1
|
Kumari S, Gupta S, Sukhija R, Gurjar S, Dubey SK, Taliyan R. Neuroprotective potential of Epigenetic modulators, its regulation and therapeutic approaches for the management of Parkinson's disease. Eur J Pharmacol 2024; 985:177123. [PMID: 39536854 DOI: 10.1016/j.ejphar.2024.177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain leads to a deficiency of dopamine and, ultimately, the onset of Parkinson's disease (PD). Since there is currently no cure for PD, patients all around the world are dealing with symptomatic management. PD progression is influenced by multiple elements, such as environmental, biological, chemical, genetic, and epigenetic factors. Epigenetics is gaining increased attention due to its role in controlling the expression of genes that contribute to PD. Recent advancements in our understanding of the brain network and its related conditions have shown that alterations in gene expression may occur independently of genetic abnormalities. Therefore, a thorough investigation has been carried out to explore the significance of epigenetics in all degenerative disorders. Epigenetic modifications are essential for regulating cellular homeostasis. Therefore, a deeper understanding of these modifications might provide valuable insights into many diseases and potentially serve as targets for therapeutic interventions. This review article focuses on diverse epigenetic alterations linked to the progression of PD. These abnormalities are supported by numerous research on the control of gene expression and encompass all the epigenetic processes. The beginning of PD is intricately associated with aberrant DNA methylation mechanisms. DNA methyltransferases are the enzymes that create and preserve various DNA methylation patterns. Integrating epigenetic data with existing clinical methods for diagnosing PD may aid in discovering potential curative medicines and novel drug development approaches. This article solely addresses the importance of epigenetic modulators in PD, primarily the mechanisms of DNMTs, their roles in the development of PD, and their therapeutic approaches; it bypasses other PD therapies.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Sakshi Gupta
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Rajesh Sukhija
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Shaifali Gurjar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| |
Collapse
|
2
|
Pereira A, Diwakar J, Masserdotti G, Beşkardeş S, Simon T, So Y, Martín-Loarte L, Bergemann F, Vasan L, Schauer T, Danese A, Bocchi R, Colomé-Tatché M, Schuurmans C, Philpott A, Straub T, Bonev B, Götz M. Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1. Nat Neurosci 2024; 27:1260-1273. [PMID: 38956165 PMCID: PMC11239498 DOI: 10.1038/s41593-024-01677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/10/2024] [Indexed: 07/04/2024]
Abstract
Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.
Collapse
Affiliation(s)
- Allwyn Pereira
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Nantes Université, CHU Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Jeisimhan Diwakar
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Giacomo Masserdotti
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Sude Beşkardeş
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Tatiana Simon
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Younju So
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lucía Martín-Loarte
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Franziska Bergemann
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lakshmy Vasan
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamas Schauer
- Biomedical Center Munich (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, Planegg, Germany
- Institute of Stem Cells and Epigenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Danese
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Riccardo Bocchi
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Biomedical Center Munich (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg, Germany
| | - Carol Schuurmans
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Anna Philpott
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Straub
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Boyan Bonev
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany.
| | - Magdalena Götz
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany.
- Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| |
Collapse
|
3
|
Chalkley MBL, Guerin LN, Iyer T, Mallahan S, Nelson S, Sahin M, Hodges E, Ess KC, Ihrie RA. Human TSC2 Mutant Cells Exhibit Aberrations in Early Neurodevelopment Accompanied by Changes in the DNA Methylome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597443. [PMID: 38895266 PMCID: PMC11185654 DOI: 10.1101/2024.06.04.597443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented, it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether such phenotypes are also seen in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes, we observed aberrant early neurodevelopment in vitro, including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions, including loci associated with key genes in neurodevelopment. Collectively, these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated, with implications for whether and how prenatal treatment should be pursued.
Collapse
Affiliation(s)
- Mary-Bronwen L. Chalkley
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lindsey N. Guerin
- Department of Biochemistry, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tenhir Iyer
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Samantha Mallahan
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sydney Nelson
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emily Hodges
- Department of Biochemistry, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin C. Ess
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Rebecca A. Ihrie
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Pekkarinen M, Nordfors K, Uusi-Mäkelä J, Kytölä V, Hartewig A, Huhtala L, Rauhala M, Urhonen H, Häyrynen S, Afyounian E, Yli-Harja O, Zhang W, Helen P, Lohi O, Haapasalo H, Haapasalo J, Nykter M, Kesseli J, Rautajoki KJ. Aberrant DNA methylation distorts developmental trajectories in atypical teratoid/rhabdoid tumors. Life Sci Alliance 2024; 7:e202302088. [PMID: 38499326 PMCID: PMC10948937 DOI: 10.26508/lsa.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.
Collapse
Affiliation(s)
- Meeri Pekkarinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Unit of Pediatric Hematology and Oncology, Tampere University Hospital, Tampere, Finland
| | - Joonas Uusi-Mäkelä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ville Kytölä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anja Hartewig
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Minna Rauhala
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Henna Urhonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Sergei Häyrynen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Olli Yli-Harja
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Institute for Systems Biology, Seattle, WA, USA
| | - Wei Zhang
- Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Pauli Helen
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Mandl A, Jasmine S, Krueger T, Kumar R, Coleman IM, Dalrymple SL, Antony L, Rosen DM, Jing Y, Hanratty B, Patel RA, Jin-Yih L, Dias J, Celatka CA, Tapper AE, Kleppe M, Kanayama M, Speranzini V, Wang YZ, Luo J, Corey E, Sena LA, Casero RA, Lotan T, Trock BJ, Kachhap SK, Denmeade SR, Carducci MA, Mattevi A, Haffner MC, Nelson PS, Rienhoff HY, Isaacs JT, Brennen WN. LSD1 inhibition suppresses ASCL1 and de-represses YAP1 to drive potent activity against neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576106. [PMID: 38328141 PMCID: PMC10849473 DOI: 10.1101/2024.01.17.576106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A ) has emerged as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Among mCRPC subtypes, neuroendocrine prostate cancer (NEPC) is an exceptionally aggressive variant driven by lineage plasticity, an adaptive resistance mechanism to androgen receptor axis-targeted therapies. Our study shows that LSD1 expression is elevated in NEPC and associated with unfavorable clinical outcomes. Using genetic approaches, we validated the on-target effects of LSD1 inhibition across various models. We investigated the therapeutic potential of bomedemstat, an orally bioavailable, irreversible LSD1 inhibitor with low nanomolar potency. Our findings demonstrate potent antitumor activity against CRPC models, including tumor regressions in NEPC patient-derived xenografts. Mechanistically, our study uncovers that LSD1 inhibition suppresses the neuronal transcriptional program by downregulating ASCL1 through disrupting LSD1:INSM1 interactions and de-repressing YAP1 silencing. Our data support the clinical development of LSD1 inhibitors for treating CRPC - especially the aggressive NE phenotype. Statement of Significance Neuroendocrine prostate cancer presents a clinical challenge due to the lack of effective treatments. Our research demonstrates that bomedemstat, a potent and selective LSD1 inhibitor, effectively combats neuroendocrine prostate cancer by downregulating the ASCL1- dependent NE transcriptional program and re-expressing YAP1.
