings, we find that the functional connectivity at the edge level (between two regions) is also characterized by a back-to-front gradient of timescales following that of the regional gradient. Unexpectedly, we demonstrate a reverse front-to-back gradient when nonlocal interactions are prominent. Thus, the timescales are dynamic and can switch between back-to-front and front-to-back patterns.
Collapse
Affiliation(s)
- P. Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - G. Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - F. Baselice
- Department of Engineering, Parthenope University of Naples, Naples, Italy
| | - E. Troisi Lopez
- Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy
- Institute for Diagnosis and Cure Hermitage Capodimonte, Naples, Italy
| | - M. Liparoti
- Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy
- Institute for Diagnosis and Cure Hermitage Capodimonte, Naples, Italy
| | - M. Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - G. Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
- Institute for Diagnosis and Cure Hermitage Capodimonte, Naples, Italy
| | - C. Bernard
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - V. Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| |
Collapse
|
14
|
Wang Y, Chiola S, Yang G, Russell C, Armstrong CJ, Wu Y, Spampanato J, Tarboton P, Ullah HMA, Edgar NU, Chang AN, Harmin DA, Bocchi VD, Vezzoli E, Besusso D, Cui J, Cattaneo E, Kubanek J, Shcheglovitov A. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat Commun 2022; 13:5688. [PMID: 36202854 PMCID: PMC9537523 DOI: 10.1038/s41467-022-33364-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Human telencephalon is an evolutionarily advanced brain structure associated with many uniquely human behaviors and disorders. However, cell lineages and molecular pathways implicated in human telencephalic development remain largely unknown. We produce human telencephalic organoids from stem cell-derived single neural rosettes and investigate telencephalic development under normal and pathological conditions. We show that single neural rosette-derived organoids contain pallial and subpallial neural progenitors, excitatory and inhibitory neurons, as well as macroglial and periendothelial cells, and exhibit predictable organization and cytoarchitecture. We comprehensively characterize the properties of neurons in SNR-derived organoids and identify transcriptional programs associated with the specification of excitatory and inhibitory neural lineages from a common pool of NPs early in telencephalic development. We also demonstrate that neurons in organoids with a hemizygous deletion of an autism- and intellectual disability-associated gene SHANK3 exhibit intrinsic and excitatory synaptic deficits and impaired expression of several clustered protocadherins. Collectively, this study validates SNR-derived organoids as a reliable model for studying human telencephalic cortico-striatal development and identifies intrinsic, synaptic, and clustered protocadherin expression deficits in human telencephalic tissue with SHANK3 hemizygosity.
Collapse
Affiliation(s)
- Yueqi Wang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Guang Yang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Chad Russell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Yuanyuan Wu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Paisley Tarboton
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Amelia N Chang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jun Cui
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Aleksandr Shcheglovitov
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
McMillen P, Walker SI, Levin M. Information Theory as an Experimental Tool for Integrating Disparate Biophysical Signaling Modules. Int J Mol Sci 2022; 23:9580. [PMID: 36076979 PMCID: PMC9455895 DOI: 10.3390/ijms23179580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
There is a growing appreciation in the fields of cell biology and developmental biology that cells collectively process information in time and space. While many powerful molecular tools exist to observe biophysical dynamics, biologists must find ways to quantitatively understand these phenomena at the systems level. Here, we present a guide for the application of well-established information theory metrics to biological datasets and explain these metrics using examples from cell, developmental and regenerative biology. We introduce a novel computational tool named after its intended purpose, calcium imaging, (CAIM) for simple, rigorous application of these metrics to time series datasets. Finally, we use CAIM to study calcium and cytoskeletal actin information flow patterns between Xenopus laevis embryonic animal cap stem cells. The tools that we present here should enable biologists to apply information theory to develop a systems-level understanding of information processing across a diverse array of experimental systems.
Collapse
Affiliation(s)
- Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Sara I. Walker
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85281, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
16
|
Mijatovic G, Kljajic D, Kasas-Lazetic K, Milutinov M, Stivala S, Busacca A, Cino AC, Stramaglia S, Faes L. Information Dynamics of Electric Field Intensity before and during the COVID-19 Pandemic. ENTROPY 2022; 24:e24050726. [PMID: 35626609 PMCID: PMC9140641 DOI: 10.3390/e24050726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
This work investigates the temporal statistical structure of time series of electric field (EF) intensity recorded with the aim of exploring the dynamical patterns associated with periods with different human activity in urban areas. The analyzed time series were obtained from a sensor of the EMF RATEL monitoring system installed in the campus area of the University of Novi Sad, Serbia. The sensor performs wideband cumulative EF intensity monitoring of all active commercial EF sources, thus including those linked to human utilization of wireless communication systems. Monitoring was performed continuously during the years 2019 and 2020, allowing us to investigate the effects on the patterns of EF intensity of varying conditions of human mobility, including regular teaching and exam activity within the campus, as well as limitations to mobility related to the COVID-19 pandemic. Time series analysis was performed using both simple statistics (mean and variance) and combining the information-theoretic measure of information storage (IS) with the method of surrogate data to quantify the regularity of EF dynamic patterns and detect the presence of nonlinear dynamics. Moreover, to assess the possible coexistence of dynamic behaviors across multiple temporal scales, IS analysis was performed over consecutive observation windows lasting one day, week, month, and year, respectively coarse grained at time scales of 6 min, 30 min, 2 h, and 1 day. Our results document that the EF intensity patterns of variability are modulated by the movement of people at daily, weekly, and monthly scales, and are blunted during periods of restricted mobility related to the COVID-19 pandemic. Mobility restrictions also affected significantly the regularity of the EF intensity time series, resulting in lower values of IS observed simultaneously with a loss of nonlinear dynamics. Thus, our analysis can be useful to investigate changes in the global patterns of human mobility both during pandemics or other types of events, and from this perspective may serve to implement strategies for safety assessment and for optimizing the design of networks of EF sensors.
Collapse
Affiliation(s)
- Gorana Mijatovic
- Faculty of Technical Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (G.M.); (D.K.); (K.K.-L.); (M.M.)
| | - Dragan Kljajic
- Faculty of Technical Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (G.M.); (D.K.); (K.K.-L.); (M.M.)
| | - Karolina Kasas-Lazetic
- Faculty of Technical Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (G.M.); (D.K.); (K.K.-L.); (M.M.)
| | - Miodrag Milutinov
- Faculty of Technical Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (G.M.); (D.K.); (K.K.-L.); (M.M.)
| | - Salvatore Stivala
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.S.); (A.B.); (A.C.C.)
| | - Alessandro Busacca
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.S.); (A.B.); (A.C.C.)
| | - Alfonso Carmelo Cino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.S.); (A.B.); (A.C.C.)
| | | | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.S.); (A.B.); (A.C.C.)
