1
|
Leske S, Endestad T, Volehaugen V, Foldal MD, Blenkmann AO, Solbakk AK, Danielsen A. Beta oscillations predict the envelope sharpness in a rhythmic beat sequence. Sci Rep 2025; 15:3510. [PMID: 39875442 PMCID: PMC11775266 DOI: 10.1038/s41598-025-86895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms and patterns in human behavior, such as walking, dancing, and speech do not, however, display strict isochrony but are instead quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks. In the same vein, research on rhythm processing in music supports the notion that perceptual timing precision varies systematically with the sharpness of acoustic onset edges, conceptualized in the beat bin hypothesis. Increased envelope sharpness induces increased precision in localizing a sound in time. Despite this tight relationship between envelope shape and temporal processing, it is currently unknown how the brain uses predictive information about envelope features to optimize temporal perception. With the current EEG study, we show that the predicted sharpness of the amplitude envelope is encoded by pre-target neural activity in the beta band (15-25 Hz), and has an impact on the temporal perception of target sounds. We used probabilistic sound cues in a timing judgment task to inform participants about the sharpness of the amplitude envelope of an upcoming target sound embedded in a beat sequence. The predictive information about the envelope shape modulated task performance and pre-target beta power. Interestingly, these conditional beta-power modulations correlated positively with behavioral performance in the timing judgment task and with perceptual temporal precision in a click-alignment task. This study provides new insight into the neural processes underlying prediction of the sharpness of the amplitude envelope during beat perception, which modulate the temporal perception of sounds. This finding could reflect a process that is involved in temporal prediction, exerting top-down control on neural entrainment via the prediction of acoustic edges in the auditory stream.
Collapse
Affiliation(s)
- Sabine Leske
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway.
- Department of Musicology, University of Oslo, Oslo, Norway.
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway.
| | - Tor Endestad
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Vegard Volehaugen
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Maja D Foldal
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Alejandro O Blenkmann
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Anne-Kristin Solbakk
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anne Danielsen
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Barbaresi M, Nardo D, Fagioli S. Physiological Entrainment: A Key Mind-Body Mechanism for Cognitive, Motor and Affective Functioning, and Well-Being. Brain Sci 2024; 15:3. [PMID: 39851371 PMCID: PMC11763407 DOI: 10.3390/brainsci15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The human sensorimotor system can naturally synchronize with environmental rhythms, such as light pulses or sound beats. Several studies showed that different styles and tempos of music, or other rhythmic stimuli, have an impact on physiological rhythms, including electrocortical brain activity, heart rate, and motor coordination. Such synchronization, also known as the "entrainment effect", has been identified as a crucial mechanism impacting cognitive, motor, and affective functioning. OBJECTIVES This review examines theoretical and empirical contributions to the literature on entrainment, with a particular focus on the physiological mechanisms underlying this phenomenon and its role in cognitive, motor, and affective functions. We also address the inconsistent terminology used in the literature and evaluate the range of measurement approaches used to assess entrainment phenomena. Finally, we propose a definition of "physiological entrainment" that emphasizes its role as a fundamental mechanism that encompasses rhythmic interactions between the body and its environment, to support information processing across bodily systems and to sustain adaptive motor responses. METHODS We reviewed the recent literature through the lens of the "embodied cognition" framework, offering a unified perspective on the phenomenon of physiological entrainment. RESULTS Evidence from the current literature suggests that physiological entrainment produces measurable effects, especially on neural oscillations, heart rate variability, and motor synchronization. Eventually, such physiological changes can impact cognitive processing, affective functioning, and motor coordination. CONCLUSIONS Physiological entrainment emerges as a fundamental mechanism underlying the mind-body connection. Entrainment-based interventions may be used to promote well-being by enhancing cognitive, motor, and affective functions, suggesting potential rehabilitative approaches to enhancing mental health.
Collapse
Affiliation(s)
| | - Davide Nardo
- Department of Education, “Roma Tre” University, 00185 Rome, Italy; (M.B.); (S.F.)
| | | |
Collapse
|
3
|
Celma-Miralles A, Seeberg AB, Haumann NT, Vuust P, Petersen B. Experience with the cochlear implant enhances the neural tracking of spectrotemporal patterns in the Alberti bass. Hear Res 2024; 452:109105. [PMID: 39216335 DOI: 10.1016/j.heares.2024.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cochlear implant (CI) users experience diminished music enjoyment due to the technical limitations of the CI. Nonetheless, behavioral studies have reported that rhythmic features are well-transmitted through the CI. Still, the gradual improvement of rhythm perception after the CI switch-on has not yet been determined using neurophysiological measures. To fill this gap, we here reanalyzed the electroencephalographic responses of participants from two previous mismatch negativity studies. These studies included eight recently implanted CI users measured twice, within the first six weeks after CI switch-on and approximately three months later; thirteen experienced CI users with a median experience of 7 years; and fourteen normally hearing (NH) controls. All participants listened to a repetitive four-tone pattern (known in music as Alberti bass) for 35 min. Applying frequency tagging, we aimed to estimate the neural activity synchronized to the periodicities of the Alberti bass. We hypothesized that longer experience with the CI would be reflected in stronger frequency-tagged neural responses approaching the responses of NH controls. We found an increase in the frequency-tagged amplitudes after only 3 months of CI use. This increase in neural synchronization may reflect an early adaptation to the CI stimulation. Moreover, the frequency-tagged amplitudes of experienced CI users were significantly greater than those of recently implanted CI users, but still smaller than those of NH controls. The frequency-tagged neural responses did not just reflect spectrotemporal changes in the stimuli (i.e., intensity or spectral content fluctuating over time), but also showed non-linear transformations that seemed to enhance relevant periodicities of the Alberti bass. Our findings provide neurophysiological evidence indicating a gradual adaptation to the CI, which is noticeable already after three months, resulting in close to NH brain processing of spectrotemporal features of musical rhythms after extended CI use.
Collapse
Affiliation(s)
- Alexandre Celma-Miralles
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark.
| | - Alberte B Seeberg
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Niels T Haumann
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Peter Vuust
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Bjørn Petersen
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| |
Collapse
|
4
|
Couvignou M, Peyre H, Ramus F, Kolinsky R. Do early musical impairments predict later reading difficulties? A longitudinal study of pre-readers with and without familial risk for dyslexia. Dev Sci 2024; 27:e13519. [PMID: 38679927 DOI: 10.1111/desc.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
The present longitudinal study investigated the hypothesis that early musical skills (as measured by melodic and rhythmic perception and memory) predict later literacy development via a mediating effect of phonology. We examined 130 French-speaking children, 31 of whom with a familial risk for developmental dyslexia (DD). Their abilities in the three domains were assessed longitudinally with a comprehensive battery of behavioral tests in kindergarten, first grade, and second grade. Using a structural equation modeling approach, we examined potential longitudinal effects from music to literacy via phonology. We then investigated how familial risk for DD may influence these relationships by testing whether atypical music processing is a risk factor for DD. Results showed that children with a familial risk for DD consistently underperformed children without familial risk in music, phonology, and literacy. A small effect of musical ability on literacy via phonology was observed, but may have been induced by differences in stability across domains over time. Furthermore, early musical skills did not add significant predictive power to later literacy difficulties beyond phonological skills and family risk status. These findings are consistent with the idea that certain key auditory skills are shared between music and speech processing, and between DD and congenital amusia. However, they do not support the notion that music perception and memory skills can serve as a reliable early marker of DD, nor as a valuable target for reading remediation. RESEARCH HIGHLIGHTS: Music, phonology, and literacy skills of 130 children, 31 of whom with a familial risk for dyslexia, were examined longitudinally. Children with a familial risk for dyslexia consistently underperformed children without familial risk in musical, phonological, and literacy skills. Structural equation models showed a small effect of musical ability in kindergarten on literacy in second grade, via phonology in first grade. However, early musical skills did not add significant predictive power to later literacy difficulties beyond phonological skills and family risk status.
Collapse
Affiliation(s)
- Manon Couvignou
- Unité de Recherche en Neurosciences Cognitives (Unescog), Center for Research in Cognition & Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Cambridge, UK
| | - Hugo Peyre
- Département d'Études Cognitives, Laboratoire de Sciences Cognitives et Psycholinguistique, École Normale Supérieure, PSL University, EHESS, CNRS, Paris, France
- Autism Reference Centre of Languedoc-Roussillon CRA-LR, Excellence Centre for Autism and Neurodevelopmental disorders CeAND, Montpellier University Hospital, MUSE University, Montpellier, France
- CESP, INSERM U1178, Centre de recherche en Épidémiologie et Santé des Populations, Villejuif, France
| | - Franck Ramus
- Département d'Études Cognitives, Laboratoire de Sciences Cognitives et Psycholinguistique, École Normale Supérieure, PSL University, EHESS, CNRS, Paris, France
| | - Régine Kolinsky
- Unité de Recherche en Neurosciences Cognitives (Unescog), Center for Research in Cognition & Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Fonds de la Recherche Scientifique-FNRS (FRS-FNRS), Brussels, Belgium
| |
Collapse
|
5
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
6
|
Quique YM, Gnanateja GN, Dickey MW, Evans WS, Chandrasekaran B. Examining cortical tracking of the speech envelope in post-stroke aphasia. Front Hum Neurosci 2023; 17:1122480. [PMID: 37780966 PMCID: PMC10538638 DOI: 10.3389/fnhum.2023.1122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction People with aphasia have been shown to benefit from rhythmic elements for language production during aphasia rehabilitation. However, it is unknown whether rhythmic processing is associated with such benefits. Cortical tracking of the speech envelope (CTenv) may provide a measure of encoding of speech rhythmic properties and serve as a predictor of candidacy for rhythm-based aphasia interventions. Methods Electroencephalography was used to capture electrophysiological responses while Spanish speakers with aphasia (n = 9) listened to a continuous speech narrative (audiobook). The Temporal Response Function was used to estimate CTenv in the delta (associated with word- and phrase-level properties), theta (syllable-level properties), and alpha bands (attention-related properties). CTenv estimates were used to predict aphasia severity, performance in rhythmic perception and production tasks, and treatment response in a sentence-level rhythm-based intervention. Results CTenv in delta and theta, but not alpha, predicted aphasia severity. Neither CTenv in delta, alpha, or theta bands predicted performance in rhythmic perception or production tasks. Some evidence supported that CTenv in theta could predict sentence-level learning in aphasia, but alpha and delta did not. Conclusion CTenv of the syllable-level properties was relatively preserved in individuals with less language impairment. In contrast, higher encoding of word- and phrase-level properties was relatively impaired and was predictive of more severe language impairments. CTenv and treatment response to sentence-level rhythm-based interventions need to be further investigated.