Collapse
|
6
|
Cabej NR. On the origin and nature of nongenetic information in eumetazoans. Ann N Y Acad Sci 2023. [PMID: 37154677 DOI: 10.1111/nyas.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenetic information implies all the forms of biological information not related to genes and DNA in general. Despite the deep scientific relevance of the concept, we currently lack reliable knowledge about its carriers and origins; hence, we still do not understand its true nature. Given that genes are the targets of nongenetic information, it appears that a parsimonious approach to find the ultimate source of that information is to trace back the sequential steps of the causal chain upstream of the target genes up to the ultimate link as the source of the nongenetic information. From this perspective, I examine seven nongenetically determined phenomena: placement of locus-specific epigenetic marks on DNA and histones, changes in snRNA expression patterns, neural induction of gene expression, site-specific alternative gene splicing, predator-induced morphological changes, and cultural inheritance. Based on the available evidence, I propose a general model of the common neural origin of all these forms of nongenetic information in eumetazoans.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
7
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
8
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Çalışkaner ZO. Computational discovery of novel inhibitory candidates targeting versatile transcriptional repressor MBD2. J Mol Model 2022; 28:296. [PMID: 36066769 DOI: 10.1007/s00894-022-05297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Genome methylation is a key epigenetic mechanism in various biological events such as development, cellular differentiation, cancer progression, aging, and iPSC reprogramming. Crosstalk between DNA methylation and gene expression is mediated by MBD2, known as the reader of DNA methylation and suggested as a drug target. Despite its magnitude of significance, a scarcely limited number of small molecules to be used as inhibitors have been detected so far. Therefore, we screened a comprehensive compound library to elicit MBD2 inhibitor candidates. Promising molecules were subjected to computational docking analysis by targeting the methylated DNA-binding domain of human MBD2. We could detect reasonable binding energies and docking residues, presumably located in druggable pockets. Docking results were also validated via MD simulation and per-residue energy decomposition calculation. Drug-likeness of these small molecules was assessed through ADMET prediction to foresee off-target side effects for future studies. All computational approaches notably highlighted two compounds named CID3100583 and 8,8-ethylenebistheophylline. These compounds have become prominent as novel candidates, possibly disrupting MBD2MBD-DNA interaction. Consequently, these compounds have been considered prospective inhibitors with the usage potential in a wide range of applications from cancer treatment to somatic cell reprogramming protocols.
Collapse
Affiliation(s)
- Zihni Onur Çalışkaner
- Faculty of Engineering and Natural Sciences, Molecular Biology and Genetics Department, Biruni University, 34010, Istanbul, Turkey.
| |
Collapse
|
10
|
Rujano MA, Briand D, Ðelić B, Marc J, Spéder P. An interplay between cellular growth and atypical fusion defines morphogenesis of a modular glial niche in Drosophila. Nat Commun 2022; 13:4999. [PMID: 36008397 PMCID: PMC9411534 DOI: 10.1038/s41467-022-32685-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neural stem cells (NSCs) live in an intricate cellular microenvironment supporting their activity, the niche. Whilst shape and function are inseparable, the morphogenetic aspects of niche development are poorly understood. Here, we use the formation of a glial niche to investigate acquisition of architectural complexity. Cortex glia (CG) in Drosophila regulate neurogenesis and build a reticular structure around NSCs. We first show that individual CG cells grow tremendously to ensheath several NSC lineages, employing elaborate proliferative mechanisms which convert these cells into syncytia rich in cytoplasmic bridges. CG syncytia further undergo homotypic cell-cell fusion, using defined cell surface receptors and actin regulators. Cellular exchange is however dynamic in space and time. This atypical cell fusion remodels cellular borders, restructuring the CG syncytia. Ultimately, combined growth and fusion builds the multi-level architecture of the niche, and creates a modular, spatial partition of the NSC population. Our findings provide insights into how a niche forms and organises while developing intimate contacts with a stem cell population.
Collapse
Affiliation(s)
| | | | - Bojana Ðelić
- Institut Pasteur, CNRS UMR3738, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Cell Division and Neurogenesis, Ecole Normale Supérieure, CNRS, Inserm, PSL Université Paris, Paris, France
| | - Julie Marc
- Institut Pasteur, CNRS UMR3738, Paris, France
| | | |
Collapse
|
11
|
Schaffner SL, Kobor MS. DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Front Genet 2022; 13:971298. [PMID: 36061205 PMCID: PMC9437223 DOI: 10.3389/fgene.2022.971298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex etiology and increasing prevalence worldwide. As PD is influenced by a combination of genetic and environment/lifestyle factors in approximately 90% of cases, there is increasing interest in identification of the interindividual mechanisms underlying the development of PD as well as actionable lifestyle factors that can influence risk. This narrative review presents an outline of the genetic and environmental factors contributing to PD risk and explores the possible roles of cytosine methylation and hydroxymethylation in the etiology and/or as early-stage biomarkers of PD, with an emphasis on epigenome-wide association studies (EWAS) of PD conducted over the past decade. Specifically, we focused on variants in the SNCA gene, exposure to pesticides, and physical activity as key contributors to PD risk. Current research indicates that these factors individually impact the epigenome, particularly at the level of CpG methylation. There is also emerging evidence for interaction effects between genetic and environmental contributions to PD risk, possibly acting across multiple omics layers. We speculated that this may be one reason for the poor replicability of the results of EWAS for PD reported to date. Our goal is to provide direction for future epigenetics studies of PD to build upon existing foundations and leverage large datasets, new technologies, and relevant statistical approaches to further elucidate the etiology of this disease.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Jiménez-Ramírez IA, Pijeira-Fernández G, Moreno-Cálix DM, De-la-Peña C. Same modification, different location: the mythical role of N 6-adenine methylation in plant genomes. PLANTA 2022; 256:9. [PMID: 35696004 DOI: 10.1007/s00425-022-03926-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The present review summarizes recent advances in the understanding of 6mA in DNA as an emergent epigenetic mark with distinctive characteristics, discusses its importance in plant genomes, and highlights its chemical nature and functions. Adenine methylation is an epigenetic modification present in DNA (6mA) and RNA (m6A) that has a regulatory function in many cellular processes. This modification occurs through a reversible reaction that covalently binds a methyl group, usually at the N6 position of the purine ring. This modification carries biophysical properties that affect the stability of nucleic acids as well as their binding affinity with other molecules. DNA 6mA has been related to genome stability, gene expression, DNA replication, and repair mechanisms. Recent advances have shown that 6mA in plant genomes is related to development and stress response. In this review, we present recent advances in the understanding of 6mA in DNA as an emergent epigenetic mark with distinctive characteristics. We discuss the key elements of this modification, focusing mainly on its importance in plant genomes. Furthermore, we highlight its chemical nature and the regulatory effects that it exerts on gene expression and plant development. Finally, we emphasize the functions of 6mA in photosynthesis, stress, and flowering.
