1
|
Takeda T, Takeda S, Kakigi A. The clinical manifestation and treatment of Meniere's Disease from the viewpoint of the water homeostasis of the inner ear. Auris Nasus Larynx 2024; 51:905-910. [PMID: 39244939 DOI: 10.1016/j.anl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Endolymphatic hydrops, a pathological feature of Ménière's disease, has been experimentally and clinically confirmed to be influenced by the blood circulation of vasopressin (VP). VP is a well-known hormonal regulator of water homeostasis. In addition, VP is influenced by various environmental changes, dehydration, fluctuation of atmospheric pressure, pregnancy, and other factors. Furthermore, VP is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is a major neuroendocrine system that controls reactions to emotional and physical stresses, as well as the sleep/wake cycle (circadian rhythm). Therefore, VP is susceptible to change via the HPA axis. This review considers possible mechanisms of the formation of endolymphatic hydrops from the perspective of the vasopressin-aquaporin 2 system.
Collapse
Affiliation(s)
- Taizo Takeda
- Department of Otolaryngology, Kochi Medical School, Nankoku, Kochi, Japan
| | | | - Akinobu Kakigi
- Department of Otolaryngology-Head & Neck Surgery, Kobe University, Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
2
|
Beaver JN, Nicodemus MM, Spalding IR, Dutta S, Jasnow AM, Gilman TL. Male and female mice respectively form stronger social aversive memories with same and different sex conspecifics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607663. [PMID: 39185229 PMCID: PMC11343151 DOI: 10.1101/2024.08.12.607663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mice offer a wealth of opportunities for investigating brain circuits regulating multiple behaviors, largely due to their genetic tractability. Social behaviors are of translational relevance, considering both mice and humans are highly social mammals, and disruptions in human social behavior are key symptoms of myriad neuropsychiatric disorders. Stresses related to social experiences are particularly influential in the severity and maintenance of neuropsychiatric disorders like anxiety disorders, and trauma and stressor-related disorders. Yet, induction and study of social stress in mice is disproportionately focused on males, influenced heavily by their natural territorial nature. Conspecific-elicited stress (i.e., defeat), while ethologically relevant, is quite variable and predominantly specific to males, making rigorous and sex-inclusive studies challenging. In pursuit of a controllable, consistent, high throughput, and sex-inclusive paradigm for eliciting social stress, we have discovered intriguing sex-specific social aversions that are dependent upon the sex of both experimental and conspecific mice. Specifically, we trained male and female F1 129S1/SvlmJ × C57BL/6J mice to associate (via classical conditioning) same or different sex C57BL/6J conspecifics with a mild, aversive stimulus. Upon subsequent testing for social interaction 24 h later, we found that males socially conditioned better to male conspecifics by exhibiting reduced social interaction, whereas females socially conditioned better to male conspecifics. Serum corticosterone levels inversely corresponded to social avoidance after different sex, but not same sex, conditioning, suggesting corticosterone-mediated arousal could influence cross sex interactions. While our paradigm has further optimization ahead, these current findings reveal why past pursuits to develop same sex female social stress paradigms may have met with limited success. Future research should expand investigation of utilizing male mouse conspecifics to instigate social stress across sexes.
Collapse
Affiliation(s)
- Jasmin N. Beaver
- Department of Psychological Sciences
- Brain Health Research Institute
- Healthy Communities Research Institute
| | | | | | - Sohini Dutta
- Brain Health Research Institute
- School of Biomedical Sciences, Kent State University, Kent, OH, USA 44242
| | - Aaron M. Jasnow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA 29209
| | - T. Lee Gilman
- Department of Psychological Sciences
- Brain Health Research Institute
- Healthy Communities Research Institute
| |
Collapse
|
3
|
Mishra S, Grewal J, Wal P, Bhivshet GU, Tripathi AK, Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024; 174:171166. [PMID: 38309582 DOI: 10.1016/j.peptides.2024.171166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Jyoti Grewal
- Maharisi Markandeshwar University, Sadopur, India
| | - Pranay Wal
- Pranveer Singh Institute of Pharmacy, Kanpur, India
| | | | | | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
4
|
László K, Vörös D, Correia P, Fazekas CL, Török B, Plangár I, Zelena D. Vasopressin as Possible Treatment Option in Autism Spectrum Disorder. Biomedicines 2023; 11:2603. [PMID: 37892977 PMCID: PMC10603886 DOI: 10.3390/biomedicines11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social communication and accompanied by repetitive behavior. As vasopressin was implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior, its role in the development of ASD might be suggested. In this review, we summarized a wide range of problems associated with ASD to which vasopressin might contribute, from social skills to communication, motor function problems, autonomous nervous system alterations as well as sleep disturbances, and altered sensory information processing. Beside functional connections between vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a). Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover, vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by means of virus vectors) would benefit from this therapy.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dávid Vörös
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Imola Plangár
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| |
Collapse
|
5
|
Woodson J, Bergan JF. Uncovering the brain-wide pattern of synaptic input to vasopressin-expressing neurons in the paraventricular nucleus of the hypothalamus. J Comp Neurol 2023; 531:1017-1031. [PMID: 37121600 PMCID: PMC10566340 DOI: 10.1002/cne.25476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023]
Abstract
Arginine vasopressin (AVP) is a neuropeptide critical for the mammalian stress response and social behavior. AVP produced in the hypothalamus regulates water osmolality and vasoconstriction in the body, and in the brain, it regulates social behavior, aggression, and anxiety. However, the circuit mechanisms that link AVP to social behavior, homeostatic function, and disease are not well understood. This study investigates the circuit configurations of AVP-expressing neurons in the rodent hypothalamus and characterizes synaptic input from the entire brain. We targeted the paraventricular nucleus (PVN) using retrograde viral tracing techniques to identify direct afferent synaptic connections made onto AVP-expressing neurons. AVP neurons in the PVN display region-specific anatomical configurations that reflect their unique contributions to homeostatic function, motor behaviors, feeding, and affiliative behavior. The afferent connections identified were similar in both sexes and subsequent molecular investigation of these inputs shows that those local hypothalamic inputs are overwhelmingly nonpeptidergic cells indicating a potential interneuron nexus between hormone cell activation and broader cortical connection. This proposed work reveals new insights into the organization of social behavior circuits in the brain, and how neuropeptides act centrally to modulate social behaviors.
