1
|
Puli OR, Gogia N, Chimata AV, Yorimitsu T, Nakagoshi H, Kango-Singh M, Singh A. Genetic mechanism regulating diversity in the placement of eyes on the head of animals. Proc Natl Acad Sci U S A 2024; 121:e2316244121. [PMID: 38588419 PMCID: PMC11032433 DOI: 10.1073/pnas.2316244121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.
Collapse
Affiliation(s)
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH45469
| | | | - Takeshi Yorimitsu
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN47809
| |
Collapse
|
2
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Sokolova N, Zilova L, Wittbrodt J. Unravelling the link between embryogenesis and adult stem cell potential in the ciliary marginal zone: A comparative study between mammals and teleost fish. Cells Dev 2023; 174:203848. [PMID: 37172718 DOI: 10.1016/j.cdev.2023.203848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The discovery and study of adult stem cells have revolutionized regenerative medicine by offering new opportunities for treating various medical conditions. Anamniote stem cells, which retain their full proliferative capacity and full differentiation range throughout their lifetime, harbour a greater potential compared to mammalian adult stem cells, which only exhibit limited stem cell potential. Therefore, understanding the mechanisms underlying these differences is of significant interest. In this review, we examine the similarities and differences of adult retinal stem cells in anamniotes and mammals, from their embryonic stages in the optic vesicle to their residence in the postembryonic retinal stem cell niche, the ciliary marginal zone located in the retinal periphery. In anamniotes, developing precursors of retinal stem cells are exposed to various environmental cues during their migration in the complex morphogenetic remodelling of the optic vesicle to the optic cup. In contrast, their mammalian counterparts in the retinal periphery are primarily instructed by neighbouring tissues once they are in place. We explore the distinct modes of optic cup morphogenesis in mammals and teleost fish and highlight molecular mechanisms governing morphogenesis and stem cells instruction. The review concludes with the molecular mechanisms of ciliary marginal zone formation and offers a perspective on the impact of comparative single cell transcriptomic studies to reveal the evolutionary similarities and differences.
Collapse
Affiliation(s)
- Natalia Sokolova
- Centre for Organismal Studies Heidelberg, Germany; Heidelberg Biosciences International Graduate School, Germany
| | - Lucie Zilova
- Centre for Organismal Studies Heidelberg, Germany.
| | | |
Collapse
|
4
|
Cardozo MJ, Sánchez-Bustamante E, Bovolenta P. Optic cup morphogenesis across species and related inborn human eye defects. Development 2023; 150:dev200399. [PMID: 36714981 PMCID: PMC10110496 DOI: 10.1242/dev.200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vertebrate eye is shaped as a cup, a conformation that optimizes vision and is acquired early in development through a process known as optic cup morphogenesis. Imaging living, transparent teleost embryos and mammalian stem cell-derived organoids has provided insights into the rearrangements that eye progenitors undergo to adopt such a shape. Molecular and pharmacological interference with these rearrangements has further identified the underlying molecular machineries and the physical forces involved in this morphogenetic process. In this Review, we summarize the resulting scenarios and proposed models that include common and species-specific events. We further discuss how these studies and those in environmentally adapted blind species may shed light on human inborn eye malformations that result from failures in optic cup morphogenesis, including microphthalmia, anophthalmia and coloboma.
Collapse
Affiliation(s)
- Marcos J. Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Elena Sánchez-Bustamante
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
5
|
Bosze B, Suarez-Navarro J, Cajias I, Brzezinski JA, Brown NL. Not all Notch pathway mutations are equal in the embryonic mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523641. [PMID: 36711950 PMCID: PMC9882158 DOI: 10.1101/2023.01.11.523641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the vertebrate retina, combinations of Notch ligands, receptors, and ternary complex components determine the destiny of retinal progenitor cells by regulating Hes effector gene activity. Owing to reiterated Notch signaling in numerous tissues throughout development, there are multiple vertebrate paralogues for nearly every node in this pathway. These Notch signaling components can act redundantly or in a compensatory fashion during development. To dissect the complexity of this pathway during retinal development, we used seven germline or conditional mutant mice and two spatiotemporally distinct Cre drivers. We perturbed the Notch ternary complex and multiple Hes genes with two overt goals in mind. First, we wished to determine if Notch signaling is required in the optic stalk/nerve head for Hes1 sustained expression and activity. Second, we aimed to test if Hes1, 3 and 5 genes are functionally redundant during early retinal histogenesis. With our allelic series, we found that disrupting Notch signaling consistently blocked mitotic growth and overproduced ganglion cells, but we also identified two significant branchpoints for this pathway. In the optic stalk/nerve head, sustained Hes1 is regulated independent of Notch signaling, whereas during photoreceptor genesis both Notch-dependent and -independent roles for Rbpj and Hes1 impact photoreceptor genesis in opposing manners.