Collapse
Affiliation(s)
- Irma A Jiménez-Ramírez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Gema Pijeira-Fernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Delia M Moreno-Cálix
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
13
|
An Improved Approach for Practical Synthesis of 5-Hydroxymethyl-2′-deoxycytidine (5hmdC) Phosphoramidite and Triphosphate. Molecules 2022; 27:molecules27030749. [PMID: 35164012 PMCID: PMC8839764 DOI: 10.3390/molecules27030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
5-Hydroxymethyl-2′-deoxycytidine (5hmdC) phosphoramidite and triphosphate are important building blocks in 5hmdC-containing DNA synthesis for epigenetic studies. However, efficient and practical methods for the synthesis of these compounds are still limited. The current research provides an intensively improved synthetic method that enables the preparation of commercially available cyanoethyl-protected 5hmdC phosphoramidite with an overall yield of 39% on 5 g scale. On the basis of facile and efficient accesses to cyanoethyl protected-5hmdU and 5hmdC intermediates, two efficient synthetic routes for 5hmdC triphosphate were also developed.
Collapse
|
14
|
The Transcriptome and Methylome of the Developing and Aging Brain and Their Relations to Gliomas and Psychological Disorders. Cells 2022; 11:cells11030362. [PMID: 35159171 PMCID: PMC8834030 DOI: 10.3390/cells11030362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.
Collapse
|
15
|
Neocortical development and epilepsy: insights from focal cortical dysplasia and brain tumours. Lancet Neurol 2021; 20:943-955. [PMID: 34687638 DOI: 10.1016/s1474-4422(21)00265-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 01/16/2023]
Abstract
During the past decade, there have been considerable advances in understanding of the genetic and morphogenic processes underlying cortical malformations and developmental brain tumours. Focal malformations are caused by somatic (postzygotic) variants in genes related to cell growth (ie, in the mTOR pathway in focal cortical dysplasia type 2), which are acquired in neuronal progenitors during neurodevelopment. In comparison, developmental brain tumours result from somatic variants in genes related to cell proliferation (eg, in the MAP-kinase pathway in ganglioglioma), which affect proliferating glioneuronal precursors. The timing of the genetic event and the specific gene involved during neurodevelopment will drive the nature and size of the lesion, whether it is a developmental malformation or a brain tumour. There is also emerging evidence that epigenetic processes underlie a molecular memory in epileptogenesis. This knowledge will together facilitate understanding of why and how patients with these lesions have epilepsy, and could form a basis for a move towards precision medicine for this challenging cohort of patients.
Collapse
|
16
|
Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol 2021; 10:3104-3116. [PMID: 34430414 PMCID: PMC8350251 DOI: 10.21037/tau-20-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic alterations, including changes in DNA methylation, histone modifications and nucleosome remodeling, result in abnormal gene expression patterns that contribute to prostate tumor initiation and continue to evolve during the course of disease progression. Epigenetic modifications are responsible for silencing tumor-suppressor genes, activating oncogenic drivers, and driving therapy resistance and thus have emerged as promising targets for antineoplastic therapy in prostate cancer. In this review, we discuss the role of epigenetics in prostate cancer with a particular emphasis on clinical implications. We review how epigenetic regulators crosstalk with critical biological pathways, including androgen receptor signaling, and how these interactions dynamically control prostate cancer transcriptional profiles. Because of their potentially reversible nature, restoration of a "normal" epigenome could provide a basis for innovative therapeutic strategies in prostate cancer. We highlight how particular epigenetic alterations are emerging as potential diagnostic and prognostic biomarkers and/or targets for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Judy Hess
- Weill Cornell Medicine, New York, NY, USA
| | - Yasutaka Yamada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Shirvaliloo M. Epigenomics in COVID-19; the link between DNA methylation, histone modifications and SARS-CoV-2 infection. Epigenomics 2021; 13:745-750. [PMID: 33876664 PMCID: PMC8074570 DOI: 10.2217/epi-2021-0057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/31/2021] [Indexed: 01/23/2023] Open
Affiliation(s)
- Milad Shirvaliloo
- Student Research Committee, Tabriz University of Medical Sciences, 5166 Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| |
Collapse
|
18
|
Ho NTT, Rahane CS, Pramanik S, Kim PS, Kutzner A, Heese K. FAM72, Glioblastoma Multiforme (GBM) and Beyond. Cancers (Basel) 2021; 13:cancers13051025. [PMID: 33804473 PMCID: PMC7957592 DOI: 10.3390/cancers13051025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is a serious and aggressive cancer disease that has not allowed scientists to rest for decades. In this review, we consider the new gene pair |-SRGAP2–FAM72-| and discuss its role in the cell cycle and the possibility of defining new therapeutic approaches for the treatment of GBM and other cancers via this gene pair |-SRGAP2–FAM72-|. Abstract Neural stem cells (NSCs) offer great potential for regenerative medicine due to their excellent ability to differentiate into various specialized cell types of the brain. In the central nervous system (CNS), NSC renewal and differentiation are under strict control by the regulation of the pivotal SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2)—Family with sequence similarity 72 (FAM72) master gene (i.e., |-SRGAP2–FAM72-|) via a divergent gene transcription activation mechanism. If the gene transcription control unit (i.e., the intergenic region of the two sub-gene units, SRGAP2 and FAM72) gets out of control, NSCs may transform into cancer stem cells and generate brain tumor cells responsible for brain cancer such as glioblastoma multiforme (GBM). Here, we discuss the surveillance of this |-SRGAP2–FAM72-| master gene and its role in GBM, and also in light of FAM72 for diagnosing various types of cancers outside of the CNS.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Chinmay Satish Rahane
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Maharashtra 410507, India;
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany;
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Korea;
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
- Correspondence:
| |
Collapse
|
19
|