Collapse
Affiliation(s)
- Jonathan Woodson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Joseph F Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Abstract
BACKGROUND There is a burgeoning body of evidence suggesting that arginine vasopressin (AVP) acts as a neuromodulator of the stress response. AVP stimulates the release of adrenocorticotropic hormone, synergistic to corticotropin-releasing hormone, which might explain AVP's role in resilience. Personal hardiness is the bedrock of resilience. Numerous studies have demonstrated elevated plasma levels of AVP in patients with major depressive disorder (MDD), suggesting an etiopathogenetic role as well as a novel therapeutic target. OBJECTIVE The aim of this study was to examine the relationship between AVP and resilience in patients with MDD and to determine AVP levels in serum of patients with MDD. METHODS Forty patients with MDD and 40 healthy control subjects were studied using the Dispositional Resilience (Hardiness) Scale by Barton, the Quality of Life Scale, the Social Readjustment Rating Scale, and the Beck Depression Inventory. Biochemical analysis of plasma levels of AVP, using the enzyme-linked immunosorbent assay (ELISA), was performed for all participants. RESULTS Levels of AVP were statistically significantly elevated in patients with MDD compared with healthy controls. Psychological hardiness was decreased in patients with MDD compared with healthy controls, a finding also statistically significant. There was a negative correlation between plasma AVP level and psychological hardiness. CONCLUSION AVP and psychological hardiness are negatively correlated, reflecting lower stress resilience. AVP levels are indeed higher in patients struggling with MDD.
Collapse
|
7
|
The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms232214414. [PMID: 36430892 PMCID: PMC9699305 DOI: 10.3390/ijms232214414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The automatism of cardiac pacemaker cells, which is tuned, is regulated by the autonomic nervous system (ANS) and multiple endocrine and paracrine factors, including cardiovascular peptides. The cardiovascular peptides (CPs) form a group of essential paracrine factors affecting the function of the heart and vessels. They may also be produced in other organs and penetrate to the heart via systemic circulation. The present review draws attention to the role of vasopressin (AVP) and some other cardiovascular peptides (angiotensins, oxytocin, cytokines) in the regulation of the cardiovascular system in health and cardiovascular diseases, especially in post-infarct heart failure, hypertension and cerebrovascular strokes. Vasopressin is synthesized mostly by the neuroendocrine cells of the hypothalamus. There is also evidence that it may be produced in the heart and lungs. The secretion of AVP and other CPs is markedly influenced by changes in blood volume and pressure, as well as by other disturbances, frequently occurring in cardiovascular diseases (hypoxia, pain, stress, inflammation). Myocardial infarction, hypertension and cardiovascular shock are associated with an increased secretion of AVP and altered responsiveness of the cardiovascular system to its action. The majority of experimental studies show that the administration of vasopressin during ventricular fibrillation and cardiac arrest improves resuscitation, however, the clinical studies do not present consisting results. Vasopressin cooperates with the autonomic nervous system (ANS), angiotensins, oxytocin and cytokines in the regulation of the cardiovascular system and its interaction with these regulators is altered during heart failure and hypertension. It is likely that the differences in interactions of AVP with ANS and other CPs have a significant impact on the responsiveness of the cardiovascular system to vasopressin in specific cardiovascular disorders.