Collapse
Affiliation(s)
- Yina M. Quique
- Center for Education in Health Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - G. Nike Gnanateja
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Walsh Dickey
- VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
- Roxelyn and Richard Pepper Department of Communication Science and Disorders, School of Communication. Northwestern University, Evanston, IL, United States
| |
Collapse
|
7
|
Ní Choisdealbha Á, Attaheri A, Rocha S, Mead N, Olawole-Scott H, Brusini P, Gibbon S, Boutris P, Grey C, Hines D, Williams I, Flanagan SA, Goswami U. Neural phase angle from two months when tracking speech and non-speech rhythm linked to language performance from 12 to 24 months. BRAIN AND LANGUAGE 2023; 243:105301. [PMID: 37399686 DOI: 10.1016/j.bandl.2023.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Atypical phase alignment of low-frequency neural oscillations to speech rhythm has been implicated in phonological deficits in developmental dyslexia. Atypical phase alignment to rhythm could thus also characterize infants at risk for later language difficulties. Here, we investigate phase-language mechanisms in a neurotypical infant sample. 122 two-, six- and nine-month-old infants were played speech and non-speech rhythms while EEG was recorded in a longitudinal design. The phase of infants' neural oscillations aligned consistently to the stimuli, with group-level convergence towards a common phase. Individual low-frequency phase alignment related to subsequent measures of language acquisition up to 24 months of age. Accordingly, individual differences in language acquisition are related to the phase alignment of cortical tracking of auditory and audiovisual rhythms in infancy, an automatic neural mechanism. Automatic rhythmic phase-language mechanisms could eventually serve as biomarkers, identifying at-risk infants and enabling intervention at the earliest stages of development.
Collapse
Affiliation(s)
| | - Adam Attaheri
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Sinead Rocha
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Natasha Mead
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Helen Olawole-Scott
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Perrine Brusini
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Samuel Gibbon
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Panagiotis Boutris
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Christina Grey
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Declan Hines
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Isabel Williams
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Sheila A Flanagan
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom
| | - Usha Goswami
- Centre for Neuroscience in Education, University of Cambridge, United Kingdom.
| |
Collapse
|
8
|
Cainelli E, Vedovelli L, Carretti B, Bisiacchi P. EEG correlates of developmental dyslexia: a systematic review. ANNALS OF DYSLEXIA 2023; 73:184-213. [PMID: 36417146 PMCID: PMC10247570 DOI: 10.1007/s11881-022-00273-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/25/2022] [Indexed: 06/08/2023]
Abstract
Dyslexia is one of the most studied learning disorders. Despite this, its biological basis and main causes are still not fully understood. Electroencephalography (EEG) could be a powerful tool in identifying the underlying mechanisms, but knowledge of the EEG correlates of developmental dyslexia (DD) remains elusive. We aimed to systematically review the evidence on EEG correlates of DD and establish their quality. In July 2021, we carried out an online search of the PubMed and Scopus databases to identify published articles on EEG correlates in children with dyslexia aged 6 to 12 years without comorbidities. We follow the PRISMA guidelines and assess the quality using the Appraisal Tool questionnaire. Our final analysis included 49 studies (14% high quality, 63% medium, 20% low, and 2% very low). Studies differed greatly in methodology, making a summary of their results challenging. However, some points came to light. Even at rest, children with dyslexia and children in the control group exhibited differences in several EEG measures, particularly in theta and alpha frequencies; these frequencies appear to be associated with learning performance. During reading-related tasks, the differences between dyslexic and control children seem more localized in the left temporoparietal sites. The EEG activity of children with dyslexia and children in the control group differed in many aspects, both at rest and during reading-related tasks. Our data are compatible with neuroimaging studies in the same diagnostic group and expand the literature by offering new insights into functional significance.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Barbara Carretti
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
- Padova Neuroscience Centre, PNC, Padua, Italy
| |
Collapse
|
9
|
Cappagli G, Carzola B, Potente C, Gori M. Proportional Reasoning Deficit in Dyslexia. Brain Sci 2023; 13:brainsci13050795. [PMID: 37239267 DOI: 10.3390/brainsci13050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dyslexia has been linked to an altered perception of metrical structures in language, but no study to date has explored the link between reading impairments and other forms of metrical thinking (e.g., proportional reasoning). In the present study, we assessed proportional reasoning in 16 dyslexic children and 16 age-matched controls from 7 to 10 years of age in order to investigate whether dyslexia might be also linked to an altered form of metrical thinking. We found that dyslexic children are less accurate in performing judgments about proportionality compared to typical peers and that reading accuracy correlates with proportional reasoning abilities for 7-8-year-old children. Overall, these findings suggest that a link exists between reading and proportional reasoning abilities. We might speculate that fostering reasoning based on the meter can facilitate reading because it permits the segmentation of words in syllables and that dyslexia can be identified early with alternative non-reading tasks such as the proportional reasoning task used in this work.
Collapse
Affiliation(s)
- Giulia Cappagli
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16125 Genova, Italy
| | | | | | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16125 Genova, Italy
| |
Collapse
|
10
|
Kertész C, Honbolygó F. First school year tapping predicts children's third-grade literacy skills. Sci Rep 2023; 13:2298. [PMID: 36759633 PMCID: PMC9911382 DOI: 10.1038/s41598-023-29367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Rhythmic skills have been repeatedly found to relate to children's early literacy skills. Using rhythmic tasks to predict language and reading performance seems a promising direction as they can be easily administered early as a screening test to identify at-risk children. In the present study, we measured Hungarian children's (N = 37) general cognitive abilities (working memory, non-verbal reasoning and rapid automatized naming), language and literacy skills (vocabulary, word reading, phonological awareness and spelling) and finger tapping performance in a longitudinal design in the first and third grades. We applied metronome stimuli in three tempi (80, 120, 150 bpm) using a synchronization-continuation paradigm and also measured participants' spontaneous motor tempo. While children's synchronization asynchrony was lower in third than in the first grade, with the exception of the slow-tempo trials, tapping consistency and continuation tapping success showed no development in this period. First-year tapping consistency in the slow-tempo tasks was associated with third-year reading and spelling outcomes. Our results show that the relation between tapping performance and literacy skills persists throughout the third school year, making the sensorimotor synchronization task a potentially effective instrument for predicting literacy outcomes, and a useful tool for early screening of reading difficulties.
Collapse
Affiliation(s)
- Csaba Kertész
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Institute of Psychology, Károli Gáspár University of the Reformed Church, Budapest, Hungary.
| | - Ferenc Honbolygó
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Ladányi E, Novakovic M, Boorom OA, Aaron AS, Scartozzi AC, Gustavson DE, Nitin R, Bamikole PO, Vaughan C, Fromboluti EK, Schuele CM, Camarata SM, McAuley JD, Gordon RL. Using Motor Tempi to Understand Rhythm and Grammatical Skills in Developmental Language Disorder and Typical Language Development. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:1-28. [PMID: 36875176 PMCID: PMC9979588 DOI: 10.1162/nol_a_00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 09/19/2022] [Indexed: 04/18/2023]
Abstract
Children with developmental language disorder (DLD) show relative weaknesses on rhythm tasks beyond their characteristic linguistic impairments. The current study compares preferred tempo and the width of an entrainment region for 5- to 7-year-old typically developing (TD) children and children with DLD and considers the associations with rhythm aptitude and expressive grammar skills in the two populations. Preferred tempo was measured with a spontaneous motor tempo task (tapping tempo at a comfortable speed), and the width (range) of an entrainment region was measured by the difference between the upper (slow) and lower (fast) limits of tapping a rhythm normalized by an individual's spontaneous motor tempo. Data from N = 16 children with DLD and N = 114 TD children showed that whereas entrainment-region width did not differ across the two groups, slowest motor tempo, the determinant of the upper (slow) limit of the entrainment region, was at a faster tempo in children with DLD vs. TD. In other words, the DLD group could not pace their slow tapping as slowly as the TD group. Entrainment-region width was positively associated with rhythm aptitude and receptive grammar even after taking into account potential confounding factors, whereas expressive grammar did not show an association with any of the tapping measures. Preferred tempo was not associated with any study variables after including covariates in the analyses. These results motivate future neuroscientific studies of low-frequency neural oscillatory mechanisms as the potential neural correlates of entrainment-region width and their associations with musical rhythm and spoken language processing in children with typical and atypical language development.
