1
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
De Jesus AN, Henry BA. The role of oestrogen in determining sexual dimorphism in energy balance. J Physiol 2023; 601:435-449. [PMID: 36117117 PMCID: PMC10092637 DOI: 10.1113/jp279501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023] Open
Abstract
Energy balance is determined by caloric intake and the rate at which energy is expended, with the latter comprising resting energy expenditure, physical activity and adaptive thermogenesis. The regulation of both energy intake and expenditure exhibits clear sexual dimorphism, with young women being relatively protected against weight gain and the development of cardiometabolic diseases. Preclinical studies have indicated that females are more sensitive to the satiety effects of leptin and insulin compared to males. Furthermore, females have greater thermogenic activity than males, whereas resting energy expenditure is generally higher in males than females. In addition to this, in post-menopausal women, the decline in sex steroid concentration, particularly in oestrogen, is associated with a shift in the distribution of adipose tissue and overall increased propensity to gain weight. Oestrogens are known to regulate energy balance and weight homeostasis via effects on both food intake and energy expenditure. Indeed, 17β-oestradiol treatment increases melanocortin signalling in the hypothalamus to cause satiety. Furthermore, oestrogenic action at the ventromedial hypothalamus has been linked with increased energy expenditure in female mice. We propose that oestrogen action on energy balance is multi-faceted and is fundamental to determining sexual dimorphism in weight control. Furthermore, evidence suggests that the decline in oestrogen levels leads to increased risk of weight gain and development of cardiometabolic disease in women across the menopausal transition.
Collapse
Affiliation(s)
- Anne Nicole De Jesus
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Belinda A Henry
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Monem SMA, Elbadrawy EG, Shalaby SM, Hendawy DM, Hassan SM, Almonem NA. The role of serum gastric peptide ghrelin hormone level in irritable bowel syndrome at Zagazig University Hospitals. J Med Life 2022; 15:1525-1531. [PMID: 36762339 PMCID: PMC9884357 DOI: 10.25122/jml-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/15/2022] [Indexed: 02/11/2023] Open
Abstract
Generalized dysmotility of the gastrointestinal tract develops in individuals with irritable bowel syndrome (IBS). The ghrelin hormone appears to be critical in controlling gastrointestinal motility. We aimed to evaluate serum ghrelin levels in people with IBS and to demonstrate its role in IBS pathophysiology. This study included 32 individuals with IBS (16 with constipation and 16 with diarrhea) and 16 healthy individuals as controls. Blood specimens were collected from patients and controls following an overnight fast. Total ghrelin level was detected in plasma by commercially available ELISA Kit. There were significant differences in the serum levels of ghrelin between the control group and both types of IBS. The mean±SD of ghrelin level in the control group was 2.608±0.714 pg/ml, and that of both types of IBS was 5.782±2.450 pg/ml (P-value<0.001). There was a significant variation between the control and IBS-D groups (mean±SD: 7.838±1.687 pg/ml, p-value<0.001). Also, we indicated a considerable difference between the control and IBS-C groups (mean±SD: 3.726±0.740 pg/ml, P-value<0.001). In comparing the IBS-D group and IBS-C group, we found a highly considerable variation between the two groups (p-value<0.001). This means that serum ghrelin levels were significantly greater in IBS-D than in IBS-C and the control group. Our findings concluded that serum ghrelin level was higher among the IBS-D group than in the IBS-C and control groups. The ghrelin hormone may play a vital role in IBS pathophysiology.
Collapse
Affiliation(s)
| | | | - Sally Mahmoud Shalaby
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Mahmoud Hendawy
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherif Mahmoud Hassan
- Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt,Corresponding Author: Sherif Mahmoud Hassan, Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt. E-mail:
| | - Nagla Abd Almonem
- Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Hall DB, Vakkasoglu AS, Hales LM, Soliman TM. D-VITylation: Harnessing the biology of vitamin D to improve the pharmacokinetic properties of peptides and small proteins. Int J Pharm 2022; 624:122031. [PMID: 35863594 DOI: 10.1016/j.ijpharm.2022.122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Peptides have great potential to be potent and specific therapeutics, yet their small size leads to rapid glomerular filtration, which severely limits therapeutic applications. Although conjugation of small proteins to large polymers typically results in longer residence times, these conjugates often have a significant loss of biological activity due to steric hindrance. Here, we improve the pharmacokinetics (PK) of peptide therapeutics by harnessing the biology of vitamin D. Attachment of a small vitamin D-based molecule (D-VITylation) protects the conjugated peptide or protein from renal clearance by virtue of reversible binding to the serum-circulating vitamin D binding protein (DBP), without compromising bioactivity. Varying the conjugation site on vitamin D affects the binding to DBP, with higher affinity corresponding to a longer plasma half-life. We also demonstrate the important contribution of the peptide to the overall PK, likely due to alternative clearance mechanisms such as protease degradation and receptor-mediated cellular uptake. With a Fab antibody fragment, for which these alternate clearance mechanisms are not significant, D-VITylation increases the half-life of elimination from 14 to 61 h in rats. The PK profile in minipigs and projected lifetime in humans suggest that D-VITylation is a viable strategy to achieve once-weekly dosing of peptide therapeutics in humans.
Collapse
|
5
|
H. pylori effects on ghrelin axis: Preliminary change in gastric pathogenesis. Microb Pathog 2021; 161:105262. [PMID: 34695557 DOI: 10.1016/j.micpath.2021.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Ghrelin and its receptors are present in the stomach, suggesting that the ghrelin axis plays an essential role in gastrointestinal complications. This investigation aimed to explore the effects of H. pylori infection and gastritis on serum ghrelin and ghrelin axis gene expression. In this study, we enrolled 68 adult ambulatory people referred for upper gastrointestinal endoscopy. The individuals were classified into three groups based on H. pylori infection and gastritis. Total serum ghrelin and tissue gene expression were tested with ELISA and quantitative RT-PCR, respectively. Serum ghrelin and mRNA expression were significantly lower in H. pylori-positive with gastritis subjects compared with both H. pylori-negative with and without gastritis. Growth hormone secretagogue receptor1a mRNA expression was not different between groups while GHSR1b expression was significantly higher in patients with H. pylori infection and gastritis. We propose the ghrelin axis intermediaries, such as GHSR1b, as a potential clinical target for gastric disorders.
Collapse
|
6
|
Ouerghi N, Feki M, Bragazzi NL, Knechtle B, Hill L, Nikolaidis PT, Bouassida A. Ghrelin Response to Acute and Chronic Exercise: Insights and Implications from a Systematic Review of the Literature. Sports Med 2021; 51:2389-2410. [PMID: 34374968 PMCID: PMC8514378 DOI: 10.1007/s40279-021-01518-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ghrelin is a peptide hormone predominantly produced by the stomach. It exerts a wide range of functions including stimulating growth hormone release and regulating appetite, food intake, and glucose and lipid metabolism. Since physical exercise affects all these aspects, a particular interest is accorded to the relationship between ghrelin and exercise. This systematic review aimed to summarize the current available data on the topic for a better understanding of the relationship. METHODS An extensive computerized search was performed in the PubMed and SPORTDiscus databases for retrieving relevant articles. The search contained the following keywords: ghrelin, appetite-related peptides, gastrointestinal peptides, gastrointestinal hormones, exercise, acute exercise, chronic exercise, training, and physical activity. Studies investigating the effects of acute/chronic exercise on circulating forms of ghrelin were included. RESULTS The initial search identified 840 articles. After screening, 80 articles were included. Despite a heterogeneity of studies and a variability of the findings, the review suggests that acute exercise suppresses acyl ghrelin production regardless of the participants and the exercise characteristics. Long- and very long-term exercise training programs mostly resulted in increased total and des-acyl ghrelin production. The increase is more noticeable in overweight/obese individuals, and is most likely due to weight loss resulting from the training program. CONCLUSION The review suggests that exercise may impact ghrelin production. While the precise mechanisms are unclear, the effects are likely due to blood flow redistribution and weight loss for acute and chronic exercise, respectively. These changes are expected to be metabolically beneficial. Further research is needed for a better understanding of the relationship between ghrelin and exercise.
