1
|
Ohba A, Yamaguchi H. The Art of Chilling Out: How Neurons Regulate Torpor. Bioessays 2025; 47:e202400190. [PMID: 39600072 DOI: 10.1002/bies.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Endothermic animals expend significant energy to maintain high body temperatures, which offers adaptability to varying environmental conditions. However, this high metabolic rate requires increased food intake. In conditions of low environmental temperature and scarce food resources, some endothermic animals enter a hypometabolic state known as torpor to conserve energy. Torpor involves a marked reduction in body temperature, heart rate, respiratory rate, and locomotor activity, enabling energy conservation. Despite their biological significance and potential medical applications, the neuronal mechanisms regulating torpor still need to be fully understood. Recent studies have focused on fasting-induced daily torpor in mice due to their suitability for advanced neuroscientific techniques. In this review, we highlight recent advances that extend our understanding of neuronal mechanisms regulating torpor. We also discuss unresolved issues in this research field and future directions.
Collapse
Affiliation(s)
- Akinobu Ohba
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yamaguchi
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
2
|
Liang C, Yuan Z, Yang S, Zhu Y, Chen Z, Can D, Lei A, Li H, Leng L, Zhang J. Mannose Promotes β-Amyloid Pathology by Regulating BACE1 Glycosylation in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409105. [PMID: 39807036 DOI: 10.1002/advs.202409105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression. Chronic mannose overload increases β-amyloid (Aβ) burdens and exacerbates cognitive impairments, which are reversed by a mannose-free diet or mannose transporter antagonists. Mechanistically, single-cell RNA sequencing and metabolomics suggested that mannose-mediated N-glycosylation of BACE1 and Nicastrin enhances their protein stability, promoting Aβ production. Additionally, reduced mannose intake decreased BACE1 and Nicastrin stability, ultimately lowering Aβ production and mitigating AD pathology. this results highlight that high-dose mannose consumption may exacerbate AD pathogenesis. Restricting dietary mannose may have therapeutic benefits.
Collapse
Affiliation(s)
- Chensi Liang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Shangchen Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Yufei Zhu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Aiyu Lei
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
- Department of Pediatrics, Xiamen Maternity and Child Health Hospital affiliated to Xiamen University, Zhenhai Road, Xiamen, Fujian, 361003, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Zhongshan East Road, Shijiazhuang, Hebei, 050017, P. R. China
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Zhongshan East Road, Shijiazhuang, Hebei, 050017, P. R. China
- Institute of Neuroscience, Fujian Medical University, Xueyuan Road, Fuzhou, Fujian, 350122, P. R. China
| |
Collapse
|
3
|
Manchel A, Gee M, Vadigepalli R. From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling. iScience 2024; 27:111322. [PMID: 39628578 PMCID: PMC11612781 DOI: 10.1016/j.isci.2024.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As single-cell omics data sampling and acquisition methods have accumulated at an unprecedented rate, various data analysis pipelines have been developed for the inference of cell types, cell states and their distribution, state transitions, state trajectories, and state interactions. This presents a new opportunity in which single-cell omics data can be utilized to generate high-resolution, high-fidelity computational models. In this review, we discuss how single-cell omics data can be used to build computational models to simulate biological systems at various scales. We propose that single-cell data can be integrated with physiological information to generate organ-specific models, which can then be assembled to generate multi-organ systems pathophysiological models. Finally, we discuss how generic multi-organ models can be brought to the patient-specific level thus permitting their use in the clinical setting.
Collapse
Affiliation(s)
- Alexandra Manchel
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michelle Gee
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Hornung E, Robbins S, Srivastava A, Achanta S, Chen J, Cheng ZJ, Schwaber J, Vadigepalli R. Neuromodulatory co-expression in cardiac vagal motor neurons of the dorsal motor nucleus of the vagus. iScience 2024; 27:110549. [PMID: 39171288 PMCID: PMC11338141 DOI: 10.1016/j.isci.2024.110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Vagal innervation is well known to be crucial to the maintenance of cardiac health, and to protect and recover the heart from injury. Only recently has this role been shown to depend on the activity of the underappreciated dorsal motor nucleus of the vagus (DMV). By combining neural tracing, transcriptomics, and anatomical mapping in male and female Sprague-Dawley rats, we characterize cardiac-specific neuronal phenotypes in the DMV. We find that the DMV cardiac-projecting neurons differentially express pituitary adenylate cyclase-activating polypeptide (PACAP), cocaine- and amphetamine-regulated transcript (CART), and synucleins, as well as evidence that they participate in neuromodulatory co-expression involving catecholamines. The significance of these findings is enhanced by previous knowledge of the role of PACAP at the heart and of the other neuromodulators in peripheral vagal targets.
Collapse
Affiliation(s)
- Eden Hornung
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ankita Srivastava
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sirisha Achanta
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL 32816, USA
| | - James Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Yamaguchi Y. Arginine vasopressin: Critical regulator of circadian homeostasis. Peptides 2024; 177:171229. [PMID: 38663583 DOI: 10.1016/j.peptides.2024.171229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan.
| |
Collapse
|
7
|
Bonnefont X. Cell Signaling in the Circadian Pacemaker: New Insights from in vivo Imaging. Neuroendocrinology 2024:1-8. [PMID: 38754404 DOI: 10.1159/000539344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND "One for all, and all for one," the famous rallying cry of the Three Musketeers, in Alexandre Dumas's popular novel, certainly applies to the 20,000 cells composing the suprachiasmatic nuclei (SCN). These cells work together to form the central clock that coordinates body rhythms in tune with the day-night cycle. Like virtually every body cell, individual SCN cells exhibit autonomous circadian oscillations, but this rhythmicity only reaches a high level of precision and robustness when the cells are coupled with their neighbors. Therefore, understanding the functional network organization of SCN cells beyond their core rhythmicity is an important issue in circadian biology. SUMMARY The present review summarizes the main results from our recent study demonstrating the feasibility of recording SCN cells in freely moving mice and the significance of variations in intracellular calcium over several timescales. KEY MESSAGE We discuss how in vivo imaging at the cell level will be pivotal to interrogate the mammalian master clock, in an integrated context that preserves the SCN network organization, with intact inputs and outputs.
Collapse
Affiliation(s)
- Xavier Bonnefont
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
8
|
Tsuno Y, Mieda M. Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system. Front Neural Circuits 2024; 18:1385908. [PMID: 38590628 PMCID: PMC11000122 DOI: 10.3389/fncir.2024.1385908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.
