1
|
Dureux A, Zanini A, Jafari A, Everling S. Ultra-high Field fMRI Reveals Effect of Ketamine on Vocal Processing in Common Marmosets. J Neurosci 2025; 45:e0651242025. [PMID: 39984201 PMCID: PMC11984087 DOI: 10.1523/jneurosci.0651-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
Auditory deficits are a well-known symptom in neuropsychiatric disorders such as schizophrenia. The noncompetitive N-methyl-d-aspartate receptor antagonist ketamine has been used to model sensory and cognitive deficits in nonhuman primates, but its whole-brain effects remain largely unknown. Here we employed ultra-high field functional magnetic resonance imaging at 9.4 T in awake male and female marmoset monkeys (Callithrix jacchus) to compare brain activations to conspecific vocalizations, scrambled vocalizations, and nonvocal sounds following the administration of a subanesthetic dose of ketamine. Our findings reveal a broad suppression of activations across auditory regions following ketamine compared with saline. Additionally, we observed differential effects depending on the type of sound, with notable changes in the mediodorsal thalamus and anterior cingulate cortex, particularly during the processing of vocalizations. These findings suggest a potential overlap between the effects of ketamine and neural disruptions observed in schizophrenia, particularly affecting vocalization processing.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada,
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada
| |
Collapse
|
2
|
Pathak A, Menon SN, Sinha S. A hierarchy index for networks in the brain reveals a complex entangled organizational structure. Proc Natl Acad Sci U S A 2024; 121:e2314291121. [PMID: 38923990 PMCID: PMC11228506 DOI: 10.1073/pnas.2314291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Networks involved in information processing often have their nodes arranged hierarchically, with the majority of connections occurring in adjacent levels. However, despite being an intuitively appealing concept, the hierarchical organization of large networks, such as those in the brain, is difficult to identify, especially in absence of additional information beyond that provided by the connectome. In this paper, we propose a framework to uncover the hierarchical structure of a given network, that identifies the nodes occupying each level as well as the sequential order of the levels. It involves optimizing a metric that we use to quantify the extent of hierarchy present in a network. Applying this measure to various brain networks, ranging from the nervous system of the nematode Caenorhabditis elegans to the human connectome, we unexpectedly find that they exhibit a common network architectural motif intertwining hierarchy and modularity. This suggests that brain networks may have evolved to simultaneously exploit the functional advantages of these two types of organizations, viz., relatively independent modules performing distributed processing in parallel and a hierarchical structure that allows sequential pooling of these multiple processing streams. An intriguing possibility is that this property we report may be common to information processing networks in general.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai600113, India
- Homi Bhabha National Institute, Mumbai400 094, India
| | - Shakti N. Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai600113, India
- Homi Bhabha National Institute, Mumbai400 094, India
| |
Collapse
|
3
|
Tomana E, Härtwich N, Rozmarynowski A, König R, May PJC, Sielużycki C. Optimising a computational model of human auditory cortex with an evolutionary algorithm. Hear Res 2023; 439:108879. [PMID: 37826916 DOI: 10.1016/j.heares.2023.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
We demonstrate how the structure of auditory cortex can be investigated by combining computational modelling with advanced optimisation methods. We optimise a well-established auditory cortex model by means of an evolutionary algorithm. The model describes auditory cortex in terms of multiple core, belt, and parabelt fields. The optimisation process finds the optimum connections between individual fields of auditory cortex so that the model is able to reproduce experimental magnetoencephalographic (MEG) data. In the current study, this data comprised the auditory event-related fields (ERFs) recorded from a human subject in an MEG experiment where the stimulus-onset interval between consecutive tones was varied. The quality of the match between synthesised and experimental waveforms was 98%. The results suggest that neural activity caused by feedback connections plays a particularly important role in shaping ERF morphology. Further, ERFs reflect activity of the entire auditory cortex, and response adaptation due to stimulus repetition emerges from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Our findings constitute the first stage in establishing a new non-invasive method for uncovering the organisation of the human auditory cortex.
Collapse
Affiliation(s)
- Ewelina Tomana
- Department of Biomedical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Nina Härtwich
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Adam Rozmarynowski
- Department of Biomedical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Reinhard König
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Patrick J C May
- Department of Psychology, Lancaster University, LA1 4YR, Lancaster, United Kingdom
| | - Cezary Sielużycki
- Department of Biomedical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
4
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
Affiliation(s)
- Dori M Grijseels
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Brendan J Prendergast
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Benner J, Reinhardt J, Christiner M, Wengenroth M, Stippich C, Schneider P, Blatow M. Temporal hierarchy of cortical responses reflects core-belt-parabelt organization of auditory cortex in musicians. Cereb Cortex 2023:7030622. [PMID: 36786655 DOI: 10.1093/cercor/bhad020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
Human auditory cortex (AC) organization resembles the core-belt-parabelt organization in nonhuman primates. Previous studies assessed mostly spatial characteristics; however, temporal aspects were little considered so far. We employed co-registration of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in musicians with and without absolute pitch (AP) to achieve spatial and temporal segregation of human auditory responses. First, individual fMRI activations induced by complex harmonic tones were consistently identified in four distinct regions-of-interest within AC, namely in medial Heschl's gyrus (HG), lateral HG, anterior superior temporal gyrus (STG), and planum temporale (PT). Second, we analyzed the temporal dynamics of individual MEG responses at the location of corresponding fMRI activations. In the AP group, the auditory evoked P2 onset occurred ~25 ms earlier in the right as compared with the left PT and ~15 ms earlier in the right as compared with the left anterior STG. This effect was consistent at the individual level and correlated with AP proficiency. Based on the combined application of MEG and fMRI measurements, we were able for the first time to demonstrate a characteristic temporal hierarchy ("chronotopy") of human auditory regions in relation to specific auditory abilities, reflecting the prediction for serial processing from nonhuman studies.