Collapse
Affiliation(s)
- Nejmeddine Ouerghi
- High Institute of Sport and Physical Education of Kef, UR13JS01, University of Jendouba, 7100, Kef, Tunisia.,Faculty of Medicine of Tunis, Rabta Hospital, LR99ES11, University of Tunis El Manar, 1007, Tunis, Tunisia
| | - Moncef Feki
- Faculty of Medicine of Tunis, Rabta Hospital, LR99ES11, University of Tunis El Manar, 1007, Tunis, Tunisia
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland. .,Institute of Primary Care, University of Zurich, Zurich, Switzerland.
| | - Lee Hill
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, L8S 4L8, Canada
| | | | - Anissa Bouassida
- High Institute of Sport and Physical Education of Kef, UR13JS01, University of Jendouba, 7100, Kef, Tunisia
| |
Collapse
|
7
|
Potential Antioxidative, Anti-inflammatory and Immunomodulatory Effects of Ghrelin, an Endogenous Peptide from the Stomach in SARS-CoV2 Infection. Int J Pept Res Ther 2021; 27:1875-1883. [PMID: 33880115 PMCID: PMC8050636 DOI: 10.1007/s10989-021-10217-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
The current COVID-19 pandemic is one of the most devastating events in recent history. The respiratory effects of this disease include acute respiratory distress syndrome, systemic inflammation, cytokine storm, and pulmonary fibrosis. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a peptide hormone secreted mainly by the stomach. Interestingly, ghrelin possesses promising antioxidant, anti-and inflammatory effects, making it an attractive agent to reduce the complications of the SARS-CoV-2. In addition, ghrelin exerts a wide range of immunomodulatory and anti-inflammatory effects and can mitigate the uncontrolled cytokine production responsible for acute lung injury by upregulating PPARγ and down-regulating NF-κB expression. Ghrelin has also been reported to enhance Nrf2 expression in inflammatory conditions which led to the suppression of oxidative stress. The current opinion summarizes the evidence for the possible pharmacological benefits of ghrelin in the therapeutic management of SARS-CoV-2 infection.
Collapse
|
8
|
Devesa J. The Complex World of Regulation of Pituitary Growth Hormone Secretion: The Role of Ghrelin, Klotho, and Nesfatins in It. Front Endocrinol (Lausanne) 2021; 12:636403. [PMID: 33776931 PMCID: PMC7991839 DOI: 10.3389/fendo.2021.636403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
The classic concept of how pituitary GH is regulated by somatostatin and GHRH has changed in recent years, following the discovery of peripheral hormones involved in the regulation of energy homeostasis and mineral homeostasis. These hormones are ghrelin, nesfatins, and klotho. Ghrelin is an orexigenic hormone, released primarily by the gastric mucosa, although it is widely expressed in many different tissues, including the central nervous system and the pituitary. To be active, ghrelin must bind to an n-octanoyl group (n = 8, generally) on serine 3, forming acyl ghrelin which can then bind and activate a G-protein-coupled receptor leading to phospholipase C activation that induces the formation of inositol 1,4,5-triphosphate and diacylglycerol that produce an increase in cytosolic calcium that allows the release of GH. In addition to its direct action on somatotrophs, ghrelin co-localizes with GHRH in several neurons, facilitating its release by inhibiting somatostatin, and acts synergistically with GHRH stimulating the synthesis and secretion of pituitary GH. Gastric ghrelin production declines with age, as does GH. Klotho is an anti-aging agent, produced mainly in the kidneys, whose soluble circulating form directly induces GH secretion through the activation of ERK1/2 and inhibits the inhibitory effect that IGF-I exerts on GH. Children and adults with untreated GH-deficiency show reduced plasma levels of klotho, but treatment with GH restores them to normal values. Deletions or mutations of the Klotho gene affect GH production. Nesfatins 1 and 2 are satiety hormones, they inhibit food intake. They have been found in GH3 cell cultures where they significantly reduce the expression of gh mRNA and that of pituitary-specific positive transcription factor 1, consequently acting as inhibitors of GH production. This is a consequence of the down-regulation of the cAMP/PKA/CREB signaling pathway. Interestingly, nesfatins eliminate the strong positive effect that ghrelin has on GH synthesis and secretion. Throughout this review, we will attempt to broadly analyze the role of these hormones in the complex world of GH regulation, a world in which these hormones already play a very important role.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific and Medical Direction, Medical Center Foltra, Teo, Spain
| |
Collapse
|
9
|
Seidel M, Markmann Jensen S, Healy D, Dureja A, Watson HJ, Holst B, Bulik CM, Sjögren JM. A Systematic Review and Meta-Analysis Finds Increased Blood Levels of All Forms of Ghrelin in Both Restricting and Binge-Eating/Purging Subtypes of Anorexia Nervosa. Nutrients 2021; 13:nu13020709. [PMID: 33672297 PMCID: PMC7926807 DOI: 10.3390/nu13020709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric condition associated with high mortality and chronicity. The hunt for state, trait, subtyping, and prognostic biomarkers is ongoing and the orexigenic hormone ghrelin and its different forms, acyl ghrelin and desacyl ghrelin, have been proposed to be increased in AN, especially in the restrictive subtype. A systematic literature search was performed using established databases up to 30 November 2020. Forty-nine studies met inclusion criteria for cross-sectional and longitudinal meta-analyses on total ghrelin, acyl ghrelin, and desacyl ghrelin. All forms of ghrelin were increased in the acute stage of anorexia nervosa during fasting compared to healthy controls. Previous notions on differences in ghrelin levels between AN subtypes were not supported by current data. In addition, a significant decrease in total ghrelin was observed pre-treatment to follow-up. However, total ghrelin levels at follow-up were still marginally elevated compared to healthy controls, whereas for acyl ghrelin, no overall effect of treatment was observed. Due to heterogeneity in follow-up designs and only few data on long-term recovered patients, longitudinal results should be interpreted with caution. While the first steps towards a biomarker in acute AN have been completed, the value of ghrelin as a potential indicator of treatment success or recovery status or its use in subtype differentiation are yet to be established.
Collapse
Affiliation(s)
- Maria Seidel
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65 Solna, Sweden; (M.S.); (C.M.B.)
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, 1099 Dresden, Germany
| | - Signe Markmann Jensen
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Darren Healy
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Aakriti Dureja
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
| | - Hunna J. Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- School of Psychology, Curtin University, Perth U1987, Australia
- Division of Paediatrics, University of Western Australia, Perth 6907, Australia
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark;
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65 Solna, Sweden; (M.S.); (C.M.B.)
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jan Magnus Sjögren
- Research Unit Eating Disorders, Psychiatric Center Ballerup, Maglevænget 32, 2750 Ballerup, Denmark; (S.M.J.); (D.H.); (A.D.)
- Department of Clinical Medicine, University of Copenhagen, 2200 N Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
10
|
Chao G, Dai J, Zhang S. Protective effect of naringin on small intestine injury in NSAIDs related enteropathy by regulating ghrelin/GHS-R signaling pathway. Life Sci 2020; 266:118909. [PMID: 33333047 DOI: 10.1016/j.lfs.2020.118909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the mechanism of Ghrelin/GHS-R signaling pathway in small intestine injury induced by NSAIDs related enteropathy. To clarify the mechanism network of intestinal mucosal repair with naringin as a new therapeutic method. METHODS Naringin was used as the intervention method, observed the damage of small intestinal mucosa and detected the expression of ghrelin, GHS-R, leptin and TNF-α by electron microscopy, HE staining and immunohistochemistry. RESULTS Compared with the control group, the weight of rats in the model group decreased, the thickness of intestinal mucosa became thinner, the structure of intestinal mucosa changed, the expression of ghrelin, GHS-R and leptin decreased, the expression of TNF-α increased. Compared with the model group, the intestinal mucosa of the treatment group was repaired, the expression of ghrelin, GHS-R and leptin was increased, and the expression TNF-α was decreased. CONCLUSION The mechanism of intestinal mucosal damage in patients with NSAIDs related enteropathy may be related to the decreased expression of ghrelin, GHS-R and leptin, and promotion of TNF-α secretion. Naringin can effectively promote the secretion of ghrelin and leptin, the expression of GSH-R, and inhibit the release of TNF-α, so as to repair intestinal mucosa naringin will become a new method to treat and prevent NSAIDs related intestinal diseases.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China.