Collapse
Affiliation(s)
- Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | |
Collapse
|
9
|
Riedel CS, Georg B, Hannibal J. Phenotyping of light-activated neurons in the mouse SCN based on the expression of FOS and EGR1. Front Physiol 2024; 14:1321007. [PMID: 38317846 PMCID: PMC10839010 DOI: 10.3389/fphys.2023.1321007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Light-sensitive neurons are located in the ventral and central core of the suprachiasmatic nucleus (SCN), whereas stably oscillating clock neurons are found mainly in the dorsal shell. Signals between the SCN core and shell are believed to play an important role in light entrainment. Core neurons express vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), and Neuroglobin (Ngb), whereas the shell neurons express vasopressin (AVP), prokineticin 2, and the VIP type 2 (VPAC2) receptor. In rodents, light has a phase-shifting capacity at night, which induces rapid and transient expression of the EGR1 and FOS in the SCN. Methods: The present study used immunohistochemical staining of FOS, EGR1, and phenotypical markers of SCN neurons (VIP, AVP, Ngb) to identify subtypes/populations of light-responsive neurons at early night. Results: Double immunohistochemistry and cell counting were used to evaluate the number of SCN neurons expressing FOS and EGR1 in the SCN. The number of neurons expressing either EGR1 or FOS was higher than the total number of neurons co-storing EGR1 and FOS. Of the total number of light-responsive cells, 42% expressed only EGR1, 43% expressed only FOS, and 15% expressed both EGR1 and FOS. Light-responsive VIP neurons represented only 31% of all VIP neurons, and EGR1 represents the largest group of light-responsive VIP neurons (18%). VIP neurons expressing only FOS represented 1% of the total light-responsive VIP neurons. 81% of the Ngb neurons in the mouse SCN were light-responsive, and of these neurons expressing only EGR1 after light stimulation represented 44%, whereas 24% expressed FOS. Although most light-responsive neurons are found in the core of the SCN, 29% of the AVP neurons in the shell were light-responsive, of which 8% expressed EGR1, 10% expressed FOS, and 11% co-expressed both EGR1 and FOS after light stimulation. Discussion: Our analysis revealed cell-specific differences in light responsiveness between different peptidergic and Ngb-expressing neurons in different compartments of the mouse SCN, indicating that light activates diverse neuronal networks in the SCN, some of which participate in photoentrainment.
Collapse
Affiliation(s)
| | | | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Onodera K, Tsuno Y, Hiraoka Y, Tanaka K, Maejima T, Mieda M. In vivo recording of the circadian calcium rhythm in Prokineticin 2 neurons of the suprachiasmatic nucleus. Sci Rep 2023; 13:16974. [PMID: 37813987 PMCID: PMC10562406 DOI: 10.1038/s41598-023-44282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Prokineticin 2 (Prok2) is a small protein expressed in a subpopulation of neurons in the suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals. Prok2 has been implicated as a candidate output molecule from the SCN to control multiple circadian rhythms. Genetic manipulation specific to Prok2-producing neurons would be a powerful approach to understanding their function. Here, we report the generation of Prok2-tTA knock-in mice expressing the tetracycline transactivator (tTA) specifically in Prok2 neurons and an application of these mice to in vivo recording of Ca2+ rhythms in these neurons. First, the specific and efficient expression of tTA in Prok2 neurons was verified by crossing the mice with EGFP reporter mice. Prok2-tTA mice were then used to express a fluorescent Ca2+ sensor protein to record the circadian Ca2+ rhythm in SCN Prok2 neurons in vivo. Ca2+ in these cells showed clear circadian rhythms in both light-dark and constant dark conditions, with their peaks around midday. Notably, the hours of high Ca2+ nearly coincided with the rest period of the behavioral rhythm. These observations fit well with the predicted function of Prok2 neurons as a candidate output pathway of the SCN by suppressing locomotor activity during both daytime and subjective daytime.
Collapse
Affiliation(s)
- Kaito Onodera
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
11
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Patton AP, Morris EL, McManus D, Wang H, Li Y, Chin JW, Hastings MH. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2301330120. [PMID: 37186824 PMCID: PMC10214171 DOI: 10.1073/pnas.2301330120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the master mammalian circadian clock. Its cell-autonomous timing mechanism, a transcriptional/translational feedback loop (TTFL), drives daily peaks of neuronal electrical activity, which in turn control circadian behavior. Intercellular signals, mediated by neuropeptides, synchronize and amplify TTFL and electrical rhythms across the circuit. SCN neurons are GABAergic, but the role of GABA in circuit-level timekeeping is unclear. How can a GABAergic circuit sustain circadian cycles of electrical activity, when such increased neuronal firing should become inhibitory to the network? To explore this paradox, we show that SCN slices expressing the GABA sensor iGABASnFR demonstrate a circadian oscillation of extracellular GABA ([GABA]e) that, counterintuitively, runs in antiphase to neuronal activity, with a prolonged peak in circadian night and a pronounced trough in circadian day. Resolving this unexpected relationship, we found that [GABA]e is regulated by GABA transporters (GATs), with uptake peaking during circadian day, hence the daytime trough and nighttime peak. This uptake is mediated by the astrocytically expressed transporter GAT3 (Slc6a11), expression of which is circadian-regulated, being elevated in daytime. Clearance of [GABA]e in circadian day facilitates neuronal firing and is necessary for circadian release of the neuropeptide vasoactive intestinal peptide, a critical regulator of TTFL and circuit-level rhythmicity. Finally, we show that genetic complementation of the astrocytic TTFL alone, in otherwise clockless SCN, is sufficient to drive [GABA]e rhythms and control network timekeeping. Thus, astrocytic clocks maintain the SCN circadian clockwork by temporally controlling GABAergic inhibition of SCN neurons.
Collapse
Affiliation(s)
- Andrew P. Patton
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Emma L. Morris
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - David McManus
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Jason W. Chin
- PNAC Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Michael H. Hastings
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
13
|
Arginine-vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo. Proc Natl Acad Sci U S A 2023; 120:e2209329120. [PMID: 36656857 PMCID: PMC9942887 DOI: 10.1073/pnas.2209329120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.