Collapse
Affiliation(s)
- Jan Benner
- Department of Neuroradiology and Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany
| | - Julia Reinhardt
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Orthopedic Surgery and Traumatology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Markus Christiner
- Centre for Systematic Musicology, University of Graz, Graz, Austria.,Department of Musicology, Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Martina Wengenroth
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christoph Stippich
- Department of Neuroradiology and Radiology, Kliniken Schmieder, Allensbach, Germany
| | - Peter Schneider
- Department of Neuroradiology and Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany.,Centre for Systematic Musicology, University of Graz, Graz, Austria.,Department of Musicology, Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Maria Blatow
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Neurocenter, Cantonal Hospital Lucerne, University of Lucerne, Lucerne, Switzerland
| |
Collapse
|
6
|
Yao JD, Zemlianova KO, Hocker DL, Savin C, Constantinople CM, Chung S, Sanes DH. Transformation of acoustic information to sensory decision variables in the parietal cortex. Proc Natl Acad Sci U S A 2023; 120:e2212120120. [PMID: 36598952 PMCID: PMC9926273 DOI: 10.1073/pnas.2212120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023] Open
Abstract
The process by which sensory evidence contributes to perceptual choices requires an understanding of its transformation into decision variables. Here, we address this issue by evaluating the neural representation of acoustic information in the auditory cortex-recipient parietal cortex, while gerbils either performed a two-alternative forced-choice auditory discrimination task or while they passively listened to identical acoustic stimuli. During task engagement, stimulus identity decoding performance from simultaneously recorded parietal neurons significantly correlated with psychometric sensitivity. In contrast, decoding performance during passive listening was significantly reduced. Principal component and geometric analyses revealed the emergence of low-dimensional encoding of linearly separable manifolds with respect to stimulus identity and decision, but only during task engagement. These findings confirm that the parietal cortex mediates a transition of acoustic representations into decision-related variables. Finally, using a clustering analysis, we identified three functionally distinct subpopulations of neurons that each encoded task-relevant information during separate temporal segments of a trial. Taken together, our findings demonstrate how parietal cortex neurons integrate and transform encoded auditory information to guide sound-driven perceptual decisions.
Collapse
Affiliation(s)
- Justin D. Yao
- Center for Neural Science, New York University, New YorkNY 10003
- Department of Otolaryngology, Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ08901
- Brain Health Institute, Rutgers University, Piscataway, NJ08854
| | | | - David L. Hocker
- Center for Neural Science, New York University, New YorkNY 10003
| | - Cristina Savin
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
- Center for Data Science, New York University, New YorkNY 10011
| | - Christine M. Constantinople
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
| | - SueYeon Chung
- Center for Neural Science, New York University, New YorkNY 10003
- Flatiron Institute, Simons Foundation, New YorkNY 10010
| | - Dan H. Sanes
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
- Department of Psychology, New York University, New YorkNY 10003
- Department of Biology, New York University, New YorkNY 10003
| |
Collapse
|
7
|
Hajizadeh A, Matysiak A, Wolfrum M, May PJC, König R. Auditory cortex modelled as a dynamical network of oscillators: understanding event-related fields and their adaptation. BIOLOGICAL CYBERNETICS 2022; 116:475-499. [PMID: 35718809 PMCID: PMC9287241 DOI: 10.1007/s00422-022-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.
Collapse
Affiliation(s)
- Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Artur Matysiak
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Matthias Wolfrum
- Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany
| | - Patrick J. C. May
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF UK
| | - Reinhard König
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| |
Collapse
|
8
|
May PJC. The Adaptation Model Offers a Challenge for the Predictive Coding Account of Mismatch Negativity. Front Hum Neurosci 2021; 15:721574. [PMID: 34867238 PMCID: PMC8640521 DOI: 10.3389/fnhum.2021.721574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
An unpredictable stimulus elicits a stronger event-related response than a high-probability stimulus. This differential in response magnitude is termed the mismatch negativity (MMN). Over the past decade, it has become increasingly popular to explain the MMN terms of predictive coding, a proposed general principle for the way the brain realizes Bayesian inference when it interprets sensory information. This perspective article is a reminder that the issue of MMN generation is far from settled, and that an alternative model in terms of adaptation continues to lurk in the wings. The adaptation model has been discounted because of the unrealistic and simplistic fashion in which it tends to be set up. Here, simulations of auditory cortex incorporating a modern version of the adaptation model are presented. These show that locally operating short-term synaptic depression accounts both for adaptation due to stimulus repetition and for MMN responses. This happens even in cases where adaptation has been ruled out as an explanation of the MMN (e.g., in the stimulus omission paradigm and the multi-standard control paradigm). Simulation models that would demonstrate the viability of predictive coding in a similarly multifaceted way are currently missing from the literature, and the reason for this is discussed in light of the current results.
Collapse
Affiliation(s)
- Patrick J C May
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
9
|
Renvall H, Seol J, Tuominen R, Sorger B, Riecke L, Salmelin R. Selective auditory attention within naturalistic scenes modulates reactivity to speech sounds. Eur J Neurosci 2021; 54:7626-7641. [PMID: 34697833 PMCID: PMC9298413 DOI: 10.1111/ejn.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/10/2021] [Indexed: 11/27/2022]
Abstract
Rapid recognition and categorization of sounds are essential for humans and animals alike, both for understanding and reacting to our surroundings and for daily communication and social interaction. For humans, perception of speech sounds is of crucial importance. In real life, this task is complicated by the presence of a multitude of meaningful non‐speech sounds. The present behavioural, magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) study was set out to address how attention to speech versus attention to natural non‐speech sounds within complex auditory scenes influences cortical processing. The stimuli were superimpositions of spoken words and environmental sounds, with parametric variation of the speech‐to‐environmental sound intensity ratio. The participants' task was to detect a repetition in either the speech or the environmental sound. We found that specifically when participants attended to speech within the superimposed stimuli, higher speech‐to‐environmental sound ratios resulted in shorter sustained MEG responses and stronger BOLD fMRI signals especially in the left supratemporal auditory cortex and in improved behavioural performance. No such effects of speech‐to‐environmental sound ratio were observed when participants attended to the environmental sound part within the exact same stimuli. These findings suggest stronger saliency of speech compared with other meaningful sounds during processing of natural auditory scenes, likely linked to speech‐specific top‐down and bottom‐up mechanisms activated during speech perception that are needed for tracking speech in real‐life‐like auditory environments.