| | - Jian Dai
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China.
| |
Collapse
|
11
|
Yu HZ, Fu MH, Ji XP, E-Ni RG. Progress in research of gastrointestinal motility regulation. Shijie Huaren Xiaohua Zazhi 2020; 28:1183-1191. [DOI: 10.11569/wcjd.v28.i23.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal motility is an important part of the physiological function of the digestive tract, and its dysfunction is one of the key factors that cause different gastrointestinal motility disorders. These diseases seriously affect patients' normal life. With the development of scientific research and technology, well-designed research studies have been conducted on the regulatory mechanisms of gastrointestinal motility, which mainly include the regulation of gastrointestinal hormones, intestinal microflora, neurotransmitters, brain-gut peptides, interstitial cells of Cajal, and gastrointestinal electrical activities. In addition, current studies have proved that bitter taste receptors have certain regulatory effects on gastrointestinal motility. This paper primarily discusses the relevant pathways controlling gastrointestinal motility.
Collapse
Affiliation(s)
- Hong-Zhen Yu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Xiao-Ping Ji
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Rong-Gui E-Ni
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
12
|
The Effect of High-Fat Diet-Induced Obesity on the Expression of Nutrient Chemosensors in the Mouse Stomach and the Gastric Ghrelin Cell. Nutrients 2020; 12:nu12092493. [PMID: 32824949 PMCID: PMC7551456 DOI: 10.3390/nu12092493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022] Open
Abstract
The stomach is the primary source of the orexigenic and adiposity-promoting hormone, ghrelin. There is emerging evidence on the nutrient-mediated modulation of gastric ghrelin secretion. However, limited information is available on gastric nutrient-sensing mechanisms in high-fat diet (HFD)-induced obesity. This study investigated the impact of HFD-induced obesity on the expression of nutrient chemosensors in mouse stomach, particularly ghrelin cells. Male C57BL/6 mice were fed either a standard laboratory diet (SLD) or HFD for 12 weeks. The expression of ghrelin, enzymes involved in ghrelin production (PC1/3, GOAT) and nutrient chemosensors (CD36, FFAR2&4, GPR93, CaSR, mGluR4 and T1R3) was determined by quantitative RT-PCR in the mouse corpus and antrum. Immunohistochemistry assessed the protein expression of CaSR and ghrelin in the corpus and antrum. Antral mRNA levels of CaSR and PC1/3 were increased in HFD compared to SLD mice, while mRNA levels of all other nutrient chemosensors examined remained unchanged. CaSR immunolabelling was observed in the gastric antrum only. Nearly 80% of antral ghrelin cells expressed CaSR, with a similar cell density and co-expression in SLD and HFD mice. In conclusion, HFD-induced obesity increased CaSR mRNA expression in mouse antrum. However, the high antral co-expression of CaSR and ghrelin was unaltered in HFD compared to SLD mice.
Collapse
|
13
|
Karimi M, Heshmati M, Fattahi S, Bagheri N, Alibeigi FM, Taheri F, Anjomshoa M, Jami MS, Ghatreh Samani M. The relation between the ghrelin receptor and FOXP3 in bladder cancer. Biotech Histochem 2020; 96:287-295. [PMID: 32744468 DOI: 10.1080/10520295.2020.1799074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Immune responses play an important role in the fate of bladder cancer tumors. Treg cells are immunosuppressive and down-regulate the proliferation of effector T cells, which favor tumor survival. Ghrelin is a hormone that stimulates release of growth hormone and anti-inflammatory response to cancer cells. Ghrelin also is a gastrointestinal hormone that regulates immune responses via the growth hormone secretagogue receptor (GHS-R1a). The relation among ghrelin, its receptor, and Treg cells that surround bladder tumors is not clear. We found that Foxp3+ T and GHS-R1a cells are increased significantly in bladder tumor tissues. Therefore, we suggest that ghrelin may increase the number of Treg cells in the tumor and suppress activity of the immune system against bladder cancer.
Collapse
Affiliation(s)
- Monireh Karimi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soheila Fattahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Fatemeh Taheri
- Department of Pathology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mahdi Ghatreh Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Exogenous Ghrelin Increases Plasma Insulin Level in Diabetic Rats. Biomolecules 2020; 10:biom10040633. [PMID: 32325912 PMCID: PMC7226305 DOI: 10.3390/biom10040633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Ghrelin, a 28-amino acid peptide, is a strong growth hormone secretagogue and a regulator of food intake. In addition, ghrelin is thought to play a role in insulin secretion and in glucose homeostasis. A lot of contradictory data have been reported in the literature regarding the co-localization of ghrelin with other hormones in the islet of Langerhans, its role in insulin secretion and attenuation of type 2 diabetes mellitus. In this study, we investigate the effect of chronic ghrelin treatment on glucose, body weight and insulin level in normal and streptozotocin-induced diabetic male Wistar rats. We have also examined the distribution pattern and co-localization of ghrelin with insulin in pancreatic islet cells using immunohistochemistry and immune-electron microscopy and the ability of ghrelin to stimulate insulin release from the CRL11065 beta cell line. Control, non-diabetic groups received intraperitoneal injection of normal saline, while treated groups received intraperitoneal injection of 5 µg/kg body weight of ghrelin (amino acid chain 24–51) on a daily basis for a duration of four weeks. Our results show that the administration of ghrelin increases the number of insulin-secreting beta cells and serum insulin level in both normal and diabetic rats. We also demonstrated that ghrelin co-localizes with insulin in pancreatic islet cells and that the pattern of ghrelin distribution is altered after the onset of diabetes. Moreover, ghrelin at a dose of 10−6 M and 10−12 M increased insulin release from the CRL11065 beta cell line. In summary, ghrelin co-localizes with insulin in the secretory granules of pancreatic beta cells and enhances insulin production.
Collapse
|
15
|
Camacho-Ramírez A, Mayo-Ossorio MÁ, Pacheco-García JM, Almorza-Gomar D, Ribelles-García A, Belmonte-Núñez A, Prada-Oliveira JA, Pérez-Arana GM. Pancreas is a preeminent source of ghrelin after sleeve gastrectomy in Wistar rats. Histol Histopathol 2020; 35:801-809. [PMID: 31951010 DOI: 10.14670/hh-18-200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many surgical techniques are employed in the treatment of severe obesity. A main consequence of these techniques is the improvement of type 2 Diabetes mellitus. Ghrelin is a gut hormone released in the gastric fundus and corpus, which has been related to diabetic improvement as mentioned in these papers. Sleeve gastrectomy and Roux-en Y Gastric Bypass are surgical techniques broadly employed in humans; both severely reduce the gastric surface. Paradoxically, the serum level of ghrelin in patients is preserved. We hypothesized about the role of embryonic pancreatic epsilon cells, which have the capacity to release ghrelin. We studied the changes in the epsilon cells and differentiation markers with immunostaining and ghrelin serum level and after surgery. We employed euglycemic male Wistar rats: two surgical groups (Sleeve gastrectomy and Roux-en Y Gastric Bypass) and two control groups. We reported a significant increase of ghrelin epsilon-cells in the pancreas and basal serum after Sleeve gastrectomy versus the control groups. The epsilon cellular increment was related to neogenesis, as the neurogenin-3 marker revealed. The Roux-en Y Gastric Bypass showed neither epsilon cell increase nor basal serum changes in ghrelin release. As a conclusion, we reported that the severe suppression of the fundus gastric produced the recovery of ghrelin released by the epsilon cells, which was indicative of an ontogenic embryonic pancreatic function.