Collapse
Affiliation(s)
- Bernadett Bosze
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616
| | | | - Illiana Cajias
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616
| | - Joseph A. Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616
| |
Collapse
|
6
|
Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr Biol 2022; 32:4817-4831.e9. [PMID: 36208624 DOI: 10.1016/j.cub.2022.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.
Collapse
|
7
|
Fleury V. Dynamics of early stages of nose morphogenesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:93. [PMID: 36401057 PMCID: PMC9674774 DOI: 10.1140/epje/s10189-022-00245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The formation of sensory organs is an important developmental and evolutionary question. In the context of regenerative medicine also, it is important to know as accurately as possible how sensory organs form. The formation of ears, eyes or nose stems presumably from tissue thickenings called placodes Graham and Shimeld (J Anat 222(1):32-40, 2013), Horie et al. (Nature 560:228-232, 2018) which become these organs after processes termed inductions. However, the origin of the placodes, the mechanism of induction and the overall face organization are not understood. Recently, it has been suggested that there is a physical principle to face organization. Indeed, it has been shown that there exists a pattern of rings and rays in the early blastula which defines the position of face landmarks, especially the ears and eyes Fleury et al. (Second order division in sectors as a prepattern for sensory organs in vertebrate development, 2021), Fleury and Abourachid (Eu Phys J E 45:31, 2022). Tensions in the sectors defined by the intersections of the said rings and rays create the actual face features. I report here that a similar situation exists for the nose. This explains the robustness of face formation in the chordates phylum. By studying nasal pit formation in the chicken embryo by time-lapse (T-L) video microscopy, I show that the nasal placode originates in a narrow sector deformed by tension forces following the biaxial pattern of rings and rays mentioned above. Cells align in the pattern and exert organized forces. Further contractions of the pattern contribute to inducing the nasal pit. The observation of the early pre-pattern of lines which locks the facial features explains readily a number of facts regarding sensory organs. Especially the existence of a lacrimal canal between the eye and the nose Lefevre and Freitag (Semin Ophthalmo l 27(5-6):175-86, 2012), or of a slit connecting the nose to the mouth, the correlation between nose, mouth and eye morphogenesis Dubourg et al. (J Rare Dis 2(8), 2007), the presence of shallow valleys on the nasal and optic vesicles, the medio-lateral asymmetry of nostrils with often a bent slit Liu et al. (PLoS ONE 12: e0181928, 2017), the uneven number of nostrils in many fish Cox (J R Soc Interf 5(23):575-593, 2008) and possibly the transition between agnatha and gnathostomes Gai and Zhu (Chinese Sci Bull 57(31), 2012): all appear under this light, geometrically straightforward. The nasal pit forms in a sector of tissue which was present on the blastodic (early embryonic stage), and which is projected onto the nasal vesicle during neurulation. The nasal pit forms along a hairpin of tissue. The top part of the hairpin forms the nares, and the bottom part a groove often visible in many animals.
Collapse
Affiliation(s)
- Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, Université de Paris Cité/CNRS UMR 7057, 10 Rue Alice Domont et Léonie Duquet, 75013, Paris, France.
| |
Collapse
|
8
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
9
|
Owen N, Toms M, Young RM, Eintracht J, Sarkar H, Brooks BP, Moosajee M. Identification of 4 novel human ocular coloboma genes ANK3, BMPR1B, PDGFRA, and CDH4 through evolutionary conserved vertebrate gene analysis. Genet Med 2022; 24:1073-1084. [PMID: 35034853 PMCID: PMC11505079 DOI: 10.1016/j.gim.2021.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. METHODS Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. RESULTS Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. CONCLUSION We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis.