Collapse
Affiliation(s)
- Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland.,BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Jaeho Seol
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Riku Tuominen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
10
|
Chai Y, Liu TT, Marrett S, Li L, Khojandi A, Handwerker DA, Alink A, Muckli L, Bandettini PA. Topographical and laminar distribution of audiovisual processing within human planum temporale. Prog Neurobiol 2021; 205:102121. [PMID: 34273456 DOI: 10.1016/j.pneurobio.2021.102121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/20/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
The brain is capable of integrating signals from multiple sensory modalities. Such multisensory integration can occur in areas that are commonly considered unisensory, such as planum temporale (PT) representing the auditory association cortex. However, the roles of different afferents (feedforward vs. feedback) to PT in multisensory processing are not well understood. Our study aims to understand that by examining laminar activity patterns in different topographical subfields of human PT under unimodal and multisensory stimuli. To this end, we adopted an advanced mesoscopic (sub-millimeter) fMRI methodology at 7 T by acquiring BOLD (blood-oxygen-level-dependent contrast, which has higher sensitivity) and VAPER (integrated blood volume and perfusion contrast, which has superior laminar specificity) signal concurrently, and performed all analyses in native fMRI space benefiting from an identical acquisition between functional and anatomical images. We found a division of function between visual and auditory processing in PT and distinct feedback mechanisms in different subareas. Specifically, anterior PT was activated more by auditory inputs and received feedback modulation in superficial layers. This feedback depended on task performance and likely arose from top-down influences from higher-order multimodal areas. In contrast, posterior PT was preferentially activated by visual inputs and received visual feedback in both superficial and deep layers, which is likely projected directly from the early visual cortex. Together, these findings provide novel insights into the mechanism of multisensory interaction in human PT at the mesoscopic spatial scale.
Collapse
Affiliation(s)
- Yuhui Chai
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Tina T Liu
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sean Marrett
- Functional MRI Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Linqing Li
- Functional MRI Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Arman Khojandi
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Arjen Alink
- University Medical Centre Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Lars Muckli
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Functional MRI Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Neuronal figure-ground responses in primate primary auditory cortex. Cell Rep 2021; 35:109242. [PMID: 34133935 PMCID: PMC8220257 DOI: 10.1016/j.celrep.2021.109242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Figure-ground segregation, the brain’s ability to group related features into stable perceptual entities, is crucial for auditory perception in noisy environments. The neuronal mechanisms for this process are poorly understood in the auditory system. Here, we report figure-ground modulation of multi-unit activity (MUA) in the primary and non-primary auditory cortex of rhesus macaques. Across both regions, MUA increases upon presentation of auditory figures, which consist of coherent chord sequences. We show increased activity even in the absence of any perceptual decision, suggesting that neural mechanisms for perceptual grouping are, to some extent, independent of behavioral demands. Furthermore, we demonstrate differences in figure encoding between more anterior and more posterior regions; perceptual saliency is represented in anterior cortical fields only. Our results suggest an encoding of auditory figures from the earliest cortical stages by a rate code. Neuronal figure-ground modulation in primary auditory cortex A rate code is used to signal the presence of auditory figures Anteriorly located recording sites encode perceptual saliency Figure-ground modulation is present without perceptual detection
Collapse
|
12
|
Gale DJ, Areshenkoff CN, Honda C, Johnsrude IS, Flanagan JR, Gallivan JP. Motor Planning Modulates Neural Activity Patterns in Early Human Auditory Cortex. Cereb Cortex 2021; 31:2952-2967. [PMID: 33511976 PMCID: PMC8107793 DOI: 10.1093/cercor/bhaa403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
It is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed 2 human functional magnetic resonance imaging studies involving separate delayed movement tasks and focused on premovement neural activity in early auditory cortex, given the area's direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1 and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is encoded in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.
Collapse
Affiliation(s)
- Daniel J Gale
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Claire Honda
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Ingrid S Johnsrude
- Department of Psychology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
- School of Communication Sciences and Disorders, University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
13
|
Ferrario A, Rankin J. Auditory streaming emerges from fast excitation and slow delayed inhibition. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2021; 11:8. [PMID: 33939042 PMCID: PMC8093365 DOI: 10.1186/s13408-021-00106-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/22/2021] [Indexed: 05/29/2023]
Abstract
In the auditory streaming paradigm, alternating sequences of pure tones can be perceived as a single galloping rhythm (integration) or as two sequences with separated low and high tones (segregation). Although studied for decades, the neural mechanisms underlining this perceptual grouping of sound remains a mystery. With the aim of identifying a plausible minimal neural circuit that captures this phenomenon, we propose a firing rate model with two periodically forced neural populations coupled by fast direct excitation and slow delayed inhibition. By analyzing the model in a non-smooth, slow-fast regime we analytically prove the existence of a rich repertoire of dynamical states and of their parameter dependent transitions. We impose plausible parameter restrictions and link all states with perceptual interpretations. Regions of stimulus parameters occupied by states linked with each percept match those found in behavioural experiments. Our model suggests that slow inhibition masks the perception of subsequent tones during segregation (forward masking), whereas fast excitation enables integration for large pitch differences between the two tones.
Collapse
Affiliation(s)
- Andrea Ferrario
- Department of Mathematics, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Exeter, UK.
| | - James Rankin
- Department of Mathematics, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Shi S, Xu AG, Rui YY, Zhang X, Romanski LM, Gothard KM, Roe AW. Infrared neural stimulation with 7T fMRI: A rapid in vivo method for mapping cortical connections of primate amygdala. Neuroimage 2021; 231:117818. [PMID: 33548458 PMCID: PMC9947864 DOI: 10.1016/j.neuroimage.2021.117818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022] Open
Abstract
We have previously shown that INS-fMRI is a rapid method for mapping mesoscale brain networks in the macaque monkey brain. Focal stimulation of single cortical sites led to the activation of connected cortical locations, resulting in a global connectivity map. Here, we have extended this method for mapping brainwide networks following stimulation of single subcortical sites. As a testbed, we focused on the basal nucleus of the amygdala in the macaque monkey. We describe methods to target basal nucleus locations with submillimeter precision, pulse train stimulation methods, and statistical tests for assessing non-random nature of activations. Using these methods, we report that stimulation of precisely targeted loci in the basal nucleus produced sparse and specific activations in the brain. Activations were observed in the insular and sensory association cortices as well as activations in the cingulate cortex, consistent with known anatomical connections. What is new here is that the activations were focal and, in some cases, exhibited shifting topography with millimeter shifts in stimulation site. The precision of the method enables networks mapped from different nearby sites in the basal nucleus to be distinguished. While further investigation is needed to improve the sensitivity of this method, our analyses do support the reproducibility and non-random nature of some of the activations. We suggest that INS-fMRI is a promising method for mapping large-scale cortical and subcortical networks at high spatial resolution.