Collapse
Affiliation(s)
- Alonso Camacho-Ramírez
- Surgery Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Asociación Gaditana de Apoyo al Investigador AGAI, Cádiz, Spain
| | - María Ángeles Mayo-Ossorio
- Surgery Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - José Manuel Pacheco-García
- Surgery Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - David Almorza-Gomar
- Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Department of Operative Statistic and Research, University of Cádiz, Cádiz, Spain
| | - Antonio Ribelles-García
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain.,Sustainable Social Development Research Institute (INDESS), University of Cádiz, Cádiz, Spain
| | - Ana Belmonte-Núñez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain
| | - J Arturo Prada-Oliveira
- Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Asociación Gaditana de Apoyo al Investigador AGAI, Cádiz, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain.
| | - Gonzalo M Pérez-Arana
- Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain.,Asociación Gaditana de Apoyo al Investigador AGAI, Cádiz, Spain
| |
Collapse
|
16
|
Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol 2020; 2020:1385138. [PMID: 32565790 PMCID: PMC7267865 DOI: 10.1155/2020/1385138] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a relatively novel multifaceted hormone that has been found to exert a plethora of physiological effects. In this review, we found/confirmed that ghrelin has effect on all body systems. It induces appetite; promotes the use of carbohydrates as a source of fuel while sparing fat; inhibits lipid oxidation and promotes lipogenesis; stimulates the gastric acid secretion and motility; improves cardiac performance; decreases blood pressure; and protects the kidneys, heart, and brain. Ghrelin is important for learning, memory, cognition, reward, sleep, taste sensation, olfaction, and sniffing. It has sympatholytic, analgesic, antimicrobial, antifibrotic, and osteogenic effects. Moreover, ghrelin makes the skeletal muscle more excitable and stimulates its regeneration following injury; delays puberty; promotes fetal lung development; decreases thyroid hormone and testosterone; stimulates release of growth hormone, prolactin, glucagon, adrenocorticotropic hormone, cortisol, vasopressin, and oxytocin; inhibits insulin release; and promotes wound healing. Ghrelin protects the body by different mechanisms including inhibition of unwanted inflammation and induction of autophagy. Having a clear understanding of the ghrelin effect in each system has therapeutic implications. Future studies are necessary to elucidate the molecular mechanisms of ghrelin actions as well as its application as a GHSR agonist to treat most common diseases in each system without any paradoxical outcomes on the other systems.
Collapse
Affiliation(s)
- Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
17
|
Magherini F, Fiaschi T, Marzocchini R, Mannelli M, Gamberi T, Modesti PA, Modesti A. Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radic Res 2019; 53:1155-1165. [PMID: 31762356 DOI: 10.1080/10715762.2019.1697438] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evidence about the health benefits of regular physical activity is well established. Exercise intensity is a significant variable and structured high-intensity interval training (HIIT) has been demonstrated to improve both whole-body and skeletal muscle metabolic health in different populations. Conversely, fatigue accumulation, if not resolved, leads to overwork, chronic fatigue syndrome (CFS), overtraining syndrome up to alterations of endocrine function, immune, systemic inflammation, and organic diseases with health threat. In response to temporary increases in stress during training, some athletes are unable to maintain sufficient caloric intake, thus suffering a negative energy balance that causes further stress. The regulation of the energy balance is controlled by the central nervous system through an elaborate interaction of the signalling that involves different tissues such as leptin, adiponectin and ghrelin whose provide important feedback to the hypothalamus to regulate the energy balance. Although exercise-induced reactive oxygen species are required for normal force production in muscle, high levels of ROS appear to promote contractile dysfunction. However, a high level of oxidative stress in may induce a rise in inflammatory markers and a disregulation in expression of adiponectin, leptin and grelin.
Collapse
Affiliation(s)
- Francesca Magherini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Marzocchini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michele Mannelli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
18
|
Intracerebroventricular injection of phoenixin alters feeding behavior and activates nesfatin-1 immunoreactive neurons in rats. Brain Res 2019; 1715:188-195. [DOI: 10.1016/j.brainres.2019.03.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/20/2023]
|
19
|
Li Z, Yu R, Yin W, Qin Y, Ma L, Mulholland M, Zhang W. mTOR Signaling in X/A-Like Cells Contributes to Lipid Homeostasis in Mice. Hepatology 2019; 69:860-875. [PMID: 30141265 PMCID: PMC6351211 DOI: 10.1002/hep.30229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/19/2018] [Indexed: 01/02/2023]
Abstract
Gastric mechanistic target of rapamycin (mTOR) signaling is inversely associated with the expression and secretion of ghrelin, a 28-aa peptide hormone produced by gastric X/A-like cells. Ghrelin contributes to obesity and hepatic steatosis. We sought to control global lipid metabolism via the manipulation of gastric mTOR signaling in X/A-like cells. We established a ghrl-cre transgene in which the Cre enzyme is expressed in X/A-like cells under the control of the ghrelin-promoter. mTORflox/flox and tuberous sclerosis 1 (TSC1)flox/flox mice were separately bred with ghrl-cre mice to generate mTOR-ghrl-cre or TSC1-ghrl-cre mice, within which mTOR signaling was suppressed or activated, respectively. Lipid metabolism in liver and adipose depots was analyzed. Under the control of the ghrelin-promoter, the Cre enzyme was exclusively expressed in stomach X/A-like cells in adult animals. Knockout of mTOR in X/A-like cells increased circulating acyl-ghrelin and promoted hepatic lipogenesis with effects on adipose depots. Activation of mTOR signaling by deletion of its upstream inhibitor, TSC1, decreased ghrelin expression and secretion, altering lipid metabolism as evidenced by resistance to high-fat diet-induced obesity and hepatic steatosis. Both ghrelin administration and injection of rapamycin, an inhibitor of mTOR, altered the phenotypes of TSC1-ghrl-cre mice. Conclusion: Gastric mTOR signaling in X/A-like cells contributes to organism lipid homeostasis by regulating hepatic and adipose lipid metabolism. Gastric mTOR signaling may provide an alternative strategy for intervention in lipid disorders.
Collapse
Affiliation(s)
- Ziru Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China,Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| | - Ruili Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yan Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liangxiao Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA,Corresponding author. Contact information: Michael W. Mulholland, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA. Tel: 1-734-936-3236; ; Or. Weizhen Zhang, NCRC 26-241N, 2800 Plymouth Rd, Ann Arbor, MI 48105, United State, Tel: 1-734-615-0360; Fax: 1-734-763-4135;
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China,Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA,Corresponding author. Contact information: Michael W. Mulholland, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA. Tel: 1-734-936-3236; ; Or. Weizhen Zhang, NCRC 26-241N, 2800 Plymouth Rd, Ann Arbor, MI 48105, United State, Tel: 1-734-615-0360; Fax: 1-734-763-4135;
| |
Collapse
|
20
|
Yu R, Li Z, Liu S, Huwatibieke B, Li Y, Yin Y, Zhang W. Activation of mTORC1 signaling in gastric X/A-like cells induces spontaneous pancreatic fibrosis and derangement of glucose metabolism by reducing ghrelin production. EBioMedicine 2018; 36:304-315. [PMID: 30266297 PMCID: PMC6197745 DOI: 10.1016/j.ebiom.2018.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 09/15/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pancreatic fibrosis is a pathophysiological process associated with excessive deposition of extracellular matrix in pancreas, leading to reduced insulin secretion and derangement of glucose metabolism. X/A-like cells, a group of unique endocrine cells in gastric oxyntic mucosa, produce and secret ghrelin to influence energy balance. Whether gastric X/A-like cells affect pancreatic fibrosis and subsequent glucose homeostasis remains unclear. METHODS We established a Ghrl-cre transgene in which the cre enzyme is expressed in X/A-like cells under the control of ghrelin-promoter. TSC1flox/flox mice were bred with Ghrl-cre mice to generate Ghrl-TSC1-/- (TG) mice, within which mTORC1 signaling was activated in X/A-like cells. Pancreatic fibrosis and insulin secretion were analyzed in the TG mice. FINDINGS Activation of mTORC1 signaling by deletion of TSC1 gene in gastric X/A-like cells induced spontaneous pancreatic fibrosis. This alteration was associated with reduced insulin expression and secretion, as well as impaired glucose metabolism. Activation of mTORC1 signaling in gastric X/A-like cells reduced gastric and circulating ghrelin levels. Exogenous ghrelin reversed pancreatic fibrosis and glucose intolerance induced by activation of mTORC1 signaling in these cells. Rapamycin, an inhibitor of mTOR, reversed the decrease of ghrelin levels and pancreatic fibrosis. INTERPRETATION Activation of mTORC1 signaling in gastric X/A-like cells induces spontaneous pancreatic fibrosis and subsequently impairs glucose homeostasis via suppression of ghrelin.