Collapse
Affiliation(s)
- Enikő Ladányi
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
- Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Michaela Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Olivia A. Boorom
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, KS
| | - Allison S. Aaron
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | - Alyssa C. Scartozzi
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Daniel E. Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
| | - Rachana Nitin
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Peter O. Bamikole
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR
| | - Chloe Vaughan
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | | | - C. Melanie Schuele
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | - Stephen M. Camarata
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | - J. Devin McAuley
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Reyna L. Gordon
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| |
Collapse
|
12
|
Zhang M, Li F, Wang D, Ba X, Liu Z. Mapping Research Trends from 20 Years of Publications in Rhythmic Auditory Stimulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:215. [PMID: 36612537 PMCID: PMC9819413 DOI: 10.3390/ijerph20010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
This study aims to create an all-around insight into the evolutions, status, and global trends of rhythmic auditory stimulation (RAS) research via enhanced bibliometric methods for the 2001-2020 time period. Articles concerning RAS were extracted from the Web of Science database. CiteSpace, Bibliometrix, VOSviewer, and Graphpad Prism were employed to analyze publication patterns and research trends. A total of 586 publications related to RAS between 2001 and 2020 were retrieved from the Web of Science database. The researcher Goswami U. made the greatest contribution to this field. The University of Toronto was the institution that published the most articles. Motor dysfunction, sensory perception, and cognition are the three major domains of RAS research. Neural tracking, working memory, and neural basis may be the latest research frontiers. This study reveals the publication patterns and topic trends of RAS based on the records published between 2001 and 2020. The insights obtained provided useful references for the future research and applications of RAS.
Collapse
Affiliation(s)
- Meiqi Zhang
- Department of Physical Education and Health Education, Springfield College, Springfield, MA 01109, USA
- Yale/VA Learning-Based Recovery Center, Yale University, New Haven, CT 06510, USA
| | - Fang Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Dongyu Wang
- Department of Neurology, The Center Hospital of Jinzhou, Jinzhou 121001, China
| | - Xiaohong Ba
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhan Liu
- Department of Physical Education and Health Education, Springfield College, Springfield, MA 01109, USA
| |
Collapse
|
13
|
Taha J, Carioti D, Stucchi N, Chailleux M, Granocchio E, Sarti D, De Salvatore M, Guasti MT. Identifying the risk of dyslexia in bilingual children: The potential of language-dependent and language-independent tasks. Front Psychol 2022; 13:935935. [PMID: 36506974 PMCID: PMC9730291 DOI: 10.3389/fpsyg.2022.935935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigates the linguistic processing and non-linguistic cognitive abilities of monolingual and bilingual children with and without reading difficulties and examines the relationship between these skills and reading. There were 72 Italian-speaking children: 18 monolingual good readers (MONO-GR, Mage = 10;4), 19 monolingual poor readers (MONO-PR, Mage = 10;3), 21 bilingual good readers (BI-GR, Mage = 10;6), and 16 bilingual poor readers (BI-PR, Mage = 10;6). All bilingual children spoke Italian as their L2. Children completed a battery of standardized Italian reading tests, language-dependent tasks: nonword repetition (NWR), sentence repetition (SR), and phonological awareness (PA), and language-independent tasks: timing anticipation, beat synchronization, inhibition control, auditory reaction time, and rapid automatized naming (RAN). Poor readers scored below good readers on the language-dependent tasks, including NWR, PA, and SR. Beat synchronization was the only language-independent task sensitive to reading ability, with poor readers showing greater variability than good readers in tapping to fast rhythms. SR was the only task influenced by language experience as bilinguals underperformed monolinguals on the task. Moreover, there were weak to moderate correlations between performance on some language-dependent tasks (NWR, PA), language-independent tasks (inhibition control, RAN), and reading measures. Performance on the experimental tasks (except for RAN) was not associated with the length of exposure to Italian. The results highlight the potential of NWR, PA, SR, and beat synchronization tasks in identifying the risk of dyslexia in bilingual populations. Future research is needed to validate these findings and to establish the tasks' diagnostic accuracy.
Collapse
Affiliation(s)
- Juhayna Taha
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Desire Carioti
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Natale Stucchi
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Mathilde Chailleux
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Elisa Granocchio
- Developmental Neurology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Daniela Sarti
- Developmental Neurology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Marinella De Salvatore
- Developmental Neurology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Maria Teresa Guasti
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
14
|
Frischen U, Degé F, Schwarzer G. The relation between rhythm processing and cognitive abilities during child development: The role of prediction. Front Psychol 2022; 13:920513. [PMID: 36211925 PMCID: PMC9539453 DOI: 10.3389/fpsyg.2022.920513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythm and meter are central elements of music. From the very beginning, children are responsive to rhythms and acquire increasingly complex rhythmic skills over the course of development. Previous research has shown that the processing of musical rhythm is not only related to children’s music-specific responses but also to their cognitive abilities outside the domain of music. However, despite a lot of research on that topic, the connections and underlying mechanisms involved in such relation are still unclear in some respects. In this article, we aim at analyzing the relation between rhythmic and cognitive-motor abilities during childhood and at providing a new hypothesis about this relation. We consider whether predictive processing may be involved in the relation between rhythmic and various cognitive abilities and hypothesize that prediction as a cross-domain process is a central mechanism building a bridge between rhythm processing and cognitive-motor abilities. Further empirical studies focusing on rhythm processing and cognitive-motor abilities are needed to precisely investigate the links between rhythmic, predictive, and cognitive processes.
Collapse
Affiliation(s)
- Ulrike Frischen
- Department of Music, University of Oldenburg, Oldenburg, Germany
- *Correspondence: Ulrike Frischen,
| | - Franziska Degé
- Music Department, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Gudrun Schwarzer
- Department of Developmental Psychology, Faculty of Psychology and Sports Science, University of Giessen, Giessen, Germany
- Gudrun Schwarzer,
| |
Collapse
|
15
|
Goswami U. Language acquisition and speech rhythm patterns: an auditory neuroscience perspective. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211855. [PMID: 35911192 PMCID: PMC9326295 DOI: 10.1098/rsos.211855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
All human infants acquire language, but their brains do not know which language/s to prepare for. This observation suggests that there are fundamental components of the speech signal that contribute to building a language system, and fundamental neural processing mechanisms that use these components, which are shared across languages. Equally, disorders of language acquisition are found across all languages, with the most prevalent being developmental language disorder (approx. 7% prevalence), where oral language comprehension and production is atypical, and developmental dyslexia (approx. 7% prevalence), where written language acquisition is atypical. Recent advances in auditory neuroscience, along with advances in modelling the speech signal from an amplitude modulation (AM, intensity or energy change) perspective, have increased our understanding of both language acquisition and these developmental disorders. Speech rhythm patterns turn out to be fundamental to both sensory and neural linguistic processing. The rhythmic routines typical of childcare in many cultures, the parental practice of singing lullabies to infants, and the ubiquitous presence of BabyTalk (infant-directed speech) all enhance the fundamental AM components that contribute to building a linguistic brain.
Collapse
Affiliation(s)
- Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Wu Y, Cheng Y, Yang X, Yu W, Wan Y. Dyslexia: A Bibliometric and Visualization Analysis. Front Public Health 2022; 10:915053. [PMID: 35812514 PMCID: PMC9260156 DOI: 10.3389/fpubh.2022.915053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Dyslexia is a disorder characterized by an impaired ability to understand written and printed words or phrases. Epidemiological longitudinal data show that dyslexia is highly prevalent, affecting 10-20% of the population regardless of gender. This study aims to provide a detailed overview of research status and development characteristics of dyslexia from types of articles, years, countries, institutions, journals, authors, author keywords, and highly cited papers. A total of 9,166 publications have been retrieved from the Social Sciences Citation Index (SSCI) and Science Citation Index Expanded (SCI-E) from 2000 to 2021. The United States of America, United Kingdom, and Germany were the top three most productive countries in terms of the number of publications. China, Israel, and Japan led the Asia research on dyslexia. University of Oxford had the most publications and won first place in terms of h-index. Dyslexia was the most productive journal in this field and Psychology was the most used subject category. Keywords analysis indicated that "developmental dyslexia," "phonological awareness," children and fMRI were still the main research topics. "Literacy," "rapid automatized naming (RAN)," "assessment," "intervention," "meta-analysis," "Chinese," "executive function," "morphological awareness," "decoding," "dyscalculia," "EEG," "Eye tracking," "rhythm," "bilingualism," and "functional connectivity" might become the new research hotspots.