Collapse
Affiliation(s)
- Sunhang Shi
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Augix Guohua Xu
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yun-Yun Rui
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaotong Zhang
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Lizabeth M Romanski
- Dept of Neuroscience, University of Rochester School of Medicine, Rochester, NY, United States
| | | | - Anna Wang Roe
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Hajizadeh A, Matysiak A, Brechmann A, König R, May PJC. Why do humans have unique auditory event-related fields? Evidence from computational modeling and MEG experiments. Psychophysiology 2021; 58:e13769. [PMID: 33475173 DOI: 10.1111/psyp.13769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 11/28/2022]
Abstract
Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated.
Collapse
Affiliation(s)
- Aida Hajizadeh
- Leibniz Institute for Neurobiology, Research Group Comparative Neuroscience, Magdeburg, Germany
| | - Artur Matysiak
- Leibniz Institute for Neurobiology, Research Group Comparative Neuroscience, Magdeburg, Germany
| | - André Brechmann
- Leibniz Institute for Neurobiology, Combinatorial NeuroImaging Core Facility, Magdeburg, Germany
| | - Reinhard König
- Leibniz Institute for Neurobiology, Research Group Comparative Neuroscience, Magdeburg, Germany
| | - Patrick J C May
- Leibniz Institute for Neurobiology, Research Group Comparative Neuroscience, Magdeburg, Germany.,Department of Psychology, Lancaster University, Lancaster, UK
| |
Collapse
|
16
|
Yao JD, Gimoto J, Constantinople CM, Sanes DH. Parietal Cortex Is Required for the Integration of Acoustic Evidence. Curr Biol 2020; 30:3293-3303.e4. [PMID: 32619478 DOI: 10.1016/j.cub.2020.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 01/31/2023]
Abstract
Sensory-driven decisions are formed by accumulating information over time. Although parietal cortex activity is thought to represent accumulated evidence for sensory-based decisions, recent perturbation studies in rodents and non-human primates have challenged the hypothesis that these representations actually influence behavior. Here, we asked whether the parietal cortex integrates acoustic features from auditory cortical inputs during a perceptual decision-making task. If so, we predicted that selective inactivation of this projection should impair subjects' ability to accumulate sensory evidence. We trained gerbils to perform an auditory discrimination task and obtained measures of integration time as a readout of evidence accumulation capability. Minimum integration time was calculated behaviorally as the shortest stimulus duration for which subjects could discriminate the acoustic signals. Direct pharmacological inactivation of parietal cortex increased minimum integration times, suggesting its role in the behavior. To determine the specific impact of sensory evidence, we chemogenetically inactivated the excitatory projections from auditory cortex to parietal cortex and found this was sufficient to increase minimum behavioral integration times. Our signal-detection-theory-based model accurately replicated behavioral outcomes and indicated that the deficits in task performance were plausibly explained by elevated sensory noise. Together, our findings provide causal evidence that parietal cortex plays a role in the network that integrates auditory features for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Justin Gimoto
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christine M Constantinople
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychology, New York University, New York, NY 10003, USA; Department of Biology, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
17
|
Stankova EP, Kruchinina OV, Shepovalnikov AN, Galperina EI. Evolution of the Central Mechanisms
of Oral Speech. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Billig AJ, Herrmann B, Rhone AE, Gander PE, Nourski KV, Snoad BF, Kovach CK, Kawasaki H, Howard MA, Johnsrude IS. A Sound-Sensitive Source of Alpha Oscillations in Human Non-Primary Auditory Cortex. J Neurosci 2019; 39:8679-8689. [PMID: 31533976 PMCID: PMC6820204 DOI: 10.1523/jneurosci.0696-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/09/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl's gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however, their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (4 female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.SIGNIFICANCE STATEMENT To understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl's gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.
Collapse
Affiliation(s)
- Alexander J Billig
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada,
| | - Björn Herrmann
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | | | | | | | | | | | | | - Matthew A Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa 52242, and
| | - Ingrid S Johnsrude
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- School of Communication Sciences and Disorders, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
19
|
Abstract
Humans and other animals use spatial hearing to rapidly localize events in the environment. However, neural encoding of sound location is a complex process involving the computation and integration of multiple spatial cues that are not represented directly in the sensory organ (the cochlea). Our understanding of these mechanisms has increased enormously in the past few years. Current research is focused on the contribution of animal models for understanding human spatial audition, the effects of behavioural demands on neural sound location encoding, the emergence of a cue-independent location representation in the auditory cortex, and the relationship between single-source and concurrent location encoding in complex auditory scenes. Furthermore, computational modelling seeks to unravel how neural representations of sound source locations are derived from the complex binaural waveforms of real-life sounds. In this article, we review and integrate the latest insights from neurophysiological, neuroimaging and computational modelling studies of mammalian spatial hearing. We propose that the cortical representation of sound location emerges from recurrent processing taking place in a dynamic, adaptive network of early (primary) and higher-order (posterior-dorsal and dorsolateral prefrontal) auditory regions. This cortical network accommodates changing behavioural requirements and is especially relevant for processing the location of real-life, complex sounds and complex auditory scenes.
Collapse
|
20
|
Brechmann A, Angenstein N. The impact of task difficulty on the lateralization of processing in the human auditory cortex. Hum Brain Mapp 2019; 40:5341-5353. [PMID: 31460688 PMCID: PMC6865217 DOI: 10.1002/hbm.24776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Perception of complex auditory stimuli like speech requires the simultaneous processing of different fundamental acoustic parameters. The contribution of left and right auditory cortex (AC) in the processing of these parameters differs. In addition, activity within the AC can vary positively or negatively with task performance depending on the type of task. This might affect the allocation of processing to the left and right AC. Here we studied with functional magnetic resonance imaging the impact of task difficulty on the degree of involvement of the left and right AC in two tasks that have previously been shown to differ in hemispheric involvement: categorization and sequential comparison of the direction of frequency modulations (FM). Task difficulty was manipulated by changing the speed of modulation and by that the frequency range covered by the FM. To study the impact of task‐difficulty despite covarying the stimulus parameters, we utilized the contralateral noise procedure that allows comparing AC activation unconfounded by bottom‐up driven activity. The easiest conditions confirmed the known right AC involvement during the categorization task and the left AC involvement during the comparison task. The involvement of the right AC increased with increasing task difficulty for both tasks presumably due to the common task component of categorizing FM direction. The involvement of left AC varied with task difficulty depending on the task. Thus, task difficulty has a strong impact on lateralized processing in AC. This connection must be taken into account when interpreting future results on lateralized processing in the AC.