Collapse
Affiliation(s)
- Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Rodrigo M Young
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jonathan Eintracht
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Ocular Genomics and Therapeutics, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
10
|
Casey MA, Hill JT, Hoshijima K, Bryan CD, Gribble SL, Brown JT, Chien CB, Yost HJ, Kwan KM. Shutdown corner, a large deletion mutant isolated from a haploid mutagenesis screen in zebrafish. G3 (BETHESDA, MD.) 2022; 12:jkab442. [PMID: 35079792 PMCID: PMC9210284 DOI: 10.1093/g3journal/jkab442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022]
Abstract
Morphogenesis, the formation of three-dimensional organ structures, requires precise coupling of genetic regulation and complex cell behaviors. The genetic networks governing many morphogenetic systems, including that of the embryonic eye, are poorly understood. In zebrafish, several forward genetic screens have sought to identify factors regulating eye development. These screens often look for eye defects at stages after the optic cup is formed and when retinal neurogenesis is under way. This approach can make it difficult to identify mutants specific for morphogenesis, as opposed to neurogenesis. To this end, we carried out a forward genetic, small-scale haploid mutagenesis screen in zebrafish (Danio rerio) to identify factors that govern optic cup morphogenesis. We screened ∼100 genomes and isolated shutdown corner (sco), a mutant that exhibits multiple tissue defects and harbors a ∼10-Mb deletion that encompasses 89 annotated genes. Using a combination of live imaging and antibody staining, we found cell proliferation, cell death, and tissue patterning defects in the sco optic cup. We also observed other phenotypes, including paralysis, neuromuscular defects, and ocular vasculature defects. To date, the largest deletion mutants reported in zebrafish are engineered using CRISPR-Cas9 and are less than 300 kb. Because of the number of genes within the deletion interval, shutdown corner [Df(Chr05:sco)z207] could be a useful resource to the zebrafish community, as it may be helpful for gene mapping, understanding genetic interactions, or studying many genes lost in the mutant.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chase D Bryan
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Suzanna L Gribble
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Thomas Brown
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Monnot P, Gangatharan G, Baraban M, Pottin K, Cabrera M, Bonnet I, Breau MA. Intertissue mechanical interactions shape the olfactory circuit in zebrafish. EMBO Rep 2022; 23:e52963. [PMID: 34889034 PMCID: PMC8811657 DOI: 10.15252/embr.202152963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
While the chemical signals guiding neuronal migration and axon elongation have been extensively studied, the influence of mechanical cues on these processes remains poorly studied in vivo. Here, we investigate how mechanical forces exerted by surrounding tissues steer neuronal movements and axon extension during the morphogenesis of the olfactory placode in zebrafish. We mainly focus on the mechanical contribution of the adjacent eye tissue, which develops underneath the placode through extensive evagination and invagination movements. Using quantitative analysis of cell movements and biomechanical manipulations, we show that the developing eye exerts lateral traction forces on the olfactory placode through extracellular matrix, mediating proper morphogenetic movements and axon extension within the placode. Our data shed new light on the key participation of intertissue mechanical interactions in the sculpting of neuronal circuits.