Collapse
|
14
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
15
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
16
|
Swift J, Greenham K, Ecker JR, Coruzzi GM, McClung CR. The biology of time: dynamic responses of cell types to developmental, circadian and environmental cues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:764-778. [PMID: 34797944 PMCID: PMC9215356 DOI: 10.1111/tpj.15589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome-wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single-cell sequencing and time-based bioinformatic algorithms are now beginning to reveal the dynamics of these time-based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue-specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time-based responses can act with tissue and cell-type specificity to elicit changes in whole plant systems.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | | |
Collapse
|
17
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
18
|
O'Sullivan SJ, McIntosh-Clarke D, Park J, Vadigepalli R, Schwaber JS. Single Cell Scale Neuronal and Glial Gene Expression and Putative Cell Phenotypes and Networks in the Nucleus Tractus Solitarius in an Alcohol Withdrawal Time Series. Front Syst Neurosci 2021; 15:739790. [PMID: 34867221 PMCID: PMC8641127 DOI: 10.3389/fnsys.2021.739790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Alcohol withdrawal syndrome (AWS) is characterized by neuronal hyperexcitability, autonomic dysregulation, and severe negative emotion. The nucleus tractus solitarius (NTS) likely plays a prominent role in the neurological processes underlying these symptoms as it is the main viscerosensory nucleus in the brain. The NTS receives visceral interoceptive inputs, influences autonomic outputs, and has strong connections to the limbic system and hypothalamic-pituitary-adrenal axis to maintain homeostasis. Our prior analysis of single neuronal gene expression data from the NTS shows that neurons exist in heterogeneous transcriptional states that form distinct functional subphenotypes. Our working model conjectures that the allostasis secondary to alcohol dependence causes peripheral and central biological network decompensation in acute abstinence resulting in neurovisceral feedback to the NTS that substantially contributes to the observed AWS. We collected single noradrenergic and glucagon-like peptide-1 (GLP-1) neurons and microglia from rat NTS and measured a subset of their transcriptome as pooled samples in an alcohol withdrawal time series. Inflammatory subphenotypes predominate at certain time points, and GLP-1 subphenotypes demonstrated hyperexcitability post-withdrawal. We hypothesize such inflammatory and anxiogenic signaling contributes to alcohol dependence via negative reinforcement. Targets to mitigate such dysregulation and treat dependence can be identified from this dataset.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Damani McIntosh-Clarke
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James Park
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States
| | - James S Schwaber
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Gpr19 is a circadian clock-controlled orphan GPCR with a role in modulating free-running period and light resetting capacity of the circadian clock. Sci Rep 2021; 11:22406. [PMID: 34789778 PMCID: PMC8599615 DOI: 10.1038/s41598-021-01764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/03/2021] [Indexed: 01/26/2023] Open
Abstract
Gpr19 encodes an evolutionarily conserved orphan G-protein-coupled receptor (GPCR) with currently no established physiological role in vivo. We characterized Gpr19 expression in the suprachiasmatic nucleus (SCN), the locus of the master circadian clock in the brain, and determined its role in the context of the circadian rhythm regulation. We found that Gpr19 is mainly expressed in the dorsal part of the SCN, with its expression fluctuating in a circadian fashion. A conserved cAMP-responsive element in the Gpr19 promoter was able to produce circadian transcription in the SCN. Gpr19−/− mice exhibited a prolonged circadian period and a delayed initiation of daily locomotor activity. Gpr19 deficiency caused the downregulation of several genes that normally peak during the night, including Bmal1 and Gpr176. In response to light exposure at night, Gpr19−/− mice had a reduced capacity for light-induced phase-delays, but not for phase-advances. This defect was accompanied by reduced response of c-Fos expression in the dorsal region of the SCN, while apparently normal in the ventral area of the SCN, in Gpr19−/− mice. Thus, our data demonstrate that Gpr19 is an SCN-enriched orphan GPCR with a distinct role in circadian regulation and may provide a potential target option for modulating the circadian clock.
Collapse
|
20
|
Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, Greenberg ME, Kim TK, Konopka G, Takahashi JS. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 2021; 109:3268-3282.e6. [PMID: 34416169 DOI: 10.1016/j.neuron.2021.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/12/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the master circadian pacemaker in mammals and is entrained by environmental light. However, the molecular basis of the response of the SCN to light is not fully understood. We used RNA/chromatin immunoprecipitation/single-nucleus sequencing with circadian behavioral assays to identify mouse SCN cell types and explore their responses to light. We identified three peptidergic cell types that responded to light in the SCN: arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), and cholecystokinin (CCK). In each cell type, light-responsive subgroups were enriched for expression of neuronal Per-Arnt-Sim (PAS) domain protein 4 (NPAS4) target genes. Further, mice lacking Npas4 had a longer circadian period under constant conditions, a damped phase response curve to light, and reduced light-induced gene expression in the SCN. Our data indicate that NPAS4 is necessary for normal transcriptional responses to light in the SCN and critical for photic phase-shifting of circadian behavior.
Collapse
Affiliation(s)
- Pin Xu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Berto
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byeongha Jeong
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chryshanthi Joseph
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly H Cox
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tae-Kyung Kim
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Morris EL, Patton AP, Chesham JE, Crisp A, Adamson A, Hastings MH. Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. EMBO J 2021; 40:e108614. [PMID: 34487375 PMCID: PMC8521297 DOI: 10.15252/embj.2021108614] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time‐keeping network. In the absence of network‐level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood. To characterise its component cells and network structure, we conducted single‐cell sequencing of SCN organotypic slices and identified eleven distinct neuronal sub‐populations across circadian day and night. We defined neuropeptidergic signalling axes between these nodes, and built neuropeptide‐specific network topologies. This revealed their temporal plasticity, being up‐regulated in circadian day. Through intersectional genetics and real‐time imaging, we interrogated the contribution of the Prok2‐ProkR2 neuropeptidergic axis to network‐wide time‐keeping. We showed that Prok2‐ProkR2 signalling acts as a key regulator of SCN period and rhythmicity and contributes to defining the network‐level properties that underpin robust circadian co‐ordination. These results highlight the diverse and distinct contributions of neuropeptide‐modulated communication of temporal information across the SCN.