Collapse
|
8
|
Kim YJ, Jo S, Jung SH, Woo DH. Anti-stress Effect of Octopus Cephalotocin in Rats. Exp Neurobiol 2022; 31:260-269. [PMID: 36050225 PMCID: PMC9471412 DOI: 10.5607/en22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022] Open
Abstract
Cephalotocin is a bioactivity-regulating peptide expressed in octopus (Octopus vulgaris). The peptide sequence of cephalotocin is very similar to the peptide sequence of mammalian vasopressin, and cephalotocin has been proposed to mainly activate arginine vasopressin 1b receptor (Avpr1b) in the brain. However, the effects of cephalotocin on mammalian behavior have not been studied. In the current study, cephalotocin significantly reduced both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from not only cultured neuronal cells from postnatal Sprague–Dawley (SD) rats but also hippocampal slices from 4-week-old male C57BL/6 mice. Intraperitoneal (IP) injection did not affect the open field behaviors of C57BL/6 mice. Cephalotocin was directly infused into the hippocampus because the normalized Avpr1b staining intensity divided by the DAPI staining intensity indicated that Avpr1b expression tended to be high in the hippocampus. A hippocampal infusion of 1 mg/kg cephalotocin via an implanted cannula exerted an anti-stress effect, significantly reducing the immobility time in the tail suspension test (TST). The present results provide evidence that the effects of cephalotocin on the activity of hippocampal neurons are related to ameliorating stress, suggesting that cephalotocin may be developed as an anti-stress biomodulator that functions by affecting the brain.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea
| | - Seonmi Jo
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Seung-Hyun Jung
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Dong Ho Woo
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea
| |
Collapse
|
9
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Czarzasta K, Żera T. Multiple Aspects of Inappropriate Action of Renin-Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J Clin Med 2022; 11:908. [PMID: 35207180 PMCID: PMC8877782 DOI: 10.3390/jcm11040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular system and the central nervous system (CNS) closely cooperate in the regulation of primary vital functions. The autonomic nervous system and several compounds known as cardiovascular factors, especially those targeting the renin-angiotensin system (RAS), the vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with depression, Alzheimer's disease, Parkinson's disease, autism, and schizophrenia. The altered function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.W.); (A.C.-J.); (K.C.); (T.Ż.)
| | | | | | | | | |
Collapse
|
10
|
A Combined Administration of Testosterone and Arginine Vasopressin Affects Aggressive Behavior in Males. Brain Sci 2021; 11:brainsci11121623. [PMID: 34942928 PMCID: PMC8699569 DOI: 10.3390/brainsci11121623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Aggressive behavior is modulated by many factors, including personality and cognition, as well as endocrine and neural changes. To study the potential effects on the reaction to provocation, which was realized by an ostensible opponent subtracting money from the participant, we administered testosterone (T) and arginine vasopressin (AVP) or a respective placebo (PL). Forty males underwent a functional magnetic resonance imaging session while performing a provocation paradigm. We investigated differential hormone effects and the potential influence of Machiavellian traits on punishment choices (monetary subtractions by the participant) in the paradigm. Participants in the T/AVP group subtracted more money when they were not provoked but showed increased activation in the inferior frontal gyrus and inferior parietal lobule during feedback compared to PL. Higher Machiavellian traits significantly increased punishing behavior independent of provocation only in this group. The pilot study shows that T/AVP affects neural and behavioral responses during a provocation paradigm while personality characteristics, such as Machiavellian trait patterns, specifically interact with hormonal influences (T/AVP) and their effects on behavior.
Collapse
|
11
|
Yamada K, Watanabe M, Suzuki K. Reduced pituitary volume with relative T1 shortening correlates with behavior in Prader-Willi syndrome. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci 2021; 22:11465. [PMID: 34768894 PMCID: PMC8584236 DOI: 10.3390/ijms222111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (A.C.-J.); (T.Ż.)
| | | | | | | |
Collapse
|
13
|
Örnek BY, Cumurcu BE, Zayman EP. An Investgation About the Relationship Between Vasopressin and Oxytocin in Persistent Type Functional Neurological Symptom Disorder. Psychiatry Investig 2021; 18:1018-1024. [PMID: 34666429 PMCID: PMC8542743 DOI: 10.30773/pi.2021.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Functional neurogical symptom disorder (FNSD) is a somatic symptom disorder with loss of voluntary motor or sensory functions, which cannot be explained by another medical condition. The study aimed to examine the relationship of vasopressin and oxytocin in persistent type FNSD. METHODS This study included 27 female patients between the ages of 20-57 who were diagnosed with FNSD according to DSM-5 and 27 healthy controls matched in terms of age and gender. Serum vasopressin and oxytocin levels were measured twice on the same day in fasting blood samples and the results were compared statistically. RESULTS Vasopressin were lower in patients compared to controls while there was no difference between oxytocin levels. Childhood traumas were more common in patient group, and mean oxytocin level was lower in patients who exposed to childhood trauma, compared to controls. No significant difference was found between the groups in terms of vasopressin. CONCLUSION Changes in vasopressin and oxytocin balance in the pathogenesis of persistant FNSD, may likely to lead to physiological and behavioral consequences. Lower oxytocin levels may also be a marker of exposure to childhood trauma in FNSD. These neuropeptides plays important role in neuroendocrine balance of emotional behavior.