Jawaid S, Strainic JP, Kim J, Ford MR, Thrane L, Karunamuni GH, Sheehan MM, Chowdhury A, Gillespie CA, Rollins AM, Jenkins MW, Watanabe M, Ford SM. Glutathione Protects the Developing Heart from Defects and Global DNA Hypomethylation Induced by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2021; 45:69-78. [PMID: 33206417 PMCID: PMC8865806 DOI: 10.1111/acer.14511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is caused by prenatal alcohol exposure (PAE), the intake of ethanol (C2 H5 OH) during pregnancy. Features of FASD cover a range of structural and functional defects including congenital heart defects (CHDs). Folic acid and choline, contributors of methyl groups to one-carbon metabolism (OCM), prevent CHDs in humans. Using our avian model of FASD, we have previously reported that betaine, another methyl donor downstream of choline, prevents CHDs. The CHD preventions are substantial but incomplete. Ethanol causes oxidative stress as well as depleting methyl groups for OCM to support DNA methylation and other epigenetic alterations. To identify more compounds that can safely and effectively prevent CHDs and other effects of PAE, we tested glutathione (GSH), a compound that regulates OCM and is known as a "master antioxidant." METHODS/RESULTS Quail embryos injected with a single dose of ethanol at gastrulation exhibited congenital defects including CHDs similar to those identified in FASD individuals. GSH injected simultaneously with ethanol not only prevented CHDs, but also improved survival and prevented other PAE-induced defects. Assays of hearts at 8 days (HH stage 34) of quail development, when the heart normally has developed 4-chambers, showed that this single dose of PAE reduced global DNA methylation. GSH supplementation concurrent with PAE normalized global DNA methylation levels. The same assays performed on quail hearts at 3 days (HH stage 19-20) of development, showed no difference in global DNA methylation between controls, ethanol-treated, GSH alone, and GSH plus ethanol-treated cohorts. CONCLUSIONS GSH supplementation shows promise to inhibit effects of PAE by improving survival, reducing the incidence of morphological defects including CHDs, and preventing global hypomethylation of DNA in heart tissues.
Collapse
Affiliation(s)
- Safdar Jawaid
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - James P. Strainic
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Jun Kim
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Matthew R. Ford
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Lars Thrane
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Ganga H. Karunamuni
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Megan M. Sheehan
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Amrin Chowdhury
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Brecksville-Broadview Heights High School, Broadview Heights OH 44147
| | - Caitlyn A. Gillespie
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Fisk University, Nashville TN 37208
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Stephanie M Ford
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| |
Collapse
|
20
|
Pierozan P, Cattani D, Karlsson O. Hippocampal neural stem cells are more susceptible to the neurotoxin BMAA than primary neurons: effects on apoptosis, cellular differentiation, neurite outgrowth, and DNA methylation. Cell Death Dis 2020; 11:910. [PMID: 33099583 PMCID: PMC7585576 DOI: 10.1038/s41419-020-03093-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Developmental exposure to the environmental neurotoxin β-N-methylamino-L-alanine (BMAA), a proposed risk factor for neurodegenerative disease, can induce long-term cognitive impairments and neurodegeneration in rats. While rodent studies have demonstrated a low transfer of BMAA to the adult brain, this toxin is capable to cross the placental barrier and accumulate in the fetal brain. Here, we investigated the differential susceptibility of primary neuronal cells and neural stem cells from fetal rat hippocampus to BMAA toxicity. Exposure to 250 µM BMAA induced cell death in neural stem cells through caspase-independent apoptosis, while the proliferation of primary neurons was reduced only at 3 mM BMAA. At the lowest concentrations tested (50 and 100 µM), BMAA disrupted neural stem cell differentiation and impaired neurite development in neural stem cell-derived neurons (e.g., reduced neurite length, the number of processes and branches per cell). BMAA induced no alterations of the neurite outgrowth in primary neurons. This demonstrates that neural stem cells are more susceptible to BMAA exposure than primary neurons. Importantly, the changes induced by BMAA in neural stem cells were mitotically inherited to daughter cells. The persistent nature of the BMAA-induced effects may be related to epigenetic alterations that interfere with the neural stem cell programming, as BMAA exposure reduced the global DNA methylation in the cells. These findings provide mechanistic understanding of how early-life exposure to BMAA may lead to adverse long-term consequences, and potentially predispose for neurodevelopmental disorders or neurodegenerative disease later in life.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Daiane Cattani
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden.
| |
Collapse
|
21
|
Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP. Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacol Res 2020; 162:105237. [PMID: 33053442 DOI: 10.1016/j.phrs.2020.105237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
22
|
Grzybkowska D, Nowak K, Gaj MD. Hypermethylation of Auxin-Responsive Motifs in the Promoters of the Transcription Factor Genes Accompanies the Somatic Embryogenesis Induction in Arabidopsis. Int J Mol Sci 2020; 21:E6849. [PMID: 32961931 PMCID: PMC7555384 DOI: 10.3390/ijms21186849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The auxin-induced embryogenic reprogramming of plant somatic cells is associated with extensive modulation of the gene expression in which epigenetic modifications, including DNA methylation, seem to play a crucial role. However, the function of DNA methylation, including the role of auxin in epigenetic regulation of the SE-controlling genes, remains poorly understood. Hence, in the present study, we analysed the expression and methylation of the TF genes that play a critical regulatory role during SE induction (LEC1, LEC2, BBM, WUS and AGL15) in auxin-treated explants of Arabidopsis. The results showed that auxin treatment substantially affected both the expression and methylation patterns of the SE-involved TF genes in a concentration-dependent manner. The auxin treatment differentially modulated the methylation of the promoter (P) and gene body (GB) sequences of the SE-involved genes. Relevantly, the SE-effective auxin treatment (5.0 µM of 2,4-D) was associated with the stable hypermethylation of the P regions of the SE-involved genes and a significantly higher methylation of the P than the GB fragments was a characteristic feature of the embryogenic culture. The presence of auxin-responsive (AuxRE) motifs in the hypermethylated P regions suggests that auxin might substantially contribute to the DNA methylation-mediated control of the SE-involved genes.