Collapse
Affiliation(s)
- André Brechmann
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nicole Angenstein
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
21
|
Hajizadeh A, Matysiak A, May PJC, König R. Explaining event-related fields by a mechanistic model encapsulating the anatomical structure of auditory cortex. BIOLOGICAL CYBERNETICS 2019; 113:321-345. [PMID: 30820663 PMCID: PMC6510841 DOI: 10.1007/s00422-019-00795-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Event-related fields of the magnetoencephalogram are triggered by sensory stimuli and appear as a series of waves extending hundreds of milliseconds after stimulus onset. They reflect the processing of the stimulus in cortex and have a highly subject-specific morphology. However, we still have an incomplete picture of how event-related fields are generated, what the various waves signify, and why they are so subject-specific. Here, we focus on this problem through the lens of a computational model which describes auditory cortex in terms of interconnected cortical columns as part of hierarchically placed fields of the core, belt, and parabelt areas. We develop an analytical approach arriving at solutions to the system dynamics in terms of normal modes: damped harmonic oscillators emerging out of the coupled excitation and inhibition in the system. Each normal mode is a global feature which depends on the anatomical structure of the entire auditory cortex. Further, normal modes are fundamental dynamical building blocks, in that the activity of each cortical column represents a combination of all normal modes. This approach allows us to replicate a typical auditory event-related response as a weighted sum of the single-column activities. Our work offers an alternative to the view that the event-related field arises out of spatially discrete, local generators. Rather, there is only a single generator process distributed over the entire network of the auditory cortex. We present predictions for testing to what degree subject-specificity is due to cross-subject variations in dynamical parameters rather than in the cortical surface morphology.
Collapse
Affiliation(s)
- Aida Hajizadeh
- Special Lab Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Artur Matysiak
- Special Lab Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Patrick J. C. May
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF UK
- Special Lab Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Reinhard König
- Special Lab Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| |
Collapse
|
22
|
Elgueda D, Duque D, Radtke-Schuller S, Yin P, David SV, Shamma SA, Fritz JB. State-dependent encoding of sound and behavioral meaning in a tertiary region of the ferret auditory cortex. Nat Neurosci 2019; 22:447-459. [PMID: 30692690 PMCID: PMC6387638 DOI: 10.1038/s41593-018-0317-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
Abstract
In higher sensory cortices, there is a gradual transformation from sensation to perception and action. In the auditory system, this transformation is revealed by responses in the rostral ventral posterior auditory field (VPr), a tertiary area in the ferret auditory cortex, which shows long-term learning in trained compared to naïve animals, arising from selectively enhanced responses to behaviorally relevant target stimuli. This enhanced representation is further amplified during active performance of spectral or temporal auditory discrimination tasks. VPr also shows sustained short-term memory activity after target stimulus offset, correlated with task response timing and action. These task-related changes in auditory filter properties enable VPr neurons to quickly and nimbly switch between different responses to the same acoustic stimuli, reflecting either spectrotemporal properties, timing, or behavioral meaning of the sound. Furthermore, they demonstrate an interaction between the dynamics of short-term attention and long-term learning, as incoming sound is selectively attended, recognized, and translated into action.
Collapse
Affiliation(s)
- Diego Elgueda
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Daniel Duque
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Institut d'Investigacions Biomèdiques August Pi i Sunyer , Barcelona, Spain
| | - Susanne Radtke-Schuller
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Pingbo Yin
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Stephen V David
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Shihab A Shamma
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
- Laboratoire des Systèmes Perceptifs, École Normale Supérieure, Paris, France
| | - Jonathan B Fritz
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
| |
Collapse
|
23
|
Schneider F, Dheerendra P, Balezeau F, Ortiz-Rios M, Kikuchi Y, Petkov CI, Thiele A, Griffiths TD. Auditory figure-ground analysis in rostral belt and parabelt of the macaque monkey. Sci Rep 2018; 8:17948. [PMID: 30560879 PMCID: PMC6298974 DOI: 10.1038/s41598-018-36903-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023] Open
Abstract
Segregating the key features of the natural world within crowded visual or sound scenes is a critical aspect of everyday perception. The neurobiological bases for auditory figure-ground segregation are poorly understood. We demonstrate that macaques perceive an acoustic figure-ground stimulus with comparable performance to humans using a neural system that involves high-level auditory cortex, localised to the rostral belt and parabelt.
Collapse
Affiliation(s)
- Felix Schneider
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Pradeep Dheerendra
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Fabien Balezeau
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Michael Ortiz-Rios
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Yukiko Kikuchi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Christopher I Petkov
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Timothy D Griffiths
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
24
|
Venezia JH, Thurman SM, Richards VM, Hickok G. Hierarchy of speech-driven spectrotemporal receptive fields in human auditory cortex. Neuroimage 2018; 186:647-666. [PMID: 30500424 DOI: 10.1016/j.neuroimage.2018.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Existing data indicate that cortical speech processing is hierarchically organized. Numerous studies have shown that early auditory areas encode fine acoustic details while later areas encode abstracted speech patterns. However, it remains unclear precisely what speech information is encoded across these hierarchical levels. Estimation of speech-driven spectrotemporal receptive fields (STRFs) provides a means to explore cortical speech processing in terms of acoustic or linguistic information associated with characteristic spectrotemporal patterns. Here, we estimate STRFs from cortical responses to continuous speech in fMRI. Using a novel approach based on filtering randomly-selected spectrotemporal modulations (STMs) from aurally-presented sentences, STRFs were estimated for a group of listeners and categorized using a data-driven clustering algorithm. 'Behavioral STRFs' highlighting STMs crucial for speech recognition were derived from intelligibility judgments. Clustering revealed that STRFs in the supratemporal plane represented a broad range of STMs, while STRFs in the lateral temporal lobe represented circumscribed STM patterns important to intelligibility. Detailed analysis recovered a bilateral organization with posterior-lateral regions preferentially processing STMs associated with phonological information and anterior-lateral regions preferentially processing STMs associated with word- and phrase-level information. Regions in lateral Heschl's gyrus preferentially processed STMs associated with vocalic information (pitch).