- Correspondence:
| |
Collapse
|
17
|
Shorten DP, Priesemann V, Wibral M, Lizier JT. Early lock-in of structured and specialised information flows during neural development. eLife 2022; 11:74651. [PMID: 35286256 PMCID: PMC9064303 DOI: 10.7554/elife.74651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
The brains of many organisms are capable of complicated distributed computation underpinned by a highly advanced information processing capacity. Although substantial progress has been made towards characterising the information flow component of this capacity in mature brains, there is a distinct lack of work characterising its emergence during neural development. This lack of progress has been largely driven by the lack of effective estimators of information processing operations for spiking data. Here, we leverage recent advances in this estimation task in order to quantify the changes in transfer entropy during development. We do so by studying the changes in the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We find that the quantity of information flowing across these networks undergoes a dramatic increase across development. Moreover, the spatial structure of these flows exhibits a tendency to lock-in at the point when they arise. We also characterise the flow of information during the crucial periods of population bursts. We find that, during these bursts, nodes tend to undertake specialised computational roles as either transmitters, mediators, or receivers of information, with these roles tending to align with their average spike ordering. Further, we find that these roles are regularly locked-in when the information flows are established. Finally, we compare these results to information flows in a model network developing according to a spike-timing-dependent plasticity learning rule. Similar temporal patterns in the development of information flows were observed in these networks, hinting at the broader generality of these phenomena.
Collapse
Affiliation(s)
- David P Shorten
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
| | - Joseph T Lizier
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Zhu R, Hochstetter J, Loeffler A, Diaz-Alvarez A, Nakayama T, Lizier JT, Kuncic Z. Information dynamics in neuromorphic nanowire networks. Sci Rep 2021; 11:13047. [PMID: 34158521 PMCID: PMC8219687 DOI: 10.1038/s41598-021-92170-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Neuromorphic systems comprised of self-assembled nanowires exhibit a range of neural-like dynamics arising from the interplay of their synapse-like electrical junctions and their complex network topology. Additionally, various information processing tasks have been demonstrated with neuromorphic nanowire networks. Here, we investigate the dynamics of how these unique systems process information through information-theoretic metrics. In particular, Transfer Entropy (TE) and Active Information Storage (AIS) are employed to investigate dynamical information flow and short-term memory in nanowire networks. In addition to finding that the topologically central parts of networks contribute the most to the information flow, our results also reveal TE and AIS are maximized when the networks transitions from a quiescent to an active state. The performance of neuromorphic networks in memory and learning tasks is demonstrated to be dependent on their internal dynamical states as well as topological structure. Optimal performance is found when these networks are pre-initialised to the transition state where TE and AIS are maximal. Furthermore, an optimal range of information processing resources (i.e. connectivity density) is identified for performance. Overall, our results demonstrate information dynamics is a valuable tool to study and benchmark neuromorphic systems.
Collapse
Affiliation(s)
- Ruomin Zhu
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Joel Hochstetter
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alon Loeffler
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Adrian Diaz-Alvarez
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tomonobu Nakayama
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Joseph T Lizier
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zdenka Kuncic
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
19
|
Rudelt L, González Marx D, Wibral M, Priesemann V. Embedding optimization reveals long-lasting history dependence in neural spiking activity. PLoS Comput Biol 2021; 17:e1008927. [PMID: 34061837 PMCID: PMC8205186 DOI: 10.1371/journal.pcbi.1008927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/15/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Information processing can leave distinct footprints on the statistics of neural spiking. For example, efficient coding minimizes the statistical dependencies on the spiking history, while temporal integration of information may require the maintenance of information over different timescales. To investigate these footprints, we developed a novel approach to quantify history dependence within the spiking of a single neuron, using the mutual information between the entire past and current spiking. This measure captures how much past information is necessary to predict current spiking. In contrast, classical time-lagged measures of temporal dependence like the autocorrelation capture how long-potentially redundant-past information can still be read out. Strikingly, we find for model neurons that our method disentangles the strength and timescale of history dependence, whereas the two are mixed in classical approaches. When applying the method to experimental data, which are necessarily of limited size, a reliable estimation of mutual information is only possible for a coarse temporal binning of past spiking, a so-called past embedding. To still account for the vastly different spiking statistics and potentially long history dependence of living neurons, we developed an embedding-optimization approach that does not only vary the number and size, but also an exponential stretching of past bins. For extra-cellular spike recordings, we found that the strength and timescale of history dependence indeed can vary independently across experimental preparations. While hippocampus indicated strong and long history dependence, in visual cortex it was weak and short, while in vitro the history dependence was strong but short. This work enables an information-theoretic characterization of history dependence in recorded spike trains, which captures a footprint of information processing that is beyond time-lagged measures of temporal dependence. To facilitate the application of the method, we provide practical guidelines and a toolbox.
Collapse
Affiliation(s)
- Lucas Rudelt
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | | | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
20
|
Wiebel-Herboth CB, Krüger M, Wollstadt P. Measuring inter- and intra-individual differences in visual scan patterns in a driving simulator experiment using active information storage. PLoS One 2021; 16:e0248166. [PMID: 33735199 PMCID: PMC7971706 DOI: 10.1371/journal.pone.0248166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 11/17/2022] Open
Abstract
Scan pattern analysis has been discussed as a promising tool in the context of real-time gaze-based applications. In particular, information-theoretic measures of scan path predictability, such as the gaze transition entropy (GTE), have been proposed for detecting relevant changes in user state or task demand. These measures model scan patterns as first-order Markov chains, assuming that only the location of the previous fixation is predictive of the next fixation in time. However, this assumption may not be sufficient in general, as recent research has shown that scan patterns may also exhibit more long-range temporal correlations. Thus, we here evaluate the active information storage (AIS) as a novel information-theoretic approach to quantifying scan path predictability in a dynamic task. In contrast to the GTE, the AIS provides means to statistically test and account for temporal correlations in scan path data beyond the previous last fixation. We compare AIS to GTE in a driving simulator experiment, in which participants drove in a highway scenario, where trials were defined based on an experimental manipulation that encouraged the driver to start an overtaking maneuver. Two levels of difficulty were realized by varying the time left to complete the task. We found that individual observers indeed showed temporal correlations beyond a single past fixation and that the length of the correlation varied between observers. No effect of task difficulty was observed on scan path predictability for either AIS or GTE, but we found a significant increase in predictability during overtaking. Importantly, for participants for which the first-order Markov chain assumption did not hold, this was only shown using AIS but not GTE. We conclude that accounting for longer time horizons in scan paths in a personalized fashion is beneficial for interpreting gaze pattern in dynamic tasks.