Collapse
Affiliation(s)
- Emma L Morris
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Johanna E Chesham
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alastair Crisp
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Antony Adamson
- The Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
22
|
Coomans C, Saaltink DJ, Deboer T, Tersteeg M, Lanooij S, Schneider AF, Mulder A, van Minnen J, Jost C, Koster AJ, Vreugdenhil E. Doublecortin-like expressing astrocytes of the suprachiasmatic nucleus are implicated in the biosynthesis of vasopressin and influences circadian rhythms. Glia 2021; 69:2752-2766. [PMID: 34343377 PMCID: PMC9291169 DOI: 10.1002/glia.24069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
We have recently identified a novel plasticity protein, doublecortin-like (DCL), that is specifically expressed in the shell of the mouse suprachiasmatic nucleus (SCN). DCL is implicated in neuroplastic events, such as neurogenesis, that require structural rearrangements of the microtubule cytoskeleton, enabling dynamic movements of cell bodies and dendrites. We have inspected DCL expression in the SCN by confocal microscopy and found that DCL is expressed in GABA transporter-3 (GAT3)-positive astrocytes that envelope arginine vasopressin (AVP)-expressing cells. To investigate the role of these DCL-positive astrocytes in circadian rhythmicity, we have used transgenic mice expressing doxycycline-induced short-hairpin (sh) RNA's targeting DCL mRNA (DCL knockdown mice). Compared with littermate wild type (WT) controls, DCL-knockdown mice exhibit significant shorter circadian rest-activity periods in constant darkness and adjusted significantly faster to a jet-lag protocol. As DCL-positive astrocytes are closely associated with AVP-positive cells, we analyzed AVP expression in DCL-knockdown mice and in their WT littermates by 3D reconstructions and transmission electron microscopy (TEM). We found significantly higher numbers of AVP-positive cells with increased volume and more intensity in DCL-knockdown mice. We found alterations in the numbers of dense core vesicle-containing neurons at ZT8 and ZT20 suggesting that the peak and trough of neuropeptide biosynthesis is dampened in DCL-knockdown mice compared to WT littermates. Together, our data suggest an important role for the astrocytic plasticity in the regulation of circadian rhythms and point to the existence of a specific DCL+ astrocyte-AVP+ neuronal network located in the dorsal SCN implicated in AVP biosynthesis.
Collapse
Affiliation(s)
- Claudia Coomans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk-Jan Saaltink
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Deboer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mayke Tersteeg
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne Lanooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Fleur Schneider
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aat Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan van Minnen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erno Vreugdenhil
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Moss A, Robbins S, Achanta S, Kuttippurathu L, Turick S, Nieves S, Hanna P, Smith EH, Hoover DB, Chen J, Cheng Z(J, Ardell JL, Shivkumar K, Schwaber JS, Vadigepalli R. A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. iScience 2021; 24:102713. [PMID: 34337356 PMCID: PMC8324809 DOI: 10.1016/j.isci.2021.102713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sirisha Achanta
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott Turick
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sean Nieves
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Donald B. Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jeffrey L. Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - James S. Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Hamnett R, Chesham JE, Maywood ES, Hastings MH. The Cell-Autonomous Clock of VIP Receptor VPAC2 Cells Regulates Period and Coherence of Circadian Behavior. J Neurosci 2021; 41:502-512. [PMID: 33234609 PMCID: PMC7821861 DOI: 10.1523/jneurosci.2015-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Circadian (approximately daily) rhythms pervade mammalian behavior. They are generated by cell-autonomous, transcriptional/translational feedback loops (TTFLs), active in all tissues. This distributed clock network is coordinated by the principal circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Its robust and accurate time-keeping arises from circuit-level interactions that bind its individual cellular clocks into a coherent time-keeper. Cells that express the neuropeptide vasoactive intestinal peptide (VIP) mediate retinal entrainment of the SCN; and in the absence of VIP, or its cognate receptor VPAC2, circadian behavior is compromised because SCN cells cannot synchronize. The contributions to pace-making of other cell types, including VPAC2-expressing target cells of VIP, are, however, not understood. We therefore used intersectional genetics to manipulate the cell-autonomous TTFLs of VPAC2-expressing cells. Measuring circadian behavioral and SCN rhythmicity in these temporally chimeric male mice thus enabled us to determine the contribution of VPAC2-expressing cells (∼35% of SCN cells) to SCN time-keeping. Lengthening of the intrinsic TTFL period of VPAC2 cells by deletion of the CK1εTau allele concomitantly lengthened the period of circadian behavioral rhythms. It also increased the variability of the circadian period of bioluminescent TTFL rhythms in SCN slices recorded ex vivo Abrogation of circadian competence in VPAC2 cells by deletion of Bmal1 severely disrupted circadian behavioral rhythms and compromised TTFL time-keeping in the corresponding SCN slices. Thus, VPAC2-expressing cells are a distinct, functionally powerful subset of the SCN circuit, contributing to computation of ensemble period and maintenance of circadian robustness. These findings extend our understanding of SCN circuit topology.
Collapse
Affiliation(s)
- Ryan Hamnett
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, United Kingdom
| | - Johanna E Chesham
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, United Kingdom
| | - Elizabeth S Maywood
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, United Kingdom
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, United Kingdom
| |
Collapse
|
25
|
Taufique SKT, Wang H. Neuronal and Non-neuronal Cell Types Displaying Circadian Rhythmicity in the Mammalian Suprachiasmatic Nucleus. Neurosci Bull 2021; 37:138-140. [PMID: 32710306 PMCID: PMC7811962 DOI: 10.1007/s12264-020-00551-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/29/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- S K Tahajjul Taufique
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China.