Collapse
Affiliation(s)
- Ruili Yu
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ziru Li
- School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| | - Shiying Liu
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | - Yin Li
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yue Yin
- School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Weizhen Zhang
- School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
21
|
Onishi S, Kaji T, Yamada W, Nakame K, Machigashira S, Kawano M, Yano K, Harumatsu T, Yamada K, Masuya R, Kawano T, Mukai M, Hamada T, Souda M, Yoshioka T, Tanimoto A, Ieiri S. Ghrelin stimulates intestinal adaptation following massive small bowel resection in parenterally fed rats. Peptides 2018; 106:59-67. [PMID: 29966680 DOI: 10.1016/j.peptides.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Since short bowel syndrome (SBS) patients face life-threatening conditions, the development of therapeutic strategies to induce intestinal adaptation has been investigated. Ghrelin, a ligand of growth hormone (GH) secretagogue-receptor that stimulates the release of GH and insulin like growth factor-1 (IGF-1), has several pleiotropic effects. We investigated whether ghrelin induces intestinal adaptation in parenterally fed rats with SBS. METHODS Sprague-Dawley rats underwent venous catheterization and were divided into 3 groups: those receiving 90% small bowel resection while leaving the proximal jejunum and distal ileum (90% SBR) with TPN (SBS/TPN group), those receiving 90% SBR with TPN + ghrelin (SBS/TPN/ghrelin group), and those receiving sham operation and fed chow (sham group). Ghrelin was administered intravenously at 10 μg/kg/day. On Day 13, the rats were euthanized and the small intestine harvested, and the histology and crypt cell proliferation rates (CCPR), apoptosis, and nutrient transporter protein levels were analyzed and the plasma hormones were measured. RESULTS The villus height and crypt depth of the ileum in the SBS/TPN/ghrelin group were significantly higher than in the SBS/TPN group. The CCPR of the jejunum and the ileum significantly increased by the administration of ghrelin; however, the apoptosis rates did not significantly differ between the SBS/TPN and SBS/TPN/ghrelin groups. Significant differences did not exist in the plasma IGF-1 and nutrient transporter protein levels among three groups. CONCLUSIONS The intravenous administration of ghrelin stimulated the morphological intestinal adaptation of the ileum to a greater degree than the jejunum due to the direct effect of ghrelin.
Collapse
Affiliation(s)
- Shun Onishi
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Waka Yamada
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Kazuhiko Nakame
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Seiro Machigashira
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Masato Kawano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Keisuke Yano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Toshio Harumatsu
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Koji Yamada
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Ryuta Masuya
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Takafumi Kawano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Motoi Mukai
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Masakazu Souda
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan; Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takako Yoshioka
- National Center for Children Health and Development, Pathology, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan.
| |
Collapse
|
22
|
|
23
|
Cleverdon ER, McGovern-Gooch KR, Hougland JL. The octanoylated energy regulating hormone ghrelin: An expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling. Mol Membr Biol 2017; 33:111-124. [PMID: 29143554 DOI: 10.1080/09687688.2017.1388930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Initially demonstrated to stimulate hunger and appetite, ghrelin-dependent signaling is implicated in a variety of neurological and physiological processes influencing diseases such as diabetes, obesity, and Prader-Willi syndrome. In addition to its cognate receptor, recent studies have revealed ghrelin interacts with a range of binding partners within the bloodstream. Defining the scope of ghrelin's interactions within the body, understanding how these interactions work in concert to modulate ghrelin signaling, and developing molecular tools for controlling ghrelin signaling are essential for exploiting ghrelin for therapeutic effect. In this review, we discuss recent findings regarding the biological effects of ghrelin signaling, outline binding partners that control ghrelin trafficking and stability in circulation, and summarize the current landscape of inhibitors targeting ghrelin octanoylation.
Collapse
Affiliation(s)
| | | | - James L Hougland
- a Department of Chemistry , Syracuse University , Syracuse , NY , USA
| |
Collapse
|
24
|
Ferreira-Marques M, Aveleira CA, Carmo-Silva S, Botelho M, Pereira de Almeida L, Cavadas C. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging (Albany NY) 2017; 8:1470-84. [PMID: 27441412 PMCID: PMC4993343 DOI: 10.18632/aging.100996] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022]
Abstract
Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process.
Collapse
Affiliation(s)
| | - Célia A Aveleira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sara Carmo-Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mariana Botelho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Prinz P, Scharner S, Friedrich T, Schalla M, Goebel-Stengel M, Rose M, Stengel A. Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats. Biochem Biophys Res Commun 2017; 493:195-201. [DOI: 10.1016/j.bbrc.2017.09.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
|
26
|
Inhibition of KDM4A activity as a strategy to suppress interleukin-6 production and attenuate colitis induction. Clin Immunol 2017; 180:120-127. [DOI: 10.1016/j.clim.2017.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023]
|
27
|
Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5856071. [PMID: 28593174 PMCID: PMC5448050 DOI: 10.1155/2017/5856071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022]
Abstract
Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.
Collapse
|
28
|
Shenmar K, Sharma KK, Wangoo N, Maurya IK, Kumar V, Khan SI, Jacob MR, Tikoo K, Jain R. Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides. Eur J Med Chem 2017; 132:192-203. [PMID: 28363154 DOI: 10.1016/j.ejmech.2017.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/14/2017] [Accepted: 03/22/2017] [Indexed: 01/04/2023]
Abstract
The growing incidents of cryptococcosis in immuno-compromised patients have created a need for novel drug therapies capable of eradicating the disease. The peptide-based drug therapy offers many advantages over the traditional therapeutic agents, which has been exploited in the present study by synthesizing a series of hexapeptides that exhibits promising activity against a panel of Gram-negative and Gram-positive bacteria and various pathogenic fungal strains; the most exemplary activity was observed against Cryptococcus neoformans. The peptides 3, 24, 32 and 36 displayed potent anticryptococcal activity (IC50 = 0.4-0.46 μg/mL, MIC = 0.63-1.25 μg/mL, MFC = 0.63-1.25 μg/mL), and stability under proteolytic conditions. Besides this, several other peptides displayed promising inhibition of pathogenic bacteria. The prominent ones include peptides 18-20, and 26 that exhibited IC50 values ranged between 2.1 and 3.6 μg/mL, MICs of 5-20 μg/mL and MBCs of 10-20 μg/mL against Staphylococcus aureus and methicillin-resistant S. aureus. The detailed mechanistic study on selected peptides demonstrated absolute selectivity towards the bacterial membranes and fungal cells by causing perturbations in the cell membranes, confirmed by the scanning electron microscopy and transmission electron microscopy studies.
Collapse
Affiliation(s)
- Kitika Shenmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh, 160014, India
| | - Indresh K Maurya
- Department of Microbial Biotechnology, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Melissa R Jacob
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
29
|
Sagheb MM, Azarpira N, Mokhtary M. The effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:36-40. [PMID: 28133522 PMCID: PMC5243972 DOI: 10.22038/ijbms.2017.8090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from the islets of Langerhans. We hypothesize that the inhibitory effect of ghrelin on KiSS-1 and KissR in the islet cells may be similar to the same inhibitory effect of ghrelin in the hypothalamus. Materials and Methods: To investigate the effect of ghrelin, we isolated the islets from adult male rats by collagenase and cultured CRI-D2 cell lines. Then, we incubated them with different concentrations of ghrelin for 24 hr. After RNA extraction and cDNA synthesis from both islets and CRI-D2 cells, the relative expression of KiSS-1 and KissR was evaluated by means of real-time PCR. Furthermore, we measured the amount of insulin secreted by the islets after incubation in different concentrations of ghrelin and glucose after 1 hr. Besides, we checked the viability of the cells after 24 hr cultivation. Results: Ghrelin significantly decreased the KiSS-1 and KissR mRNA transcription in rat islets and CRI-D2 cells. Besides, Ghrelin suppressed insulin secretion from pancreatic beta cells and CRI-D2 cells. Conclusion: These findings indicate the possibility that KiSS-1 and KissR mRNA expression is mediator of ghrelin function in the islets of Langerhans.