Collapse
Affiliation(s)
| | - Matti Krüger
- Honda Research Institute Europe, Offenbach/Main, Germany
| | | |
Collapse
|
21
|
Harré MS. Information Theory for Agents in Artificial Intelligence, Psychology, and Economics. ENTROPY 2021; 23:e23030310. [PMID: 33800724 PMCID: PMC8001993 DOI: 10.3390/e23030310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/05/2022]
Abstract
This review looks at some of the central relationships between artificial intelligence, psychology, and economics through the lens of information theory, specifically focusing on formal models of decision-theory. In doing so we look at a particular approach that each field has adopted and how information theory has informed the development of the ideas of each field. A key theme is expected utility theory, its connection to information theory, the Bayesian approach to decision-making and forms of (bounded) rationality. What emerges from this review is a broadly unified formal perspective derived from three very different starting points that reflect the unique principles of each field. Each of the three approaches reviewed can, in principle at least, be implemented in a computational model in such a way that, with sufficient computational power, they could be compared with human abilities in complex tasks. However, a central critique that can be applied to all three approaches was first put forward by Savage in The Foundations of Statistics and recently brought to the fore by the economist Binmore: Bayesian approaches to decision-making work in what Savage called ‘small worlds’ but cannot work in ‘large worlds’. This point, in various different guises, is central to some of the current debates about the power of artificial intelligence and its relationship to human-like learning and decision-making. Recent work on artificial intelligence has gone some way to bridging this gap but significant questions remain to be answered in all three fields in order to make progress in producing realistic models of human decision-making in the real world in which we live in.
Collapse
Affiliation(s)
- Michael S Harré
- Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
22
|
Meijers M, Ito S, Ten Wolde PR. Behavior of information flow near criticality. Phys Rev E 2021; 103:L010102. [PMID: 33601642 DOI: 10.1103/physreve.103.l010102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
Recent experiments have indicated that many biological systems self-organize near their critical point, which hints at a common design principle. While it has been suggested that information transmission is optimized near the critical point, it remains unclear how information transmission depends on the dynamics of the input signal, the distance over which the information needs to be transmitted, and the distance to the critical point. Here we employ stochastic simulations of a driven two-dimensional Ising system and study the instantaneous mutual information and the information transmission rate between a driven input spin and an output spin. The instantaneous mutual information varies nonmonotonically with the temperature but increases monotonically with the correlation time of the input signal. In contrast, there exists not only an optimal temperature but also an optimal finite input correlation time that maximizes the information transmission rate. This global optimum arises from a fundamental trade-off between the need to maximize the frequency of independent input messages, the necessity to respond fast to changes in the input, and the need to respond reliably to these changes. The optimal temperature lies above the critical point but moves toward it as the distance between the input and output spin is increased.
Collapse
Affiliation(s)
| | - Sosuke Ito
- NWO Institute AMOLF, 1098 XG Amsterdam, The Netherlands.,Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
23
|
Kim H, Valentini G, Hanson J, Walker SI. Informational architecture across non-living and living collectives. Theory Biosci 2021; 140:325-341. [PMID: 33532895 PMCID: PMC8629804 DOI: 10.1007/s12064-020-00331-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
Collective behavior is widely regarded as a hallmark property of living and intelligent systems. Yet, many examples are known of simple physical systems that are not alive, which nonetheless display collective behavior too, prompting simple physical models to often be adopted to explain living collective behaviors. To understand collective behavior as it occurs in living examples, it is important to determine whether or not there exist fundamental differences in how non-living and living systems act collectively, as well as the limits of the intuition that can be built from simpler, physical examples in explaining biological phenomenon. Here, we propose a framework for comparing non-living and living collectives as a continuum based on their information architecture: that is, how information is stored and processed across different degrees of freedom. We review diverse examples of collective phenomena, characterized from an information-theoretic perspective, and offer views on future directions for quantifying living collective behaviors based on their informational structure.
Collapse
Affiliation(s)
- Hyunju Kim
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University and Santa Fe Institute, Tempe, USA
| | - Gabriele Valentini
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jake Hanson
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - Sara Imari Walker
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA.
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University and Santa Fe Institute, Tempe, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
24
|
Quantifying the Predictability of Visual Scanpaths Using Active Information Storage. ENTROPY 2021; 23:e23020167. [PMID: 33573069 PMCID: PMC7912697 DOI: 10.3390/e23020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/27/2022]
Abstract
Entropy-based measures are an important tool for studying human gaze behavior under various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify the predictability of a visual scanpath as the entropy of transitions between fixations and has been shown to correlate with changes in task demand or changes in observer state. Measuring scanpath predictability is thus a promising approach to identifying viewers' cognitive states in behavioral experiments or gaze-based applications. However, GTE does not account for temporal dependencies beyond two consecutive fixations and may thus underestimate the actual predictability of the current fixation given past gaze behavior. Instead, we propose to quantify scanpath predictability by estimating the active information storage (AIS), which can account for dependencies spanning multiple fixations. AIS is calculated as the mutual information between a processes' multivariate past state and its next value. It is thus able to measure how much information a sequence of past fixations provides about the next fixation, hence covering a longer temporal horizon. Applying the proposed approach, we were able to distinguish between induced observer states based on estimated AIS, providing first evidence that AIS may be used in the inference of user states to improve human-machine interaction.
Collapse
|
25
|
Kotiuchyi I, Pernice R, Popov A, Faes L, Kharytonov V. A Framework to Assess the Information Dynamics of Source EEG Activity and Its Application to Epileptic Brain Networks. Brain Sci 2020; 10:E657. [PMID: 32971835 PMCID: PMC7564380 DOI: 10.3390/brainsci10090657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG) sources. The framework combines the use of common spatial patterns to select the EEG components which maximize the variance between two experimental conditions, simultaneous implementation of vector autoregressive modeling (VAR) with independent component analysis to describe the joint source dynamics and their projection to the scalp, and computation of information dynamics measures (information storage, information transfer, statistically significant network links) from the source VAR parameters. The proposed framework was tested on simulated EEGs obtained mixing source signals generated under different coupling conditions, showing its ability to retrieve source information dynamics from the scalp signals. Then, it was applied to investigate scalp and source brain connectivity in a group of children manifesting episodes of focal and generalized epilepsy; the analysis was performed on EEG signals lasting 5 s, collected in two consecutive windows preceding and one window following each ictal episode. Our results show that generalized seizures are associated with a significant decrease from pre-ictal to post-ictal periods of the information stored in the signals and of the information transferred among them, reflecting reduced self-predictability and causal connectivity at the level of both scalp and source brain dynamics. On the contrary, in the case of focal seizures the scalp EEG activity was not discriminated across conditions by any information measure, while source analysis revealed a tendency of the measures of information transfer to increase just before seizures and to decrease just after seizures. These results suggest that focal epileptic seizures are associated with a reorganization of the topology of EEG brain networks which is only visible analyzing connectivity among the brain sources. Our findings emphasize the importance of EEG modeling approaches able to deal with the adverse effects of volume conduction on brain connectivity analysis, and their potential relevance to the development of strategies for prediction and clinical treatment of epilepsy.