Collapse
Affiliation(s)
| | | | - Małgorzata D. Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.G.); (K.N.)
| |
Collapse
|
23
|
Franco-Enzástiga Ú, García G, Murbartián J, González-Barrios R, Salinas-Abarca AB, Sánchez-Hernández B, Tavares-Ferreira D, Herrera LA, Barragán-Iglesias P, Delgado-Lezama R, Price TJ, Granados-Soto V. Sex-dependent pronociceptive role of spinal α 5 -GABA A receptor and its epigenetic regulation in neuropathic rodents. J Neurochem 2020; 156:897-916. [PMID: 32750173 DOI: 10.1111/jnc.15140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
Abstract
Extrasynaptic α5 -subunit containing GABAA (α5 -GABAA ) receptors participate in chronic pain. Previously, we reported a sex difference in the action of α5 -GABAA receptors in dysfunctional pain. However, the underlying mechanisms remain unknown. The aim of this study was to examine this sexual dimorphism in neuropathic rodents and the mechanisms involved. Female and male Wistar rats or ICR mice were subjected to nerve injury followed by α5 -GABAA receptor inverse agonist intrathecal administration, L-655,708. The drug produced an antiallodynic effect in nerve-injured female rats and mice, and a lower effect in males. We hypothesized that changes in α5 -GABAA receptor, probably influenced by hormonal and epigenetic status, might underlie this sex difference. Thus, we performed qPCR and western blot. Nerve injury increased α5 -GABAA mRNA and protein in female dorsal root ganglia (DRG) and decreased them in DRG and spinal cord of males. To investigate the hormonal influence over α5 -GABAA receptor actions, we performed nerve injury to ovariectomized rats and reconstituted them with 17β-estradiol (E2). Ovariectomy abrogated L-655,708 antiallodynic effect and E2 restored it. Ovariectomy decreased α5 -GABAA receptor and estrogen receptor α protein in DRG of neuropathic female rats, while E2 enhanced them. Since DNA methylation might contribute to α5 -GABAA receptor down-regulation in males, we examined CpG island DNA methylation of α5 -GABAA receptor coding gene through pyrosequencing. Nerve injury increased methylation in male, but not female rats. Pharmacological inhibition of DNA methyltransferases increased α5 -GABAA receptor and enabled L-655,708 antinociceptive effect in male rats. These results suggest that α5 -GABAA receptor is a suitable target to treat chronic pain in females.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Ana B Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Beatriz Sánchez-Hernández
- Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Tavares-Ferreira
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Luis A Herrera
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA.,Department of Physiology and Pharmacology, Center for Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Theodore J Price
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
24
|
Lee JH, Saito Y, Park SJ, Nakai K. Existence and possible roles of independent non-CpG methylation in the mammalian brain. DNA Res 2020; 27:dsaa020. [PMID: 32970817 PMCID: PMC7750974 DOI: 10.1093/dnares/dsaa020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Methylated non-CpGs (mCpHs) in mammalian cells yield weak enrichment signals and colocalize with methylated CpGs (mCpGs), thus have been considered byproducts of hyperactive methyltransferases. However, mCpHs are cell type-specific and associated with epigenetic regulation, although their dependency on mCpGs remains to be elucidated. In this study, we demonstrated that mCpHs colocalize with mCpGs in pluripotent stem cells, but not in brain cells. In addition, profiling genome-wide methylation patterns using a hidden Markov model revealed abundant genomic regions in which CpGs and CpHs are differentially methylated in brain. These regions were frequently located in putative enhancers, and mCpHs within the enhancers increased in correlation with brain age. The enhancers with hypermethylated CpHs were associated with genes functionally enriched in immune responses, and some of the genes were related to neuroinflammation and degeneration. This study provides insight into the roles of non-CpG methylation as an epigenetic code in the mammalian brain genome.
Collapse
Affiliation(s)
- Jong-Hun Lee
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
25
|
Breunig CT, Köferle A, Neuner AM, Wiesbeck MF, Baumann V, Stricker SH. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiol Rev 2020; 101:177-211. [PMID: 32525760 DOI: 10.1152/physrev.00034.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the large amount of genome-wide data that have been collected during the last decades, a good understanding of how and why cells change during development, homeostasis, and disease might be expected. Unfortunately, the opposite is true; triggers that cause cellular state changes remain elusive, and the underlying molecular mechanisms are poorly understood. Although genes with the potential to influence cell states are known, the historic dependency on methods that manipulate gene expression outside the endogenous chromatin context has prevented us from understanding how cells organize, interpret, and protect cellular programs. Fortunately, recent methodological innovations are now providing options to answer these outstanding questions, by allowing to target and manipulate individual genomic and epigenomic loci. In particular, three experimental approaches are now feasible due to DNA targeting tools, namely, activation and/or repression of master transcription factors in their endogenous chromatin context; targeting transcription factors to endogenous, alternative, or inaccessible sites; and finally, functional manipulation of the chromatin context. In this article, we discuss the molecular basis of DNA targeting tools and review the potential of these new technologies before we summarize how these have already been used for the manipulation of cellular states and hypothesize about future applications.
Collapse
Affiliation(s)
- Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Anna Köferle
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Andrea M Neuner
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Maximilian F Wiesbeck
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
27
|
Quan H, Koltai E, Suzuki K, Aguiar AS, Pinho R, Boldogh I, Berkes I, Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165778. [PMID: 32222542 DOI: 10.1016/j.bbadis.2020.165778] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.