Collapse
Affiliation(s)
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mokhtar Mokhtary
- Department of Biology, Kazeroon Branch, Islamic Azad University, Kazeroon, Iran
| |
Collapse
|
30
|
Gong Y, Liu Y, Liu F, Wang S, Jin H, Guo F, Xu L. Ghrelin fibers from lateral hypothalamus project to nucleus tractus solitaries and are involved in gastric motility regulation in cisplatin-treated rats. Brain Res 2017; 1659:29-40. [PMID: 28093190 DOI: 10.1016/j.brainres.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/28/2016] [Accepted: 01/01/2017] [Indexed: 12/16/2022]
Abstract
Ghrelin can alleviate cancer chemotherapy-induced dyspepsia in rodents, though the neural mechanisms involved are not known. Therefore, ghrelin projections from the lateral hypothalamus (LH) and its involvement in the regulation of gastric motility in cisplatin-treated rats were investigated with a multi-disciplined approach. Retrograde tracing combined with fluoro-immunohistochemical staining were used to investigate ghrelin fiber projections arising from LH and projecting to nucleus tractus solitaries (NTS). Results revealed that ghrelin fibers originating in LH project to NTS. Expression of ghrelin and its receptor growth hormone secretagogue receptor (GHS-R1a) in LH and NTS were detected by Western Blot. 2days after cisplatin dosing, expression of ghrelin in LH decreased while GHS-R1a in both LH and NTS increased. In electrophysiological experiments, the effects of N-methyl-d-aspartate (NMDA) microinjection in LH on neuronal discharge of gastric distension-responsive neurons in NTS and gastric motility were assessed. NMDA in LH excited most of ghrelin-responsive gastric distension (GD)-sensitive neurons in NTS and promoted gastric motility. This effect was partially blocked by ghrelin antibody in NTS. Furthermore, the excitatory effects of NMDA in cisplatin-treated rats were weaker than those in saline-treated rats. Behaviorally, cisplatin induced a significant increase of kaolin consumption and decrease of food intake. These studies reveal a decreased expression of ghrelin in LH and up-regulation of GHS-R1a in LH and NTS, which are involved in the regulation of GD neuronal discharge in NTS and gastric motility.
Collapse
Affiliation(s)
- Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| | - Yang Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Fei Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Shasha Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Hong Jin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
31
|
Pereira JADS, da Silva FC, de Moraes-Vieira PMM. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. J Diabetes Res 2017; 2017:4527980. [PMID: 29082258 PMCID: PMC5610818 DOI: 10.1155/2017/4527980] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity and insulin resistance have reached epidemic proportions. Obesogenic conditions are associated with increased risk for the development of other comorbidities and obesity-related diseases. In metabolic disorders, there is chronic low-grade inflammation induced by the activation of immune cells, especially in metabolic relevant organs such as white adipose tissue (WAT). These immune cells are regulated by environmental and systemic cues. Ghrelin is a peptide secreted mainly by X/A-like gastric cells and acts through the growth hormone secretagogue receptor (GHS-R). This receptor is broadly expressed in the central nervous system (CNS) and in several cell types, including immune cells. Studies show that ghrelin induces an orexigenic state, and there is increasing evidence implicating an immunoregulatory role for ghrelin. Ghrelin mainly acts on the innate and adaptive immune systems to suppress inflammation and induce an anti-inflammatory profile. In this review, we discuss the immunoregulatory roles of ghrelin, the mechanisms by which ghrelin acts and potential pharmacological applications for ghrelin in the treatment of obesity-associated inflammatory diseases, such as type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Corrêa da Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
32
|
The administration of ghrelin improved hepatocellular injury following parenteral feeding in a rat model of short bowel syndrome. Pediatr Surg Int 2016; 32:1165-1171. [PMID: 27651372 DOI: 10.1007/s00383-016-3975-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Long-term parenteral nutrition following massive bowel resection causes liver dysfunction, such as intestinal failure-associated liver disease (IFALD). IFALD includes two different states, cholestasis and steatosis, which represents a life-threatening complication. The previous reports have shown the protective role of ghrelin in the liver. The aim of this study was to evaluate the effects of the administration of ghrelin in the liver in a parenterally fed rat model of short bowel syndrome (SBS). METHODS Rats underwent jugular vein catheterization, and were divided into three groups: 90 % small bowel resection (90 % SBR) and TPN (SBS/TPN group), 90 % SBR and TPN plus ghrelin (SBS/TPN/ghrelin group), and sham operation with normal chow (sham group). Ghrelin was administered continuously at a dose of 10 μg/kg/day. On day 13, all rats were euthanized. The serum chemistry was analyzed, the lipid content of the liver was measured, and the liver tissue was histologically analyzed. RESULT The AST and LDH levels significantly increased, and the accumulation of lipids in the liver was observed in the TPN/SBS group. The accumulation of lipids in the liver of the rats in the SBS/TPN group was attenuated by the administration of ghrelin. CONCLUSION The administration of ghrelin has a therapeutic potential for IFALD.
Collapse
|
33
|
Bariatric Radioembolization: A Pilot Study on Technical Feasibility and Safety in a Porcine Model. J Vasc Interv Radiol 2016; 27:1509-17. [PMID: 27492867 DOI: 10.1016/j.jvir.2016.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate feasibility of left gastric artery (LGA) yttrium-90 ((90)Y) radioembolization as potential treatment for obesity in a porcine model. MATERIALS AND METHODS This study included 8 young female pigs (12-13 weeks, 21.8-28.1 kg). Six animals received infusions of (90)Y resin microspheres (46.3-105.1 MBq) into the main LGA and the gastric artery arising from the splenic artery. Animal weight and serum ghrelin were measured before treatment and weekly thereafter. Animals were euthanized 69-74 days after treatment, and histologic analyses of mucosal integrity and ghrelin immunoreactive cell density were performed. RESULTS Superficial mucosal ulcerations < 3.0 cm(2) were noted in 5 of 6 treated animals. Ghrelin immunoreactive cell density was significantly lower in treated versus untreated animals in the stomach fundus (13.5 vs 34.8, P < .05) and stomach body (11.2 vs 19.8, P < .05). Treated animals gained less weight than untreated animals over the study duration (40.2 kg ± 5.4 vs 54.7 kg ± 6.5, P = .053). Average fundic parietal area (165 cm(2) vs 282 cm(2), P = .067) and average stomach weight (297.2 g vs 397.0 g, P = .067) were decreased in treated versus untreated animals. Trichrome staining revealed significantly more fibrosis in treatment animals compared with control animals (13.0 vs 8.6, P < .05). No significant differences were identified in plasma ghrelin concentrations (P = .24). CONCLUSIONS LGA (90)Y radioembolization is promising as a potential treatment for obesity. A larger preclinical study is needed to evaluate the safety and efficacy of this procedure further.