Collapse
Affiliation(s)
- Bahar Yeşil Örnek
- Dr. Abdurrahman Yurtaslan Oncology Research and Training Hospital Psychiatry Departmant, University Health Sciences, Ankara, Turkey
| | | | | |
Collapse
|
14
|
Eslinger PJ, Anders S, Ballarini T, Boutros S, Krach S, Mayer AV, Moll J, Newton TL, Schroeter ML, de Oliveira-Souza R, Raber J, Sullivan GB, Swain JE, Lowe L, Zahn R. The neuroscience of social feelings: mechanisms of adaptive social functioning. Neurosci Biobehav Rev 2021; 128:592-620. [PMID: 34089764 PMCID: PMC8388127 DOI: 10.1016/j.neubiorev.2021.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023]
Abstract
Social feelings have conceptual and empirical connections with affect and emotion. In this review, we discuss how they relate to cognition, emotion, behavior and well-being. We examine the functional neuroanatomy and neurobiology of social feelings and their role in adaptive social functioning. Existing neuroscience literature is reviewed to identify concepts, methods and challenges that might be addressed by social feelings research. Specific topic areas highlight the influence and modulation of social feelings on interpersonal affiliation, parent-child attachments, moral sentiments, interpersonal stressors, and emotional communication. Brain regions involved in social feelings were confirmed by meta-analysis using the Neurosynth platform for large-scale, automated synthesis of functional magnetic resonance imaging data. Words that relate specifically to social feelings were identfied as potential research variables. Topical inquiries into social media behaviors, loneliness, trauma, and social sensitivity, especially with recent physical distancing for guarding public and personal health, underscored the increasing importance of social feelings for affective and second person neuroscience research with implications for brain development, physical and mental health, and lifelong adaptive functioning.
Collapse
Affiliation(s)
- Paul J Eslinger
- Departments of Neurology, Neural & Behavioral Sciences, Pediatrics, and Radiology, Penn State Hershey Medical Center, Hershey, PA, USA.
| | - Silke Anders
- Social and Affective Neuroscience, Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Sören Krach
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Annalina V Mayer
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Jorge Moll
- Cognitive Neuroscience Unit, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Tamara L Newton
- University of Louisville, Department of Psychological and Brain Sciences, Louisville, KY, USA
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Ricardo de Oliveira-Souza
- Cognitive Neuroscience Unit, D'Or Institute for Research and Education (IDOR), BR Hospital Universitario, Universidade do Rio de Janeiro, Brazil
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Gavin B Sullivan
- International Psychoanalytic University, Berlin, Germany, Centre for Trust, Peace and Social Relations, Coventry University, UK
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Psychology and Obstetrics and Gynecology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
15
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
16
|
Chen X, Xu Y, Li B, Wu X, Li T, Wang L, Zhang Y, Lin W, Qu C, Feng C. Intranasal vasopressin modulates resting state brain activity across multiple neural systems: Evidence from a brain imaging machine learning study. Neuropharmacology 2021; 190:108561. [PMID: 33852823 DOI: 10.1016/j.neuropharm.2021.108561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
Arginine vasopressin (AVP), a neuropeptide with widespread receptors in brain regions important for socioemotional processing, is critical in regulating various mammalian social behavior and emotion. Although a growing body of task-based brain imaging studies have revealed the effects of AVP on brain activity associated with emotion processing, social cognition and behaviors, the potential modulations of AVP on resting-state brain activity remain largely unknown. Here, the current study addressed this issue by adopting a machine learning approach to distinguish administration of AVP and placebo, employing the amplitude of low-frequency fluctuation (ALFF) as a measure of resting-state brain activity. The brain regions contributing to the classification were then subjected to functional connectivity and decoding analyses, allowing for a data-driven quantitative inference on psychophysiological functions. Our results indicated that ALFF across multiple neural systems were sufficient to distinguish between AVP and placebo at individual level, with the contributing regions distributed across the social cognition network, sensorimotor regions and emotional processing network. These findings suggest that the role of AVP in socioemotional functioning recruits multiple brain networks distributed across the whole brain rather than specific localized neural pathways. Beyond these findings, the current data-driven approach also opens a novel avenue to delineate neural underpinnings of various neuropeptides or hormones.
Collapse
Affiliation(s)
- Xinling Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Yongbo Xu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Bingjie Li
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Xiaoyan Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| | - Ting Li
- Institute of Brain Research and Rehabilitation (IBRR) South China Normal University, Guangzhou, China.
| | - Li Wang
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, China.