Collapse
Affiliation(s)
- Pauline Monnot
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Institut CurieUniversité PSLSorbonne UniversitéCNRS UMR168Laboratoire Physico Chimie CurieParisFrance
- Laboratoire Jean PerrinParisFrance
| | - Girisaran Gangatharan
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Marion Baraban
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Laboratoire Jean PerrinParisFrance
| | - Karen Pottin
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Melody Cabrera
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Isabelle Bonnet
- Institut CurieUniversité PSLSorbonne UniversitéCNRS UMR168Laboratoire Physico Chimie CurieParisFrance
| | - Marie Anne Breau
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Laboratoire Jean PerrinParisFrance
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance
| |
Collapse
|
12
|
Moreno-Mármol T, Ledesma-Terrón M, Tabanera N, Martin-Bermejo MJ, Cardozo MJ, Cavodeassi F, Bovolenta P. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. eLife 2021; 10:63396. [PMID: 34545806 PMCID: PMC8530511 DOI: 10.7554/elife.63396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
The vertebrate eye primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening. Rounded eyeballs help to optimize vision – but how do they acquire their distinctive shape? In animals with backbones, including humans, the eye begins to form early in development. A single layer of embryonic tissue called the optic vesicle reorganizes itself into a two-layered structure: a thin outer layer of cells, known as the retinal pigmented epithelium (RPE for short), and a thicker inner layer called the neural retina. If this process fails, the animal may be born blind or visually impaired. How this flat two-layered structure becomes round is still being investigated. In fish, studies have shown that the inner cell layer – the neural retina – generates mechanical forces that cause the developing tissue to curve inwards to form a cup-like shape. But it was unclear whether the outer layer of cells (the RPE) also contributed to this process. Moreno-Marmol et al. were able to investigate this question by genetically modifying zebrafish to make all new RPE cells fluoresce. Following the early development of the zebrafish eye under a microscope revealed that RPE cells flattened themselves into long thin structures that stretched to cover the entire neural retina. This change was made possible by the cell’s internal skeleton reorganizing. In fact, preventing this reorganization stopped the RPE cells from flattening, and precluded the optic cup from acquiring its curved shape. The results thus confirmed a direct role for the RPE in generating curvature. The entire process did not require the RPE to produce new cells, allowing the curved shape to emerge in just a few hours. This is a major advantage for fast-developing species such as zebrafish. In species whose embryos develop more slowly, such as mice and humans, the RPE instead grows by producing additional cells – a process that takes many days. The development of the eye thus shows how various species use different evolutionary approaches to achieve a common goal.
Collapse
Affiliation(s)
- Tania Moreno-Mármol
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mario Ledesma-Terrón
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | - Noemi Tabanera
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Maria Jesús Martin-Bermejo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marcos J Cardozo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
13
|
Casey MA, Lusk S, Kwan KM. Build me up optic cup: Intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev Biol 2021; 476:128-136. [PMID: 33811855 PMCID: PMC8848517 DOI: 10.1016/j.ydbio.2021.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
The basic structure of the eye, which is crucial for visual function, is established during the embryonic process of optic cup morphogenesis. Molecular pathways of specification and patterning are integrated with spatially distinct cell and tissue shape changes to generate the eye, with discrete domains and structural features: retina and retinal pigment epithelium enwrap the lens, and the optic fissure occupies the ventral surface of the eye and optic stalk. Interest in the underlying cell biology of eye morphogenesis has led to a growing body of work, combining molecular genetics and imaging to quantify cellular processes such as adhesion and actomyosin activity. These studies reveal that intrinsic machinery and spatiotemporally specific extrinsic inputs collaborate to control dynamics of cell movements and morphologies. Here we consider recent advances in our understanding of eye morphogenesis, with a focus on the mechanics of eye formation throughout vertebrate systems, including insights and potential opportunities using organoids, which may provide a tractable system to test hypotheses from embryonic models.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
14
|
Zilova L, Weinhardt V, Tavhelidse T, Schlagheck C, Thumberger T, Wittbrodt J. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. eLife 2021; 10:e66998. [PMID: 34252023 PMCID: PMC8275126 DOI: 10.7554/elife.66998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.