Collapse
Affiliation(s)
- Yanqi Wu
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yanxia Cheng
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Xianlin Yang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Wenyan Yu
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
17
|
Bánki A, Brzozowska A, Hoehl S, Köster M. Neural Entrainment vs. Stimulus-Tracking: A Conceptual Challenge for Rhythmic Perceptual Stimulation in Developmental Neuroscience. Front Psychol 2022; 13:878984. [PMID: 35602682 PMCID: PMC9121997 DOI: 10.3389/fpsyg.2022.878984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Bánki
- Faculty of Psychology, University of Vienna, Vienna, Austria
- *Correspondence: Anna Bánki
| | | | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Moritz Köster
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Wei Y, Hancock R, Mozeiko J, Large EW. The relationship between entrainment dynamics and reading fluency assessed by sensorimotor perturbation. Exp Brain Res 2022; 240:1775-1790. [PMID: 35507069 DOI: 10.1007/s00221-022-06369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
A consistent relationship has been found between rhythmic processing and reading skills. Impairment of the ability to entrain movements to an auditory rhythm in clinical populations with language-related deficits, such as children with developmental dyslexia, has been found in both behavioral and neural studies. In this study, we explored the relationship between rhythmic entrainment, behavioral synchronization, reading fluency, and reading comprehension in neurotypical English- and Mandarin-speaking adults. First, we examined entrainment stability by asking participants to coordinate taps with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Next, we assessed behavioral synchronization by asking participants to coordinate taps with the syllables they produced while reading sentences as naturally as possible (tap to syllable task). Finally, we measured reading fluency and reading comprehension for native English and native Mandarin speakers. Stability of entrainment correlated strongly with tap to syllable task performance and with reading fluency, and both findings generalized across English and Mandarin speakers.
Collapse
Affiliation(s)
- Yi Wei
- Department of Psychological Sciences, University of Connecticut, Storrs, USA.
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.
- The Connecticut Institute for the Brain and Cognitive Sciences of University of Connecticut, Storrs, USA.
| | - Roeland Hancock
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
- Brain Imaging Research Center, University of Connecticut, Storrs, USA
- The Connecticut Institute for the Brain and Cognitive Sciences of University of Connecticut, Storrs, USA
| | - Jennifer Mozeiko
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, USA
| | - Edward W Large
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
- Department of Physics, University of Connecticut, Storrs, USA
- Brain Imaging Research Center, University of Connecticut, Storrs, USA
- The Connecticut Institute for the Brain and Cognitive Sciences of University of Connecticut, Storrs, USA
| |
Collapse
|
19
|
Fiveash A, Bella SD, Bigand E, Gordon RL, Tillmann B. You got rhythm, or more: The multidimensionality of rhythmic abilities. Atten Percept Psychophys 2022; 84:1370-1392. [PMID: 35437703 PMCID: PMC9614186 DOI: 10.3758/s13414-022-02487-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Humans have a remarkable capacity for perceiving and producing rhythm. Rhythmic competence is often viewed as a single concept, with participants who perform more or less accurately on a single rhythm task. However, research is revealing numerous sub-processes and competencies involved in rhythm perception and production, which can be selectively impaired or enhanced. To investigate whether different patterns of performance emerge across tasks and individuals, we measured performance across a range of rhythm tasks from different test batteries. Distinct performance patterns could potentially reveal separable rhythmic competencies that may draw on distinct neural mechanisms. Participants completed nine rhythm perception and production tasks selected from the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA), the Beat Alignment Test (BAT), the Beat-Based Advantage task (BBA), and two tasks from the Burgundy best Musical Aptitude Test (BbMAT). Principal component analyses revealed clear separation of task performance along three main dimensions: production, beat-based rhythm perception, and sequence memory-based rhythm perception. Hierarchical cluster analyses supported these results, revealing clusters of participants who performed selectively more or less accurately along different dimensions. The current results support the hypothesis of divergence of rhythmic skills. Based on these results, we provide guidelines towards a comprehensive testing of rhythm abilities, including at least three short tasks measuring: (1) rhythm production (e.g., tapping to metronome/music), (2) beat-based rhythm perception (e.g., BAT), and (3) sequence memory-based rhythm processing (e.g., BBA). Implications for underlying neural mechanisms, future research, and potential directions for rehabilitation and training programs are discussed.
Collapse
Affiliation(s)
- Anna Fiveash
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000, Lyon, France.
- University of Lyon 1, Lyon, France.
| | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
- University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | | | - Reyna L Gordon
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000, Lyon, France
- University of Lyon 1, Lyon, France
| |
Collapse
|
20
|
Kunchulia M, Parkosadze K, Lomidze N, Tatishvili T, Thomaschke R. Children with developmental dyslexia show an increased variable foreperiod effect. JOURNAL OF COGNITIVE PSYCHOLOGY 2022. [DOI: 10.1080/20445911.2022.2060989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marina Kunchulia
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
- Laboratory of Vision Physiology, Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| | - Khatuna Parkosadze
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
- Laboratory of Vision Physiology, Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| | - Nino Lomidze
- Department of Psychology, McLain Association for Children Georgia, Tbilisi, Georgia
| | - Tamari Tatishvili
- Faculty of Psychology and Educational Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Roland Thomaschke
- Department of Psychology, Time, Interaction, and Self-determination Group, at the Cognition, Action and Sustainability Unit, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
REPP: A robust cross-platform solution for online sensorimotor synchronization experiments. Behav Res Methods 2022; 54:2271-2285. [PMID: 35149980 PMCID: PMC8853279 DOI: 10.3758/s13428-021-01722-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
Sensorimotor synchronization (SMS), the rhythmic coordination of perception and action, is a fundamental human skill that supports many behaviors, including music and dance (Repp, 2005; Repp & Su, 2013). Traditionally, SMS experiments have been performed in the laboratory using finger tapping paradigms, and have required equipment with high temporal fidelity to capture the asynchronies between the time of the tap and the corresponding cue event. Thus, SMS is particularly challenging to study with online research, where variability in participants’ hardware and software can introduce uncontrolled latency and jitter into recordings. Here we present REPP (Rhythm ExPeriment Platform), a novel technology for measuring SMS in online experiments that can work efficiently using the built-in microphone and speakers of standard laptop computers. In a series of calibration and behavioral experiments, we demonstrate that REPP achieves high temporal accuracy (latency and jitter within 2 ms on average), high test-retest reliability both in the laboratory (r = .87) and online (r = .80), and high concurrent validity (r = .94). We also show that REPP is fully automated and customizable, enabling researchers to monitor experiments in real time and to implement a wide variety of SMS paradigms. We discuss online methods for ensuring high recruiting efficiency and data quality, including pre-screening tests and automatic procedures for quality monitoring. REPP can therefore open new avenues for research on SMS that would be nearly impossible in the laboratory, reducing experimental costs while massively increasing the reach, scalability, and speed of data collection.
Collapse
|
22
|
Fiveash A, Bedoin N, Gordon RL, Tillmann B. Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders. Neuropsychology 2021; 35:771-791. [PMID: 34435803 PMCID: PMC8595576 DOI: 10.1037/neu0000766] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Music and speech are complex signals containing regularities in how they unfold in time. Similarities between music and speech/language in terms of their auditory features, rhythmic structure, and hierarchical structure have led to a large body of literature suggesting connections between the two domains. However, the precise underlying mechanisms behind this connection remain to be elucidated. METHOD In this theoretical review article, we synthesize previous research and present a framework of potentially shared neural mechanisms for music and speech rhythm processing. We outline structural similarities of rhythmic signals in music and speech, synthesize prominent music and speech rhythm theories, discuss impaired timing in developmental speech and language disorders, and discuss music rhythm training as an additional, potentially effective therapeutic tool to enhance speech/language processing in these disorders. RESULTS We propose the processing rhythm in speech and music (PRISM) framework, which outlines three underlying mechanisms that appear to be shared across music and speech/language processing: Precise auditory processing, synchronization/entrainment of neural oscillations to external stimuli, and sensorimotor coupling. The goal of this framework is to inform directions for future research that integrate cognitive and biological evidence for relationships between rhythm processing in music and speech. CONCLUSION The current framework can be used as a basis to investigate potential links between observed timing deficits in developmental disorders, impairments in the proposed mechanisms, and pathology-specific deficits which can be targeted in treatment and training supporting speech therapy outcomes. On these grounds, we propose future research directions and discuss implications of our framework. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Anna Fiveash
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, Lyon, France
| | - Nathalie Bedoin
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, Lyon, France
- University of Lyon 2, CNRS, UMR5596, Lyon, F-69000, France
| | - Reyna L. Gordon
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
23
|
Formoso MA, Ortiz A, Martinez-Murcia FJ, Gallego N, Luque JL. Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis. SENSORS 2021; 21:s21217061. [PMID: 34770378 PMCID: PMC8588444 DOI: 10.3390/s21217061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023]
Abstract
Objective Dyslexia diagnosis is a challenging task, since traditional diagnosis methods are not based on biological markers but on behavioural tests. Although dyslexia diagnosis has been addressed by these tests in clinical practice, it is difficult to extract information about the brain processes involved in the different tasks and, then, to go deeper into its biological basis. Thus, the use of biomarkers can contribute not only to the diagnosis but also to a better understanding of specific learning disorders such as dyslexia. In this work, we use Electroencephalography (EEG) signals to discover differences among controls and dyslexic subjects using signal processing and artificial intelligence techniques. Specifically, we measure phase synchronization among channels, to reveal the functional brain network activated during auditory processing. On the other hand, to explore synchronicity patterns risen by low-level auditory processing, we used specific stimuli consisting in band-limited white noise, modulated in amplitude at different frequencies. The differential information contained in the functional (i.e., synchronization) network has been processed by an anomaly detection system that addresses the problem of subjects variability by an outlier-detection method based on vector quantization. The results, obtained for 7 years-old children, show that the proposed method constitutes an useful tool for clinical use, with the area under ROC curve (AUC) values up to 0.95 in differential diagnosis tasks.