| | - Yijie Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Wanghuan Lin
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Chen Qu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
17
|
Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T, Ali N, Avelar CM, Bardies M, Barrow B, Benedikt M, Biancardi G, Bindra R, Bui L, Chihab Z, Cossitt A, Costa J, Daigneault T, Dault J, Davidson I, Dias J, Dufour E, El-Khoury S, Farhangdoost N, Forget A, Fox A, Gebrael M, Gentile MC, Geraci O, Gnanapragasam A, Gomah E, Haber E, Hamel C, Iyanker T, Kalantzis C, Kamali S, Kassardjian E, Kontos HK, Le TBU, LoScerbo D, Low YF, Mac Rae D, Maurer F, Mazhar S, Nguyen A, Nguyen-Duong K, Osborne-Laroche C, Park HW, Parolin E, Paul-Cole K, Peer LS, Philippon M, Plaisir CA, Porras Marroquin J, Prasad S, Ramsarun R, Razzaq S, Rhainds S, Robin D, Scartozzi R, Singh D, Fard SS, Soroko M, Soroori Motlagh N, Stern K, Toro L, Toure MW, Tran-Huynh S, Trépanier-Chicoine S, Waddingham C, Weekes AJ, Wisniewski A, Gamberi C. The Biology of Vasopressin. Biomedicines 2021; 9:89. [PMID: 33477721 PMCID: PMC7832310 DOI: 10.3390/biomedicines9010089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada; (S.S.); (C.M.-B.); (J.O.); (K.M.); (P.H.); (T.K.); (N.A.); (C.M.A.); (M.B.); (B.B.); (M.B.); (G.B.); (R.B.); (L.B.); (Z.C.); (A.C.); (J.C.); (T.D.); (J.D.); (I.D.); (J.D.); (E.D.); (S.E.-K.); (N.F.); (A.F.); (A.F.); (M.G.); (M.C.G.); (O.G.); (A.G.); (E.G.); (E.H.); (C.H.); (T.I.); (C.K.); (S.K.); (E.K.); (H.K.K.); (T.B.U.L.); (D.L.); (Y.F.L.); (D.M.R.); (F.M.); (S.M.); (A.N.); (K.N.-D.); (C.O.-L.); (H.W.P.); (E.P.); (K.P.-C.); (L.S.P.); (M.P.); (C.-A.P.); (J.P.M.); (S.P.); (R.R.); (S.R.); (S.R.); (D.R.); (R.S.); (D.S.); (S.S.F.); (M.S.); (N.S.M.); (K.S.); (L.T.); (M.W.T.); (S.T.-H.); (S.T.-C.); (C.W.); (A.J.W.); (A.W.)
| |
Collapse
|
18
|
Sep MSC, Joëls M, Geuze E. Individual differences in the encoding of contextual details following acute stress: An explorative study. Eur J Neurosci 2020; 55:2714-2738. [PMID: 33249674 PMCID: PMC9291333 DOI: 10.1111/ejn.15067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Information processing under stressful circumstances depends on many experimental conditions, like the information valence or the point in time at which brain function is probed. This also holds true for memorizing contextual details (or ‘memory contextualization’). Moreover, large interindividual differences appear to exist in (context‐dependent) memory formation after stress, but it is mostly unknown which individual characteristics are essential. Various characteristics were explored from a theory‐driven and data‐driven perspective, in 120 healthy men. In the theory‐driven model, we postulated that life adversity and trait anxiety shape the stress response, which impacts memory contextualization following acute stress. This was indeed largely supported by linear regression analyses, showing significant interactions depending on valence and time point after stress. Thus, during the acutephase of the stress response, reduced neutral memory contextualization was related to salivary cortisol level; moreover, certain individual characteristics correlated with memory contextualization of negatively valenced material: (a) life adversity, (b) α‐amylase reactivity in those with low life adversity and (c) cortisol reactivity in those with low trait anxiety. Better neutral memory contextualization during the recoveryphase of the stress response was associated with (a) cortisol in individuals with low life adversity and (b) α‐amylase in individuals with high life adversity. The data‐driven Random Forest‐based variable selection also pointed to (early) life adversity—during the acutephase—and (moderate) α‐amylase reactivity—during the recoveryphase—as individual characteristics related to better memory contextualization. Newly identified characteristics sparked novel hypotheses about non‐anxious personality traits, age, mood and states during retrieval of context‐related information.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands.,Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Kelly AM, Ong JY, Witmer RA, Ophir AG. Paternal deprivation impairs social behavior putatively via epigenetic modification to lateral septum vasopressin receptor. SCIENCE ADVANCES 2020; 6:eabb9116. [PMID: 32917597 PMCID: PMC7467705 DOI: 10.1126/sciadv.abb9116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
Although it is well appreciated that the early-life social environment asserts subsequent long-term consequences on offspring brain and behavior, the specific mechanisms that account for this relationship remain poorly understood. Using a novel assay that forced biparental pairs or single mothers to prioritize caring for offspring or themselves, we investigated the impact of parental variation on adult expression of nonapeptide-modulated behaviors in prairie voles. We demonstrated that single mothers compensate for the lack of a co-parent. Moreover, mothers choose to invest in offspring over themselves when faced with a tradeoff, whereas fathers choose to invest in themselves. Furthermore, our study suggests a pathway whereby variation in parental behavior (specifically paternal care) may lead to alterations in DNA methylation within the vasopressin receptor 1a gene and gene expression in the lateral septum. These differences are concomitant with changes in social approach, a behavior closely associated with septal vasopressin receptor function.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Jie Yuen Ong
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Ruth A Witmer
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Williams Avram SK, Lee HJ, Fastman J, Cymerblit-Sabba A, Smith A, Vincent M, Song J, Granovetter MC, Lee SH, Cilz NI, Stackmann M, Chaturvedi R, Young WS. NMDA Receptor in Vasopressin 1b Neurons Is Not Required for Short-Term Social Memory, Object Memory or Aggression. Front Behav Neurosci 2019; 13:218. [PMID: 31787886 PMCID: PMC6856057 DOI: 10.3389/fnbeh.2019.00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
The arginine vasopressin 1b receptor (Avpr1b) plays an important role in social behaviors including aggression, social learning and memory. Genetic removal of Avpr1b from mouse models results in deficits in aggression and short-term social recognition in adults. Avpr1b gene expression is highly enriched in the pyramidal neurons of the hippocampal cornu ammonis 2 (CA2) region. Activity of the hippocampal CA2 has been shown to be required for normal short-term social recognition and aggressive behaviors. Vasopressin acts to enhance synaptic responses of CA2 neurons through a NMDA-receptor dependent mechanism. Genetic removal of the obligatory subunit of the NMDA receptor (Grin1) within distinct hippocampal regions impairs non-social learning and memory. However, the question of a direct role for NMDA receptor activity in Avpr1b neurons to modulate social behavior remains unclear. To answer this question, we first created a novel transgenic mouse line with Cre recombinase knocked into the Avpr1b coding region to genetically target Avpr1b neurons. We confirmed this line has dense Cre expression throughout the dorsal and ventral CA2 regions of the hippocampus, along with scattered expression within the caudate-putamen and olfactory bulb (OB). Conditional removal of the NMDA receptor was achieved by crossing our line to an available floxed Grin1 line. The resulting mice were measured on a battery of social and memory behavioral tests. Surprisingly, we did not observe any differences between Avpr1b-Grin1 knockout mice and their wildtype siblings. We conclude that mice without typical NMDA receptor function in Avpr1b neurons can develop normal aggression as well as short-term social and object memory performance.