Collapse
|
34
|
Jiang S, Zhou W, Zhang X, Wang D, Zhu H, Hong M, Gong Y, Ye J, Fang F. Developmental expression and distribution of nesfatin-1/NUCB2 in the canine digestive system. Acta Histochem 2016; 118:90-6. [PMID: 26643216 DOI: 10.1016/j.acthis.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
Nesfatin-1/NUCB2 is a neuropeptide that plays important roles in regulating food intake and energy homeostasis. The distribution of nesfatin-1/NUCB2 protein and mRNA has not been investigated in the canine digestive system. The present study was conducted to evaluate the expression of nesfatin-1/NUCB2 protein and NUCB2 mRNA in the canine digestive organs (esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver and pancreas). The tissues of the digestive system were collected from dogs at different developmental stages (infantile, juvenile, pubertal and adult). Nesfatin-1/NUCB2 protein localization in the organs of adult dogs was detected by immunohistochemistry. The expression of NUCB2 mRNA at the four developmental stages was analyzed by real-time fluorescence quantitative PCR (qRT-PCR). Nesfatin-1/NUCB2 protein was distributed in the fundic gland region of the stomach, and the islet area and exocrine portions of the pancreas. However, NUCB2 mRNA was found in all digestive organs, although the expression levels in the pancreas and stomach were higher than those in liver, duodenum and other digestive tract tissues (P<0.05) at the four different developmental stages of the dogs. In this study, nesfatin-1/NUCB2 was found to be present at high levels in the stomach and pancreas at both the protein and mRNA levels; however, NUCB2 expression was found at lower levels in all of the digestive organs. These findings provide the basis of further investigations to elucidate the functions of nefatin-1 in the canine digestive system.
Collapse
Affiliation(s)
- Shudong Jiang
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China; Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Weijuan Zhou
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Xingwang Zhang
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Dengfeng Wang
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Hui Zhu
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Meizhen Hong
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Yajing Gong
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Jing Ye
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Fugui Fang
- Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China; Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China.
| |
Collapse
|
35
|
Wiedemann T, Bielohuby M, Müller TD, Bidlingmaier M, Pellegata NS. Obesity in MENX Rats Is Accompanied by High Circulating Levels of Ghrelin and Improved Insulin Sensitivity. Diabetes 2016; 65:406-20. [PMID: 26512025 DOI: 10.2337/db15-0374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022]
Abstract
Ghrelin, the natural ligand of the growth hormone secretagogue receptor type 1a (GHS-R1a), is mainly secreted from the stomach and regulates food intake and energy homeostasis. p27 regulates cell cycle progression in many cell types. Here, we report that rats affected by the multiple endocrine neoplasia syndrome MENX, caused by a p27 mutation, develop pancreatic islet hyperplasia containing elevated numbers of ghrelin-producing ε-cells. The metabolic phenotype of MENX-affected rats featured high endogenous acylated and unacylated plasma ghrelin levels. Supporting increased ghrelin action, MENX rats show increased food intake, enhanced body fat mass, and elevated plasma levels of triglycerides and cholesterol. Ghrelin effect on food intake was confirmed by treating MENX rats with a GHS-R1a antagonist. At 7.5 months, MENX-affected rats show decreased mRNA levels of hypothalamic GHS-R1a, neuropeptide Y (NPY), and agouti-related protein (AgRP), suggesting that prolonged hyperghrelinemia may lead to decreased ghrelin efficacy. In line with ghrelin's proposed role in glucose metabolism, we find decreased glucose-stimulated insulin secretion in MENX rats, while insulin sensitivity is improved. In summary, we provide a novel nontransgenic rat model with high endogenous ghrelin plasma levels and, interestingly, improved glucose tolerance. This model might aid in identifying new therapeutic approaches for obesity and obesity-related diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Tobias Wiedemann
- Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Technical University Munich, Munich, Germany
| | - Maximilian Bielohuby
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwigs-Maximilians University, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health, Technical University Munich, Munich, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwigs-Maximilians University, Munich, Germany
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Technical University Munich, Munich, Germany
| |
Collapse
|
36
|
Bittar NMVR, Zulian JG, Ogias D, Gama P. Ghrelin and GHS-R in the rat gastric mucosa: Are they involved in regulation of growth during early weaning? Nutrition 2015; 32:101-7. [PMID: 26520918 DOI: 10.1016/j.nut.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/10/2015] [Accepted: 06/28/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Based on previous evidence showing that early weaning disturbs the ontogenesis of rat gastric glands, which are the major site of ghrelin synthesis, we investigated the distribution of ghrelin and its receptor (GHS-R) in the rat gastric epithelium during postnatal development and evaluated the effects of early weaning on their levels. Additionally, we studied the contribution of ghrelin to gastric growth during the abrupt nutrient transition. METHODS Wistar rats were submitted to early weaning at 15 d and suckling counterparts were taken as controls. RESULTS By running quantitative reverse transcription polymerase chain reaction, immunoblots, and immunohistochemistry, we detected a variation of ghrelin levels and an increase of expression and number of immunolabeled cells, 3 d after treatment (P < 0.05). Through confocal microscopy, we identified GHS-R in the neck region of the gland and did not observe changes in protein levels. Growth was evaluated after ghrelin antagonist ([D-Lys-3]-GHRP-6) administration, which reduced DNA synthesis index in early-weaned rats (P < 0.05) as determined by bromodeoxyuridine incorporation. CONCLUSION The present study demonstrated that ghrelin and GHS-R are distributed in gastric mucosa during the postnatal development, indicating that they can signal and function in epithelial cells. We concluded that early weaning increased ghrelin levels in the stomach, and it takes part of cell proliferation control that is essential for stomach growth. Therefore, among the many effects previously described for early weaning, this abrupt nutrient transition also changed ghrelin levels, which might represent an additional element in the complex mechanism that coordinates stomach development.
Collapse
Affiliation(s)
| | - Juliana Guimarães Zulian
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela Ogias
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia Gama
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Expression and immunohistochemical detection of nesfatin-1 in the gastrointestinal tract of Casertana pig. Acta Histochem 2014; 116:583-7. [PMID: 24360975 DOI: 10.1016/j.acthis.2013.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/23/2022]
Abstract
In this study, we report nesfatin-1 immunoreactivity in the gastrointestinal tract of Casertana breed pig. The newly discovered anorexigenic peptide nesfatin-1 has been shown to possess physiological relevance in regulating food intake and energy homeostasis at a central level, although evidence has been accumulating that it may also play important functions at a more local gastroenteric level. Nesfatin-1 immunoreactive endocrine cells have been detected in the gastric fundus and ileocecal valve. Nesfatin-1 immunopositive neurons and nerve fibers have been observed mainly in the enteric plexuses. Western blot analysis confirmed the immunohistochemical observations, showing immunoreactive bands in all analyzed gastrointestinal tracts with the exception of the rectum. Nesfatin-1 immunodetection in the swine digestive system reinforces the importance of the role played by nesfatin-1 at the gastrointestinal level and sustains the necessity to study the role of this peptide in the regulation of food intake in farm species for which weight gain is essential for optimizing production.
Collapse
|
38
|
Comninos AN, Jayasena CN, Dhillo WS. The relationship between gut and adipose hormones, and reproduction. Hum Reprod Update 2013; 20:153-74. [PMID: 24173881 DOI: 10.1093/humupd/dmt033] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Reproductive function is tightly regulated by nutritional status. Indeed, it has been well described that undernutrition or obesity can lead to subfertility or infertility in humans. The common regulatory pathways which control energy homeostasis and reproductive function have, to date, been poorly understood due to limited studies or inconclusive data. However, gut hormones and adipose tissue hormones have recently emerged as potential regulators of both energy homeostasis and reproductive function. METHODS A PubMed search was performed using keywords related to gut and adipose hormones and associated with keywords related to reproduction. RESULTS Currently available evidence that gut (ghrelin, obestatin, insulin, peptide YY, glucagon-like peptide-1, glucose-dependent insulinotropic peptide, oxyntomodulin, cholecystokinin) and adipose hormones (leptin, adiponectin, resistin, omentin, chemerin) interact with the reproductive axis is presented. The extent, site and direction of their effects on the reproductive axis are variable and also vary depending on species, sex and pubertal stage. CONCLUSIONS Gut and adipose hormones interact with the reproductive axis as well as with each other. While leptin and insulin have stimulatory effects and ghrelin has inhibitory effects on hypothalamic GnRH secretion, there is increasing evidence for their roles in other sites of the reproductive axis as well as evidence for the roles of other gut and adipose hormones in the complex interplay between nutrition and reproduction. As our understanding improves, so will our ability to identify and design novel therapeutic options for reproductive disorders and accompanying metabolic disorders.