Collapse
Affiliation(s)
- Ivan Kotiuchyi
- Department of Biomedical Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine;
- Data & Analytics, Ciklum, London WC1 A 2TH, UK;
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, 90133 Palermo, Italy;
| | - Anton Popov
- Data & Analytics, Ciklum, London WC1 A 2TH, UK;
- Department of Electronic Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
| | - Luca Faes
- Department of Engineering, University of Palermo, 90133 Palermo, Italy;
| | | |
Collapse
|
26
|
Antonacci Y, Astolfi L, Nollo G, Faes L. Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological Networks. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E732. [PMID: 33286504 PMCID: PMC7517272 DOI: 10.3390/e22070732] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 01/28/2023]
Abstract
The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state-space (SS) representation of vector autoregressive (VAR) models. Despite their high computational reliability these tools still suffer from estimation problems which emerge, in the case of low ratio between data points available and the number of time series, when VAR identification is performed via the standard ordinary least squares (OLS). In this work we propose to replace the OLS with penalized regression performed through the Least Absolute Shrinkage and Selection Operator (LASSO), prior to computation of the measures of information transfer and information modification. First, simulating networks of several coupled Gaussian systems with complex interactions, we show that the LASSO regression allows, also in conditions of data paucity, to accurately reconstruct both the underlying network topology and the expected patterns of information transfer. Then we apply the proposed VAR-SS-LASSO approach to a challenging application context, i.e., the study of the physiological network of brain and peripheral interactions probed in humans under different conditions of rest and mental stress. Our results, which document the possibility to extract physiologically plausible patterns of interaction between the cardiovascular, respiratory and brain wave amplitudes, open the way to the use of our new analysis tools to explore the emerging field of Network Physiology in several practical applications.
Collapse
Affiliation(s)
- Yuri Antonacci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy;
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
27
|
Weber I, Florin E, von Papen M, Visser-Vandewalle V, Timmermann L. Characterization of information processing in the subthalamic area of Parkinson’s patients. Neuroimage 2020; 209:116518. [DOI: 10.1016/j.neuroimage.2020.116518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
|
28
|
Faes L, Gómez-Extremera M, Pernice R, Carpena P, Nollo G, Porta A, Bernaola-Galván P. Comparison of methods for the assessment of nonlinearity in short-term heart rate variability under different physiopathological states. CHAOS (WOODBURY, N.Y.) 2019; 29:123114. [PMID: 31893647 DOI: 10.1063/1.5115506] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Despite the widespread diffusion of nonlinear methods for heart rate variability (HRV) analysis, the presence and the extent to which nonlinear dynamics contribute to short-term HRV are still controversial. This work aims at testing the hypothesis that different types of nonlinearity can be observed in HRV depending on the method adopted and on the physiopathological state. Two entropy-based measures of time series complexity (normalized complexity index, NCI) and regularity (information storage, IS), and a measure quantifying deviations from linear correlations in a time series (Gaussian linear contrast, GLC), are applied to short HRV recordings obtained in young (Y) and old (O) healthy subjects and in myocardial infarction (MI) patients monitored in the resting supine position and in the upright position reached through head-up tilt. The method of surrogate data is employed to detect the presence and quantify the contribution of nonlinear dynamics to HRV. We find that the three measures differ both in their variations across groups and conditions and in the percentage and strength of nonlinear HRV dynamics. NCI and IS displayed opposite variations, suggesting more complex dynamics in O and MI compared to Y and less complex dynamics during tilt. The strength of nonlinear dynamics is reduced by tilt using all measures in Y, while only GLC detects a significant strengthening of such dynamics in MI. A large percentage of detected nonlinear dynamics is revealed only by the IS measure in the Y group at rest, with a decrease in O and MI and during T, while NCI and GLC detect lower percentages in all groups and conditions. While these results suggest that distinct dynamic structures may lie beneath short-term HRV in different physiological states and pathological conditions, the strong dependence on the measure adopted and on their implementation suggests that physiological interpretations should be provided with caution.
Collapse
Affiliation(s)
- Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Manuel Gómez-Extremera
- Dpto. de Física Aplicada II, ETSI de Telecomunicación, University of Málaga, 29071 Málaga, Spain
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Pedro Carpena
- Dpto. de Física Aplicada II, ETSI de Telecomunicación, University of Málaga, 29071 Málaga, Spain
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Pedro Bernaola-Galván
- Dpto. de Física Aplicada II, ETSI de Telecomunicación, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
29
|
Li M, Han Y, Aburn MJ, Breakspear M, Poldrack RA, Shine JM, Lizier JT. Transitions in information processing dynamics at the whole-brain network level are driven by alterations in neural gain. PLoS Comput Biol 2019; 15:e1006957. [PMID: 31613882 PMCID: PMC6793849 DOI: 10.1371/journal.pcbi.1006957] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
A key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system, via changes in neural gain (in terms of the amplification and non-linearity in stimulus-response transfer function of brain regions). In a previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed that manipulating neural gain parameters led to a 'critical' transition in phase synchrony that was associated with a shift from segregated to integrated topology, thus confirming our original prediction. In this study, we advance these results by demonstrating that the gain-mediated phase transition is characterized by a shift in the underlying dynamics of neural information processing. Specifically, the dynamics of the subcritical (segregated) regime are dominated by information storage, whereas the supercritical (integrated) regime is associated with increased information transfer (measured via transfer entropy). Operating near to the critical regime with respect to modulating neural gain parameters would thus appear to provide computational advantages, offering flexibility in the information processing that can be performed with only subtle changes in gain control. Our results thus link studies of whole-brain network topology and the ascending arousal system with information processing dynamics, and suggest that the constraints imposed by the ascending arousal system constrain low-dimensional modes of information processing within the brain.