Collapse
Affiliation(s)
- Sarah K Williams Avram
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Systems Neuroscience Imaging Resource, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Heon-Jin Lee
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jarrett Fastman
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Adi Cymerblit-Sabba
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Adam Smith
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Neuroscience Program, Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States
| | - Matthew Vincent
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - June Song
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michael C Granovetter
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Su-Hyun Lee
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas I Cilz
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Stackmann
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rahul Chaturvedi
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Kanitz E, Tuchscherer M, Otten W, Tuchscherer A, Zebunke M, Puppe B. Coping Style of Pigs Is Associated With Different Behavioral, Neurobiological and Immune Responses to Stressful Challenges. Front Behav Neurosci 2019; 13:173. [PMID: 31417378 PMCID: PMC6686684 DOI: 10.3389/fnbeh.2019.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Based on the animal’s reaction to environmental challenges, consistent but different coping styles can be identified, which in turn may have consequences for health and welfare. Therefore, profound knowledge of the complex interrelationships between individual behavioral response patterns, underlying neurobiological mechanisms and immunological effects is required. The aim of this study was to examine whether pigs with different coping styles exhibit distinct behavioral, neurobiological and immune responses to stressful situations. Therefore, pigs (n = 40) were classified as proactive, reactive or intermediate animals according to a repeatedly-performed backtest, and behavioral, neuroendocrine and immune alterations were analyzed without any stress before weaning on day 28 and after a stress treatment on day 32. Our results show that the behavioral responses in an open-field/novel-object test characterized proactive pigs as more active. There were no significant differences in adrenocorticotropic hormone and cortisol concentrations between pigs with different coping characteristics. However, we found that proactive pigs displayed significantly increased plasma noradrenaline levels in response to stress, which may reflect a higher sympathetic reactivity of these animals. Furthermore, the present study revealed coping style differences in mRNA expression of mineralocorticoid, glucocorticoid, oxytocin and arginine vasopressin receptors and the immediate early gene c-fos in stress-related brain regions. While proactive pigs responded to stress with higher mRNA expression of arginine vasopressin, mineralocorticoid and glucocorticoid receptors, reactive pigs displayed higher oxytocin receptor and c-fos mRNA expression, indicating different neurobiological mechanisms of distinct coping styles in response to stressful challenges. Moreover, we also found humoral immune differences between proactive, intermediate and reactive animals. Proactive pigs had a higher total serum IgA concentration before and after stress treatment, with a significant increase in response to stress compared to reactive and intermediate pigs. In contrast, stress-induced IgM concentrations only increased in reactive and intermediate animals, suggesting that the effects of coping style on humoral immunity may differ depending on the specific function of the immunoglobulin classes. In conclusion, this multidisciplinary study expands the concept of coping style in farm animals, particularly in terms of individual stress reactivity and disease susceptibility, and thus contributes to the understanding of the biology of animal welfare.