Collapse
Affiliation(s)
- Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, USA; Dept. of Otolaryngology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | | | - Virginia M Richards
- Depts. of Cognitive Sciences and Language Science, University of California, Irvine, Irvine, CA, USA
| | - Gregory Hickok
- Depts. of Cognitive Sciences and Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
25
|
Pálfi E, Zalányi L, Ashaber M, Palmer C, Kántor O, Roe AW, Friedman RM, Négyessy L. Connectivity of neuronal populations within and between areas of primate somatosensory cortex. Brain Struct Funct 2018; 223:2949-2971. [PMID: 29725759 DOI: 10.1007/s00429-018-1671-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/21/2018] [Indexed: 11/25/2022]
Abstract
Functions of the cerebral cortex emerge via interactions of horizontally distributed neuronal populations within and across areas. However, the connectional underpinning of these interactions is not well understood. The present study explores the circuitry of column-size cortical domains within the hierarchically organized somatosensory cortical areas 3b and 1 using tract tracing and optical intrinsic signal imaging (OIS). The anatomical findings reveal that feedforward connections exhibit high topographic specificity, while intrinsic and feedback connections have a more widespread distribution. Both intrinsic and inter-areal connections are topographically oriented across the finger representations. Compared to area 3b, the low clustering of connections and small cortical magnification factor supports that the circuitry of area 1 scaffolds a sparse functional representation that integrates peripheral information from a large area that is fed back to area 3b. Fast information exchange between areas is ensured by thick axons forming a topographically organized, reciprocal pathway. Moreover, the highest density of projecting neurons and groups of axon arborization patches corresponds well with the size and locations of the functional population response reported by OIS. The findings establish connectional motifs at the mesoscopic level that underpin the functional organization of the cerebral cortex.
Collapse
Affiliation(s)
- E Pálfi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - L Zalányi
- Complex Systems and Computational Neuroscience Group, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
| | - M Ashaber
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, Budapest, 1078, Hungary
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - C Palmer
- Department of Mathematical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - O Kántor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, 79104, Freiburg, Germany
| | - A W Roe
- Division of Neuroscience, Oregon Health and Science University, Portland, OR, 97006, USA
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, 310029, China
| | - R M Friedman
- Division of Neuroscience, Oregon Health and Science University, Portland, OR, 97006, USA
| | - L Négyessy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary.
- Complex Systems and Computational Neuroscience Group, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary.
| |
Collapse
|
26
|
Wilson SM, Bautista A, McCarron A. Convergence of spoken and written language processing in the superior temporal sulcus. Neuroimage 2018; 171:62-74. [PMID: 29277646 PMCID: PMC5857434 DOI: 10.1016/j.neuroimage.2017.12.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Spoken and written language processing streams converge in the superior temporal sulcus (STS), but the functional and anatomical nature of this convergence is not clear. We used functional MRI to quantify neural responses to spoken and written language, along with unintelligible stimuli in each modality, and employed several strategies to segregate activations on the dorsal and ventral banks of the STS. We found that intelligible and unintelligible inputs in both modalities activated the dorsal bank of the STS. The posterior dorsal bank was able to discriminate between modalities based on distributed patterns of activity, pointing to a role in encoding of phonological and orthographic word forms. The anterior dorsal bank was agnostic to input modality, suggesting that this region represents abstract lexical nodes. In the ventral bank of the STS, responses to unintelligible inputs in both modalities were attenuated, while intelligible inputs continued to drive activation, indicative of higher level semantic and syntactic processing. Our results suggest that the processing of spoken and written language converges on the posterior dorsal bank of the STS, which is the first of a heterogeneous set of language regions within the STS, with distinct functions spanning a broad range of linguistic processes.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexa Bautista
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Angelica McCarron
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Koelsch S, Skouras S, Lohmann G. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. PLoS One 2018; 13:e0190057. [PMID: 29385142 PMCID: PMC5791961 DOI: 10.1371/journal.pone.0190057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 12/07/2017] [Indexed: 01/12/2023] Open
Abstract
Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions.
Collapse
Affiliation(s)
- Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- * E-mail:
| | - Stavros Skouras
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Gabriele Lohmann
- Department of Biomedical Magnetic Resonance, University Clinic Tübingen, Tübingen, Germany
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
28
|
Häkkinen S, Rinne T. Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex. Brain Struct Funct 2018; 223:2113-2127. [DOI: 10.1007/s00429-018-1612-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/14/2018] [Indexed: 12/29/2022]
|
29
|
Scott BH, Leccese PA, Saleem KS, Kikuchi Y, Mullarkey MP, Fukushima M, Mishkin M, Saunders RC. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey. Cereb Cortex 2018; 27:809-840. [PMID: 26620266 DOI: 10.1093/cercor/bhv277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Paul A Leccese
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Kadharbatcha S Saleem
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Yukiko Kikuchi
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA.,Present address: Institute of Neuroscience, Newcastle University Medical School, Newcastle Upon Tyne NE2 4HH, UK
| | - Matthew P Mullarkey
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Makoto Fukushima
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. eNeuro 2017; 4:eN-NWR-0344-17. [PMID: 29379868 PMCID: PMC5779118 DOI: 10.1523/eneuro.0344-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
The parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip). Analysis of corticocortical connections revealed that both V6Ad and MIP receive inputs from visual area V6; the ventral subdivision of V6A (V6Av); medial (PGm, 31), superior (PEc), and inferior (PFG/PF) parietal association areas; and intraparietal areas AIP and VIP. They also receive long-range projections from the superior temporal sulcus (MST, TPO), cingulate area 23, and the dorsocaudal (area F2) and ventral (areas F4/F5) premotor areas. In comparison with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex (PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with V6A.
Collapse
|
31
|
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex. J Neurosci 2017; 37:10139-10153. [PMID: 28924008 DOI: 10.1523/jneurosci.3800-16.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/21/2017] [Indexed: 01/02/2023] Open
Abstract
Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses.SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed "local" (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers.