Collapse
Affiliation(s)
- Helong Quan
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua City, Zhejiang, China
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| | - Aderbal S Aguiar
- Research Group on Biology of Exercise, Department of Health Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| |
Collapse
|
28
|
Schaffner SL, Lussier AA, Baker JA, Goldowitz D, Hamre KM, Kobor MS. Neonatal Alcohol Exposure in Mice Induces Select Differentiation- and Apoptosis-Related Chromatin Changes Both Independent of and Dependent on Sex. Front Genet 2020; 11:35. [PMID: 32117449 PMCID: PMC7026456 DOI: 10.3389/fgene.2020.00035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023] Open
Abstract
Prenatal alcohol exposure (PAE) affects many aspects of physiology and behavior, including brain development. Specifically, ethanol can influence expression of genes important for brain growth, including chromatin modifiers. Ethanol can also increase apoptotic cell death in the brain and alter epigenetic profiles such as modifications to histones and DNA methylation. Although differential sex outcomes and disruptions to the function of multiple brain regions have been reported in fetal alcohol spectrum disorder (FASD), the majority of our knowledge on molecular epigenetic and apoptotic dysregulation in PAE is based on data from males and is sometimes limited to assessments of the whole brain or one brain region. Here, we examined histone modifications, DNA methylation, and expression of genes involved in differentiation and proliferation related-chromatin modifications and apoptosis in the cerebral cortex and cerebellum of C57BL/6J mice exposed to an acute alcohol challenge on postnatal day 7, with a focus on differential outcomes between sexes and brain regions. We found that neonatal alcohol exposure altered histone modifications, and impacted expression of a select few chromatin modifier and apoptotic genes in both the cortex and cerebellum. The results were observed primarily in a sex-independent manner, although some additional trends toward sexual dimorphisms were observed. Alcohol exposure induced trends toward increased bulk H3K4me3 levels, increased Kmt2e expression, and elevated levels of Casp6 mRNA and bulk γH2A.X. Additional trends indicated that ethanol may impact Kdm4a promoter DNA methylation levels and bulk levels of the histone variant H2A.Z, although further studies are needed. We comprehensively examined effects of ethanol exposure across different sexes and brain regions, and our results suggest that major impacts of ethanol on bulk chromatin modifications underlying differentiation and apoptosis may be broadly applicable across the rodent cortex and cerebellum in both sexes.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alexandre A. Lussier
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dan Goldowitz
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Human Early Learning Partnership, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
30
|
Kader F, Ghai M, Olaniran AO. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med 2019; 134:1-20. [PMID: 31713682 DOI: 10.1007/s00414-019-02181-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Body fluid identification in crime scene investigations aids in reconstruction of crime scenes. Several studies have identified and reported differentially methylated sites (DMSs) and regions (DMRs) which differ between forensically relevant tissues (tDMRs) and body fluids. Diverse factors affect methylation patterns such as the environment, diets, lifestyle, disease, ethnicity, genetic variation, amongst others. Thus, it is important to analyse the stability of markers employed for forensic identification. Furthermore, even though epigenetic modifications are described as stable and heritable, epigenetic inheritance of potential markers for body fluid identification needs to be assessed in the long term. Here, we discuss the current status of reported DNA methylation-based markers and their verification studies. Such thorough investigation is crucial to develop a stable panel of DNA methylation-based markers for accurate body fluid identification.
Collapse
Affiliation(s)
- Farzeen Kader
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| |
Collapse
|
31
|
Shi G, Zhou X, Wang X, Zhang X, Zhang P, Feng S. Signatures of altered DNA methylation gene expression after central and peripheral nerve injury. J Cell Physiol 2019; 235:5171-5181. [PMID: 31691285 DOI: 10.1002/jcp.29393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
Abstract
Nerve damage can lead to movement and sensory dysfunction, with high morbidity and disability rates causing severe burdens on patients, families, and society. DNA methylation is a kind of epigenetics, and a great number of previous studies have demonstrated that DNA methylation plays an important role in the process of nerve regeneration and remodeling. However, compared with the central nervous system, the peripheral nervous system shows stronger recovery after injury, which is related to the complex microenvironment and epigenetic changes occurring at the site of injury. Therefore, what common epigenetic changes between the central and peripheral nervous systems remain to be elucidated. We first screened differential methylation genes after spinal cord injury and sciatic nerve injury using whole-genome bisulfite sequencing and methylated DNA immunoprecipitation sequencing, respectively. Subsequently, a total of 16 genes had the same epigenetic changes after spinal cord injury and sciatic nerve injury. The Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to identify the critical biological processes and pathways. Furthermore, a protein-protein interaction network analysis indicated that Dnm3, Ntrk3, Smurf1, Dpysl2, Kalrn, Shank1, Dlg2, Arsb, Reln, Bmp5, Numbl, Prickle2, Map6, and Htr7 were the core genes. These outcomes may provide novel insights into the molecular mechanism of the subacute phase of nerve injury. These verified genes can offer potential diagnostic and therapeutic targets for nerve injury.
Collapse
Affiliation(s)
- Guidong Shi
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China.,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
33
|
De León Reyes NS, Mederos S, Varela I, Weiss LA, Perea G, Galazo MJ, Nieto M. Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nat Commun 2019; 10:4549. [PMID: 31591398 PMCID: PMC6779895 DOI: 10.1038/s41467-019-12495-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interhemispheric axons of the corpus callosum (CC) facilitate the higher order functions of the cerebral cortex. According to current views, callosal and non-callosal fates are determined early after a neuron's birth, and certain populations, such as cortical layer (L) 4 excitatory neurons of the primary somatosensory (S1) barrel, project only ipsilaterally. Using a novel axonal-retrotracing strategy and GFP-targeted visualization of Rorb+ neurons, we instead demonstrate that L4 neurons develop transient interhemispheric axons. Locally restricted L4 connectivity emerges when exuberant contralateral axons are refined in an area- and layer-specific manner during postnatal development. Surgical and genetic interventions of sensory circuits demonstrate that refinement rates depend on distinct inputs from sensory-specific thalamic nuclei. Reductions in input-dependent refinement result in mature functional interhemispheric hyperconnectivity, demonstrating the plasticity and bona fide callosal potential of L4 neurons. Thus, L4 neurons discard alternative interhemispheric circuits as instructed by thalamic input. This may ensure optimal wiring.