Collapse
Affiliation(s)
- Lucie Zilova
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Venera Weinhardt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Heidelberg International Biosciences Graduate School HBIGS and HeiKa Graduate School on “Functional Materials”HeidelbergGermany
| | - Thomas Thumberger
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
15
|
Buono L, Corbacho J, Naranjo S, Almuedo-Castillo M, Moreno-Marmol T, de la Cerda B, Sanabria-Reinoso E, Polvillo R, Díaz-Corrales FJ, Bogdanovic O, Bovolenta P, Martínez-Morales JR. Analysis of gene network bifurcation during optic cup morphogenesis in zebrafish. Nat Commun 2021; 12:3866. [PMID: 34162866 PMCID: PMC8222258 DOI: 10.1038/s41467-021-24169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Sight depends on the tight cooperation between photoreceptors and pigmented cells, which derive from common progenitors through the bifurcation of a single gene regulatory network into the neural retina (NR) and retinal-pigmented epithelium (RPE) programs. Although genetic studies have identified upstream nodes controlling these networks, their regulatory logic remains poorly investigated. Here, we characterize transcriptome dynamics and chromatin accessibility in segregating NR/RPE populations in zebrafish. We analyze cis-regulatory modules and enriched transcription factor motives to show extensive network redundancy and context-dependent activity. We identify downstream targets, highlighting an early recruitment of desmosomal genes in the flattening RPE and revealing Tead factors as upstream regulators. We investigate the RPE specification network dynamics to uncover an unexpected sequence of transcription factors recruitment, which is conserved in humans. This systematic interrogation of the NR/RPE bifurcation should improve both genetic counseling for eye disorders and hiPSCs-to-RPE differentiation protocols for cell-replacement therapies in degenerative diseases.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Seville, Spain
| | - Jorge Corbacho
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | | | | | - Berta de la Cerda
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER (CSIC/US/UPO/JA), Seville, Spain
| | | | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | | | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Seville, Spain.
- CIBERER, ISCIII, Madrid, Spain.
| | | |
Collapse
|
16
|
Multiple roles for Pax2 in the embryonic mouse eye. Dev Biol 2021; 472:18-29. [PMID: 33428890 DOI: 10.1016/j.ydbio.2020.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
The vertebrate eye anlage grows out of the brain and folds into bilayered optic cups. The eye is patterned along multiple axes, precisely controlled by genetic programs, to delineate neural retina, pigment epithelium, and optic stalk tissues. Pax genes encode developmental regulators of key morphogenetic events, with Pax2 being essential for interpreting inductive signals, including in the eye. PAX2 mutations cause ocular coloboma, when the ventral optic fissure fails to close. Previous studies established that Pax2 is necessary for fissure closure and to maintain the neural retina -- glial optic stalk boundary. Using a Pax2GFP/+ knock-in allele we discovered that the mutant optic nerve head (ONH) lacks molecular boundaries with the retina and RPE, rendering the ONH larger than normal. This was preceded by ventronasal cup mispatterning, a burst of overproliferation and followed by optic cup apoptosis. Our findings support the hypothesis that ONH cells are tripotential, requiring Pax2 to remain committed to glial fates. This work extends current models of ocular development, contributes to broader understanding of tissue boundary formation and informs the underlying mechanisms of human coloboma.
Collapse
|
17
|
Sun WR, Ramirez S, Spiller KE, Zhao Y, Fuhrmann S. Nf2 fine-tunes proliferation and tissue alignment during closure of the optic fissure in the embryonic mouse eye. Hum Mol Genet 2020; 29:3373-3387. [PMID: 33075808 DOI: 10.1093/hmg/ddaa228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/14/2022] Open
Abstract
Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (~1 in 5000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggests multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein Neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicate that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased retinal pigmented epithelium (RPE) proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during OF closure.
Collapse
Affiliation(s)
- Wesley R Sun
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara Ramirez
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kelly E Spiller
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Zhao
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
18
|
Sánchez-Iranzo H, Bevilacqua C, Diz-Muñoz A, Prevedel R. A 3D Brillouin microscopy dataset of the in-vivo zebrafish eye. Data Brief 2020; 30:105427. [PMID: 32274409 PMCID: PMC7132165 DOI: 10.1016/j.dib.2020.105427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 11/30/2022] Open
Abstract
In this work we present three-dimensional (3D) measurements of Brillouin scattering spectra of the in-vivo zebrafish larvae eye. This dataset was obtained by Brillouin microscopy, an emerging all-optical and non-contact technique that gives access to material properties through the process of Brillouin scattering. Herein, we share a representative 3D dataset of spectral properties of 48–52 h post-fertilization (hpf) zebrafish embryos. These spectral properties can be related to a complex longitudinal modulus and thus elastic and viscous properties given knowledge of refractive index and material density. The dataset encompasses the crystalline lens as well as several different retinal layers. This data provides a valuable resource as well as a starting point for researchers interested in the mechanobiology of vertebrate eye development.