Collapse
Affiliation(s)
- Marco A. Formoso
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
| | - Andrés Ortiz
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), 18014 Granada, Spain;
- Correspondence: ; Tel.: +34-952133353
| | - Francisco J. Martinez-Murcia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), 18014 Granada, Spain;
- Department of Signal Theory, Networking and Communications, University of Granada, 18014 Granada, Spain
| | - Nicolás Gallego
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
| | - Juan L. Luque
- Department of Basic Psychology, University of Malaga, 29019 Málaga, Spain;
| |
Collapse
|
24
|
Lense MD, Ladányi E, Rabinowitch TC, Trainor L, Gordon R. Rhythm and timing as vulnerabilities in neurodevelopmental disorders. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200327. [PMID: 34420385 PMCID: PMC8380970 DOI: 10.1098/rstb.2020.0327] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Millions of children are impacted by neurodevelopmental disorders (NDDs), which unfold early in life, have varying genetic etiologies and can involve a variety of specific or generalized impairments in social, cognitive and motor functioning requiring potentially lifelong specialized supports. While specific disorders vary in their domain of primary deficit (e.g. autism spectrum disorder (social), attention-deficit/hyperactivity disorder (attention), developmental coordination disorder (motor) and developmental language disorder (language)), comorbidities between NDDs are common. Intriguingly, many NDDs are associated with difficulties in skills related to rhythm, timing and synchrony though specific profiles of rhythm/timing impairments vary across disorders. Impairments in rhythm/timing may instantiate vulnerabilities for a variety of NDDs and may contribute to both the primary symptoms of each disorder as well as the high levels of comorbidities across disorders. Drawing upon genetic, neural, behavioural and interpersonal constructs across disorders, we consider how disrupted rhythm and timing skills early in life may contribute to atypical developmental cascades that involve overlapping symptoms within the context of a disorder's primary deficits. Consideration of the developmental context, as well as common and unique aspects of the phenotypes of different NDDs, will inform experimental designs to test this hypothesis including via potential mechanistic intervention approaches. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Miriam D. Lense
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eniko Ladányi
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Laurel Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Reyna Gordon
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Kertész C, Honbolygó F. Tapping to Music Predicts Literacy Skills of First-Grade Children. Front Psychol 2021; 12:741540. [PMID: 34675847 PMCID: PMC8524048 DOI: 10.3389/fpsyg.2021.741540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
The ability to synchronise one's movements to the sound of a regular beat has been found to be associated with children's language and reading abilities. Sensorimotor synchronisation or tapping performance can among other factors [e.g., working memory and rapid automatized naming (RAN)] predict phonological awareness and word reading accuracy and fluency of first graders. While tapping tasks that use a simple metronome sound are more often used, applying musical stimuli has the potential advantage of being more engaging and motivating for children. In the present study, we investigated whether tapping to a metronome beat or complex musical stimuli would predict phonological awareness and reading outcomes of Hungarian 6-7-year olds (N=37). We also measured participants' general cognitive abilities (RAN, non-verbal intelligence and verbal working memory). Our results show that phonological awareness, spelling and reading accuracy were associated with the musical tasks while reading fluency was predicted by the metronome trials. Our findings suggest that complex musical tasks should be considered when investigating this age group, as they were, in general, more effective in predicting literacy outcomes.
Collapse
Affiliation(s)
- Csaba Kertész
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Honbolygó
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
26
|
Rhythm discrimination and metronome tapping in 4-year-old children at risk for developmental dyslexia. COGNITIVE DEVELOPMENT 2021. [DOI: 10.1016/j.cogdev.2021.101129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Rathcke T, Lin CY. Towards a Comprehensive Account of Rhythm Processing Issues in Developmental Dyslexia. Brain Sci 2021; 11:brainsci11101303. [PMID: 34679368 PMCID: PMC8533826 DOI: 10.3390/brainsci11101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Developmental dyslexia is typically defined as a difficulty with an individual's command of written language, arising from deficits in phonological awareness. However, motor entrainment difficulties in non-linguistic synchronization and time-keeping tasks have also been reported. Such findings gave rise to proposals of an underlying rhythm processing deficit in dyslexia, even though to date, evidence for impaired motor entrainment with the rhythm of natural speech is rather scarce, and the role of speech rhythm in phonological awareness is unclear. The present study aimed to fill these gaps. Dyslexic adults and age-matched control participants with variable levels of previous music training completed a series of experimental tasks assessing phoneme processing, rhythm perception, and motor entrainment abilities. In a rhythm entrainment task, participants tapped along to the perceived beat of natural spoken sentences. In a phoneme processing task, participants monitored for sonorant and obstruent phonemes embedded in nonsense strings. Individual sensorimotor skills were assessed using a number of screening tests. The results lacked evidence for a motor impairment or a general motor entrainment difficulty in dyslexia, at least among adult participants of the study. Instead, the results showed that the participants' performance in the phonemic task was predictive of their performance in the rhythmic task, but not vice versa, suggesting that atypical rhythm processing in dyslexia may be the consequence, but not the cause, of dyslexic difficulties with phoneme-level encoding. No evidence for a deficit in the entrainment to the syllable rate in dyslexic adults was found. Rather, metrically weak syllables were significantly less often at the center of rhythmic attention in dyslexic adults as compared to neurotypical controls, with an increased tendency in musically trained participants. This finding could not be explained by an auditory deficit in the processing of acoustic-prosodic cues to the rhythm structure, but it is likely to be related to the well-documented auditory short-term memory issue in dyslexia.
Collapse
Affiliation(s)
- Tamara Rathcke
- Department of Linguistics, Faculty of Humanities, University of Konstanz, 78464 Konstanz, Germany
- Modern Languages and Linguistics, School of Cultures and Languages, University of Kent, Canterbury CT2 7NR, UK;
- Correspondence:
| | - Chia-Yuan Lin
- Modern Languages and Linguistics, School of Cultures and Languages, University of Kent, Canterbury CT2 7NR, UK;
- Department of Psychology, School of Humanities and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
28
|
Gibbon S, Attaheri A, Ní Choisdealbha Á, Rocha S, Brusini P, Mead N, Boutris P, Olawole-Scott H, Ahmed H, Flanagan S, Mandke K, Keshavarzi M, Goswami U. Machine learning accurately classifies neural responses to rhythmic speech vs. non-speech from 8-week-old infant EEG. BRAIN AND LANGUAGE 2021; 220:104968. [PMID: 34111684 PMCID: PMC8358977 DOI: 10.1016/j.bandl.2021.104968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 05/10/2023]
Abstract
Currently there are no reliable means of identifying infants at-risk for later language disorders. Infant neural responses to rhythmic stimuli may offer a solution, as neural tracking of rhythm is atypical in children with developmental language disorders. However, infant brain recordings are noisy. As a first step to developing accurate neural biomarkers, we investigate whether infant brain responses to rhythmic stimuli can be classified reliably using EEG from 95 eight-week-old infants listening to natural stimuli (repeated syllables or drumbeats). Both Convolutional Neural Network (CNN) and Support Vector Machine (SVM) approaches were employed. Applied to one infant at a time, the CNN discriminated syllables from drumbeats with a mean AUC of 0.87, against two levels of noise. The SVM classified with AUC 0.95 and 0.86 respectively, showing reduced performance as noise increased. Our proof-of-concept modelling opens the way to the development of clinical biomarkers for language disorders related to rhythmic entrainment.
Collapse
Affiliation(s)
- Samuel Gibbon
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK.
| | - Adam Attaheri
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Áine Ní Choisdealbha
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Sinead Rocha
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Perrine Brusini
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Natasha Mead
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Panagiotis Boutris
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Helen Olawole-Scott
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Henna Ahmed
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Sheila Flanagan
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| | - Mahmoud Keshavarzi
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK; Department of Bioengineering and Centre for Neurotechnology, Imperial College London, UK
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, UK
| |
Collapse
|
29
|
Chang A, Bedoin N, Canette LH, Nozaradan S, Thompson D, Corneyllie A, Tillmann B, Trainor LJ. Atypical beta power fluctuation while listening to an isochronous sequence in dyslexia. Clin Neurophysiol 2021; 132:2384-2390. [PMID: 34454265 DOI: 10.1016/j.clinph.2021.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Developmental dyslexia is a reading disorder that features difficulties in perceiving and tracking rhythmic regularities in auditory streams, such as speech and music. Studies on typical healthy participants have shown that power fluctuations of neural oscillations in beta band (15-25 Hz) reflect an essential mechanism for tracking rhythm or entrainment and relate to predictive timing and attentional processes. Here we investigated whether adults with dyslexia have atypical beta power fluctuation. METHODS The electroencephalographic activities of individuals with dyslexia (n = 13) and typical control participants (n = 13) were measured while they passively listened to an isochronous tone sequence (2 Hz presentation rate). The time-frequency neural activities generated from auditory cortices were analyzed. RESULTS The phase of beta power fluctuation at the 2 Hz stimulus presentation rate differed and appeared opposite between individuals with dyslexia and controls. CONCLUSIONS Atypical beta power fluctuation might reflect deficits in perceiving and tracking auditory rhythm in dyslexia. SIGNIFICANCE These findings extend our understanding of atypical neural activities for tracking rhythm in dyslexia and could inspire novel methods to objectively measure the benefits of training, and predict potential benefit of auditory rhythmic rehabilitation programs on an individual basis.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nathalie Bedoin
- CNRS, UMR5292, INSERM, U1028, Lyon Neuroscience Research Center, IMPACT Team, Bron, France; University Lyon 1, Villeurbanne, France; University Lyon 2, Bron, France
| | - Laure-Helene Canette
- University Lyon 1, Villeurbanne, France; CNRS, UMR5292, INSERM, U1028, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Bron, France
| | - Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; Institute of Neuroscience (IONS), Université catholique de Louvain (UCL), Avenue Mounier 53, Woluwe-Saint-Lambert, 1200, Belgium
| | - Dave Thompson
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, ON L8S 4K1, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| | - Alexandra Corneyllie
- University Lyon 1, Villeurbanne, France; CNRS, UMR5292, INSERM, U1028, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Bron, France
| | - Barbara Tillmann
- University Lyon 1, Villeurbanne, France; CNRS, UMR5292, INSERM, U1028, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Bron, France.