Collapse
Affiliation(s)
- Ellen Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margret Tuchscherer
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Manuela Zebunke
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
22
|
Fam BSO, Reales G, Vargas-Pinilla P, Paré P, Viscardi LH, Sortica VA, Felkl AB, de O Franco Á, Lucion AB, Costa-Neto CM, Pissinatti A, Salzano FM, Paixão-Côrtes VR, Bortolini MC. AVPR1b variation and the emergence of adaptive phenotypes in Platyrrhini primates. Am J Primatol 2019; 81:e23028. [PMID: 31318063 DOI: 10.1002/ajp.23028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022]
Abstract
Platyrrhini (New World monkeys, NWm) are a group of primates characterized by behavioral and reproductive traits that are otherwise uncommon among primates, including social monogamy, direct paternal care, and twin births. As a consequence, the study of Platyrrhine primates is an invaluable tool for the discovery of the genetic repertoire underlying these taxon-specific traits. Recently, high conservation of vasopressin (AVP) sequence, in contrast with high variability of oxytocin (OXT), has been described in NWm. AVP and OXT functions are possible due to interaction with their receptors: AVPR1a, AVPR1b, AVPR2, and OXTR; and the variability in this system is associated with the traits mentioned above. Understanding the variability in the receptors is thus fundamental to understand the function and evolution of the system as a whole. Here we describe the variability of AVPR1b coding region in 20 NWm species, which is well-known to influence behavioral traits such as aggression, anxiety, and stress control in placental mammals. Our results indicate that 4% of AVPR1b sites may be under positive selection and a significant number of sites under relaxed selective constraint. Considering the known role of AVPR1b, we suggest that some of the changes described here for the Platyrrhini may be a part of the genetic repertoire connected with the complex network of neuroendocrine mechanisms of AVP-OXT system in the modulation of the HPA axis. Thus, these changes may have promoted the emergence of social behaviors such as direct paternal care in socially monogamous species that are also characterized by small body size and twin births.
Collapse
Affiliation(s)
- Bibiana S O Fam
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP - Instituto de Genética Médica e Populacional, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Vargas-Pinilla
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Paré
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas H Viscardi
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vinicius A Sortica
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline B Felkl
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Álvaro de O Franco
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aldo B Lucion
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Claudio M Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa R Paixão-Côrtes
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking. Gene 2019; 696:176-185. [PMID: 30769143 DOI: 10.1016/j.gene.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 01/15/2023]
Abstract
Tachykinin 2 (Tac2) is expressed in a number of areas throughout the brain, including the hippocampus. However, knowledge about its function has been only well explored in the hypothalamus in the context of reproductive health. In this study, we identified and validated increased hippocampal Tac2 mRNA expression in response to chronic mild stress in mice. Expression quantitative trait locus (eQTL) analysis showed Tac2 is cis-regulated in the hippocampus. Using a systems genetics approach, we constructed a Tac2 co-expression network to better understand the relationship between Tac2 and the hippocampal stress response. Our network identified 69 total genes associated with Tac2, several of which encode major neuropeptides involved in hippocampal stress signaling as well as critical genes for producing neural plasticity, indicating that Tac2 is involved in these processes. Pathway analysis for the member of Tac2 gene network revealed a strong connection between Tac2 and neuroactive ligand-receptor interaction, calcium signaling pathway, as well as cardiac muscle contraction. In addition, we also identified 46 stress-related phenotypes, specifically fear conditioning response, that were significantly correlated with Tac2 expression. Our results provide evidence for Tac2 as a strong candidate gene who likely plays a role in hippocampal stress processing and neural plasticity.
Collapse
|
24
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
25
|
Campos-Lira E, Kelly L, Seifi M, Jackson T, Giesecke T, Mutig K, Koshimizu TAA, Hernandez VS, Zhang L, Swinny JD. Dynamic Modulation of Mouse Locus Coeruleus Neurons by Vasopressin 1a and 1b Receptors. Front Neurosci 2018; 12:919. [PMID: 30618551 PMCID: PMC6295453 DOI: 10.3389/fnins.2018.00919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 11/29/2022] Open
Abstract
The locus coeruleus (LC) is a brainstem nucleus distinguished by its supply of noradrenaline throughout the central nervous system. Apart from modulating a range of brain functions, such as arousal, cognition and the stress response, LC neuronal excitability also corresponds to the activity of various peripheral systems, such as pelvic viscera and the cardiovascular system. Neurochemically diverse inputs set the tone for LC neuronal activity, which in turn modulates these adaptive physiological and behavioral responses essential for survival. One such LC afferent system which is poorly understood contains the neurohormone arginine-vasopressin (AVP). Here we provide the first demonstration of the molecular and functional characteristics of the LC-AVP system, by characterizing its receptor-specific modulation of identified LC neurons and plasticity in response to stress. High resolution confocal microscopy revealed that immunoreactivity for the AVP receptor 1b (V1b) was located on plasma membranes of noradrenergic and non-noradrenergic LC neurons. In contrast, immunoreactivity for the V1a receptor was exclusively located on LC noradrenergic neurons. No specific signal, either at the mRNA or protein level, was detected for the V2 receptor in the LC. Clusters immunoreactive for V1a-b were located in proximity to profiles immunoreactive for GABAergic and glutamatergic synaptic marker proteins. AVP immunopositive varicosities were also located adjacent to labeling for such synaptic markers. Whole-cell patch clamp electrophysiology revealed that the pharmacological activation of V1b receptors significantly increased the spontaneous activity of 45% (9/20) of recorded noradrenergic neurons, with the remaining 55% (11/20) of cells exhibiting a significant decrease in their basal firing patterns. Blockade of V1a and V1b receptors on their own significantly altered LC neuronal excitability in a similar heterogeneous manner, demonstrating that endogenous AVP sets the basal LC neuronal firing rates. Finally, exposing animals to acute stress increased V1b, but not V1a receptor expression, whilst decreasing AVP immunoreactivity. This study reveals the AVP-V1a-b system as a considerable component of the LC molecular architecture and regulator of LC activity. Since AVP primarily functions as a regulator of homeostasis, the data suggest a novel pathway by modulating the functioning of a brain region that is integral to mediating adaptive responses.