Collapse
Affiliation(s)
- Héctor Sánchez-Iranzo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
19
|
Buono L, Martinez-Morales JR. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development. Bioessays 2020; 42:e1900187. [PMID: 31997389 DOI: 10.1002/bies.201900187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The ontogeny of the vertebrate retina has been a topic of interest to developmental biologists and human geneticists for many decades. Understanding the unfolding of the genetic program that transforms a field of progenitors cells into a functionally complex and multi-layered sensory organ is a formidable challenge. Although classical genetic studies succeeded in identifying the key regulators of retina specification, understanding the architecture of their gene network and predicting their behavior are still a distant hope. The emergence of next-generation sequencing platforms revolutionized the field unlocking the access to genome-wide datasets. Emerging techniques such as RNA-seq, ChIP-seq, ATAC-seq, or single cell RNA-seq are used to characterize eye developmental programs. These studies provide valuable information on the transcriptional and cis-regulatory profiles of precursors and differentiated cells, outlining the trajectories that connect each intermediate state. Here, recent systems biology efforts are reviewed to understand the genetic programs shaping the vertebrate retina.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville, 41013 , Spain
| | | |
Collapse
|
20
|
Cardozo MJ, Almuedo-Castillo M, Bovolenta P. Patterning the Vertebrate Retina with Morphogenetic Signaling Pathways. Neuroscientist 2019; 26:185-196. [PMID: 31509088 DOI: 10.1177/1073858419874016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes-proximo-distal, dorso-ventral, and naso-temporal-and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.
Collapse
Affiliation(s)
- Marcos J Cardozo
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | | | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
21
|
Takeda H, Kameo Y, Inoue Y, Adachi T. An energy landscape approach to understanding variety and robustness in tissue morphogenesis. Biomech Model Mechanobiol 2019; 19:471-479. [PMID: 31494791 PMCID: PMC7105444 DOI: 10.1007/s10237-019-01222-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022]
Abstract
During morphogenesis in development, multicellular tissues deform by mechanical forces induced by spatiotemporally regulated cellular activities, such as cell proliferation and constriction. Various morphologies are formed because of various spatiotemporal combinations and sequences of multicellular activities. Despite its potential to variations, morphogenesis is a surprisingly robust process, in which qualitatively similar morphologies are reproducibly formed even under spatiotemporal fluctuation of multicellular activities. To understand these essential characteristics of tissue morphogenesis, which involves the coexistence of various morphologies and robustness of the morphogenetic process, in this study, we propose a novel approach to capture the overall view of morphogenesis from mechanical viewpoints. This approach will enable visualization of the energy landscape, which includes morphogenetic processes induced by admissible histories of cellular activities. This approach was applied to investigate the morphogenesis of a sheet-like tissue with curvature, where it deformed to a concave or convex morphology depending on the history of growth and constriction. Qualitatively different morphologies were produced by bifurcation of the valley in the energy landscape. The depth and steepness of the valley near the stable states represented the degree of robustness to fluctuations of multicellular activities. Furthermore, as a realistic example, we showed an application of this approach to luminal folding observed in the initial stage of intestinal villus formation. This approach will be helpful to understand the mechanism of how various morphologies are formed and how tissues reproducibly achieve specific morphologies.