Collapse
|
32
|
Fan CSD, Zhu X, Dosch HG, von Stutterheim C, Rupp A. Language related differences of the sustained response evoked by natural speech sounds. PLoS One 2017; 12:e0180441. [PMID: 28727776 PMCID: PMC5519032 DOI: 10.1371/journal.pone.0180441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
In tonal languages, such as Mandarin Chinese, the pitch contour of vowels discriminates lexical meaning, which is not the case in non-tonal languages such as German. Recent data provide evidence that pitch processing is influenced by language experience. However, there are still many open questions concerning the representation of such phonological and language-related differences at the level of the auditory cortex (AC). Using magnetoencephalography (MEG), we recorded transient and sustained auditory evoked fields (AEF) in native Chinese and German speakers to investigate language related phonological and semantic aspects in the processing of acoustic stimuli. AEF were elicited by spoken meaningful and meaningless syllables, by vowels, and by a French horn tone. Speech sounds were recorded from a native speaker and showed frequency-modulations according to the pitch-contours of Mandarin. The sustained field (SF) evoked by natural speech signals was significantly larger for Chinese than for German listeners. In contrast, the SF elicited by a horn tone was not significantly different between groups. Furthermore, the SF of Chinese subjects was larger when evoked by meaningful syllables compared to meaningless ones, but there was no significant difference regarding whether vowels were part of the Chinese phonological system or not. Moreover, the N100m gave subtle but clear evidence that for Chinese listeners other factors than purely physical properties play a role in processing meaningful signals. These findings show that the N100 and the SF generated in Heschl’s gyrus are influenced by language experience, which suggests that AC activity related to specific pitch contours of vowels is influenced in a top-down fashion by higher, language related areas. Such interactions are in line with anatomical findings and neuroimaging data, as well as with the dual-stream model of language of Hickok and Poeppel that highlights the close and reciprocal interaction between superior temporal gyrus and sulcus.
Collapse
Affiliation(s)
- Christina Siu-Dschu Fan
- Institut für Theoretische Physik, Heidelberg, Germany
- Storz Medical AG, Tägerwilen, Switzerland
| | - Xingyu Zhu
- Department for General and Applied Linguistics, University of Heidelberg, Heidelberg, Germany
| | | | | | - André Rupp
- Section of Biomagnetism, Department of Neurology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
33
|
Rockland KS. What do we know about laminar connectivity? Neuroimage 2017; 197:772-784. [PMID: 28729159 DOI: 10.1016/j.neuroimage.2017.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
In this brief review, I attempt an overview of the main components of anatomical laminar-level connectivity. These are: extrinsic outputs, excitatory and inhibitory intrinsic connectivity, and intrinsic inputs. Supporting data are biased from the visual system of nonhuman primates (NHPs), but I have drawn as much as possible from a broader span in order to treat the important issue of area-specific variability. In a second part, I briefly discuss laminar connectivity in the context of network organization (feedforward/feedback cortical connections, and the major types of corticothalamic connections). I also point out anatomical issues in need of clarification, including more systematic, whole brain coverage of tracer injections; more data on anterogradely labeled terminations; more complete, area-specific quantitative data about projection neurons, and quantitative data on terminal density and convergence. Postsynaptic targets are largely unknown, but their identification is essential for understanding the finer analysis and principles of laminar patterns. Laminar resolution MRI offers a promising new tool for exploring laminar connectivity: it is potentially fast and macro-scale, and allows for repeated investigation under different stimulus conditions. Conversely, anatomical resolution, although detailed beyond the current level of MRI visualization, offers a rich trove for experimental design and interpretation of fMRI activation patterns.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy&Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| |
Collapse
|
34
|
Poirier C, Baumann S, Dheerendra P, Joly O, Hunter D, Balezeau F, Sun L, Rees A, Petkov CI, Thiele A, Griffiths TD. Auditory motion-specific mechanisms in the primate brain. PLoS Biol 2017; 15:e2001379. [PMID: 28472038 PMCID: PMC5417421 DOI: 10.1371/journal.pbio.2001379] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.
Collapse
Affiliation(s)
- Colline Poirier
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- * E-mail: (CP); (TDG)
| | - Simon Baumann
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Pradeep Dheerendra
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Olivier Joly
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - David Hunter
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Fabien Balezeau
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Li Sun
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Adrian Rees
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Christopher I. Petkov
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Timothy D. Griffiths
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- * E-mail: (CP); (TDG)
| |
Collapse
|
35
|
Downer JD, Niwa M, Sutter ML. Hierarchical differences in population coding within auditory cortex. J Neurophysiol 2017; 118:717-731. [PMID: 28446588 PMCID: PMC5539454 DOI: 10.1152/jn.00899.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023] Open
Abstract
Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation (rnoise) between simultaneously recorded neurons and found that whereas engagement decreased average rnoise in A1, engagement increased average rnoise in ML. This finding surprised us, because attentive states are commonly reported to decrease average rnoise We analyzed the effect of rnoise on AM coding in both A1 and ML and found that whereas engagement-related shifts in rnoise in A1 enhance AM coding, rnoise shifts in ML have little effect. These results imply that the effect of rnoise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing rnoise Therefore, the hierarchical emergence of rnoise-robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity.NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their population coding strategies. In this study, we compared population coding between primary and secondary auditory cortex. Our findings demonstrate striking differences between the two areas and highlight the importance of considering the diversity of neural structures as we develop models of population coding.