Collapse
Affiliation(s)
- Elba Campos-Lira
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Louise Kelly
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Torquil Jackson
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Torsten Giesecke
- Department of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Moscow, Russia
| | - Taka-Aki A Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| | - Vito S Hernandez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
26
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
27
|
Frye RE. Social Skills Deficits in Autism Spectrum Disorder: Potential Biological Origins and Progress in Developing Therapeutic Agents. CNS Drugs 2018; 32:713-734. [PMID: 30105528 PMCID: PMC6105175 DOI: 10.1007/s40263-018-0556-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is defined by two core symptoms: a deficit in social communication and the presence of repetitive behaviors and/or restricted interests. Currently, there is no US Food and Drug Administration-approved drug for these core symptoms. This article reviews the biological origins of the social function deficit associated with autism spectrum disorder and the drug therapies with the potential to treat this deficit. A review of the history of autism demonstrates that a deficit in social interaction has been the defining feature of the concept of autism from its conception. Abnormalities identified in early social skill development and an overview of the pathophysiology abnormalities associated with autism spectrum disorder are discussed as are the abnormalities in brain circuits associated with the social function deficit. Previous and ongoing clinical trials examining agents that have the potential to improve social deficits associated with autism spectrum disorder are discussed in detail. This discussion reveals that agents such as oxytocin and propranolol are particularly promising and undergoing active investigation, while other agents such as vasopressin agonists and antagonists are being activity investigated but have limited published evidence at this time. In addition, agents such as bumetanide and manipulation of the enteric microbiome using microbiota transfer therapy appear to have promising effects on core autism spectrum disorder symptoms including social function. Other pertinent issues associated with developing treatments in autism spectrum disorder, such as disease heterogeneity, high placebo response rates, trial design, and the most appropriate way of assessing effects on social skills (outcome measures), are also discussed.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, 85016, USA.
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
28
|
Sánchez-Solís CN, Cuevas-Romero E, Munoz A, Cervantes-Rodríguez M, Rodríguez-Antolín J, Nicolás-Toledo L. Morphometric changes and AQP2 expression in kidneys of young male rats exposed to chronic stress and a high-sucrose diet. Biomed Pharmacother 2018; 105:1098-1105. [PMID: 30021346 DOI: 10.1016/j.biopha.2018.06.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Consumption of a cafeteria-like diet and chronic stress have a negative impact on kidney function and morphology in adult rats. However, the interaction between chronic restraint stress and high-sucrose diet on renal morphology in young rats is unknown. A high-sucrose diet does not modify serum glucose levels but reduces serum corticosterone levels in stressed young rats, in this way it is confusing a possible potentiate or protector effect of this diet on kidney damage induced by stress. METHODS Wistar male rats at 4 weeks of age were randomly assigned into 4 groups: control (C), stressed (St), high-sucrose diet (S30), and chronic restraint stress plus a 30% sucrose diet (St + S30). Rats were fed with a standard chow and tap water (C group) or 30% sucrose diluted in water (S30 group). Chronic restraint stress consisted of 1-h daily placement into a plastic cylinder, 5 days per week, and for 4 weeks. RESULTS Stressed rats exhibited a low number of corpuscles, glomeruli, high number of mesangial cells, major deposition of mesangial matrix and aquaporin-2 protein (AQP-2) expression, and low creatinine levels. Meanwhile, high-sucrose diet ameliorated AQP-2 expression and avoided the reduction of creatinine levels induced by chronic stress. The combination of stress and high-sucrose diet maintained similar effects on the kidney as stress alone, although it induced a greater reduction in the area of proximal tubules. CONCLUSIONS Our results show that both chronic stress and a high-sucrose diet induce histological changes, but chronic stress may generate an accelerated glomerular hypertrophy associated with functional changes before puberty.
Collapse
Affiliation(s)
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Alvaro Munoz
- Centro Universitario del Norte, Universidad de Guadalajara, Jalisco, Mexico
| | | | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
29
|
Impacts of stress on reproductive and social behaviors. Front Neuroendocrinol 2018; 49:86-90. [PMID: 29402452 DOI: 10.1016/j.yfrne.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/19/2023]
Abstract
Impacts of steroid stress hormones on the brain have provided multiple opportunities for linking specific molecular phenomena to behavioral state. The negative impacts of stress on female reproductive biological processes have been documented thoroughly at the endocrine and behavioral levels. More recently, a '3-hit' theory of autism has identified early stress as one of the hits. The multiple biochemical effects of endotoxin (lipopolysaccharide, LPS) indicated that it would serve as a powerful maternal immune activator. The prenatal exposure to LPS coupled with the other two 'hits'- an autism-related mutation and the Y chromosome - - heightened certain autism-like signs in mouse behavior.
Collapse
|