Collapse
Affiliation(s)
- Hironori Takeda
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Yasuhiro Inoue
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Cavodeassi F, Wilson SW. Looking to the future of zebrafish as a model to understand the genetic basis of eye disease. Hum Genet 2019; 138:993-1000. [PMID: 31422478 PMCID: PMC6710215 DOI: 10.1007/s00439-019-02055-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
In this brief commentary, we provide some of our thoughts and opinions on the current and future use of zebrafish to model human eye disease, dissect pathological progression and advance in our understanding of the genetic bases of microphthalmia, andophthalmia and coloboma (MAC) in humans. We provide some background on eye formation in fish and conservation and divergence across vertebrates in this process, discuss different approaches for manipulating gene function and speculate on future research areas where we think research using fish may prove to be particularly effective.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute of Medical and Biomedical Education, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Biosciences, UCL, Gower St, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Hardy H, Prendergast JG, Patel A, Dutta S, Trejo-Reveles V, Kroeger H, Yung AR, Goodrich LV, Brooks B, Sowden JC, Rainger J. Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. eLife 2019; 8:43877. [PMID: 31162046 PMCID: PMC6606025 DOI: 10.7554/elife.43877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial fusion underlies many vital organogenic processes during embryogenesis. Disruptions to these cause a significant number of human birth defects, including ocular coloboma. We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure (OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling. We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely expressed in the chick fissure margin during fusion but is immediately downregulated after fusion. We further provide a combination of protein localisation and phenotypic evidence in chick, humans, mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a strong candidate locus for human coloboma and other multi-system developmental fusion defects, and show that chick OFC is a powerful model for epithelial fusion research. Our bodies are made of many different groups of cells, which are arranged into tissues that perform specific roles. As tissues form in the embryo they must adopt precise three-dimensional structures, depending on their position in the body. In many cases this involves two edges of tissue fusing together to prevent gaps being present in the final structure. In individuals with a condition called ocular coloboma some of the tissues in the eyes fail to merge together correctly, leading to wide gaps that can severely affect vision. There are currently no treatments available for ocular coloboma and in over 70% of patients the cause of the defect is not known. Identifying new genes that control how tissues fuse may help researchers to find what causes this condition and multiple other tissue fusion defects, and establish whether these may be preventable in the future. Much of what is currently known about how tissues fuse has come from studying mice and zebrafish embryos. Although the extensive genetic tools available in these ‘models’ have proved very useful, both offer only a limited time window for observing tissues as they fuse, and the regions involved are very small. Chick embryos, on the other hand, are much larger than mouse or zebrafish embryos and are easier to access from within their eggs. This led Hardy et al. to investigate whether the developing chick eye could be a more useful model for studying the precise details of how tissues merge. Examining chick embryos revealed that tissues in the base of their eyes fuse between five and eight days after the egg had been fertilised, a comparatively long time compared to existing models. Also, many of the genes that Hardy et al. found switched on in chick eyes as the tissues merged had previously been identified as being essential for tissue fusion in humans. However, several new genes were also shown to be involved in the fusing process. For example, Netrin-1 was important for tissues to fuse in the eyes as well as in other regions of the developing embryo. These findings demonstrate that the chick eye is an excellent new model system to study how tissues fuse in animals. Furthermore, the genes identified by Hardy et al. may help researchers to identify the genetic causes of ocular coloboma and other tissue fusion defects in humans.
Collapse
Affiliation(s)
- Holly Hardy
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - James Gd Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Aara Patel
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sunit Dutta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Violeta Trejo-Reveles
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Hannah Kroeger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Jane C Sowden
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joe Rainger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
24
|
Moreno-Marmol T, Cavodeassi F, Bovolenta P. Setting Eyes on the Retinal Pigment Epithelium. Front Cell Dev Biol 2018; 6:145. [PMID: 30406103 PMCID: PMC6207792 DOI: 10.3389/fcell.2018.00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023] Open
Abstract
The neural component of the zebrafish eye derives from a small group of cells known as the eye/retinal field. These cells, positioned in the anterior neural plate, rearrange extensively and generate the optic vesicles (OVs). Each vesicle subsequently folds over itself to form the double-layered optic cup, from which the mature eye derives. During this transition, cells of the OV are progressively specified toward three different fates: the retinal pigment epithelium (RPE), the neural retina, and the optic stalk. Recent studies have shown that folding of the zebrafish OV into a cup is in part driven by basal constriction of the cells of the future neural retina. During folding, however, RPE cells undergo an even more dramatic shape conversion that seems to entail the acquisition of unique properties. How these changes occur and whether they contribute to optic cup formation is still poorly understood. Here we will review present knowledge on RPE morphogenesis and discuss potential mechanisms that may explain such transformation using examples taken from embryonic Drosophila tissues that undergo similar shape changes. We will also put forward a hypothesis for optic cup folding that considers an active contribution from the RPE.
Collapse
Affiliation(s)
- Tania Moreno-Marmol
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Florencia Cavodeassi
- Institute of Medical and Biomedical Education, University of London, London, United Kingdom
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
26
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|