Collapse
Affiliation(s)
- Joshua D Downer
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Mamiko Niwa
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Mitchell L Sutter
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
36
|
Behroozmand R, Oya H, Nourski KV, Kawasaki H, Larson CR, Brugge JF, Howard MA, Greenlee JDW. Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus. J Neurosci 2016; 36:2302-15. [PMID: 26888939 PMCID: PMC4756159 DOI: 10.1523/jneurosci.3305-14.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/06/2023] Open
Abstract
The present study investigated how pitch frequency, a perceptually relevant aspect of periodicity in natural human vocalizations, is encoded in Heschl's gyrus (HG), and how this information may be used to influence vocal pitch motor control. We recorded local field potentials from multicontact depth electrodes implanted in HG of 14 neurosurgical epilepsy patients as they vocalized vowel sounds and received brief (200 ms) pitch perturbations at 100 Cents in their auditory feedback. Event-related band power responses to vocalizations showed sustained frequency following responses that tracked voice fundamental frequency (F0) and were significantly enhanced in posteromedial HG during speaking compared with when subjects listened to the playback of their own voice. In addition to frequency following responses, a transient response component within the high gamma frequency band (75-150 Hz) was identified. When this response followed the onset of vocalization, the magnitude of the response was the same for the speaking and playback conditions. In contrast, when this response followed a pitch shift, its magnitude was significantly enhanced during speaking compared with playback. We also observed that, in anterolateral HG, the power of high gamma responses to pitch shifts correlated with the magnitude of compensatory vocal responses. These findings demonstrate a functional parcellation of HG with neural activity that encodes pitch in natural human voice, distinguishes between self-generated and passively heard vocalizations, detects discrepancies between the intended and heard vocalization, and contains information about the resulting behavioral vocal compensations in response to auditory feedback pitch perturbations. SIGNIFICANCE STATEMENT The present study is a significant contribution to our understanding of sensor-motor mechanisms of vocal production and motor control. The findings demonstrate distinct functional parcellation of core and noncore areas within human auditory cortex on Heschl's gyrus that process natural human vocalizations and pitch perturbations in the auditory feedback. In addition, our data provide evidence for distinct roles of high gamma neural oscillations and frequency following responses for processing periodicity in human vocalizations during vocal production and motor control.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, Speech Neuroscience Laboratory, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina 29208,
| | - Hiroyuki Oya
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Kirill V Nourski
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Hiroto Kawasaki
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Charles R Larson
- Speech Physiology Laboratory, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, and
| | - John F Brugge
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, Department of Psychology, University of Wisconsin, Madison, Wisconsin 53705
| | - Matthew A Howard
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Jeremy D W Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
37
|
Uppal N, Foxe JJ, Butler JS, Acluche F, Molholm S. The neural dynamics of somatosensory processing and adaptation across childhood: a high-density electrical mapping study. J Neurophysiol 2016; 115:1605-19. [PMID: 26763781 DOI: 10.1152/jn.01059.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 11/22/2022] Open
Abstract
Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6-18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging from ∼7 to ∼1 stimulus per second). Somatosensory evoked potentials (SEPs) revealed three major phases of activation within the first 200 ms, with scalp topographies suggestive of neural generators in contralateral somatosensory cortex. Although overall SEPs were highly similar for younger, middle, and older age groups (6.1-9.8, 10.0-12.9, and 13.0-17.8 yr old), there were significant age-related amplitude differences in initial and later phases of the SEP. In contrast, robust adaptation effects for fast vs. slow presentation rates were observed that did not differ as a function of age. A greater amplitude response in the later portion of the SEP was observed for the youngest group and may be related to developmental changes in responsivity to somatosensory stimuli. These data suggest the protracted development of the somatosensory system over childhood, whereas adaptation, as assayed in this study, is largely in place by ∼7 yr of age.
Collapse
Affiliation(s)
- Neha Uppal
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Leadership Education in Neurodevelopmental Disabilities Program, Albert Einstein College of Medicine, Bronx, New York
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York; The Ernest J. Del Monte Neuromedicine Institute, Department of Neuroscience, University of Rochester Medical Center, Rochester, New York; and
| | - John S Butler
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
| | - Frantzy Acluche
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
38
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Abstract
Despite the attention attracted by “connectomics”, one can lose sight of the very real questions concerning “What are connections?” In the neuroimaging community, “structural” connectivity is ground truth and underlying constraint on “functional” or “effective” connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as “pairwise”, point x projecting to point y (or: to points y and z), or more recently, in graph theoretical terms, as “nodes” or regions and the interconnecting “edges”. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA ; Cold Spring Harbor Laboratory, Cold Spring Harbor NY, USA
| |
Collapse
|
40
|
Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey. J Neurosci 2015; 35:4140-50. [PMID: 25762661 DOI: 10.1523/jneurosci.3556-14.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas.
Collapse
|
41
|
Da Costa S, Bourquin NMP, Knebel JF, Saenz M, van der Zwaag W, Clarke S. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI. PLoS One 2015; 10:e0124072. [PMID: 25938430 PMCID: PMC4418571 DOI: 10.1371/journal.pone.0124072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/25/2015] [Indexed: 11/26/2022] Open
Abstract
Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl’s gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds.
Collapse
Affiliation(s)
- Sandra Da Costa
- Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Nathalie M.-P. Bourquin
- Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| | - Jean-François Knebel
- National Center of Competence in Research, SYNAPSY—The Synaptic Bases of Mental Diseases, Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| | - Melissa Saenz
- Laboratoire de Recherche en Neuroimagerie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Centre d’Imagerie BioMédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Abstract
The auditory cortex is a network of areas in the part of the brain that receives inputs from the subcortical auditory pathways in the brainstem and thalamus. Through an elaborate network of intrinsic and extrinsic connections, the auditory cortex is thought to bring about the conscious perception of sound and provide a basis for the comprehension and production of meaningful utterances. In this chapter, the organization of auditory cortex is described with an emphasis on its anatomic features and the flow of information within the network. These features are then used to introduce key neurophysiologic concepts that are being intensively studied in humans and animal models. The discussion is presented in the context of our working model of the primate auditory cortex and extensions to humans. The material is presented in the context of six underlying principles, which reflect distinct, but related, aspects of anatomic and physiologic organization: (1) the division of auditory cortex into regions; (2) the subdivision of regions into areas; (3) tonotopic organization of areas; (4) thalamocortical connections; (5) serial and parallel organization of connections; and (6) topographic relationships between auditory and auditory-related areas. Although the functional roles of the various components of this network remain poorly defined, a more complete understanding is emerging from ongoing studies that link auditory behavior to its anatomic and physiologic substrates.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine and Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
43
|
Nourski KV, Steinschneider M, McMurray B, Kovach CK, Oya H, Kawasaki H, Howard MA. Functional organization of human auditory cortex: investigation of response latencies through direct recordings. Neuroimage 2014; 101:598-609. [PMID: 25019680 DOI: 10.1016/j.neuroimage.2014.07.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 12/28/2022] Open
Abstract
The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Mitchell Steinschneider
- Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bob McMurray
- Department of Psychology, Department of Communication Sciences and Disorders, Department of Linguistics, The University of Iowa, Iowa City, IA, 52242 USA
| | | | - Hiroyuki Oya
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|