Collapse
Affiliation(s)
- Mike Li
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Yinuo Han
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Matthew J. Aburn
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | | | - Russell A. Poldrack
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - James M. Shine
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Joseph T. Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Radstake FDW, Raaijmakers EAL, Luttge R, Zinger S, Frimat JP. CALIMA: The semi-automated open-source calcium imaging analyzer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 179:104991. [PMID: 31443860 PMCID: PMC6718774 DOI: 10.1016/j.cmpb.2019.104991] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Ever since its discovery, calcium imaging has proven its worth in discovering new insights into the mechanisms of cellular communication. Yet, the analysis of the data generated by calcium imaging experiments demands a large amount of time from researchers. Tools enabling automated and semi-automated analysis are available, but often they allow automating only a part of the data analysis process. Therefore, we developed CALIMA (https://aethelraed.nl/calima), a free and open-source standalone software tool that provides an opportunity to quickly detect cells, to obtain the calcium spikes, and to determine the underlying network structure of neuronal cell cultures. METHODS Owing to the difference of Gaussians algorithm applied for the cell detection, CALIMA is able to detect regions of interest (ROIs) quickly. The z-scoring algorithm provides a means to set the requirements for spike detection, and the neuronal connections can be reconstructed by analyzing the cross-correlation between the cellular activity. We evaluated CALIMA's reliability, speed, and functionality with a special focus on neuronal cell detection and network reconstruction. The evaluation was performed by using real-life data such as a known example dataset (cultured primary rat cortical neurons, University of Pennsylvania) and by analyzing video graphic footage of in vitro brain cell samples (SH-SY5Y neuroblastoma cultures, one sample with synchronous neuron firing). The obtained results were compared to the corresponding outcomes observed on same datasets for other similar software solutions. Moreover, we compared the results of segmentation and peak detection analysis, the ones obtained using CALIMA and those acquired manually. RESULTS CALIMA was able to detect the cells in the cultures within seconds. The average sensitivity was 82% across the datasets checked, comparing favorably with the alternative software solutions. Using the correct parameters, CALIMA's Ca-spikes detection sensitivity reached 96%. Lastly, neuronal networks were reconstructed by combining the data on the ROI's activity and the cell's positions, finding the most likely inter-cell connections. CONCLUSIONS We found that CALIMA proved to be a robust and fast tool to analyze the data of experiments for the digital reconstruction of the neuronal cellular network while being able to process the analysis steps with minimal user input required and in a time efficient manner.
Collapse
Affiliation(s)
- F D W Radstake
- Department of Electrical Engineering, Signal Processing Systems Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - E A L Raaijmakers
- Department of Electrical Engineering, Electromagnetics Group, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - R Luttge
- Department of Mechanical Engineering, Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands
| | - S Zinger
- Department of Electrical Engineering, Signal Processing Systems Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - J P Frimat
- Department of Mechanical Engineering, Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
31
|
Darmon D, Cellucci CJ, Rapp PE. Information dynamics with confidence: Using reservoir computing to construct confidence intervals for information-dynamic measures. CHAOS (WOODBURY, N.Y.) 2019; 29:083113. [PMID: 31472514 DOI: 10.1063/1.5100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Information dynamics provides a broad set of measures for characterizing how a dynamical system stores, processes, and transmits information. While estimators for these measures are commonly used in applications, the statistical properties of these estimators for finite time series are not well understood. In particular, the precision of a given estimate is generally unknown. We develop confidence intervals for generic information-dynamic parameters using a bootstrap procedure. The bootstrap procedure uses an echo state network, a particular instance of a reservoir computer, as a simulator to generate bootstrap samples from a given time series. We perform a Monte Carlo analysis to investigate the performance of the bootstrap confidence intervals in terms of their coverage and expected lengths with two model systems and compare their performance to a simulator based on the random analog predictor. We find that our bootstrap procedure generates confidence intervals with nominal, or near nominal, coverage of the information-dynamic measures, with smaller expected length than the random analog predictor-based confidence intervals. Finally, we demonstrate the applicability of the confidence intervals for characterizing the information dynamics of a time series of sunspot counts.
Collapse
Affiliation(s)
- David Darmon
- Department of Mathematics, Monmouth University, West Long Branch, New Jersey 07764, USA
| | | | - Paul E Rapp
- Traumatic Injury Research Program, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
32
|
Faes L, Pereira MA, Silva ME, Pernice R, Busacca A, Javorka M, Rocha AP. Multiscale information storage of linear long-range correlated stochastic processes. Phys Rev E 2019; 99:032115. [PMID: 30999519 DOI: 10.1103/physreve.99.032115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 11/07/2022]
Abstract
Information storage, reflecting the capability of a dynamical system to keep predictable information during its evolution over time, is a key element of intrinsic distributed computation, useful for the description of the dynamical complexity of several physical and biological processes. Here we introduce a parametric approach which allows one to compute information storage across multiple timescales in stochastic processes displaying both short-term dynamics and long-range correlations (LRC). Our analysis is performed in the popular framework of multiscale entropy, whereby a time series is first "coarse grained" at the chosen timescale through low-pass filtering and downsampling, and then its complexity is evaluated in terms of conditional entropy. Within this framework, our approach makes use of linear fractionally integrated autoregressive (ARFI) models to derive analytical expressions for the information storage computed at multiple timescales. Specifically, we exploit state space models to provide the representation of lowpass filtered and downsampled ARFI processes, from which information storage is computed at any given timescale relating the process variance to the prediction error variance. This enhances the practical usability of multiscale information storage, as it enables a computationally reliable quantification of a complexity measure which incorporates the effects of LRC together with that of short-term dynamics. The proposed measure is first assessed in simulated ARFI processes reproducing different types of autoregressive dynamics and different degrees of LRC, studying both the theoretical values and the finite sample performance. We find that LRC alter substantially the complexity of ARFI processes even at short timescales, and that reliable estimation of complexity can be achieved at longer timescales only when LRC are properly modeled. Then, we assess multiscale information storage in physiological time series measured in humans during resting state and postural stress, revealing unprecedented responses to stress of the complexity of heart period and systolic arterial pressure variability, which are related to the different role played by LRC in the two conditions.