Collapse
Affiliation(s)
- N S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - S Mederos
- Instituto Cajal, CSIC. Av. Doctor Arce, 37, 28002, Madrid, Spain
| | - I Varela
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - L A Weiss
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - G Perea
- Instituto Cajal, CSIC. Av. Doctor Arce, 37, 28002, Madrid, Spain
| | - M J Galazo
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, 6400 Freret Street, Percival Stern Hall suite 2000, New Orleans, LA, 70118, USA
| | - M Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
34
|
Amelioration of obsessive-compulsive disorder in three mouse models treated with one epigenetic drug: unraveling the underlying mechanism. Sci Rep 2019; 9:8741. [PMID: 31217515 PMCID: PMC6584622 DOI: 10.1038/s41598-019-45325-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
Mental health disorders are manifested in families, yet cannot be fully explained by classical Mendelian genetics. Changes in gene expression via epigenetics present a plausible mechanism. Anxiety often leads to avoidant behaviors which upon repetition may become habitual, maladaptive and resistant to extinction as observed in obsessive compulsive disorders (OCD). Psychophysical models of OCD propose that anxiety (amygdala) and habits (dorsolateral striatum, DLS) may be causally linked. The amygdala activates spiny projection neurons in the DLS. Repetitive amygdala terminal stimulation in the DLS elicits long term OCD-like behavior in mice associated with circuitry changes and gene methylation-mediated decrease in the activity of protein phosphatase 1 (PP1). Treatment of OCD-like grooming behavior in Slitrk5, SAPAP3, and laser-stimulated mice with one dose of RG108 (DNA methyltransferase inhibitor), lead to marked symptom improvement lasting for at least one week as well as complete reversal of anomalous changes in circuitry and PP1 gene methylation.
Collapse
|
35
|
Desai M, Han G, Li T, Ross MG. Programmed Epigenetic DNA Methylation-Mediated Reduced Neuroprogenitor Cell Proliferation and Differentiation in Small-for-Gestational-Age Offspring. Neuroscience 2019; 412:60-71. [PMID: 31153962 DOI: 10.1016/j.neuroscience.2019.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022]
Abstract
Small-for-gestational age (SGA) human newborns have an increased risk of hyperphagia and obesity, as well as a spectrum of neurologic and neurobehavioral abnormalities. We have shown that the SGA hypothalamic (appetite regulatory site) neuroprogenitor cells (NPCs) exhibit reduced proliferation and neuronal differentiation. DNA methylation (DNA methyltransferase; DNMT1) regulates neurogenesis by maintaining NPC proliferation and suppressing premature differentiation. Once differentiation ensues, DNMT1 preferentially promotes neuronal and inhibits astroglial fate. We hypothesized that the programmed dysfunction of NPC proliferation and differentiation in SGA offspring is epigenetically mediated via DNMT1. Pregnant rats received either ad libitum food (Control) or were 50% food-restricted to create SGA offspring. Primary hypothalamic NPCs from 1 day old SGA and Controls newborns were cultured and transfected with nonspecific or DNMT1-specific siRNA. NPC proliferation and protein expression of specific markers of NPC (nestin), neuroproliferative transcription factor (Hes1), neurons (Tuj1) and astrocytes (GFAP) were determined. Under basal conditions, SGA NPCs exhibited decreased DNMT1 and reduced proliferation and differentiation, as compared to Controls. In both SGA and Controls, DNMT1 siRNA in complete media inhibited NPC proliferation, consistent with reduced expression of nestin and Hes1. In differentiation media, DNMT1 siRNA decreased expression of Tuj1 but increased GFAP. In vivo data replicated these findings. In SGA offspring, impaired neurogenesis is epigenetically mediated, in part, via reduction in DNMT1 expression and suppression of Hes1 resulting in NPC differentiation. It is likely that the maturation of regions beyond the hypothalamus (e.g., cerebral cortex, hippocampus) may be impacted, contributing to poor cognitive and neurobehavioral competency in SGA offspring.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Tie Li
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
36
|
Pons-Espinal M, Gasperini C, Marzi MJ, Braccia C, Armirotti A, Pötzsch A, Walker TL, Fabel K, Nicassio F, Kempermann G, De Pietri Tonelli D. MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis. Stem Cell Reports 2019; 12:1298-1312. [PMID: 31130358 PMCID: PMC6565832 DOI: 10.1016/j.stemcr.2019.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging.
Collapse
Affiliation(s)
| | - Caterina Gasperini
- Neurobiology of miRNA, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Klaus Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
37
|
Baumann V, Wiesbeck M, Breunig CT, Braun JM, Köferle A, Ninkovic J, Götz M, Stricker SH. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat Commun 2019; 10:2119. [PMID: 31073172 PMCID: PMC6509258 DOI: 10.1038/s41467-019-10146-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Master transcription factors have the ability to direct and reverse cellular identities, and consequently their genes must be subject to particular transcriptional control. However, it is unclear which molecular processes are responsible for impeding their activation and safeguarding cellular identities. Here we show that the targeting of dCas9-VP64 to the promoter of the master transcription factor Sox1 results in strong transcript and protein up-regulation in neural progenitor cells (NPCs). This gene activation restores lost neuronal differentiation potential, which substantiates the role of Sox1 as a master transcription factor. However, despite efficient transactivator binding, major proportions of progenitor cells are unresponsive to the transactivating stimulus. By combining the transactivation domain with epigenome editing we find that among a series of euchromatic processes, the removal of DNA methylation (by dCas9-Tet1) has the highest potential to increase the proportion of cells activating foreign master transcription factors and thus breaking down cell identity barriers.
Collapse
Affiliation(s)
- Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany
| | - Maximilian Wiesbeck
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Julia M Braun
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Anna Köferle
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Neurogenesis and Regeneration, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
- BioMedizinisches Centrum, Ludwig-Maximilian-Universität, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Magdalena Götz
- BioMedizinisches Centrum, Ludwig-Maximilian-Universität, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany.
- BioMedizinisches Centrum, Ludwig-Maximilian-Universität, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany.