| | - Laurel J Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, ON L8S 4K1, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada.
| |
Collapse
|
30
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Bonacina S, Huang S, White-Schwoch T, Krizman J, Nicol T, Kraus N. Rhythm, reading, and sound processing in the brain in preschool children. NPJ SCIENCE OF LEARNING 2021; 6:20. [PMID: 34188057 PMCID: PMC8242059 DOI: 10.1038/s41539-021-00097-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
A child's success in school relies on their ability to quickly grasp language and reading skills, the foundations of which are acquired even before entering a formal classroom setting. Previous studies in preschoolers have begun to establish relationships linking beat synchronization, preliteracy skills, and auditory processing. Beat synchronization involves the integration of sensorimotor systems with auditory and cognitive circuits and, therefore calls on many of the same neural networks as language. Using a drumming task, we analyzed the relationship between children's ability to maintain an isochronous beat with preliteracy skills and frequency following responses (FFRs) in over 150 preschoolers. We show that preschoolers who performed well on the beat synchronization task outscored their peers on all preliteracy measures and had more robust FFRs. Furthermore, the good synchronizers experienced less degradation of certain FFR measures when listening in noise. Together, our results are consistent with the view that rhythm, preliteracy, and auditory processing are interconnected during early childhood.
Collapse
Affiliation(s)
- Silvia Bonacina
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Stephanie Huang
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jennifer Krizman
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Trent Nicol
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA.
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
32
|
Abstract
Synchronizing movements with an external periodic stimulus, such as tapping your foot along with a metronome, is a remarkable human skill called sensorimotor synchronization. A growing body of literature investigates this process, but experiments require collecting responses with high temporal reliability, which often requires specialized hardware. The current article presents and validates TeensyTap, an inexpensive, highly functional framework with excellent timing performance. The framework uses widely available, low-cost hardware and consists of custom-written open-source software and communication protocols. TeensyTap allows running complete experiments through a graphical user interface and can simultaneously present a pacing signal (metronome), measure movements using a force-sensitive resistor, and deliver auditory feedback, with optional experimenter-specified artificial feedback delays. Movement data is communicated to a computer and saved for offline analysis in a format that allows it to be easily imported into spreadsheet programs. The present work also reports a validation experiment showing that timing performance of TeensyTap is highly accurate, ranking it among the gold standard tools available in the field. Metronome pacing signals are presented with millisecond accuracy, feedback sounds are delivered on average 2 ms following the subjects' taps, and the timing log files produced by the device are unbiased and accurate to within a few milliseconds. The framework allows for a range of experimental questions to be addressed and, since it is open source and transparent, researchers with some technical expertise can easily adapt and extend it to accommodate a host of possible future experiments that have yet to be imagined.
Collapse
Affiliation(s)
- Floris Tijmen van Vugt
- McGill Psychology Department, Montreal, Canada1
- Haskins Laboratories, New Haven, USA2
- Département de Psychologie, Université de Montréal, Canada3
| |
Collapse
|
33
|
Speech-Brain Frequency Entrainment of Dyslexia with and without Phonological Deficits. Brain Sci 2020; 10:brainsci10120920. [PMID: 33260681 PMCID: PMC7760068 DOI: 10.3390/brainsci10120920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Developmental dyslexia is a cognitive disorder characterized by difficulties in linguistic processing. Our purpose is to distinguish subtypes of developmental dyslexia by the level of speech–EEG frequency entrainment (δ: 1–4; β: 12.5–22.5; γ1: 25–35; and γ2: 35–80 Hz) in word/pseudoword auditory discrimination. Depending on the type of disabilities, dyslexics can divide into two subtypes—with less pronounced phonological deficits (NoPhoDys—visual dyslexia) and with more pronounced ones (PhoDys—phonological dyslexia). For correctly recognized stimuli, the δ-entrainment is significantly worse in dyslexic children compared to controls at a level of speech prosody and syllabic analysis. Controls and NoPhoDys show a stronger δ-entrainment in the left-hemispheric auditory cortex (AC), anterior temporal lobe (ATL), frontal, and motor cortices than PhoDys. Dyslexic subgroups concerning normolexics have a deficit of δ-entrainment in the left ATL, inferior frontal gyrus (IFG), and the right AC. PhoDys has higher δ-entrainment in the posterior part of adjacent STS regions than NoPhoDys. Insufficient low-frequency β changes over the IFG, the inferior parietal lobe of PhoDys compared to NoPhoDys correspond to their worse phonological short-term memory. Left-dominant 30 Hz-entrainment for normolexics to phonemic frequencies characterizes the right AC, adjacent regions to superior temporal sulcus of dyslexics. The pronounced 40 Hz-entrainment in PhoDys than the other groups suggest a hearing “reassembly” and a poor phonological working memory. Shifting up to higher-frequency γ-entrainment in the AC of NoPhoDys can lead to verbal memory deficits. Different patterns of cortical reorganization based on the left or right hemisphere lead to differential dyslexic profiles.
Collapse
|
34
|
O'Brien G, Yeatman JD. Bridging sensory and language theories of dyslexia: Toward a multifactorial model. Dev Sci 2020; 24:e13039. [PMID: 33021019 PMCID: PMC8244000 DOI: 10.1111/desc.13039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 01/27/2023]
Abstract
Competing theories of dyslexia posit that reading difficulties arise from impaired visual, auditory, phonological, or statistical learning mechanisms. Importantly, many theories posit that dyslexia reflects a cascade of impairments emanating from a single “core deficit”. Here we report two studies evaluating core deficit and multifactorial models. In Study 1, we use publicly available data from the Healthy Brain Network to test the accuracy of phonological processing measures for predicting dyslexia diagnosis and find that over 30% of cases are misclassified (sensitivity = 66.7%; specificity = 68.2%). In Study 2, we collect a battery of psychophysical measures of visual motion processing and standardized measures of phonological processing in 106 school‐aged children to investigate whether dyslexia is best conceptualized under a core‐deficit model, or as a disorder with heterogenous origins. Specifically, by capitalizing on the drift diffusion model to analyze performance on a visual motion discrimination experiment, we show that deficits in visual motion processing, perceptual decision‐making, and phonological processing manifest largely independently. Based on statistical models of how variance in reading skill is parceled across measures of visual processing, phonological processing, and decision‐making, our results challenge the notion that a unifying deficit characterizes dyslexia. Instead, these findings indicate a model where reading skill is explained by several distinct, additive predictors, or risk factors, of reading (dis)ability.
Collapse
Affiliation(s)
- Gabrielle O'Brien
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA.,Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA, USA.,Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Pagliarini E, Scocchia L, Granocchio E, Sarti D, Stucchi N, Guasti MT. Timing anticipation in adults and children with Developmental Dyslexia: evidence of an inefficient mechanism. Sci Rep 2020; 10:17519. [PMID: 33060637 PMCID: PMC7562876 DOI: 10.1038/s41598-020-73435-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Developmental Dyslexia (DD) is a learning disorder characterized by specific difficulties in learning to read accurately and fluently, which has been generally explained in terms of phonological deficits. Recent research has shown that individuals with DD experience timing difficulties in the domains of language, music perception and motor control, probably due to impaired rhythmic perception, suggesting that timing deficit might be a key underlying factor to explain such a variety of difficulties. The present work presents two experiments aimed at assessing the anticipatory ability on a given rhythm of 9-year old Italian children and Italian adults with and without DD. Both adults and children with DD displayed a greater timing error and were more variable than controls in high predictable stimuli. No difference between participants with and without DD was found in the control condition, in which the uncertain timing of the beat did not permit the extraction of regularities. These results suggest that both children and adults with DD are unable to exploit temporal regularities to efficiently anticipate the next sensory event whereas control participants easily are. By showing that the anticipatory timing system of individuals with Developmental Dyslexia appears affected, this study adds another piece of evidence to the multifaceted reality of Developmental Dyslexia.