Collapse
Affiliation(s)
- Luca Faes
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy
| | - Margarida Almeida Pereira
- Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, Porto, Portugal.,Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| | - Maria Eduarda Silva
- Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, Portugal.,Centro de Investigação e Desenvolvimento em Matemática e Aplicações (CIDMA), Aveiro, Portugal
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy
| | - Alessandro Busacca
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy
| | - Michal Javorka
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4C, 03601 Martin, Slovakia.,Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4C, 03601 Martin, Slovakia
| | - Ana Paula Rocha
- Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, Porto, Portugal.,Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| |
Collapse
|
33
|
Extracting Interactions between Flying Bat Pairs Using Model-Free Methods. ENTROPY 2019; 21:e21010042. [PMID: 33266758 PMCID: PMC7514148 DOI: 10.3390/e21010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/15/2018] [Accepted: 01/03/2019] [Indexed: 12/03/2022]
Abstract
Social animals exhibit collective behavior whereby they negotiate to reach an agreement, such as the coordination of group motion. Bats are unique among most social animals, since they use active sensory echolocation by emitting ultrasonic waves and sensing echoes to navigate. Bats’ use of active sensing may result in acoustic interference from peers, driving different behavior when they fly together rather than alone. The present study explores quantitative methods that can be used to understand whether bats flying in pairs move independently of each other or interact. The study used field data from bats in flight and is based on the assumption that interactions between two bats are evidenced in their flight patterns. To quantify pairwise interaction, we defined the strength of coupling using model-free methods from dynamical systems and information theory. We used a control condition to eliminate similarities in flight path due to environmental geometry. Our research question is whether these data-driven methods identify directed coupling between bats from their flight paths and, if so, whether the results are consistent between methods. Results demonstrate evidence of information exchange between flying bat pairs, and, in particular, we find significant evidence of rear-to-front coupling in bats’ turning behavior when they fly in the absence of obstacles.
Collapse
|
34
|
Paced Breathing Increases the Redundancy of Cardiorespiratory Control in Healthy Individuals and Chronic Heart Failure Patients. ENTROPY 2018; 20:e20120949. [PMID: 33266673 PMCID: PMC7512533 DOI: 10.3390/e20120949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Synergy and redundancy are concepts that suggest, respectively, adaptability and fault tolerance of systems with complex behavior. This study computes redundancy/synergy in bivariate systems formed by a target X and a driver Y according to the predictive information decomposition approach and partial information decomposition framework based on the minimal mutual information principle. The two approaches assess the redundancy/synergy of past of X and Y in reducing the uncertainty of the current state of X. The methods were applied to evaluate the interactions between heart and respiration in healthy young subjects (n = 19) during controlled breathing at 10, 15 and 20 breaths/minute and in two groups of chronic heart failure patients during paced respiration at 6 (n = 9) and 15 (n = 20) breaths/minutes from spontaneous beat-to-beat fluctuations of heart period and respiratory signal. Both methods suggested that slowing respiratory rate below the spontaneous frequency increases redundancy of cardiorespiratory control in both healthy and pathological groups, thus possibly improving fault tolerance of the cardiorespiratory control. The two methods provide markers complementary to respiratory sinus arrhythmia and the strength of the linear coupling between heart period variability and respiration in describing the physiology of the cardiorespiratory reflex suitable to be exploited in various pathophysiological settings.
Collapse
|
35
|
Camino-Pontes B, Diez I, Jimenez-Marin A, Rasero J, Erramuzpe A, Bonifazi P, Stramaglia S, Swinnen S, Cortes JM. Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network. ENTROPY 2018; 20:e20100742. [PMID: 33265831 PMCID: PMC7512305 DOI: 10.3390/e20100742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023]
Abstract
Interaction Information (II) generalizes the univariate Shannon entropy to triplets of variables, allowing the detection of redundant (R) or synergetic (S) interactions in dynamical networks. Here, we calculated II from functional magnetic resonance imaging data and asked whether R or S vary across brain regions and along lifespan. Preserved along lifespan, we found high overlapping between the pattern of high R and the default mode network, whereas high values of S were overlapping with different cognitive domains, such as spatial and temporal memory, emotion processing and motor skills. Moreover, we have found a robust balance between R and S among different age intervals, indicating informational compensatory mechanisms in brain networks.
Collapse
Affiliation(s)
- Borja Camino-Pontes
- Computational Neuroimaging Lab, Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Ibai Diez
- Functional Neurology Research Group, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Gordon Center, Department of Nuclear Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Neurotechnology Laboratory, Tecnalia Health Department, 48160 Derio, Spain
| | - Antonio Jimenez-Marin
- Computational Neuroimaging Lab, Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Javier Rasero
- Computational Neuroimaging Lab, Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Asier Erramuzpe
- Computational Neuroimaging Lab, Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Paolo Bonifazi
- Computational Neuroimaging Lab, Biocruces Health Research Institute, 48903 Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, 48013 Bilbao, Spain
| | | | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Jesus M. Cortes
- Computational Neuroimaging Lab, Biocruces Health Research Institute, 48903 Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-94600600 (ext. 5199)
| |
Collapse
|
36
|
Spinney RE, Lizier JT. Characterizing information-theoretic storage and transfer in continuous time processes. Phys Rev E 2018; 98:012314. [PMID: 30110808 DOI: 10.1103/physreve.98.012314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Indexed: 11/07/2022]
Abstract
The characterization of information processing is an important task in complex systems science. Information dynamics is a quantitative methodology for modeling the intrinsic information processing conducted by a process represented as a time series, but to date has only been formulated in discrete time. Building on previous work which demonstrated how to formulate transfer entropy in continuous time, we give a total account of information processing in this setting, incorporating information storage. We find that a convergent rate of predictive capacity, comprising the transfer entropy and active information storage, does not exist, arising through divergent rates of active information storage. We identify that active information storage can be decomposed into two separate quantities that characterize predictive capacity stored in a process: active memory utilization and instantaneous predictive capacity. The latter involves prediction related to path regularity and so solely inherits the divergent properties of the active information storage, while the former permits definitions of pathwise and rate quantities. We formulate measures of memory utilization for jump and neural spiking processes and illustrate measures of information processing in synthetic neural spiking models and coupled Ornstein-Uhlenbeck models. The application to synthetic neural spiking models demonstrates that active memory utilization for point processes consists of discontinuous jump contributions (at spikes) interrupting a continuously varying contribution (relating to waiting times between spikes), complementing the behavior previously demonstrated for transfer entropy in these processes.
Collapse
Affiliation(s)
- Richard E Spinney
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering and Information Technologies, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Joseph T Lizier
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering and Information Technologies, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
37
|
Towards understanding the complexity of cardiovascular oscillations: Insights from information theory. Comput Biol Med 2018; 98:48-57. [PMID: 29763765 DOI: 10.1016/j.compbiomed.2018.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 11/24/2022]
Abstract
Cardiovascular complexity is a feature of healthy physiological regulation, which stems from the simultaneous activity of several cardiovascular reflexes and other non-reflex physiological mechanisms. It is manifested in the rich dynamics characterizing the spontaneous heart rate and blood pressure variability (HRV and BPV). The present study faces the challenge of disclosing the origin of short-term HRV and BPV from the statistical perspective offered by information theory. To dissect the physiological mechanisms giving rise to cardiovascular complexity in different conditions, measures of predictive information, information storage, information transfer and information modification were applied to the beat-to-beat variability of heart period (HP), systolic arterial pressure (SAP) and respiratory volume signal recorded non-invasively in 61 healthy young subjects at supine rest and during head-up tilt (HUT) and mental arithmetics (MA). Information decomposition enabled to assess simultaneously several expected and newly inferred physiological phenomena, including: (i) the decreased complexity of HP during HUT and the increased complexity of SAP during MA; (ii) the suppressed cardiorespiratory information transfer, related to weakened respiratory sinus arrhythmia, under both challenges; (iii) the altered balance of the information transferred along the two arms of the cardiovascular loop during HUT, with larger baroreflex involvement and smaller feedforward mechanical effects; and (iv) an increased importance of direct respiratory effects on SAP during HUT, and on both HP and SAP during MA. We demonstrate that a decomposition of the information contained in cardiovascular oscillations can reveal subtle changes in system dynamics and improve our understanding of the complexity changes during physiological challenges.