| |
Collapse
|
38
|
Brennan S, Keon M, Liu B, Su Z, Saksena NK. Panoramic Visualization of Circulating MicroRNAs Across Neurodegenerative Diseases in Humans. Mol Neurobiol 2019; 56:7380-7407. [PMID: 31037649 PMCID: PMC6815273 DOI: 10.1007/s12035-019-1615-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and dementia pose one of the greatest health challenges this century. Although these NDs have been looked at as single entities, the underlying molecular mechanisms have never been collectively visualized to date. With the advent of high-throughput genomic and proteomic technologies, we now have the opportunity to visualize these diseases in a whole new perspective, which will provide a clear understanding of the primary and secondary events vital in achieving the final resolution of these diseases guiding us to new treatment strategies to possibly treat these diseases together. We created a knowledge base of all microRNAs known to be differentially expressed in various body fluids of ND patients. We then used several bioinformatic methods to understand the functional intersections and differences between AD, PD, ALS, and MS. These results provide a unique panoramic view of possible functional intersections between AD, PD, MS, and ALS at the level of microRNA and their cognate genes and pathways, along with the entities that unify and separate them. While the microRNA signatures were apparent for each ND, the unique observation in our study was that hsa-miR-30b-5p overlapped between all four NDS, and has significant functional roles described across NDs. Furthermore, our results also show the evidence of functional convergence of miRNAs which was associated with the regulation of their cognate genes represented in pathways that included fatty acid synthesis and metabolism, ECM receptor interactions, prion diseases, and several signaling pathways critical to neuron differentiation and survival, underpinning their relevance in NDs. Envisioning this group of NDs together has allowed us to propose new ways of utilizing circulating miRNAs as biomarkers and in visualizing diverse NDs more holistically . The critical molecular insights gained through the discovery of ND-associated miRNAs, overlapping miRNAs, and the functional convergence of microRNAs on vital pathways strongly implicated in neurodegenerative processes can prove immensely valuable in the identifying new generation of biomarkers, along with the development of miRNAs into therapeutics.
Collapse
Affiliation(s)
- Samuel Brennan
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Matthew Keon
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Bing Liu
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Zheng Su
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Nitin K. Saksena
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| |
Collapse
|
39
|
Bultmann S, Stricker SH. Entering the post-epigenomic age: back to epigenetics. Open Biol 2019; 8:rsob.180013. [PMID: 29593118 PMCID: PMC5881036 DOI: 10.1098/rsob.180013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
It is undeniably one of the greatest findings in biology that (with some very minor exceptions) every cell in the body possesses the whole genetic information needed to generate a complete individual. Today, this concept has been so thoroughly assimilated that we struggle to still see how surprising this finding actually was: all cellular phenotypes naturally occurring in one person are generated from genetic uniformity, and thus are per definition epigenetic. Transcriptional mechanisms are clearly critical for developing and protecting cell identities, because a mis-expression of few or even single genes can efficiently induce inappropriate cellular programmes. However, how transcriptional activities are molecularly controlled and which of the many known epigenomic features have causal roles remains unclear. Today, clarification of this issue is more pressing than ever because profiling efforts and epigenome-wide association studies (EWAS) continuously provide comprehensive datasets depicting epigenomic differences between tissues and disease states. In this commentary, we propagate the idea of a widespread follow-up use of epigenome editing technology in EWAS studies. This would enable them to address the questions of which features, where in the genome, and which circumstances are essential to shape development and trigger disease states.
Collapse
Affiliation(s)
- Sebastian Bultmann
- Human Biology and BioImaging, Department of Biology II, Ludwig-Maximilian-Universität, BioMedical Center, Grosshaderner Strasse 2, Planegg-Martinsried 82152, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universität, Biocenter, Grosshaderner Strasse 9, Planegg-Martinsried 82152, Germany .,Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
40
|
Noack F, Pataskar A, Schneider M, Buchholz F, Tiwari VK, Calegari F. Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis. Life Sci Alliance 2019; 2:2/2/e201900331. [PMID: 30814272 PMCID: PMC6394126 DOI: 10.26508/lsa.201900331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
This work describes the dynamics of DNA modifications in specific cell types of the developing mammalian cortex. By providing a new method to manipulate this process in vivo, it is shown how this process can influence brain formation. Dynamic changes in DNA (hydroxy-)methylation are fundamental for stem cell differentiation. However, the signature of these epigenetic marks in specific cell types during corticogenesis is unknown. Moreover, site-specific manipulation of cytosine modifications is needed to reveal the significance and function of these changes. Here, we report the first assessment of (hydroxy-)methylation in neural stem cells, neurogenic progenitors, and newborn neurons during mammalian corticogenesis. We found that gain in hydroxymethylation and loss in methylation occur sequentially at specific cellular transitions during neurogenic commitment. We also found that these changes predominantly occur within enhancers of neurogenic genes up-regulated during neurogenesis and target of pioneer transcription factors. We further optimized the use of dCas9-Tet1 manipulation of (hydroxy-)methylation, locus-specifically, in vivo, showing the biological relevance of our observations for Dchs1, a regulator of corticogenesis involved in developmental malformations and cognitive impairment. Together, our data reveal the dynamics of cytosine modifications in lineage-related cell types, whereby methylation is reduced and hydroxymethylation gained during the neurogenic lineage concurrently with up-regulation of pioneer transcription factors and activation of enhancers for neurogenic genes.
Collapse
Affiliation(s)
- Florian Noack
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Martin Schneider
- Medical Systems Biology, School of Medicine, Technische Universität Dresden and Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, School of Medicine, Technische Universität Dresden and Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Federico Calegari
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G. Cell Signaling in Neuronal Stem Cells. Cells 2018; 7:E75. [PMID: 30011912 PMCID: PMC6070865 DOI: 10.3390/cells7070075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- School of Medicine, Universidad Rafael Nuñez, Cartagena 130001, Colombia.
| | - Roberto Navarro Quiroz
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta 470002, Colombia.
| | - Mostapha Ahmad
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | - Lorena Gomez Escorcia
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | | | | | - Gustavo Aroca Martinez
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- Clinica de la Costa, Barranquilla 080002, Colombia.
| |
Collapse
|
43
|
Albert M, Huttner WB. Epigenetic and Transcriptional Pre-patterning-An Emerging Theme in Cortical Neurogenesis. Front Neurosci 2018; 12:359. [PMID: 29896084 PMCID: PMC5986960 DOI: 10.3389/fnins.2018.00359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is the process through which neural stem and progenitor cells generate neurons. During the development of the mouse neocortex, stem and progenitor cells sequentially give rise to neurons destined to different cortical layers and then switch to gliogenesis resulting in the generation of astrocytes and oligodendrocytes. Precise spatial and temporal regulation of neural progenitor differentiation is key for the proper formation of the complex structure of the neocortex. Dynamic changes in gene expression underlie the coordinated differentiation program, which enables the cells to generate the RNAs and proteins required at different stages of neurogenesis and across different cell types. Here, we review the contribution of epigenetic mechanisms, with a focus on Polycomb proteins, to the regulation of gene expression programs during mouse neocortical development. Moreover, we discuss the recent emerging concept of epigenetic and transcriptional pre-patterning in neocortical progenitor cells as well as post-transcriptional mechanisms for the fine-tuning of mRNA abundance.
Collapse
Affiliation(s)
- Mareike Albert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|