Collapse
Affiliation(s)
- Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
39
|
Via MA, Mechanick JI. The Role of Bariatric Surgery in the Treatment of Type 2 Diabetes: Current Evidence and Clinical Guidelines. Curr Atheroscler Rep 2013; 15:366. [DOI: 10.1007/s11883-013-0366-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Mear Y, Enjalbert A, Thirion S. GHS-R1a constitutive activity and its physiological relevance. Front Neurosci 2013; 7:87. [PMID: 23754971 PMCID: PMC3665924 DOI: 10.3389/fnins.2013.00087] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/09/2013] [Indexed: 12/14/2022] Open
Abstract
Abundant evidences have shown that ghrelin, by its binding to GHS-R1a, plays an important role for fundamental physiological functions. Increasing attention is given to the GHS-R1a unusually high constitutive activity and its contribution to downstream signaling and physiological processes. Here, we review recent lines of evidences showing that the interaction between ligand-binding pocket TM domains and the ECL2 could be partially responsible for this high constitutive activity. Interestingly, GHSR-1a constitutive activity activates in turn the downstream PLC, PKC, and CRE signaling pathways and this activation is reversed by the inverse agonist [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P (MSP). Noteworthy, GHSR-1a exhibits a C-terminal-dependent constitutive internalization. Non-sense GHS-R1a mutation (Ala204Glu), first discovered in Moroccan patients, supports the role of GHSR-1a constitutive activity in physiological impairments. Ala204Glu-point mutation, altering exclusively the GHSR-1a constitutive activity, was associated with familial short stature syndrome. Altogether, these findings suggest that GHS-R1a constitutive activity could contribute to GH secretion or body weight regulation. Consequently, future research on basic and clinical applications of GHS-R1a inverse agonists will be challenging and potentially rewarding.
Collapse
Affiliation(s)
- Yves Mear
- CNRS, CRN2M UMR7286, Aix Marseille University Marseille, France
| | | | | |
Collapse
|
41
|
King JA, Wasse LK, Stensel DJ, Nimmo MA. Exercise and ghrelin. A narrative overview of research. Appetite 2013; 68:83-91. [PMID: 23624293 DOI: 10.1016/j.appet.2013.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022]
Abstract
Since its discovery in 1999, ghrelin has been implicated in a multiplicity of physiological activities. Most notably, ghrelin has an important influence on energy metabolism and after the identification of its potent appetite stimulating effects ghrelin has been termed the 'hunger hormone'. Exercise is a stimulus which has a significant impact on energy homeostasis and consequently a substantial body of research has investigated the interaction between exercise and ghrelin. This narrative review provides an overview of research relating to the acute and chronic effects of exercise on circulating ghrelin (acylated, unacylated and total). To enhance study comparability, the scope of this review is limited to research undertaken in adult humans and consequently studies involving children and animals are not discussed. Although there is significant ambiguity within much of the early research, our review suggests that acute exercise transiently interferes with the production of acylated ghrelin. Furthermore, the consensus of evidence indicates that exercise training does not influence circulating ghrelin independent of weight loss. Additional research is needed to verify and extend the available literature, particularly by uncovering the mechanisms governing acute exercise-related changes and characterising responses in other populations such as females, older adults, and the obese.
Collapse
Affiliation(s)
- James A King
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
| | | | | | | |
Collapse
|
42
|
Wang L, Stengel A, Goebel-Stengel M, Shaikh A, Yuan PQ, Taché Y. Intravenous injection of urocortin 1 induces a CRF2 mediated increase in circulating ghrelin and glucose levels through distinct mechanisms in rats. Peptides 2013; 39. [PMID: 23183626 PMCID: PMC3599411 DOI: 10.1016/j.peptides.2012.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urocortins (Ucns) injected peripherally decrease food intake and gastric emptying through peripheral CRF(2) receptors in rodents. However, whether Ucns influence circulating levels of the orexigenic and prokinetic hormone, ghrelin has been little investigated. We examined plasma levels of ghrelin and blood glucose after intravenous (iv) injection of Ucn 1, the CRF receptor subtype involved and underlying mechanisms in ad libitum fed rats equipped with a chronic iv cannula. Ucn 1 (10 μg/kg, iv) induced a rapid onset and long lasting increase in ghrelin levels reaching 68% and 219% at 0.5 and 3h post injection respectively and a 5-h hyperglycemic response. The selective CRF(2) agonist, Ucn 2 (3 μg/kg, iv) increased fasting acyl (3h: 49%) and des-acyl ghrelin levels (3h: 30%) compared to vehicle while the preferential CRF(1) agonist, CRF (3 μg/kg, iv) had no effect. Ucn 1's stimulatory actions were blocked by the selective CRF(2) antagonist, astressin(2)-B (100 μg/kg, iv). Hexamethonium (10 mg/kg, sc) prevented Ucn 1-induced rise in total ghrelin levels while not altering the hyperglycemic response. These data indicate that systemic injection of Ucns induces a CRF(2)-mediated increase in circulating ghrelin levels likely via indirect actions on gastric ghrelin cells that involves a nicotinic pathway independently from the hyperglycemic response.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at University of California Los Angeles, Los Angeles, CA 90073, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population. PLoS One 2012; 7:e52026. [PMID: 23251675 PMCID: PMC3520898 DOI: 10.1371/journal.pone.0052026] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/13/2012] [Indexed: 01/01/2023] Open
Abstract
Pancreatic islet cells provide the major source of counteractive endocrine hormones required for maintaining glucose homeostasis; severe health problems result when these cell types are insufficiently active or reduced in number. Therefore, the process of islet endocrine cell lineage allocation is critical to ensure there is a correct balance of islet cell types. There are four endocrine cell types within the adult islet, including the glucagon-producing alpha cells, insulin-producing beta cells, somatostatin-producing delta cells and pancreatic polypeptide-producing PP cells. A fifth islet cell type, the ghrelin-producing epsilon cells, is primarily found during gestational development. Although hormone expression is generally assumed to mark the final entry to a determined cell state, we demonstrate in this study that ghrelin-expressing epsilon cells within the mouse pancreas do not represent a terminally differentiated endocrine population. Ghrelin cells give rise to significant numbers of alpha and PP cells and rare beta cells in the adult islet. Furthermore, pancreatic ghrelin-producing cells are maintained in pancreata lacking the essential endocrine lineage regulator Neurogenin3, and retain the ability to contribute to cells within the pancreatic ductal and exocrine lineages. These results demonstrate that the islet ghrelin-expressing epsilon cells represent a multi-potent progenitor cell population that delineates a major subgrouping of the islet endocrine cell populations. These studies also provide evidence that many of hormone-producing cells within the adult islet represent heterogeneous populations based on their ontogeny, which could have broader implications on the regulation of islet cell ratios and their ability to effectively respond to fluctuations in the metabolic environment during development.
Collapse
|
44
|
Dong CX, Brubaker PL. Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis. Nat Rev Gastroenterol Hepatol 2012; 9:705-15. [PMID: 23026903 DOI: 10.1038/nrgastro.2012.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulation of nutrient homeostasis is implicated in the current epidemics of obesity and type 2 diabetes mellitus. The maintenance of homeostasis in the setting of repeated cycles of feeding and fasting occurs through complex interactions between metabolic, hormonal and neural factors. Although pancreatic islets, the liver, muscle, adipocytes and the central nervous system are all key players in this network, the gastrointestinal tract is the first tissue exposed to ingested nutrients and thus has an important role. This Review focuses on several of the endocrine hormones released by the gastrointestinal tract prior to or during nutrient ingestion that have key roles in maintaining energy balance. These hormones include the gastric orexigenic hormone, ghrelin, and the distal L cell anorexigenic and metabolic hormones, glucagon-like peptide (GLP)-1, GLP-2, oxyntomodulin and peptide YY. Each of these hormones exerts a distinct set of biological actions to maintain nutrient homeostasis, the properties of which are currently, or might soon be, exploited in the clinic for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Charlotte X Dong
- Department of Physiology, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|