Collapse
|
38
|
Brodski-Guerniero A, Naumer MJ, Moliadze V, Chan J, Althen H, Ferreira-Santos F, Lizier JT, Schlitt S, Kitzerow J, Schütz M, Langer A, Kaiser J, Freitag CM, Wibral M. Predictable information in neural signals during resting state is reduced in autism spectrum disorder. Hum Brain Mapp 2018; 39:3227-3240. [PMID: 29617056 DOI: 10.1002/hbm.24072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 11/12/2022] Open
Abstract
The neurophysiological underpinnings of the nonsocial symptoms of autism spectrum disorder (ASD) which include sensory and perceptual atypicalities remain poorly understood. Well-known accounts of less dominant top-down influences and more dominant bottom-up processes compete to explain these characteristics. These accounts have been recently embedded in the popular framework of predictive coding theory. To differentiate between competing accounts, we studied altered information dynamics in ASD by quantifying predictable information in neural signals. Predictable information in neural signals measures the amount of stored information that is used for the next time step of a neural process. Thus, predictable information limits the (prior) information which might be available for other brain areas, for example, to build predictions for upcoming sensory information. We studied predictable information in neural signals based on resting-state magnetoencephalography (MEG) recordings of 19 ASD patients and 19 neurotypical controls aged between 14 and 27 years. Using whole-brain beamformer source analysis, we found reduced predictable information in ASD patients across the whole brain, but in particular in posterior regions of the default mode network. In these regions, epoch-by-epoch predictable information was positively correlated with source power in the alpha and beta frequency range as well as autocorrelation decay time. Predictable information in precuneus and cerebellum was negatively associated with nonsocial symptom severity, indicating a relevance of the analysis of predictable information for clinical research in ASD. Our findings are compatible with the assumption that use or precision of prior knowledge is reduced in ASD patients.
Collapse
Affiliation(s)
| | - Marcus J Naumer
- Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Vera Moliadze
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department of Medical Psychology and Medical Sociology, Schleswig-Holstein University Hospital (UKSH), Christian-Albrechts-University, Kiel, Germany
| | - Jason Chan
- Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,School of Applied Psychology, University College Cork, Cork, Ireland
| | - Heike Althen
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Fernando Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Joseph T Lizier
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering & IT, The University of Sydney, New South Wales, 2006, Australia
| | - Sabine Schlitt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Janina Kitzerow
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Magdalena Schütz
- Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Anne Langer
- Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jochen Kaiser
- Institute of Medical Psychology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael Wibral
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Gilpin C, Darmon D, Siwy Z, Martens C. Information Dynamics of a Nonlinear Stochastic Nanopore System. ENTROPY 2018; 20:e20040221. [PMID: 33265312 PMCID: PMC7512734 DOI: 10.3390/e20040221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER) and specific entropy rate (SER) computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.
Collapse
Affiliation(s)
- Claire Gilpin
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697-4575, USA
- Correspondence:
| | - David Darmon
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Zuzanna Siwy
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697-4575, USA
| | - Craig Martens
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-2025, USA
| |
Collapse
|
40
|
Partial and Entropic Information Decompositions of a Neuronal Modulatory Interaction. ENTROPY 2017. [DOI: 10.3390/e19110560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Quantifying Information Modification in Developing Neural Networks via Partial Information Decomposition. ENTROPY 2017. [DOI: 10.3390/e19090494] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Darmon D, Rapp PE. Specific transfer entropy and other state-dependent transfer entropies for continuous-state input-output systems. Phys Rev E 2017; 96:022121. [PMID: 28950488 DOI: 10.1103/physreve.96.022121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 11/07/2022]
Abstract
Since its original formulation in 2000, transfer entropy has become an invaluable tool in the toolbox of nonlinear dynamicists working with empirical data. Transfer entropy and its generalizations provide a precise definition of uncertainty and information transfer that are central to the coupled systems studied in nonlinear science. However, a canonical definition of state-dependent transfer entropy has yet to be introduced. We introduce a candidate measure, the specific transfer entropy, and compare its properties to both total and local transfer entropy. Specific transfer entropy makes possible both state- and time-resolved analysis of the predictive impact of a candidate input system on a candidate output system. We also present principled methods for estimating total, local, and specific transfer entropies from empirical data. We demonstrate the utility of specific transfer entropy and our proposed estimation procedures with two model systems, and find that specific transfer entropy provides more, and more easily interpretable, information about an input-output system compared to currently existing methods.
Collapse
Affiliation(s)
- David Darmon
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA and The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817, USA
| | - Paul E Rapp
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
44
|
Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes. ENTROPY 2017. [DOI: 10.3390/e19080408] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Information-Theoretic Evidence for Predictive Coding in the Face-Processing System. J Neurosci 2017; 37:8273-8283. [PMID: 28751458 DOI: 10.1523/jneurosci.0614-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/26/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022] Open
Abstract
Predictive coding suggests that the brain infers the causes of its sensations by combining sensory evidence with internal predictions based on available prior knowledge. However, the neurophysiological correlates of (pre)activated prior knowledge serving these predictions are still unknown. Based on the idea that such preactivated prior knowledge must be maintained until needed, we measured the amount of maintained information in neural signals via the active information storage (AIS) measure. AIS was calculated on whole-brain beamformer-reconstructed source time courses from MEG recordings of 52 human subjects during the baseline of a Mooney face/house detection task. Preactivation of prior knowledge for faces showed as α-band-related and β-band-related AIS increases in content-specific areas; these AIS increases were behaviorally relevant in the brain's fusiform face area. Further, AIS allowed decoding of the cued category on a trial-by-trial basis. Our results support accounts indicating that activated prior knowledge and the corresponding predictions are signaled in low-frequency activity (<30 Hz).SIGNIFICANCE STATEMENT Our perception is not only determined by the information our eyes/retina and other sensory organs receive from the outside world, but strongly depends also on information already present in our brains, such as prior knowledge about specific situations or objects. A currently popular theory in neuroscience, predictive coding theory, suggests that this prior knowledge is used by the brain to form internal predictions about upcoming sensory information. However, neurophysiological evidence for this hypothesis is rare, mostly because this kind of evidence requires strong a priori assumptions about the specific predictions the brain makes and the brain areas involved. Using a novel, assumption-free approach, we find that face-related prior knowledge and the derived predictions are represented in low-frequency brain activity.