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
26
|
Lyons LC, Chatterjee S, Vanrobaeys Y, Gaine ME, Abel T. Translational changes induced by acute sleep deprivation uncovered by TRAP-Seq. Mol Brain 2020; 13:165. [PMID: 33272296 PMCID: PMC7713217 DOI: 10.1186/s13041-020-00702-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Sleep deprivation is a global health problem adversely affecting health as well as causing decrements in learning and performance. Sleep deprivation induces significant changes in gene transcription in many brain regions, with the hippocampus particularly susceptible to acute sleep deprivation. However, less is known about the impacts of sleep deprivation on post-transcriptional gene regulation. To identify the effects of sleep deprivation on the translatome, we took advantage of the RiboTag mouse line to express HA-labeled Rpl22 in CaMKIIα neurons to selectively isolate and sequence mRNA transcripts associated with ribosomes in excitatory neurons. We found 198 differentially expressed genes in the ribosome-associated mRNA subset after sleep deprivation. In comparison with previously published data on gene expression in the hippocampus after sleep deprivation, we found that the subset of genes affected by sleep deprivation was considerably different in the translatome compared with the transcriptome, with only 49 genes regulated similarly. Interestingly, we found 478 genes differentially regulated by sleep deprivation in the transcriptome that were not significantly regulated in the translatome of excitatory neurons. Conversely, there were 149 genes differentially regulated by sleep deprivation in the translatome but not in the whole transcriptome. Pathway analysis revealed differences in the biological functions of genes exclusively regulated in the transcriptome or translatome, with protein deacetylase activity and small GTPase binding regulated in the transcriptome and unfolded protein binding, kinase inhibitor activity, neurotransmitter receptors and circadian rhythms regulated in the translatome. These results indicate that sleep deprivation induces significant changes affecting the pool of actively translated mRNAs.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Patton AP, Edwards MD, Smyllie NJ, Hamnett R, Chesham JE, Brancaccio M, Maywood ES, Hastings MH. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat Commun 2020; 11:3394. [PMID: 32636383 PMCID: PMC7341843 DOI: 10.1038/s41467-020-17110-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/05/2020] [Indexed: 12/01/2022] Open
Abstract
The hypothalamic suprachiasmatic nuclei (SCN) are the principal mammalian circadian timekeeper, co-ordinating organism-wide daily and seasonal rhythms. To achieve this, cell-autonomous circadian timing by the ~20,000 SCN cells is welded into a tight circuit-wide ensemble oscillation. This creates essential, network-level emergent properties of precise, high-amplitude oscillation with tightly defined ensemble period and phase. Although synchronised, regional cell groups exhibit differentially phased activity, creating stereotypical spatiotemporal circadian waves of cellular activation across the circuit. The cellular circuit pacemaking components that generate these critical emergent properties are unknown. Using intersectional genetics and real-time imaging, we show that SCN cells expressing vasoactive intestinal polypeptide (VIP) or its cognate receptor, VPAC2, are neurochemically and electrophysiologically distinct, but together they control de novo rhythmicity, setting ensemble period and phase with circuit-level spatiotemporal complexity. The VIP/VPAC2 cellular axis is therefore a neurochemically and topologically specific pacemaker hub that determines the emergent properties of the SCN timekeeper. Circadian activity modulation in the suprachiasmatic nucleus (SCN) is a network-level emergent property that requires neuropeptide VIP signaling, yet the precise cellular mechanisms are unknown. Patton et al. show that cells expressing VIP or its receptor VPAC2 together determine these emergent properties of the SCN.
Collapse
Affiliation(s)
- Andrew P Patton
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Mathew D Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK
| | - Nicola J Smyllie
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Ryan Hamnett
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,Department of Neurosurgery, Stanford University, Stanford, USA
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marco Brancaccio
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,Department of Brain Sciences, UK Dementia Research Institute, Imperial College London, London, UK
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
28
|
Fonseca Costa SS, Robinson-Rechavi M, Ripperger JA. Single-cell transcriptomics allows novel insights into aging and circadian processes. Brief Funct Genomics 2020; 19:343-349. [PMID: 32633783 PMCID: PMC7716582 DOI: 10.1093/bfgp/elaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Aging and circadian rhythms are two biological processes that affect an organism, although at different time scales. Nevertheless, due to the overlap of their actions, it was speculated that both interfere or interact with each other. However, to address this question, a much deeper insight into these processes is necessary, especially at the cellular level. New methods such as single-cell RNA-sequencing (scRNA-Seq) have the potential to close this gap in our knowledge. In this review, we analyze applications of scRNA-Seq from the aging and circadian rhythm fields and highlight new findings emerging from the analysis of single cells, especially in humans or rodents. Furthermore, we judge the potential of scRNA-Seq to identify common traits of both processes. Overall, this method offers several advantages over more traditional methods analyzing gene expression and will become an important tool to unravel the link between these biological processes.
Collapse
Affiliation(s)
- Sara S Fonseca Costa
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | |
Collapse
|
29
|
O'Sullivan SJ, Reyes BAS, Vadigepalli R, Van Bockstaele EJ, Schwaber JS. Combining Laser Capture Microdissection and Microfluidic qPCR to Analyze Transcriptional Profiles of Single Cells: A Systems Biology Approach to Opioid Dependence. J Vis Exp 2020. [PMID: 32202523 DOI: 10.3791/60612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Profound transcriptional heterogeneity in anatomically adjacent single cells suggests that robust tissue functionality may be achieved by cellular phenotype diversity. Single-cell experiments investigating the network dynamics of biological systems demonstrate cellular and tissue responses to various conditions at biologically meaningful resolution. Herein, we explain our methods for gathering single cells from anatomically specific locations and accurately measuring a subset of their gene expression profiles. We combine laser capture microdissection (LCM) with microfluidic reverse transcription quantitative polymerase chain reactions (RT-qPCR). We also use this microfluidic RT-qPCR platform to measure the microbial abundance of gut contents.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University; Sidney Kimmel Medical College, Thomas Jefferson University;
| | - Beverly A S Reyes
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University
| | | | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University
| |
Collapse
|
30
|
Wen S, Ma D, Zhao M, Xie L, Wu Q, Gou L, Zhu C, Fan Y, Wang H, Yan J. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci 2020; 23:456-467. [DOI: 10.1038/s41593-020-0586-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
31
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
32
|
Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock. J Mol Biol 2020; 432:3639-3660. [PMID: 31996314 DOI: 10.1016/j.jmb.2020.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Circadian (approximately daily) rhythms of physiology and behaviour adapt organisms to the alternating environments of day and night. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian timekeeper of mammals. The mammalian cell-autonomous circadian clock is built around a self-sustaining transcriptional-translational negative feedback loop (TTFL) in which the negative regulators Per and Cry suppress their own expression, which is driven by the positive regulators Clock and Bmal1. Importantly, such TTFL-based clocks are present in all major tissues across the organism, and the SCN is their central co-ordinator. First, we analyse SCN timekeeping at the cell-autonomous and the circuit-based levels of organisation. We consider how molecular-genetic manipulations have been used to probe cell-autonomous timing in the SCN, identifying the integral components of the clock. Second, we consider new approaches that enable real-time monitoring of the activity of these clock components and clock-driven cellular outputs. Finally, we review how intersectional genetic manipulations of the cell-autonomous clockwork can be used to determine how SCN cells interact to generate an ensemble circadian signal. Critically, it is these network-level interactions that confer on the SCN its emergent properties of robustness, light-entrained phase and precision- properties that are essential for its role as the central co-ordinator. Remaining gaps in knowledge include an understanding of how the TTFL proteins behave individually and in complexes: whether particular SCN neuronal populations act as pacemakers, and if so, by which signalling mechanisms, and finally the nature of the recently discovered role of astrocytes within the SCN network.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
33
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
34
|
Abstract
The circadian clock is an endogenous, time-tracking system that directs multiple metabolic and physiological functions required for homeostasis. The master or central clock located within the suprachiasmatic nucleus in the hypothalamus governs peripheral clocks present in all systemic tissues, contributing to their alignment and ultimately to temporal coordination of physiology. Accumulating evidence reveals the presence of additional clocks in the brain and suggests the possibility that circadian circuits may feed back to these from the periphery. Here, we highlight recent advances in the communications between clocks and discuss how they relate to circadian physiology and metabolism.