Collapse
Affiliation(s)
- Elena Pagliarini
- DiSLL Dipartimento di Studi Linguistici e Letterari, Università degli Studi di Padova, Via E. Vendramini, 13, 35137, Padua, Italy.
| | - Lisa Scocchia
- Department of Psychology, Università degli Studi di Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Elisa Granocchio
- Developmental Neurology Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Giovanni Celoria, 11, 20133, Milan, Italy
| | - Daniela Sarti
- Developmental Neurology Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Giovanni Celoria, 11, 20133, Milan, Italy
| | - Natale Stucchi
- Department of Psychology, Università degli Studi di Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Maria Teresa Guasti
- Department of Psychology, Università degli Studi di Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126, Milan, Italy
| |
Collapse
|
36
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
37
|
Archer K, Pammer K, Vidyasagar TR. A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Front Hum Neurosci 2020; 14:213. [PMID: 32733217 PMCID: PMC7360833 DOI: 10.3389/fnhum.2020.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Knowledge of oscillatory entrainment and its fundamental role in cognitive and behavioral processing has increasingly been applied to research in the field of reading and developmental dyslexia. Growing evidence indicates that oscillatory entrainment to theta frequency spoken language in the auditory domain, along with cross-frequency theta-gamma coupling, support phonological processing (i.e., cognitive encoding of linguistic knowledge gathered from speech) which is required for reading. This theory is called the temporal sampling framework (TSF) and can extend to developmental dyslexia, such that inadequate temporal sampling of speech-sounds in people with dyslexia results in poor theta oscillatory entrainment in the auditory domain, and thus a phonological processing deficit which hinders reading ability. We suggest that inadequate theta oscillations in the visual domain might account for the many magno-dorsal processing, oculomotor control and visual deficits seen in developmental dyslexia. We propose two possible models of a magno-dorsal visual correlate to the auditory TSF: (1) A direct correlate that involves "bottom-up" magnocellular oscillatory entrainment of the visual domain that occurs when magnocellular populations phase lock to theta frequency fixations during reading and (2) an inverse correlate whereby attending to text triggers "top-down" low gamma signals from higher-order visual processing areas, thereby organizing magnocellular populations to synchronize to a theta frequency to drive the temporal control of oculomotor movements and capturing of letter images at a higher frequency.
Collapse
Affiliation(s)
- Kim Archer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Kristen Pammer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Trichur Raman Vidyasagar
- Visual and Cognitive Neuroscience Laboratory, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
38
|
Chiang CH, Hämäläinen J, Xu W, Wang HL. Neural Responses to Musical Rhythm in Chinese Children With Reading Difficulties. Front Psychol 2020; 11:1013. [PMID: 32581920 PMCID: PMC7291366 DOI: 10.3389/fpsyg.2020.01013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
The perception of the musical rhythm has been suggested as one of the predicting factors for reading abilities. Several studies have demonstrated that children with reading difficulties (RD) show reduced neural sensitivity in musical rhythm perception. Despite this prior evidence, the association between music and reading in Chinese is still controversial. In the present study, we sought to answer the question of whether the musical rhythm perception of Chinese children with RD is intact or not, providing further clues on how reading and music might be interlinked across languages. Oddball paradigm was adapted for testing the difference of musical rhythm perception, including predictable and unpredictable omission, in elementary school children with RD and typically developing age-controlled children with magnetoencephalography (MEG). We used the cluster-based permutation tests to examine the statistical difference in neural responses. The event-related field (ERF) components, mismatch negativity (MMNm) and P3a(m), were elicited by the rhythmical patterns with omitted strong beats. Specifically, differential P3a(m) components were found smaller in children with RD when comparing the rhythmical patterns between predictable and unpredicted omission patterns. The results showed that brain responses to the omission in the strong beat of an unpredicted rhythmic pattern were significantly smaller in Chinese children with RD. This indicated that children with RD may be impaired in the auditory sensitivity of rhythmic beats. This also suggests that children with reading difficulties may have atypical neural representations of rhythm that could be one of the underlying factors in dysfluent reading development.
Collapse
Affiliation(s)
- Chun-Han Chiang
- Department of Special Education, National Taiwan Normal University, Taipei, Taiwan
| | - Jarmo Hämäläinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Weiyong Xu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Hsiao-Lan Wang
- Department of Special Education, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
39
|
Sidiras C, Iliadou VV, Nimatoudis I, Bamiou DE. Absence of Rhythm Benefit on Speech in Noise Recognition in Children Diagnosed With Auditory Processing Disorder. Front Neurosci 2020; 14:418. [PMID: 32477048 PMCID: PMC7232546 DOI: 10.3389/fnins.2020.00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/07/2020] [Indexed: 01/23/2023] Open
Abstract
Auditory processing disorder (APD) is a specific deficit in the processing of auditory information along the central auditory nervous system. It is characterized mainly by deficits in speech in noise recognition. APD children may also present with deficits in processing of auditory rhythm. Rhythmic neural entrainment is commonly present in perception of both speech and music, while auditory rhythmic priming of speech in noise has been known to enhance recognition in typical children. Here, we test the hypothesis that the effect of rhythmic priming is compromised in APD children, and further assessed for correlations with verbal and non-verbal auditory processing and cognition. Forty APD children and 33 neurotypical ones were assessed through (a) WRRC, a test measuring the effects of rhythmic priming on speech in noise recognition, (b) a battery of auditory processing tests, commonly used in APD diagnosis, and (c) two cognitive tests, assessing working memory and auditory attention respectively. Findings revealed that (a) the effect of rhythmic priming on speech in noise recognition is absent in APD children, (b) it is linked to non-verbal auditory processing, and (c) it is only weakly dependent on cognition. We discuss these findings in light of Dynamic Attention Theory, neural entrainment and neural oscillations and suggest that these functions may be compromised in APD children. Further research is needed (a) to explore the nature of the mechanics of rhythmic priming on speech in noise perception and why the effect is absent in APD children, (b) which other mechanisms related to both rhythm and language are also affected in this population, and (c) whether music/rhythm training can restore deficits in rhythm effects.
Collapse
Affiliation(s)
- Christos Sidiras
- Clinical Psychoacoustics Lab, 3rd Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Vivian Iliadou
- Clinical Psychoacoustics Lab, 3rd Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- Clinical Psychoacoustics Lab, 3rd Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Doris-Eva Bamiou
- Faculty of Brain Sciences, UCL Ear Institute, University College London, London, United Kingdom
- Hearing & Deafness Biomedical Research Centre, National Institute for Health Research, London, United Kingdom
| |
Collapse
|
40
|
Boll-Avetisyan N, Bhatara A, Höhle B. Processing of Rhythm in Speech and Music in Adult Dyslexia. Brain Sci 2020; 10:E261. [PMID: 32365799 PMCID: PMC7287596 DOI: 10.3390/brainsci10050261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/21/2022] Open
Abstract
Recent studies have suggested that musical rhythm perception ability can affect the phonological system. The most prevalent causal account for developmental dyslexia is the phonological deficit hypothesis. As rhythm is a subpart of phonology, we hypothesized that reading deficits in dyslexia are associated with rhythm processing in speech and in music. In a rhythmic grouping task, adults with diagnosed dyslexia and age-matched controls listened to speech streams with syllables alternating in intensity, duration, or neither, and indicated whether they perceived a strong-weak or weak-strong rhythm pattern. Additionally, their reading and musical rhythm abilities were measured. Results showed that adults with dyslexia had lower musical rhythm abilities than adults without dyslexia. Moreover, lower musical rhythm ability was associated with lower reading ability in dyslexia. However, speech grouping by adults with dyslexia was not impaired when musical rhythm perception ability was controlled: like adults without dyslexia, they showed consistent preferences. However, rhythmic grouping was predicted by musical rhythm perception ability, irrespective of dyslexia. The results suggest associations among musical rhythm perception ability, speech rhythm perception, and reading ability. This highlights the importance of considering individual variability to better understand dyslexia and raises the possibility that musical rhythm perception ability is a key to phonological and reading acquisition.
Collapse
Affiliation(s)
- Natalie Boll-Avetisyan
- SFB1287, Research Focus Cognitive Sciences, Faculty of Human Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany;
| | - Anjali Bhatara
- CNRS, (Integrative Neuroscience and Cognition Center, UMR 8002), Université de Paris, 45 rue des Saints-Pères, 75270 Paris, France;
| | - Barbara Höhle
- SFB1287, Research Focus Cognitive Sciences, Faculty of Human Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany;
| |
Collapse
|
41
|
Ladányi E, Persici V, Fiveash A, Tillmann B, Gordon RL. Is atypical rhythm a risk factor for developmental speech and language disorders? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 11:e1528. [PMID: 32244259 PMCID: PMC7415602 DOI: 10.1002/wcs.1528] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Although a growing literature points to substantial variation in speech/language abilities related to individual differences in musical abilities, mainstream models of communication sciences and disorders have not yet incorporated these individual differences into childhood speech/language development. This article reviews three sources of evidence in a comprehensive body of research aligning with three main themes: (a) associations between musical rhythm and speech/language processing, (b) musical rhythm in children with developmental speech/language disorders and common comorbid attentional and motor disorders, and (c) individual differences in mechanisms underlying rhythm processing in infants and their relationship with later speech/language development. In light of converging evidence on associations between musical rhythm and speech/language processing, we propose the Atypical Rhythm Risk Hypothesis, which posits that individuals with atypical rhythm are at higher risk for developmental speech/language disorders. The hypothesis is framed within the larger epidemiological literature in which recent methodological advances allow for large-scale testing of shared underlying biology across clinically distinct disorders. A series of predictions for future work testing the Atypical Rhythm Risk Hypothesis are outlined. We suggest that if a significant body of evidence is found to support this hypothesis, we can envision new risk factor models that incorporate atypical rhythm to predict the risk of developing speech/language disorders. Given the high prevalence of speech/language disorders in the population and the negative long-term social and economic consequences of gaps in identifying children at-risk, these new lines of research could potentially positively impact access to early identification and treatment. This article is categorized under: Linguistics > Language in Mind and Brain Neuroscience > Development Linguistics > Language Acquisition.