Collapse
|
46
|
Jancke D. Catching the voltage gradient-asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. NEUROPHOTONICS 2017; 4:031206. [PMID: 28217713 PMCID: PMC5301132 DOI: 10.1117/1.nph.4.3.031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Wide-field voltage imaging is unique in its capability to capture snapshots of activity-across the full gradient of average changes in membrane potentials from subthreshold to suprathreshold levels-of hundreds of thousands of superficial cortical neurons that are simultaneously active. Here, I highlight two examples where voltage-sensitive dye imaging (VSDI) was exploited to track gradual space-time changes of activity within milliseconds across several millimeters of cortex at submillimeter resolution: the line-motion condition, measured in Amiram Grinvald's Laboratory more than 10 years ago and-coming full circle running VSDI in my laboratory-another motion-inducing condition, in which two neighboring stimuli counterchange luminance simultaneously. In both examples, cortical spread is asymmetrically boosted, creating suprathreshold activity drawn out over primary visual cortex. These rapidly propagating waves may integrate brain signals that encode motion independent of direction-selective circuits.
Collapse
Affiliation(s)
- Dirk Jancke
- Ruhr University Bochum, Optical Imaging Group, Institut für Neuroinformatik, Bochum, Germany
| |
Collapse
|
47
|
Measuring Multivariate Redundant Information with Pointwise Common Change in Surprisal. ENTROPY 2017. [DOI: 10.3390/e19070318] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Wollstadt P, Sellers KK, Rudelt L, Priesemann V, Hutt A, Fröhlich F, Wibral M. Breakdown of local information processing may underlie isoflurane anesthesia effects. PLoS Comput Biol 2017; 13:e1005511. [PMID: 28570661 PMCID: PMC5453425 DOI: 10.1371/journal.pcbi.1005511] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source—such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)—as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy—suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in information transfer as decoupling. Currently we do not understand how anesthesia leads to loss of consciousness (LOC). One popular idea is that we loose consciousness when brain areas lose their ability to communicate with each other–as anesthetics might interrupt transmission on nerve fibers coupling them. This idea has been tested by measuring the amount of information transferred between brain areas, and taking this transfer to reflect the coupling itself. Yet, information that isn’t available in the source area can’t be transferred to a target. Hence, the decreases in information transfer could be related to less information being available in the source, rather than to a decoupling. We tested this possibility measuring the information available in source brain areas and found that it decreased under isoflurane anesthesia. In addition, a stronger decrease in source information lead to a stronger decrease of the information transfered. Thus, the input to the connection between brain areas determined the communicated information, not the strength of the coupling (which would result in a stronger decrease in the target). We suggest that interrupted information processing within brain areas has an important contribution to LOC, and should be focused on more in attempts to understand loss of consciousness under anesthesia.
Collapse
Affiliation(s)
- Patricia Wollstadt
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
- * E-mail: (PW); (VP)
| | - Kristin K. Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lucas Rudelt
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, BCCN, Göttingen, Germany
- * E-mail: (PW); (VP)
| | - Axel Hutt
- Deutscher Wetterdienst, Section FE 12 - Data Assimilation, Offenbach/Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Wibral
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
49
|
Bari V, Ranucci M, Marchi A, De Maria B, Pistuddi V, Porta A. Cardiovascular interactions assessed via conditional joint transfer entropy in patients developing atrial fibrillation after coronary artery bypass graft surgery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:2937-2940. [PMID: 28268929 DOI: 10.1109/embc.2016.7591345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Assigned the universe of knowledge Ω as composed by one target and two exogenous signals, the conditional joint transfer entropy (CJTE), assessing the amount of information jointly transferred from the two sources to the target that can be uniquely linked to one of the two sources, was found useful to study cardiovascular control. We propose the assessment of CJTE from systolic arterial pressure (SAP) and respiration (R) to heart period (HP) conditioned on R (CJTESAP, R→HP|R) along the baroreflex, and from HP and R to SAP conditioned on R (CJTEHP, R→SAP|R) along the feedforward mechanical pathway, in 134 patients undergoing coronary artery bypass graft surgery before (PRE) and after (POST) the induction of general anesthesia. In this group 38 patients developed atrial fibrillation (AF) after surgery, while the remaining individuals did not (noAF, n=96). Both CJTESAP, R→HP|R and CJTEHP, R→SAP|R distinguished AF from noAF individuals in the PRE condition, suggesting an impairment of HP-SAP closed-loop regulation in AF group and the possibility to identify subjects at higher risk to develop post-surgery AF.
Collapse
|
50
|
Porta A, De Maria B, Bari V, Marchi A, Faes L. Are Nonlinear Model-Free Conditional Entropy Approaches for the Assessment of Cardiac Control Complexity Superior to the Linear Model-Based One? IEEE Trans Biomed Eng 2016; 64:1287-1296. [PMID: 27541327 DOI: 10.1109/tbme.2016.2600160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We test the hypothesis that the linear model-based (MB) approach for the estimation of conditional entropy (CE) can be utilized to assess the complexity of the cardiac control in healthy individuals. METHODS An MB estimate of CE was tested in an experimental protocol (i.e., the graded head-up tilt) known to produce a gradual decrease of cardiac control complexity as a result of the progressive vagal withdrawal and concomitant sympathetic activation. The MB approach was compared with traditionally exploited nonlinear model-free (MF) techniques such as corrected approximate entropy, sample entropy, corrected CE, two k -nearest-neighbor CE procedures and permutation CE. Electrocardiogram was recorded in 17 healthy subjects at rest in supine position and during head-up tilt with table angles of 15°, 30°, 45°, 60°, and 75°. Heart period (HP) was derived as the temporal distance between two consecutive R-wave peaks and analysis was carried out over stationary sequences of 256 successive HPs. RESULTS The performance of the MB method in following the progressive decrease of HP complexity with tilt table angles was in line with those of MF approaches and the MB index was remarkably correlated with the MF ones. CONCLUSION The MB approach can be utilized to monitor the changes of the complexity of the cardiac control, thus speeding up dramatically the CE calculation. SIGNIFICANCE The remarkable performance of the MB approach challenges the notion, generally assumed in cardiac control complexity analysis based on CE, about the need of MF techniques and could allow real-time applications.
Collapse
|