Collapse
Affiliation(s)
- Carolina Magdalen Greco
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
35
|
Abstract
Like it or not, your two suprachiasmatic nuclei (SCN) govern your life: from when you wake up and fall asleep, to when you feel hungry or can best concentrate. Each is composed of approximately 10,000 tightly interconnected neurons, and the pair sit astride the mid-line third ventricle of the hypothalamus, immediately dorsal to the optic chiasm (Figure 1A). Together, they constitute the master circadian clock of the mammalian brain. They generate an internal representation of solar time that is conveyed to every cell in our body and in this way they co-ordinate the daily cycles of physiology and behaviour that adapt us to the twenty-four hour world. The temporary discomfort associated with jetlag is a reminder of the importance of this daily programme, but there is growing recognition that its chronic disruption carries a cost for health of far greater scale. In this primer, we shall briefly review the historical identification of the SCN as the master circadian clock, and then discuss it on three different levels: the cell-autonomous SCN, the SCN as a cellular network and, finally, the SCN as circadian orchestrator. We shall focus on the intrinsic electrical and transcriptional properties of the SCN and how these properties are thought to form an input to, and an output from, its intrinsic cellular clockwork. Second, we shall describe the anatomical arrangement of the SCN, how its sub-regions are delineated by different neuropeptides, and how SCN neurons communicate with each other via these neuropeptides and the neurotransmitter γ-aminobutyric acid (GABA). Finally, we shall discuss how the SCN functions as a circadian oscillator that dictates behaviour, and how intersectional genetic approaches are being used to try to unravel the specific contributions to pacemaking of specific SCN cell populations.
Collapse
Affiliation(s)
- Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
36
|
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is remarkable. Despite numbering only about 10,000 neurons on each side of the third ventricle, the SCN is our principal circadian clock, directing the daily cycles of behaviour and physiology that set the tempo of our lives. When this nucleus is isolated in organotypic culture, its autonomous timing mechanism can persist indefinitely, with precision and robustness. The discovery of the cell-autonomous transcriptional and post-translational feedback loops that drive circadian activity in the SCN provided a powerful exemplar of the genetic specification of complex mammalian behaviours. However, the analysis of circadian time-keeping is moving beyond single cells. Technical and conceptual advances, including intersectional genetics, multidimensional imaging and network theory, are beginning to uncover the circuit-level mechanisms and emergent properties that make the SCN a uniquely precise and robust clock. However, much remains unknown about the SCN, not least the intrinsic properties of SCN neurons, its circuit topology and the neuronal computations that these circuits support. Moreover, the convention that the SCN is a neuronal clock has been overturned by the discovery that astrocytes are an integral part of the timepiece. As a test bed for examining the relationships between genes, cells and circuits in sculpting complex behaviours, the SCN continues to offer powerful lessons and opportunities for contemporary neuroscience.
Collapse
|
37
|
O'Sullivan SJ, Malahias E, Park J, Srivastava A, Reyes BAS, Gorky J, Vadigepalli R, Van Bockstaele EJ, Schwaber JS. Single-Cell Glia and Neuron Gene Expression in the Central Amygdala in Opioid Withdrawal Suggests Inflammation With Correlated Gut Dysbiosis. Front Neurosci 2019; 13:665. [PMID: 31333398 PMCID: PMC6619439 DOI: 10.3389/fnins.2019.00665] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Drug-seeking in opioid dependence is due in part to the severe negative emotion associated with the withdrawal syndrome. It is well-established that negative emotional states emerge from activity in the amygdala. More recently, gut microflora have been shown to contribute substantially to such emotions. We measured gene expression in single glia and neurons gathered from the amygdala using laser capture microdissection and simultaneously measured gut microflora in morphine-dependent and withdrawn rats to investigate drivers of negative emotion in opioid withdrawal. We found that neuroinflammatory genes, notably Tnf, were upregulated in the withdrawal condition and that astrocytes, in particular, were highly active. We also observe a decreased Firmicutes to Bacteroides ratio in opioid withdrawal indicating gut dysbiosis. We speculate that these inflammatory and gut microflora changes contribute to the negative emotion experienced in opioid withdrawal that motivates dependence.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Evangelia Malahias
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James Park
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Beverly A S Reyes
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jon Gorky
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
38
|
El Cheikh Hussein L, Mollard P, Bonnefont X. Molecular and Cellular Networks in The Suprachiasmatic Nuclei. Int J Mol Sci 2019; 20:ijms20082052. [PMID: 31027315 PMCID: PMC6514755 DOI: 10.3390/ijms20082052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Why do we experience the ailments of jetlag when we travel across time zones? Why is working night-shifts so detrimental to our health? In other words, why can’t we readily choose and stick to non-24 h rhythms? Actually, our daily behavior and physiology do not simply result from the passive reaction of our organism to the external cycle of days and nights. Instead, an internal clock drives the variations in our bodily functions with a period close to 24 h, which is supposed to enhance fitness to regular and predictable changes of our natural environment. This so-called circadian clock relies on a molecular mechanism that generates rhythmicity in virtually all of our cells. However, the robustness of the circadian clock and its resilience to phase shifts emerge from the interaction between cell-autonomous oscillators within the suprachiasmatic nuclei (SCN) of the hypothalamus. Thus, managing jetlag and other circadian disorders will undoubtedly require extensive knowledge of the functional organization of SCN cell networks. Here, we review the molecular and cellular principles of circadian timekeeping, and their integration in the multi-cellular complexity of the SCN. We propose that new, in vivo imaging techniques now enable to address these questions directly in freely moving animals.
Collapse
Affiliation(s)
- Lama El Cheikh Hussein
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France.