Collapse
Affiliation(s)
- Enikő Ladányi
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Valentina Persici
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Università degli Studi di Milano - Bicocca, Milan, Italy.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Anna Fiveash
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CRNL, INSERM, University of Lyon 1, U1028, CNRS, UMR5292, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CRNL, INSERM, University of Lyon 1, U1028, CNRS, UMR5292, Lyon, France
| | - Reyna L Gordon
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
42
|
Sidiras C, Iliadou VV, Nimatoudis I, Grube M, Griffiths T, Bamiou DE. Deficits in Auditory Rhythm Perception in Children With Auditory Processing Disorder Are Unrelated to Attention. Front Neurosci 2019; 13:953. [PMID: 31551701 PMCID: PMC6743378 DOI: 10.3389/fnins.2019.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
Auditory processing disorder (APD) is defined as a specific deficit in the processing of auditory information along the central auditory nervous system, including bottom-up and top-down neural connectivity. Even though music comprises a big part of audition, testing music perception in APD population has not yet gained wide attention in research. This work tests the hypothesis that deficits in rhythm perception occur in a group of subjects with APD. The primary focus of this study is to measure perception of a simple auditory rhythm, i.e., short isochronous sequences of beats, in APD children and to compare their performance to age-matched normal controls. The secondary question is to study the relationship between cognition and auditory processing of rhythm perception. We tested 39 APD children and 25 control children aged between 6 and 12 years via (a) clinical APD tests, including a monaural speech in noise test, (b) isochrony task, a test measuring the detection of small deviations from perfect isochrony in a isochronous beats sequence, and (c) two cognitive tests (auditory memory and auditory attention). APD children scored worse in isochrony task compared to the age-matched control group. In the APD group, neither measure of cognition (attention nor memory) correlated with performance in isochrony task. Left (but not right) speech in noise performance correlated with performance in isochrony task. In the control group a large correlation (r = -0.701, p = 0.001) was observed between isochrony task and attention, but not with memory. The results demonstrate a deficit in the perception of regularly timed sequences in APD that is relevant to the perception of speech in noise, a ubiquitous complaint in this condition. Our results suggest (a) the existence of a non-attention related rhythm perception deficit in APD children and (b) differential effects of attention on task performance in normal vs. APD children. The potential beneficial use of music/rhythm training for rehabilitation purposes in APD children would need to be explored.
Collapse
Affiliation(s)
- Christos Sidiras
- Clinical Psychoacoustics Lab, Third Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Vivian Iliadou
- Clinical Psychoacoustics Lab, Third Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- Clinical Psychoacoustics Lab, Third Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Manon Grube
- Auditory Group, Medical School, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tim Griffiths
- Auditory Group, Medical School, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Doris-Eva Bamiou
- Faculty of Brain Sciences, UCL Ear Institute, University College London, London, United Kingdom
- Hearing and Deafness Biomedical Research Centre, National Institute for Health Research, London, United Kingdom
| |
Collapse
|
43
|
Cancer A, Stievano G, Pace G, Colombo A, Antonietti A. Cognitive Processes Underlying Reading Improvement during a Rhythm-Based Intervention. A Small-Scale Investigation of Italian Children with Dyslexia. CHILDREN (BASEL, SWITZERLAND) 2019; 6:E91. [PMID: 31398926 PMCID: PMC6721349 DOI: 10.3390/children6080091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Music and rhythm-based training programs to improve reading are a novel approach to treatment of developmental dyslexia and have attracted the attention of trainers and researchers. Experimental studies demonstrating poor basic auditory processing abilities in individuals with dyslexia suggest they should be effective. On this basis, the efficacy of a novel rhythm-based intervention, Rhythmic Reading Training (RRT), was recently investigated and found to improve reading skills in Italian children with dyslexia, but its mode of action remains somewhat unclear. In this study, 19 children and preadolescents with dyslexia received 20 sessions of RRT over 10 weeks. Gains in a set of reading-related cognitive abilities-verbal working memory, auditory, and visual attention, and rhythm processing-were measured, along with reading outcomes. Analysis of the specific contribution of cognitive subprocesses to the primary effect of RRT highlighted that reading speed improvement during the intervention was related to rhythm and auditory discrimination abilities as well as verbal working memory. The relationships among specific reading parameters and the neuropsychological profile of participants are discussed.
Collapse
Affiliation(s)
- Alice Cancer
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy.
| | - Giulia Stievano
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Gabriella Pace
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Alessia Colombo
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Alessandro Antonietti
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| |
Collapse
|
44
|
The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia 2019; 130:66-77. [DOI: 10.1016/j.neuropsychologia.2018.03.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|
45
|
Maróti E, Honbolygó F, Weiss B. Neural entrainment to the beat in multiple frequency bands in 6-7-year-old children. Int J Psychophysiol 2019; 141:45-55. [PMID: 31078641 DOI: 10.1016/j.ijpsycho.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 11/28/2022]
Abstract
Entrainment to periodic acoustic stimuli has been found to relate both to the auditory and motor cortices, and it could be influenced by the maturity of these brain regions. However, existing research in this topic provides data about different oscillatory brain activities in different age groups with different musical background. In order to obtain a more coherent picture and examine early manifestations of entrainment, we assessed brain oscillations at multiple time scales (beta: 15-25 Hz, gamma: 28-48 Hz) and in steady state evoked potentials (SS-EPs in short) in 6-7-year-old children with no musical background right at the start of primary school before they learnt to read. Our goal was to exclude the effect of music training and reading, since previous studies have shown that sensorimotor entrainment (movement synchronization to the beat) is related to musical and reading abilities. We found evidence for endogenous anticipatory processing in the gamma band related to meter perception, and stimulus-related frequency specific responses. However, we did not find evidence for an interaction between auditory and motor networks, which suggests that endogenous mechanisms related to auditory processing may mature earlier than those that underlie motor actions, such as sensorimotor synchronization.
Collapse
Affiliation(s)
- Emese Maróti
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Ferenc Honbolygó
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Béla Weiss
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
46
|
Bonacina S, Krizman J, White-Schwoch T, Kraus N. Clapping in time parallels literacy and calls upon overlapping neural mechanisms in early readers. Ann N Y Acad Sci 2018; 1423:338-348. [PMID: 29754464 DOI: 10.1111/nyas.13704] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 12/01/2022]
Abstract
The auditory system is extremely precise in processing the temporal information of perceptual events and using these cues to coordinate action. Synchronizing movement to a steady beat relies on this bidirectional connection between sensory and motor systems, and activates many of the auditory and cognitive processes used when reading. Here, we use Interactive Metronome, a clinical intervention technology requiring an individual to clap her hands in time with a steady beat, to investigate whether the links between literacy and synchronization skills, previously established in older children, are also evident in children who are learning to read. We tested 64 typically developing children (ages 5-7 years) on their synchronization abilities, neurophysiological responses to speech in noise, and literacy skills. We found that children who have lower variability in synchronizing have higher phase consistency, higher stability, and more accurate envelope encoding-all neurophysiological response components linked to language skills. Moreover, performing the same task with visual feedback reveals links with literacy skills, notably processing speed, phonological processing, word reading, spelling, morphology, and syntax. These results suggest that rhythm skills and literacy call on overlapping neural mechanisms, supporting the idea that rhythm training may boost literacy in part by engaging sensory-motor systems.
Collapse
Affiliation(s)
- Silvia Bonacina
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois
- Department of Communication Sciences, Northwestern University, Evanston, Illinois
| | - Jennifer Krizman
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois
- Department of Communication Sciences, Northwestern University, Evanston, Illinois
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois
- Department of Communication Sciences, Northwestern University, Evanston, Illinois
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois
- Department of Communication Sciences, Northwestern University, Evanston, Illinois
- Institute for Neuroscience, Evanston, Illinois
- Department of Neurobiology, Northwestern University, Evanston, Illinois
- Department of Otolaryngology, Northwestern University, Evanston, Illinois
| |
Collapse
|
47
|
Is Dyslexia a Brain Disorder? Brain Sci 2018; 8:brainsci8040061. [PMID: 29621138 PMCID: PMC5924397 DOI: 10.3390/brainsci8040061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Specific word reading difficulty, commonly termed ‘developmental dyslexia’, refers to the low end of the word reading skill distribution but is frequently considered to be a neurodevelopmental disorder. This term implies that brain development is thought to be disrupted, resulting in an abnormal and dysfunctional brain. We take issue with this view, pointing out that there is no evidence of any obvious neurological abnormality in the vast majority of cases of word reading difficulty cases. The available relevant evidence from neuroimaging studies consists almost entirely of correlational and group-differences studies. However, differences in brains are certain to exist whenever differences in behavior exist, including differences in ability and performance. Therefore, findings of brain differences do not constitute evidence for abnormality; rather, they simply document the neural substrate of the behavioral differences. We suggest that dyslexia is best viewed as one of many expressions of ordinary ubiquitous individual differences in normal developmental outcomes. Thus, terms such as “dysfunctional” or “abnormal” are not justified when referring to the brains of persons with dyslexia.
Collapse
|