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France.
| | - Xavier Bonnefont
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France.
| |
Collapse
|
39
|
Achanta S, Verma A, Srivastava A, Nilakantan H, Hoek JB, Vadigepalli R. Single-Cell Gene Expression Analysis Identifies Chronic Alcohol-Mediated Shift in Hepatocyte Molecular States After Partial Hepatectomy. Gene Expr 2019; 19:97-119. [PMID: 30189915 PMCID: PMC6466177 DOI: 10.3727/105221618x15361728786767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The analysis of molecular states of individual cells, as defined by their mRNA expression profiles and protein composition, has gained widespread interest in studying biological phenomena ranging from embryonic development to homeostatic tissue function and genesis and evolution of cancers. Although the molecular content of individual cells in a tissue can vary widely, their molecular states tend to be constrained within a transcriptional landscape partly described by the canonical archetypes of a population of cells. In this study, we sought to characterize the effects of an acute (partial hepatectomy) and chronic (alcohol consumption) perturbation on the molecular states of individual hepatocytes during the onset and progression of liver regeneration. We analyzed the expression of 84 genes across 233 individual hepatocytes acquired using laser capture microdissection. Analysis of the single-cell data revealed that hepatocyte molecular states can be considered as distributed across a set of four states irrespective of perturbation, with the proportions of hepatocytes in these states being dependent on the perturbation. In addition to the quiescent, primed, and replicating hepatocytes, we identified a fourth molecular state lying between the primed and replicating subpopulations. Comparison of the proportions of hepatocytes from each experimental condition in these four molecular states suggested that, in addition to aberrant priming, a slower transition from primed to replication state could contribute toward ethanol-mediated suppression of liver regenerative response to partial hepatectomy.
Collapse
Affiliation(s)
- Sirisha Achanta
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aalap Verma
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- †Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Ankita Srivastava
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Harshavardhan Nilakantan
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan B. Hoek
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
40
|
Hastings MH, Maywood ES, Brancaccio M. The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker. BIOLOGY 2019; 8:E13. [PMID: 30862123 PMCID: PMC6466121 DOI: 10.3390/biology8010013] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The past twenty years have witnessed the most remarkable breakthroughs in our understanding of the molecular and cellular mechanisms that underpin circadian (approximately one day) time-keeping. Across model organisms in diverse taxa: cyanobacteria (Synechococcus), fungi (Neurospora), higher plants (Arabidopsis), insects (Drosophila) and mammals (mouse and humans), a common mechanistic motif of delayed negative feedback has emerged as the Deus ex machina for the cellular definition of ca. 24 h cycles. This review will consider, briefly, comparative circadian clock biology and will then focus on the mammalian circadian system, considering its molecular genetic basis, the properties of the suprachiasmatic nucleus (SCN) as the principal circadian clock in mammals and its role in synchronising a distributed peripheral circadian clock network. Finally, it will consider new directions in analysing the cell-autonomous and circuit-level SCN clockwork and will highlight the surprising discovery of a central role for SCN astrocytes as well as SCN neurons in controlling circadian behaviour.
Collapse
Affiliation(s)
- Michael H Hastings
- MRC Laboratory of Molecular Biology, Division of Neurobiology, CB2 0QH Cambridge, UK.
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Division of Neurobiology, CB2 0QH Cambridge, UK.
| | - Marco Brancaccio
- UK Dementia Research Institute at Imperial College London, Division of Brain Sciences, Department of Medicine, W12 0NN London, UK.
| |
Collapse
|
41
|
Mechanisms of Communication in the Mammalian Circadian Timing System. Int J Mol Sci 2019; 20:ijms20020343. [PMID: 30650649 PMCID: PMC6359556 DOI: 10.3390/ijms20020343] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
24-h rhythms in physiology and behaviour are organized by a body-wide network of endogenous circadian clocks. In mammals, a central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) integrates external light information to adapt cellular clocks in all tissues and organs to the external light-dark cycle. Together, central and peripheral clocks co-regulate physiological rhythms and functions. In this review, we outline the current knowledge about the routes of communication between the environment, the main pacemakers and the downstream clocks in the body, focusing on what we currently know and what we still need to understand about the communication mechanisms by which centrally and peripherally controlled timing signals coordinate physiological functions and behaviour. We highlight recent findings that shed new light on the internal organization and function of the SCN and neuroendocrine mechanisms mediating clock-to-clock coupling. These findings have implications for our understanding of circadian network entrainment and for potential manipulations of the circadian clock system in therapeutic settings.
Collapse
|
42
|
Tang-Schomer MD, Jackvony T, Santaniello S. Cortical Network Synchrony Under Applied Electrical Field in vitro. Front Neurosci 2018; 12:630. [PMID: 30297981 PMCID: PMC6160828 DOI: 10.3389/fnins.2018.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/22/2018] [Indexed: 01/11/2023] Open
Abstract
Synchronous network activity plays a crucial role in complex brain functions. Stimulating the nervous system with applied electric field (EF) is a common tool for probing network responses. We used a gold wire-embedded silk protein film-based interface culture to investigate the effects of applied EFs on random cortical networks of in vitro cultures. Two-week-old cultures were exposed to EF of 27 mV/mm for <1 h and monitored by time-lapse calcium imaging. Network activity was represented by calcium signal time series mapped to source neurons and analyzed by using a community detection algorithm. Cortical cultures exhibited large scale, synchronized oscillations under alternating EF of changing frequencies. Field polarity and frequency change were both found to be necessary for network synchrony, as monophasic pulses of similar frequency changes or EF of a constant frequency failed to induce correlated activities of neurons. Group-specific oscillatory patterns were entrained by network-level synchronous oscillations when the alternating EF frequency was increased from 0.2 Hz to 200 kHz. Binary responses of either activity increase or decrease contributed to the opposite phase patterns of different sub-populations. Conversely, when the EF frequency decreased over the same range span, more complex behavior emerged showing group-specific amplitude and phase patterns. These findings formed the basis of a hypothesized network control mechanism for temporal coordination of distributed neuronal activity, involving coordinated stimulation by alternating polarity, and time delay by change of frequency. These novel EF effects on random neural networks have important implications for brain functional studies and neuromodulation applications.
Collapse
Affiliation(s)
- Min D Tang-Schomer
- Department of Pediatrics, UConn Health, Connecticut Children's Medical Center, Farmington, CT, United States.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Taylor Jackvony
- School of Medicine, UConn Health, University of Connecticut, Farmington, CT, United States
| | - Sabato Santaniello
- CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States.,Biomedical Engineering Department, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
43
|
Li JT, Zhang Y. TREM2 regulates innate immunity in Alzheimer's disease. J Neuroinflammation 2018; 15:107. [PMID: 29655369 PMCID: PMC5899410 DOI: 10.1186/s12974-018-1148-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
Recent research has shown that the triggering receptor expressed on myeloid cells 2 (TREM2) in microglia is closely related to the pathogenesis of Alzheimer's disease (AD). The mechanism of this relationship, however, remains unclear. TREM2 is part of the TREM family of receptors, which are expressed primarily in myeloid cells, including monocytes, dendritic cells, and microglia. The TREM family members are cell surface glycoproteins with an immunoglobulin-like extracellular domain, a transmembrane region and a short cytoplasmic tail region. The present article reviews the following: (1) the structure, function, and variant site analysis of the Trem2 gene; (2) the metabolism of TREM2 in peripheral blood and cerebrospinal fluid; and (3) the possible underlying mechanism by which TREM2 regulates innate immunity and participates in AD.
Collapse
Affiliation(s)
- Jiang-Tao Li
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing, 100044, China
| | - Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing, 100044, China.
| |
Collapse
|
44
|
Sekiya M, Wang M, Fujisaki N, Sakakibara Y, Quan X, Ehrlich ME, De Jager PL, Bennett DA, Schadt EE, Gandy S, Ando K, Zhang B, Iijima KM. Integrated biology approach reveals molecular and pathological interactions among Alzheimer's Aβ42, Tau, TREM2, and TYROBP in Drosophila models. Genome Med 2018; 10:26. [PMID: 29598827 PMCID: PMC5875009 DOI: 10.1186/s13073-018-0530-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cerebral amyloidosis, neuroinflammation, and tauopathy are key features of Alzheimer's disease (AD), but interactions among these features remain poorly understood. Our previous multiscale molecular network models of AD revealed TYROBP as a key driver of an immune- and microglia-specific network that was robustly associated with AD pathophysiology. Recent genetic studies of AD further identified pathogenic mutations in both TREM2 and TYROBP. METHODS In this study, we systematically examined molecular and pathological interactions among Aβ, tau, TREM2, and TYROBP by integrating signatures from transgenic Drosophila models of AD and transcriptome-wide gene co-expression networks from two human AD cohorts. RESULTS Glial expression of TREM2/TYROBP exacerbated tau-mediated neurodegeneration and synergistically affected pathways underlying late-onset AD pathology, while neuronal Aβ42 and glial TREM2/TYROBP synergistically altered expression of the genes in synaptic function and immune modules in AD. CONCLUSIONS The comprehensive pathological and molecular data generated through this study strongly validate the causal role of TREM2/TYROBP in driving molecular networks in AD and AD-related phenotypes in flies.
Collapse
Affiliation(s)
- Michiko Sekiya
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan
| | - Minghui Wang
- 0000 0001 0670 2351grid.59734.3cDepartment of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cIcahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY USA
| | - Naoki Fujisaki
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan ,0000 0001 0728 1069grid.260433.0Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Yasufumi Sakakibara
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan
| | - Xiuming Quan
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan
| | - Michelle E. Ehrlich
- 0000 0001 0670 2351grid.59734.3cDepartment of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cDepartment of Neurology, Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDepartment of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Philip L. De Jager
- 0000 0001 2285 2675grid.239585.0Center for translational & Computational Neuroimmunology, Department of Neurology, The Neurological Institute of New York, Columbia University Medical Center, New York, NY USA ,grid.66859.34Broad Institute, Cambridge, MA USA
| | - David A. Bennett
- 0000 0001 0705 3621grid.240684.cRush Alzheimer’s Disease Research Center and Department of Neurology, Rush University Medical Center, 1750 W. Congress Parkway, Chicago, IL 60612 USA
| | - Eric E. Schadt
- 0000 0001 0670 2351grid.59734.3cDepartment of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cIcahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY USA
| | - Sam Gandy
- 0000 0001 0670 2351grid.59734.3cDepartment of Neurology, Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDepartment of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0004 5907 0628grid.480949.8Center for NFL Neurological Care, Department of Neurology, New York, NY USA ,0000 0004 0420 1184grid.274295.fJames J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY USA
| | - Kanae Ando
- 0000 0001 1090 2030grid.265074.2Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY, 10029, USA. .,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA. .,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, USA.
| | - Koichi M. Iijima
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan ,0000 0001 0728 1069grid.260433.0Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
45
|
Abstract
Metabolomics, the characterization of metabolites and their changes within biological systems, has seen great technological and methodological progress over the past decade. Most metabolomic experiments involve the characterization of the small-molecule content of fluids or tissue homogenates. While these microliter and larger volume metabolomic measurements can characterize hundreds to thousands of compounds, the coverage of molecular content decreases as sample sizes are reduced to the nanoliter and even to the picoliter volume range. Recent progress has enabled the ability to characterize the major molecules found within specific individual cells. Especially within the brain, a myriad of cell types are colocalized, and oftentimes only a subset of these cells undergo changes in both healthy and pathological states. Here we highlight recent progress in mass spectrometry-based approaches used for single cell metabolomics, emphasizing their application to neuroscience research. Single cell studies can be directed to measuring differences between members of populations of similar cells (e.g., oligodendrocytes), as well as characterizing differences between cell types (e.g., neurons and astrocytes), and are especially useful for measuring changes occurring during different behavior states, exposure to diets and drugs, neuronal activity, and disease. When combined with other omics approaches such as transcriptomics, and with morphological and physiological measurements, single cell metabolomics aids fundamental neurochemical studies, has great potential in pharmaceutical development, and should improve the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Meng Qi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Marina C Philip
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ning Yang
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
47
|
Anderson WD, Vadigepalli R. Modeling cytokine regulatory network dynamics driving neuroinflammation in central nervous system disorders. DRUG DISCOVERY TODAY. DISEASE MODELS 2017; 19:59-67. [PMID: 28947907 PMCID: PMC5609716 DOI: 10.1016/j.ddmod.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A central goal of pharmacological efforts to treat central nervous system (CNS) diseases is to develop systemic therapeutics that can restore CNS homeostasis. Achieving this goal requires a fundamental understanding of CNS function within the organismal context so as to leverage the mechanistic insights on the molecular basis of cellular and tissue functions towards novel drug target identification. The immune system constitutes a key link between the periphery and CNS, and many neurological disorders and neurodegenerative diseases are characterized by immune dysfunction. We review the salient opportunities for applying computational models to CNS disease research, and summarize relevant approaches from studies of immune function and neuroinflammation. While the accurate prediction of disease-related phenomena is often considered the central goal of modeling studies, we highlight the utility of computational modeling applications beyond making predictions, particularly for drawing counterintuitive insights from model-based analysis of multi-parametric and time series data sets.
Collapse
Affiliation(s)
- Warren D. Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|